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Abstract

Near-field to far-field transformations constitute a powerful antenna characterization tech-
nique for near-field measurement scenarios. In this paper, a near-field to far-field transform-
ation technique based on multiple spherical wave expansions (SWEs) is presented. Thanks to
its iterative matrix inversion nature, the approach performs the transformation of fields mea-
sured on arbitrary surfaces. Also, irregular sampling schemes can be incorporated. The pro-
posed algorithm is based on modeling the antenna fields with not one, but several SWEs
distributed over its geometry. Due to the high number of SWEs, their truncation number
can be arbitrarily reduced. Working with expansions of low order allows us to incorporate
the probe correction in the transformation in a very simple way, accepting any type of
probe and orientation. Only the probe far-field pattern is used, thus working with its full
SWE is avoided. The algorithm is validated using simulated field data as well as measurements
of real antennas.

Introduction

Antenna near-field measurements constitute a versatile tool for determining antennas radi-
ation pattern. This type of measurement requires the use of post-processing techniques to
transform the antenna under test (AUT) measured near-fields into the radiated far-field.
Traditionally, near-field measurements have been performed using canonical acquisition sur-
faces to simplify the post-processing steps: spheres, cylinders, and planes. Among the three, the
spherical measurement system has been regarded as one of the most accurate and powerful
techniques [1]. With the growing interest in high frequencies and robotic positioning equip-
ment [2], achieving correct probe location and orientation becomes challenging. In addition,
there exists an increasing trend in measurement set-ups where the antenna near-field is mea-
sured in a surface of arbitrary shape and sampling enclosing the AUT, as in the case of
over-the-air measurements [3]. Near-field to far-field transformation algorithms suitable for
these scenarios must be implemented, as the classical post-processing techniques cannot be
applied in these cases.

Several approaches have been proposed for the transformation of fields measured over
canonical surfaces with irregular sampling. The use of non-equispaced fast Fourier transform
has proven to be an efficient way of processing spherical near-field measurements with irregu-
lar grids due to positioning errors [4]. Optimal sampling interpolation techniques have also
been proposed for planar [5], cylindrical [6], and spherical [7] acquisition surfaces. In this
case, the fields are measured over a non-redundant grid of points and then interpolated
to a regular grid that can be processed by classical near-field to far-field transformation
algorithms.

More flexible transformation techniques that can deal with both irregular sampling and
arbitrary surfaces have also been reported. Most of them consist of a two-step procedure:
first, an equivalent representation of the AUT is found by solving an inverse problem with
the knowledge of the near field. This involves solving a system of equations usually formulated
in matrix form. Then, the far-field of the equivalent representation is computed to obtain the
AUT radiation pattern. Depending on the type of equivalent representation used (magnetic/
electric currents [8], spherical waves [9], and complex source beams [10]) different approaches
can be followed to formulate the problem and reduce the number of operations. Solving the
inverse problem can turn into a computationally intensive task, particularly for electrically
large antennas. As the electrical size of the problem increases, the number of measurement
points grows quadratically, and so does the size of the problem matrix with respect to the
number of points. This results in an overall scalability of O(n4), which limits the applicability
of some of these techniques to small and medium problems. Mathematical and computational
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improvements are still needed for the transformation of fields
measured over arbitrary surfaces with irregular sampling.

In this paper, a new technique to address this type of near-field
to far-field transformation problem is proposed. It can process
near field measured over arbitrary surfaces and grids with full
probe correction. The main novelty is the use of a multiple spher-
ical wave expansion (SWE) representation to model, the AUT.
This is done by defining a set of unknown SWEs centered around
the antenna shape, as opposed to the conventional approach
based on a single SWE centered at the coordinate system origin.
The advantage of using several expansions is that the probe-
correction can be applied using directly the probe’s far-field
pattern without having to deal with its own SWE and complex
translation and rotation coefficients. In addition, the approach
is suitable for a multi-level extension, which can reduce the algo-
rithm computational complexity drastically.

The structure of this paper is as follows. In Section “Near-field
to far-field transformation theory,” the basic theory of the
multiple SWE field transformation algorithm is presented.
In Section “Numerical transformation results,” the approach is
validated based on simulations of antenna fields, leaving the veri-
fication with real measured data for Section “Transformation
of near-field measured data.” “Conclusion” section concludes
this paper.

