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HOMOGENEOUS STRUCTURES WITH NONUNIVERSAL

AUTOMORPHISM GROUPS

WIESŁAW KUBIŚ AND SAHARON SHELAH

Abstract. We present three examples of countable homogeneous structures (also called Fraı̈ssé

limits) whose automorphism groups are not universal, namely, fail to contain isomorphic copies of all

automorphism groups of their substructures.

Our first example is a particular case of a rather general construction on Fraı̈ssé classes, which we call

diversification, leading to automorphism groups containing copies of all finite groups. Our second example

is a special case of another general construction on Fraı̈ssé classes, the mixed sums, leading to a Fraı̈ssé

class with all finite symmetric groups appearing as automorphism groups and at the same time with a

torsion-free automorphism group of its Fraı̈ssé limit. Our last example is a Fraı̈ssé class of finite models

with arbitrarily large finite abelian automorphism groups, such that the automorphism group of its Fraı̈ssé

limit is again torsion-free.

§1. Introduction. This note concerns mathematical structures with a high level
of symmetry. Symmetries are automorphisms, namely, bijections fully preserving
the structure. An object is often called homogeneous if “small” isomorphisms
between its subobjects extend to automorphisms. The meaning of “small” depends
on the context. We are interested in countable models of a first order language,
where “small” means “finite”. Specifically, our objects of study are Fraı̈ssé limits,
well known in model theory since the work of Fraı̈ssé [3]. In this setting,
being homogeneous means, in particular, that every automorphism between finite
submodels extends to a full automorphism. Inmost of the well known concrete cases
such an extension can be made uniform, in the sense that it preserves composition
and yields an embedding between the automorphism groups. In particular, the
automorphism group of such a Fraı̈ssé limit contains isomorphic copies of all
automorphism groups of its finite submodels. A homogeneous structure admitting
extension operators preserving compositions can be called uniformly homogeneous.
As it happens, not all Fraı̈ssé limits are uniformly homogeneous. The purpose of
this note is to provide suitable counterexamples.
Let F be a Fraı̈ssé class and let óF denote the class of all modelsM =

⋃
n∈ùEn,

where {En}n∈ù is a chain in F . Let U be the Fraı̈ssé limit of F . We say that Aut(U)
is universal if for everyM ∈ óF the group Aut(M) is isomorphic to a subgroup of
Aut(U). Most of the natural and typical Fraı̈ssé classes have this property. In fact,
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it is guaranteed by the existence of so-called Katětov functors, see [6]. In fact, in the
presence of a Katětov functor, the group Aut(U), where U is the Fraı̈ssé limit, is
universal also in the topological sense (recall that Aut(M) carries a natural Polish
topology for every countable model M). The question whether Aut(U) is always
universal was asked by Eric Jaligot [5] and perhaps also by some other people
working in this topic. In particular, the question is repeated recently in [2] and [7];
the latter paper contains a remark (attributed to Piotr Kowalski) that the class of
all finite fields of a fixed characteristic provides a counterexample. Nevertheless,
the question remained open when asking for relational classes. We answer it in the
negative. Namely, we prove:

Theorem 1. There exists a relational Fraı̈ssé class in a finite signature, such that

the group of automorphisms of its Fraı̈ssé limit is not universal, whereas it contains

isomorphic copies of all finite groups.

Theorem 2. There exists a relational Fraı̈ssé class in a finite signature, such that the

automorphism group of its Fraı̈ssé limit is torsion-free, while the class of automorphism

groups of its finite substructures contains all finite symmetric groups.

Theorem 3. There exists a Fraı̈ssé class of finite models Z in a finite signature,
such that the class

{Aut(M) : M ∈ Z}

consists of abelian groups, contains all possible finite products of finite cyclic groups,

while the automorphism group of its Fraı̈ssé limit is torsion-free.

In the last result the signature consists of two binary relation symbols and
one unary function symbol, so it is not relational. The first result shows that the
automorphism group of a relational Fraı̈ssé limit can possibly contain isomorphic
copies of all automorphism groups of its age, while still being nonuniversal in the
sense described above. The second and the third results show the more extreme
situations, where the automorphism group of a homogeneous structure does not
contain any nontrivial finite groups.