Near-field to far-field transformation theory

This section deals with the mathematical development for the
near-field to far-field transformation technique. First, the use of
several SWEs to model the antenna is shown. A transmission for-
mula is derived to compute the interaction between AUT and
probe. Finally, a multilevel scheme is proposed to reduce the
computational complexity of the inverse problem.

AUT–probe interactions using multiple SWE

The field �E radiated by a given antenna admits a SWE [11] that
can be centered at an arbitrary point �ri:

�E (�r) =
∑2

s=1

∑N

n=1

∑n

m=−n

Qsmn
�F(3)
smn (�r − �ri) (1)

where �F(3)
smn (�r) are the spherical vector wave functions; Qsmn the

antenna spherical coefficients, and N the truncation number of
the expansion. This truncation number is related to the degrees
of freedom needed to model the antenna field variations and it
is proportional to its size. The bigger the antenna is, the more var-
iations will experiment the radiated field and thus, more spherical
harmonics are needed to model it. In particular, there exists the
following rule of thumb:

Nl = kal + 10 (2)

where al is the radius of the smallest sphere circumscribing sub-
domain l (minimum sphere), k the free space wavenumber, and
the brackets indicate the largest integer smaller than or equal to
the number inside them.

Conventionally, �ri is set to 0 and the coordinate system is cen-
tered at the antenna system to minimize N and so, the number of
terms in the summation. In this case, a different approach will be
taken, as the field �E (�r) can be modeled also using not one, but

several SWEs centered at different points �ri:

�E (�r) =
∑I

i=1

∑2

s=1

∑Ni

n=1

∑n

m=−n

Qi
smn

�F(3)
smn (�r − �ri) (3)

The combination of several SWEs creates new field variations
so each individual SWE needs now a lower truncation number Ni

than in the previous case. The lower the values of Ni used, the
smaller the number of harmonics will have each expansion,
so more expansions are needed to model adequately the field
variations.

In a real measurement scenario, it is not possible to measure
directly the AUT field �E (�r) since the antenna used as probe has
some influence. The probe has its own SWE that can be intro-
duced in the above formulation to consider its effect. The probe
SWE coefficients must be rotated and translated depending on
its location and orientation leading to complex calculations. In
addition, if the probe exhibits non-ideal orientations, more rota-
tions are needed [12]. However, if the truncation number of the
expansions Ni is set to a low value compared to the probe dis-
tance, the signal measured by the probe can be approximated by:

w (�r) ≈
∑I

i=1

�P (�ri − �r)
∑2

s=1

∑Ni

n=1

∑n

m=−n

Qi
smn

�F(3)
smn (�r − �ri) (4)

Being �P (�r) the probe radiation pattern: Note that �ri − �r repre-
sents the angular direction of the ith SWE seen from the probe
placed at �r. Therefore, it can be considered that the measured sig-
nal w (�r) is a superposition of the contributions of each SWE
weighted by the probe radiation pattern in the angular direction
where the SWE is seen from the probe. It is important to consider
that with this approach we are reducing the AUT near-field field
effect but not for the probe. This can be a limiting factor in scen-
arios where the probe is very close to the AUT, although in most
cases the probe size is small compared to the measurement
distance.

Equation (4) can be expressed as a matrix–vector product:

W = CQ (5)

being W a vector that contains the probe measurements in all
the acquisition points, Q the vector that contains the coefficients
of all SWEs, and C the coupling matrix that performs the summa-
tion and multiplications. Our problem is to determine Q from the
field measurements W, so we can evaluate the equivalent
representation Q at the far-field using the asymptotic form of
(3) when �r � 1.

Equation (5) is solved in the least squares sense by computing:

Q = (CHC)−1CHW (6)

Due to the high number of unknowns involved, an iterative
matrix inversion method such as conjugate gradient (CG) [13]
is preferred over a direct inversion. To obtain a valid solution,
well distributed and sampled measurements W are needed for
two orthogonal polarizations. There are no further restrictions,
so the method is suitable for arbitrary measurement grids with
irregular sampling.