§2. Preliminaries. We shall use standard notation concerning model theory. For
undefined notions we refer to [4]. Recall that a classF of finitely generated models is
a Fraı̈ssé class if it is hereditary, has the joint embedding property, countably many
isomorphic types, and the amalgamation property. The amalgamation property says
that for every two embeddings f : Z→ X , g : Z→ Y there existW and embeddings
f ′ : X →W , g′ : Y →W such that f ′f = g′g. If one can always have f ′[X ]∩g′[Y ] =
f ′f [Z] then this is called the strong amalgamation property. Replacing f and g by
inclusions and assuming Z = X ∩Y , the strong amalgamation property means that
one can amalgamate X and Y over Z without identifying points in X ∪Y .
Recall that every Fraı̈ssé class F has its unique Fraı̈ssé limit U ∈ óF which is

characterized by the extension property, namely, given structures A⊆ B in F , every
embedding of A into U extends to a embedding of B. One needs to assume also
that F is the age of U, namely, F equals the class of all finitely generated structures
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embeddable into U. Of course, U is always homogeneous and conversely, every
countable homogeneous structure is the Fraı̈ssé limit of its age. See [4] for more
details.
In this note we are interested in Fraı̈ssé classes of finitemodels. A class is relational

if its signature consists of relation symbols only. In particular, the empty set is a
model of any relational signature, since there are no constants.
We denote by S∞ the symmetric group (i.e., the group of all permutations)

of a countable infinite set. Sn will denote the symmetric group of the set n =
{0,1, ... ,n – 1}. The set of all natural numbers (including zero) will be denoted,
as usual, by ù.

2.1. Some very basic group theory. Given a set A, its powerset P(A) has a natural
abelian group operation, namely, the symmetric difference ÷ (recall that A÷B =
(A\B)∪ (B \A)). Note that each element of P(A) has degree 2 (except its unit ∅).
The 2-element group 〈P(1),÷〉 is usually denoted by Z2.

Proposition 2.1. Assume G is a group with a subgroup K of index < 2ℵ0 . If no
element of K has order 2 then 〈P(ù)÷〉 does not embed into G.

Proof. Suppose A 7→ fA is an embedding of P(ù) into G, that is, fAfB = fA÷B for
every A,B⊆ù and fA 6= 1 for every A 6= ∅. Since |P(ù)|= 2ℵ0 , there are A 6= B such
that fA and fB belong to the same right co-set of K. Now

fA÷B = fAfB = fA(fB)
–1 ∈ K

and fA÷B 6= 1 has order 2, a contradiction. ⊣

Note that 〈P(ù)÷〉 embeds into S∞. Namely, given A⊆ ù \1, define hA : Z→ Z

by hA(x) = – x if x ∈ A and hA(x) = x otherwise. Then A 7→ hA is an embedding of
P(ù \1) into S∞. Thus:

Corollary 2.2. Assume S∞ embeds into a group G. Then every subgroup of G of

index < 2ℵ0 contains an element of order 2.

2.2. Bipartite graphs. We fix the notation concerning bipartite graphs. Namely,
these are structures of the form X = 〈X ,LX,RX,∼X〉, where LX, RX are unary
predicates, ∼X is a symmetric binary relation, {LX,RX} is a partition of X, and
x ∼X y holds only if either x ∈ LX, y ∈ RX or x ∈ RX, y ∈ LX. By this way, 〈X ,∼X〉
is indeed a bipartite graph and LX, RX specifies its bipartition. Adding the unary
predicates L, R to the signature, we fix the two sides of the bipartite graph, the
one specified by L could be called the left-hand side while the other one could be
called the right-hand side. Note that embeddings preserve the sides. The following
fact belongs to the folklore of Fraı̈ssé theory.

Proposition 2.3. The class of all finite bipartite graphs, described as above, is a

Fraı̈ssé class. Its Fraı̈ssé limit is the unique countable bipartite graph

U= 〈U ,LU,RU,∼U〉
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satisfying the following condition:

⋆ For every finite disjoint sets A,B⊆U, there are ℓ ∈LU \(A∪B), r∈RU \(A∪B)
such that ℓ ∼U y holds for y ∈A∩RU, ℓ 6∼U y holds for y ∈ B∩RU, x∼U r holds

for x ∈ A∩LU, and x 6∼U r holds for x ∈ B∩LU.

The structure U described above is called the universal homogeneous bipartite
graph.