The CG is an iterative algorithm which starts with an initial
guess of the solution, Q0, and gradually approaches the correct

448 Fernando Rodríguez Varela et al.

https://doi.org/10.1017/S1759078720000136 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078720000136


solution Q, obtaining a residual W − CQi on each iteration i.
From this residual, the solution vector Qi is updated for the
next iteration. When the residual is low enough the algorithm is
stopped. Figure 1 shows a schematic representation of one step
in the CG for this particular problem. We start with a guess Qi

for the coefficients of all SWEs and calculate the field radiated
by these guess coefficients, CQi. This radiated field is compared
with the measured field W, obtaining a residual that is used to
update Qi for the next iteration. From these steps, the radiated
field calculation is the most computationally intensive, therefore,
in the next section an efficient implementation for this step will be
proposed.

Multilevel spherical wave aggregation

This section deals with an efficient implementation of the iterative
inversion algorithm for solving (6). When working with explicit
matrices, the overall cost of the inverse process is around O(d4),
d being the electrical size of the AUT. However, the matrix multi-
plications inside the iterative algorithm can be replaced by fast
operators that compute matrix vector products on the fly. In par-
ticular, we focus on the product W = CQ. This calculation is

performed repeatedly in the CG algorithm until a good level of
convergence is reached. As shown in the previous section,
matrix–vector product CQ can be understood as the radiation
of a set of multiple SWE measured by a probe antenna. The
multilevel spherical wave aggregation performs this computation
without the need of matrix operators, using interpolation and a
multilevel aggregation scheme.

The field radiated by an AUT of finite size can be sampled on a
non-redundant grid of points given by a sampling rate. This sam-
pling rate depends on the electrical size of the AUT. A common
criterion [11] is to use angular increments Δθ = Δw = π/N, where
N is defined in (2) as a function of the minimum sphere. This
means that the smaller the AUT, the less samples are required
to store the radiated field. Using this concept, we will devise a
scheme for an efficient calculation of the fields radiated by the
AUT, i.e. W = CQ. First, we calculate the fields radiated by each
SWE on a non-redundant grid of points. Then, from this grid,
the fields are interpolated to the measurement grid. In order to
obtain a good computational complexity, this interpolation
must be performed in a multilevel scheme: the SWEs are grouped
progressively, and, as the size of the group increases, the fields are
interpolated and aggregated.

Fig. 1. Representation of one step in the CG algo-
rithm to obtain the coefficients for the equivalent
SWEs.

Fig. 2. Schematic representation of the multilevel spherical wave aggregation
process.
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The interpolation–aggregation procedure is explained using a
simple example. Assume an AUT that is modeled using 4 × 4 =
16 local SWEs and its field has been measured according to the
Nyquist criterion in a spherical grid of Nu × Nw = 64× 128
points. In a given iteration of the CG, we must calculate the
field radiated by the SWE of that iteration and compare it with
the measured field. Because each SWE is roughly four times smal-
ler in each dimension than the total AUT, the radiated fields can
be calculated in four grids of 16 × 32 points, one grid per SWE.
Now, we move to the next level and group the adjacent SWE in
2 × 2 groups. Each group contains four SWEs, so the field of
each group is the linear combination of the SWE fields. Because
the groups have double their size, the Nyquist rate is also doubled.
Therefore, the fields are interpolated to a 32 × 64 grid before being
aggregated. At the end of this step we have 2 × 2 grids of 32 × 64
points, one grid per SWE. The final step is the aggregation of the
four groups into a single one following the same procedure. First,
the fields sampling rate is doubled and then the fields are com-
bined, obtaining a grid of 64 × 128, which is virtually the field
of the complete AUT. Note that we can perform this interpolation
with arbitrarily low error because the fields are sampled at the
Nyquist rate in all steps of the algorithm. It can be shown that
this process is more efficient that directly computing the fields
of each SWE in a 64 × 128 grid and then combining the 16 grids.

Figure 2 depicts a schematic representation of the first step in
the multilevel aggregation process for the AUT of the previous
example. At this point we are in the level 2 of the algorithm.
To move on to level 1, the SWEs are aggregated in groups of 4,
so the fields radiated by each of them are combined. Before add-
ing the fields, they need to be interpolated because the electrical
size of the group has increased. This interpolation–aggregation
procedure is repeated until all groups have been combined and
the field of the complete AUT is obtained. It can be shown that
this multi-level scheme reduces the computational complexity of
the problem from O((kr0)

4) when conventional matrix–vector
products are used, to O((kr0)

2log (kr0)).