§3. Diversifications. In this section we present a general construction on Fraı̈ssé
classes, leading to automorphism groups containing copies of all finite groups.
LetR be a fixed countable relational signature (i.e., it consists of atmost countably

many relation symbols, no function symbols and no constant symbols). Let F be
a class of finite R-models. We define the diversification of F , denoted by DF , to be
the class of two-sorted models X = PX ∪CX with PX ∩CX = ∅ such that for each
y∈CX the setPX is endowedwith anR-structureRy. Clearly, this can be formalized

in a first order language. Specifically, for each n-ary relation symbol R let R̃ be an
(n+1)-ary relation symbol and let

R̃= {R̃ : R ∈R}∪{P,C}.

Now, DF consists of finite models of R̃ satisfying the obvious axioms: {PC} is a
partition and for each y ∈C the set P endowed withRy := {R(–,y) : R ∈ R̃} is inF .
Note that if F is hereditary then so is DF , if F has countably many isomorphism
types then so does DF . We shall see in a moment that if F is a Fraı̈ssé class with
strong amalgamations then so is DF . Let us note that a similar construction, called
generic variation, is due to Baudisch [1]. The difference is that in a generic variation
there are no extra predicates P and C, hence R(–,y) is defined for every y and for
every relation R in the signature.
In order to avoid repetitions, we shall now introduce a more general version of

diversifications, involving a group action. Namely, fix a finite group G and define
DGF to be the class of all models from DF with a distinguished free G-action,
denoted by 〈xg 7→ xg〉. More precisely, 〈Xa ∈ DGF〉 if X ∈ DF and a : X ×G→ X
is a free group action on X, that is, a[CX ×G] =CX , a[PX ×G] = PX and, denoting
a(x,g) = xg, for every relation R ∈R the following implication holds.

R(x1, ... ,xn,y) =⇒ R(xg1, ... ,x
g
n,y
g). (⋔)

In fact, the implication above is an equivalence. Recall that a group action is free
if xg = xh =⇒ g= h for every x∈X , g,h ∈G. Equivalently, if xg = x for some x∈X
then g = 1. We are now ready to prove the crucial lemma.

Lemma 3.1. Assume G is a finite group and F is a relational Fraı̈ssé class with
strong amalgamations. Then DGF is a Fraı̈ssé class.

Proof. First of all, note that either F = {∅} or else F contains arbitrarily large
finite models, thanks to strong amalgamations. In the latter case, every model in
F can be extended to an arbitrarily large finite model in F , thanks to the joint
embedding property. It is clear that DGF is hereditary and has countably many
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isomorphism types. As the empty model is in F , the joint embedding property of
DGF follows from the amalgamation property, which we prove below.
Fix Z ∈ DGF . There are two types of “simple” extensions of Z: adding a single

G-orbit to P and adding a single G-orbit to C. Clearly, all other embeddings are
finite compositions of “simple” ones. So let us fix “simple” extensionsZ⊆X ,Z⊆Y .
Without loss of generality, we may assume thatX ∩Y =Z. LetW =X ∪Y . ThenW
already has a uniquely determined freeG-action. It remains to define aDF-structure
onW, so that the G-action will consist of automorphisms ofW, i.e., that condition
(⋔) holds true.
Define PW = PX ∪PY , CW = CX ∪CY . Clearly, {PW ,CW} is a partition of W

extending the corresponding partitions of X and Y. Let R denote the signature
of F . We shall use the notation introduced in the definition of diversification (in
particular R̃ is the relation coming fromR by adding one more coordinate).We have
to consider the following three cases.
Case 1: Both X and Y add G-orbits in CW .
In this case there is nothing to do, simplyW already carries a DF-structure and

the G-action satisfies (⋔).
Case 2: One of the extensions adds a G-orbit in CW while the other one adds a

G-orbit in PW .
We may assume X =Z∪A, Y =Z∪B with A⊆ PW \Z, B⊆CW \Z. Fix b0 ∈ B.

Then PZ has an F-structure induced by b0 in Y, because P
Y = PZ. By the remarks

above, as F 6= {∅}, each model in F can be extended to an arbitrarily large finite
model that is still inF . So, let us choose someF-structure onPW =PZ∪A extending
the structure of PZ induced by b0. Given g ∈ G, define the F-structure on P

W by
using the G-action, namely,

R̃(x1, ... ,xn,b
g
0)⇐⇒ R̃(xg

–1

1 , ... ,x
g–1

n ,b0).

By this way, the G-action becomes compatible with the F-structure, namely, given
h ∈ G it holds that

R̃(xh1, ... ,x
h
n,b
gh
0 )⇐⇒ R̃(xg

–1

1 , ... ,x
g–1

n ,b0)⇐⇒ R̃(x1, ... ,xn,b
g
0).

Case 3: Both X and Y add G-orbits in PW .
Here we essentially use the fact that F has strong amalgamations. Let S ⊆ CW =

CZ be a selector from the family of allG-orbits inCW . Namely, |S∩O|= 1 for every
G-orbitO⊆CW . Fix s ∈ S and choose anF-structure on PW =XW ∪YW using the
strong amalgamation property. This will be the structure induced by s. Next, given
g ∈ G, define the F-structure on PW induced by sg using the G-action, namely, for
each relation R define

R̃(x1, ... ,xn,s
g)⇐⇒ R̃(xg

–1

1 , ... ,x
g–1

n ,s).

In order to see thatW with such definedF-structures is inDGF , it remains to check
that condition (⋔) holds.
So fix an n-ary relation R in the signature of F and fix x1, ... ,xn ∈ P

W , y ∈ CW

such that R̃(x1, ... ,xn,y) holds in W. As the G-action is free, there are uniquely
determined s ∈ S and h ∈ G such that y= sh. Fix g ∈ G. We have
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R̃(xg1, ... ,x
g
n,y
g)⇐⇒ R̃(xg1, ... ,x

g
n,s
hg)⇐⇒ R̃(xh

–1

1 , ... ,x
h–1

n ,s)

⇐⇒ R̃(x1, ... ,xn,s
h)⇐⇒ R̃(x1, ... ,xn,y).

We conclude thatW ∈ DGF , which completes the proof. ⊣

Lemma 3.2. Let F be a relational Fraı̈ssé class, let X ∈ DF be nonempty, and
let G be a finite group. Then there exists XG ∈ DGF such that X embeds into XG.
Furthermore, if some X0 ⊆ X has a fixed free G-action, then at least one embedding
of X into XG preserves this action.

Here, we consider XG as an F-structure, forgetting the G-action.

Proof. Let XG = {xg : x ∈ X , g ∈ G}, where we agree that x1 = x and xg 6= yh,
unless x = y and g = h. For each c ∈ CX extend the F-structure induced by c to
(PX )G = {xg : x ∈ PX , g ∈ G}. Finally, c ∈ CX and g ∈ G, define the F-structure
induced by cg by using the canonical G-action on (PX )G:

R̃(x1, ... ,xn,y
g)⇐⇒ R̃(xg

–1

1 , ...x
g–1

n ,y)

for every n-ary relation R in the signature of F . As before, it is easy to check that
the G-action preserves the DF-structure, therefore XG ∈ DGF .
Finally, in case some X0 has a fixed free G-action, we apply the procedure above

to the set X \X0. ⊣

Theorem 4. Let F be a relational Fraı̈ssé class with strong amalgamations. Then
DF is a Fraı̈ssé class and every finite group acts freely on its Fraı̈ssé limit.

Proof. By Lemma 3.1, DGF and, in particular, DF = D{1}F is a Fraı̈ssé class.
LetU denote the Fraı̈ssé limit ofF and letDGU denote the Fraı̈ssé limit ofDGF . We
writeDU forD{1}U . SinceDGU has a canonical freeG-action, we need to show that
DU is isomorphic to (the reduct of) DGU for every finite group G. For this aim, it
suffices to check thatDGU has the extension property with respect toDF (forgetting
the G-action). This actually follows from Lemma 3.2: Given a finite substructure
X0 ⊆ DGU , given an embedding e : X0 → X with X ∈ DF , Lemma 3.2 provides
a DGF-structure on X extending the DGF-structure of X0, therefore there is an
embedding f : X → DGU such that fe is the inclusion X0 ⊆U . Forgetting the group
action, we see that DGU has the extension property with respect to DF , therefore it
is the Fraı̈ssé limit of DF . ⊣

3.1. An application: consumer-product models. Let CP be the class of all finite
models 〈M,PM ,CM ,LM〉, where P,C are unary predicates, L is a ternary relation,
and the following two axioms are satisfied.

(CP1) {PM ,CM} is a partition ofM.
(CP2) For each c ∈CM , the relation LM( · , · ,c) is a strict linear ordering of PM .