Numerical transformation results

The capabilities of the proposed transformation algorithm are
validated using a simulation example with analytical data.
Considered is a distribution of 600 Hertzian dipoles randomly
placed at plane z = 0 and fed by voltages ranging between 0 and
1 V. The distribution has an approximate size of 3λ × 3λ. The
electric field radiated by the distribution is measured over a non-

canonical surface given by the following parametric expression in
spherical coordinates:

r (u, w) = 8 (1+ ( cos u sinw)2)l (7)

with a sampling of 40 points in θ and 80 in w. Figure 3 depicts
the dipole distribution (in black) and the acquisition surface cut
in half for better visualization.

The probe antenna used is modeled with a radiation pattern
following a cos qθ pattern with q = 8. The probe has been selected
to be directive for better demonstration of the algorithm probe
correction capabilities. The effect of the probe influence can be
appreciated as in Fig. 4 where a w = 0° field cut has been depicted,
along with the signal measured by the probe. The effect is signifi-
cant as the measurement surface is very close to the AUT.

To perform the near-field to far-field transformation, the
antenna is modeled as a set of SWEs centered at z = 0 covering
its surface. As mentioned in the previous section, the number
of expansions needed depends on the truncation number Ni.
Two cases of truncation number have been investigated for this
example Ni = 2 and Ni = 6 for all expansions. In Fig. 5 the AUT
is depicted for the two cases, where the dipoles are represented
with black crosses. Over the surface of the AUT, the local SWEs
are placed. The centers of each SWE are signaled in red and it
can be seen that they are uniformly distributed over the aperture.
Because the AUT is mainly planar, the SWEs are only distributed
over the AUT aperture plane. It is observed that the case of Ni = 2
requires smaller spacing between SWEs since the modal content
of the expansions is lower than in the case of Ni = 6. With this
SWE distribution, matrix C is built and vector W is populated
with the values measured by the probe.

The near-field to far-field transformation is performed for the
two cases using the CG algorithm to obtain the coefficients of
each SWE. The transformed far-field is compared with the true
far-field of the array distribution to obtain the transformation
error. This true far-field is computed analytically using the
asymptotic evaluation of the dipole fields. In Fig. 6 the difference
between the transformed far-field and the true far-field for the
two cases has been depicted along with the true far-field. In add-
ition, the error of a non-probe-corrected transformation has been

Fig. 3. Dipole distribution and measurement surface for the near-field.

Fig. 4. Comparison of the radiated near-field and the measured field by a directive
probe. The latter is used as an input for the transformation algorithm.
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added. It can be seen that neglecting the probe effect yields an
error with a level of roughly −10 dB with respect to the reference
field. Using multiple SWEs allows us to include the probe effect
reducing this error significantly.

However, there exists some residual error due to the approxi-
mation made in (3). This approximation is more ambitious for
the case of Ni = 6 and the error exhibited is still relevant. For
less directive probes and/or larger measurement distances, higher
values of Ni could be used maintaining negligible transformation
error levels. If the probe distance is large enough, a single SWE
could give enough accuracy and the proposed algorithm would
be identical to the approach proposed in [5].

Transformation of near-field measured data

Finally, the proposed algorithm is verified using actual near-field
data to check its stability against noise and practical inaccuracies.
As a first test, a reflector antenna of diameter 60 cm is measured

operating at 8 GHz. Since hardware was not available to generate a
measurement surface different than a sphere, plane, or cylinder or
with irregular sampling, the selected shape has been a half sphere.
This acquisition is generated performing a standard spherical
near-field measurement truncating the rest of the sphere.
Naturally, the truncated part corresponds to the backside of the
antenna, so that most of the radiated field is kept. This corre-
sponds to the region θ ≤ 90° (see Fig. 7 for the axes definition).
The sampling rate is given by the standard spherical criterion
Δθ = Δw = π/N.