We shall rather write x<c y instead of L
M(x,y,c). The elements of PM will be called

products while the elements of CM will be called consumers. The idea is that PM

consists of certain items (goods) of the same type. Consumers have their personal
preferences so that, given two different products, each individual consumer can say
which one is better or more desirable for her/him, thus implicitly defining a linear
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ordering on the set of items. Clearly, CP = DL, the diversification of the Fraı̈ssé
class of all finite linearly ordered sets. Structures in the class óCP will be called
consumer-product models. The infinite ones may represent limits of some evolution
processes where either the number of products or the number of consumers or both
tend to infinity.
By Theorem 4, CP is a Fraı̈ssé class. Let U denote its Fraı̈ssé limit. Also by

Theorem 4, Aut(U) contains copies of all finite groups, which proves part of
Theorem 1.
It is rather obvious thatUhas infinitelymany consumers, infinitelymanyproducts,

and for each consumer c the relation <c defines an ordering of P
U isomorphic

to 〈Q,<〉. Furthermore, no two consumers have the same preferences, namely, if
c 6= d are in CU then there are products p,q such that p <c q and q <d p. This is
a straightforward consequence of the extension property. Namely, N = {cd} with
PN = ∅ is a submodel of U andM ⊇N defined by PM = {pq} and p<c q, q<d p is
a consumer-product model that has to be realized inside U.
Fix a consumer c ∈ U and define

Kc = {h ∈Aut(U) : h(c) = c}.

If h ∈Kc and h ↾ P
U is identity, then h= idU, because of the remark above. Thus, the

mapping h 7→ h ↾ PU, defined onKc into the group of permutations of P
U, has trivial

kernel. This shows that Kc is isomorphic to a subgroup of Aut(Q,<), therefore it is
torsion-free. On the other hand, Kc has a countable index in Aut(U), because C

U is
countable and each coset of Kc is defined by some (any) automorphism moving c to
another consumer d ∈ CU. More precisely, if f0, f1 ∈ Aut(U) are such that fi(c) = d
for i = 0,1, then f –11 ◦ f0 ∈ Kc. We conclude that S∞ does not embed into Aut(U),
by Corollary 2.2. On the other hand, óCP has infinite models without products
or without consumers, whose automorphism groups are clearly isomorphic to S∞.
This shows that Aut(U) is not universal, which completes the proof of Theorem 1.
Let us finally note that while U has an involution, since Z2 acts freely on it,

there exist involutions of its finite submodels such that all their extensions have
infinite order. Namely, fix a finite S ⊆U consisting of consumers only. Then Aut(S)
is the group of all permutations of S. Assume |S| > 2 and let h ∈ Aut(S) be a

nontrivial involution with a fixed point c∈ S. By the arguments above, if h̃∈Aut(U)
extends h then its restriction on the set of products is a nontrivial automorphism
of 〈PU,<c〉 ≈ 〈Q <〉, therefore it has an infinite order. This is a clear evidence that
CP cannot have a Katětov functor (cf. [6]) and its Fraı̈ssé limit is not uniformly
homogeneous.

§4. Mixed sums. Wenowdescribe another operation, this time on pairs of Fraı̈ssé
classes, involving bipartite graph structures.
Let F , G be two classes of models (possibly of different signatures). We define

their mixed sum F ±G to be the class of all structures of the formM = LM ∪RM ,
where LM ∩RM = ∅, LM ∈F ,RM ∈ G, and additionally 〈LM ,RM ,∼M〉 is a bipartite
graph. More precisely, 〈M∼M〉 is a graph such that x∼M y implies x ∈ LM , y ∈RM
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or vice versa. Formally we should assume that the signatures ofF and G are disjoint1

and the signature ofF±G is their union, together with three new predicates:L,R,∼.

Lemma 4.1. Assume F , G are relational Fraı̈ssé classes, each of them having strong
amalgamations. Then F ±G is a Fraı̈ssé class with strong amalgamations.

Proof. It is clear that F ±G is hereditary and has countably many types. Let
f : Z→ X , g : Z→ Y be two embeddings with Z,X ,Y ∈ F ±G. We may assume
that f, g are inclusions and Z = X ∩Y . It suffices to check thatW := X ∪Y carries
a structure of F ±G.
Using the strong amalgamation property ofF , we find LW ∈F so that LX ∪LY ⊆

LW and the inclusions are embeddings. In fact, we may assume (although it is
irrelevant here) that LW = LX ∪LY , because F is relational. We do the same with
RX , RY , obtaining RW ∈ G containing RX ∪RY . LetW = LW ∪RW (of course, we
assume thatLW ∩RW = ∅). Finally, we define x∼W y if and only if x∼X y or x∼Y y.
Now W ∈ F ±G and the inclusions X ⊆W , Y ⊆W are embeddings. This shows
that F ±G has strong amalgamations. The joint embedding property follows from
the amalgamation property, because the empty set is a model both in F and in G. ⊣

Note that once we allow functions in the signatures, F ± G still has the
amalgamation property, as long as F , G have strong amalgamations and all the
models are finite (if some X ∈ F ±G is infinite then there are uncountably many
bipartite graph structures on 〈LX ,RX 〉). On the other hand, if there are some
constants in the languages ofF and G then the classF±G fails the joint embedding
property.
We say that a class of models F is nondegenrate if F 6= {∅}.

Theorem 4.2. Assume F , G are nondegenerate relational Fraı̈ssé classes, both with
the strong amalgamation property. Let UF , UG denote their Fraı̈ssé limits, and let U

denote the Fraı̈ssé limit of F ±G.
Then LU ≈ UF , R

U ≈ UG and 〈L
U,RU,∼U〉 is the universal homogeneous bipartite

graph. Furthermore, the restriction mappings h 7→ h ↾ LU and h 7→ h ↾ RU are

embeddings of Aut(U) into Aut(UF ) and Aut(UG), respectively.

Proof. First of all, notice that UF and UG are infinite, because of the strong
amalgamation property and the existence of nonempty models.
In order to show that LU ≈ UF , we check the extension property. Fix A⊆ B ∈ F

and an embedding e : A→ LU, where LU is viewed as a structure in F . Modifying
the language, B can be regarded as a structure in F ±G, where LB = B, RB = ∅, and
the bipartite graph relation is empty. Now, using the extension property of U, there
is an embedding f : B→U extending e. Coming back to the original language of B,
we conclude that f is an embedding of structures in F . Hence LU ≈ UF . The same
arguments show that RU ≈ UG .
We now check, using Proposition 2.3, that 〈LU,RU,∼U〉 is the universal

homogeneous bipartite graph. Again, fix a bipartite graph B = 〈LB,RB,∼B〉, its
subgraph A, and an embedding e : A→ U, where now U is viewed as the bipartite
graph (so the signature consists of three symbols: L, R, ∼). Using e–1, we endow A

1As this concerns symbols only, there is no problem here.
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with the F ±G-structure, so that now A ∈ F ±G. Using the fact that both F and G
have arbitrarily large models, we may find anF±G-structure on B extending that of
A.Now e is an embeddingofF±G-structures and, by the extensionproperty ofU, we
find an embedding f : B→ U satisfying f ↾ A = B. Forgetting the F ±G-structure,
leaving only the bipartite graph relation, we conclude that f is an embedding of
bipartite graphs, showing that 〈ULURU〉 is the Fraı̈ssé limit of finite bipartite graphs.
Finally, fix h ∈ Aut(U) and suppose h 6= idU. Then h(b0) 6= b0 for some b0 ∈ R

U.
LetA⊆U be any finite model containing {b0,h(b0)}. ExtendA to amodelB∈F±G
so that for some a0 ∈ L

B \LA we have that a0 ∼
B b0 and a0 6∼ h(b0). This is possible,

because F has arbitrarily large models and there are no restrictions for the bipartite
graph relation. By the extension property, B is realized in U, so we may assume
a0 ∈ L

U. It cannot be the case that h(a0) = a0, therefore h ↾ L
U is not identity. This

shows that the restriction map h 7→ h ↾ LU has a trivial kernel. The mixed sum is
symmetric, therefore the same arguments apply to the map h 7→ h ↾ RU. ⊣

As an application, consider F to be the class of all finite sets (so the signature of
F is empty) and G to be the class of all finite linearly ordered sets. Let G =Aut(U),
where U is the Fraı̈ssé limit of F ±G. By Theorem 4.2, G embeds into Aut(Q,<),
therefore it is torsion-free. On the other hand, among models of F ±G we may find
those having the empty bipartite graph relation, therefore all finite symmetric groups
appear as Aut(X) with X ∈ F ±G. This proves Theorem 2.