Measurements for two orthogonal polarizations are performed
at a distance of 5 m. At this distance, the probe effect is small, but
the algorithm is taken to the limit using local SWEs of minimum
order Ni = 1. The approximate spacing between SWEs is set to
around 0.35λ. From the measurements and problem geometry,
vector W and matrix C are populated respectively, and the CG
algorithm is started.

Fig. 5. Different configurations for the same dipole array antenna.

Fig. 6. Transformed far-field errors for the two configurations of Fig. 5 and for the
case of no probe correction.

Fig. 7. Antenna used for the algorithm verification and coordinate system definition.
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After the evaluation of the CG, the coefficients of all SWEs are
obtained and then can be evaluated at far-field to obtain the
antenna radiation pattern. A w = 0° cut of this field is shown in
Fig. 8 along with the transformed field using a classical spherical
near-field to far-field transformation with the information of the
complete measurement sphere. The agreement between the two
fields is good with values near to θ = 90° though there exist
small differences due to the truncation of the scan sphere. For θ
values larger than 90°, the proposed algorithm was unable to
extrapolate the field, as this corresponds to the truncated solid
angle region, so the results have not been depicted.

The second test is a base station antenna working at 1.9 GHz
measured in a cylindrical near-field scanner. The dimensions of
the cylinder are 0.6 m in radius and 3.5 m in height. The field
is sampled with 23 z samples by 36 in w, which corresponds to
the standard sampling rate of cylindrical near-field measurements
by the given AUT and cylinder sizes[14]. The AUT dimensions
are roughly 180 × 20 × 20 cm. Its volume is modeled by nine
local SWEs of Ni = 5 arranged in a line as depicted in Fig. 9.

The proposed algorithm is applied to process the cylindrical
field and the obtained far-field is depicted in Fig. 10 for the
w = 0° and w = 90° cuts. In addition, a standard spherical near-
field measurement of the same antenna is performed to obtain
the far-field of the antenna with maximum accuracy and use it
as a reference. This reference radiation pattern is also depicted
in Fig. 10. As it can be seen, the horizontal plane shows perfect
agreement because all the radiation is measured on this cut. On
the vertical plane, the radiation pattern shows significant differ-
ences for elevation angles higher than 30° due to the truncation
of the cylinder.

As a final test, to verify the functionality of the proposed algo-
rithm with no field truncation, a 1 GHz 2 × 2 patch array antenna
is measured in a spherical near-field system. The distance between
probe and AUT is 5 m. The field is measured with an angular
sampling of Δθ = Δw = 6° in two orthogonal polarizations.
A 2λ × 2λ × 2λ cube enclosing the AUT is used as equivalent

Fig. 8. Comparison of the transformed far-field using the proposed algorithm with a
truncated sphere and a classical transformation using the complete sphere.

Fig. 9. Representation of how the local SWEs are placed to model the base station
antenna.

Fig. 10. Comparison of the transformed far-field main cuts using the proposed algo-
rithm with a cylinder and a classical transformation a sphere.
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surface. This cube is modeled by 16 local SWEs of Ni = 5 distrib-
uted on the cube faces and the far-field is transformed. For refer-
ence, the far-field transformed with the commercial software
SNIFT [15] is used. Figure 11 depicts the co-polar and cross-polar
patterns of a w = 45° cut. The transformation errors are quite
small obtaining an excellent agreement.

Conclusion

A near-field to far-field transformation algorithm for arbitrary
acquisition surfaces is presented. The algorithm is based on mod-
eling the AUT as a set of unknown multiple SWEs distributed
over the antenna surface. The coefficients of all SWEs are found
by solving an inverse problem and when found, the field can be
evaluated at the asymptotically to obtain the radiation pattern
straightforwardly. It has been shown that with careful choosing
of the SWE location and truncation index, the probe effect can
be accounted with almost no additional effort without needing
to deal with is spherical coefficients and complex rotations.

In addition, using multiple SWEs to model the antenna radi-
ation makes the problem suitable for a multi-level scheme.
During the inversion problem, the interaction of near SWEs
with the probe can be aggregated in groups following a multilevel
structure to speed up the calculations. This procedure helps to
reduce the computational complexity of the calculations
drastically.

The algorithm has been verified using simulated and measured
data from real antennas, showing low transformation errors and
promising capabilities.
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