§5. Rotating machines. We now present another example of a Fraı̈ssé class
of finite models with nontrivial abelian automorphism groups, whereas the
automorphism group of its Fraı̈ssé limit is torsion-free. This will prove Theorem 2.
Consider the signature Lwith two binary predicates<,∼ and one unary function

symbol s(). In a model of this language, the mapping x 7→ s(x) will be called the
successor operation whenever it is one-to-one. A rotating wheel is a finite structure
M of this language, satisfying the following conditions:

(W0) The successor operation x 7→ s(x) is bijective and has exactly one orbit (in
other words, the whole setM forms a cycle with respect to this operation).

(W1) The relations <, ∼ are empty.

Note that every automorphism of a rotating wheel M is actually a power of the
successor operation. In other words, Aut(M) is cyclic of order |M|, generated by the
successor operation. Note also that every rotating wheel is isomorphic to 〈Zn, s()〉,
where s(x) = x+n 1, where +n denotes the addition modulo n.
A rotating machine is a finite modelM of the signature L satisfying the following

axioms.

(V0)M is a disjoint union of rotating wheels.

(V1) < is a strict partial order and ∼ is an undirected graph relation.

(V2) If x< y or x∼ y then x and y belong to different rotating wheels.

(V3) If C and D are different rotating wheels then either C <D or D< C.

(V4) ∼ is compatible with the successor operation, namely, x ∼ y =⇒ s(x) ∼
s(y).
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Concerning (V3), we use the abbreviation A < B meaning a < b for every a ∈ A,
b ∈ B. Condition (V4) is crucial, it says that different rotating wheels are connected
in the sense that rotating one of them induces a suitable rotation of the other. We
will use it in the proof of Lemma 5.2 below.
Let V denote the class of all rotating machines.

Lemma 5.1. V is a Fraı̈ssé class of finite models.

Proof. Rather trivial, the amalgamation property can be proved almost in the
same way as for the linearly ordered graphs. ⊣

LetW denote the Fraı̈ssé limit of V .

Lemma 5.2. The group Aut(W) is torsion-free.

Proof. Fix h ∈ Aut(W), h 6= idW and suppose h has a finite order k > 1. Note
that each rotating wheel must be invariant under h, since otherwise h would induce
a nontrivial isomorphism of the linearly ordered set of all rotating wheels, therefore
h would have infinite order.
There exists a rotating wheelC ⊆W such that h ↾C has order k. Indeed, if ℓ is the

maximum of the orders of h restricted to rotating wheels, then ℓ ≤ k and hℓ = idW ,
therefore ℓ = k.
Let n= |C|, so C is isomorphic to Zn with the standard successor operation. Let

us use the enumeration C = {0C , ... , (n – 1)C}, where s(iC) = (i+n 1)
C for i < n. Let

D= Zm with m= kn and define the graph relation between C and D by

xC ∼ yD⇐⇒ x= y mod n.

We use the enumeration D = {0D, ... , (m – 1)D}. Of course, ∼ must be symmetric,
therefore we also define yD ∼ xC⇐⇒ xC ∼ yD. We define < so that C <D (actually
the ordering plays no role here). We need to check that C∪D is a rotating machine
and the only possible obstacle is condition (V4).
Fix x,y such that xC ∼ yD. If x< n – 1 and y<m – 1 then clearly s(xC)∼ s(yD).

Suppose x= n – 1. Then s(xC) = 0C and y= ny′ – 1 for some integer y′; hence y+m 1
is divisible by n, as it is either y+1 or 0. Thus in this case s((xC))∼ s(yD). Finally,
suppose y = m – 1. Knowing that n divides m, we see that necessarily x = n – 1,
therefore by the previous case s(xC)∼ s(yD).
We have verified condition (V4), concluding that C ∪D is indeed a rotating

machine. Thus, we may assume that it is already contained inW .
Let h(0C) = aC , a∈Zn and let h(0

D) = bD, b∈Zm. Then a
C ∼ bD, because 0C ∼ 0D.

Note that hk(0C) = ka mod n and hk(0D) = kb modm. Thus, there is c ∈ ù with
kb = cm = ckn. Hence b = cn. It follows that a is divisible by n, which is possible
only if a= 0, a contradiction, because h ↾ C is not the identity. ⊣

Finally, among rotating machines we may find infinitely many with empty edge
relation and their automorphism groups are arbitrary large finite products of cyclic
groups. Furthermore, given a rotating machine, its automorphism group embeds
into the product of all automorphism groups of its rotating wheels, which in turn are
finite cyclic groups. In particular, for every rotating machineM, the group Aut(M)
is abelian. This proves Theorem 3.
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