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A fractional PDE model for turbulent velocity
fields near solid walls
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This paper presents a class of turbulence models written in terms of fractional partial
differential equations (FPDEs) with stochastic loads. Every solution of these FPDE
models is an incompressible velocity field and the distribution of solutions is Gaussian.
Interaction of the turbulence with solid walls is incorporated through the enforcement of
various boundary conditions. The various boundary conditions deliver extensive flexibility
in the near-wall statistics that can be modelled. Reproduction of both fully developed
shear-free and uniform shear boundary layer turbulence are highlighted as two simple
physical applications; the first of which is also directly validated with experimental data.
The rendering of inhomogeneous synthetic turbulence inlet boundary conditions is an
additional application, motivated by contemporary numerical wind tunnel simulations.
Calibration of model parameters and efficient numerical methods are also conferred
upon.

Key words: turbulence theory, turbulence simulation, computational methods

1. Introduction

The near-wall region of a turbulent flow is home to statistics (Hunt & Graham 1978)
and coherent structures (Robinson 1991) generally not found elsewhere in the flow field.
For this reason, turbulence near solid walls and other boundaries typically requires
specialized modelling (Pope 2001). This paper introduces a class of statistical models
which incorporates the effects of wall blocking on the second-order statistics of a fully
developed turbulent flow. Our approach leads to a method for efficiently generating
independent and identically distributed synthetic turbulent velocity fields. Synthetic
turbulence can be used to develop closure models for large eddy simulations (LES)
(e.g. Basu, Foufoula-Georgiou & Porté-Agel 2004) or for the generation of turbulent
boundary conditions (e.g. Tabor & Baba-Ahmadi 2010). Consequently, they can also be
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employed in uncertain quantification (UQ): a modern branch of computational science
and engineering dealing with the statistics of physical models and simulation outputs,
wherein random fields typically appear as simulation inputs (National Research Council
2012).

The Fourier transform can be used to characterize homogeneous turbulence and it may
also be used to generate synthetic velocity fields directly from the spectral tensor (see,
e.g., Mann 1998). Numerous spectral tensor models, which can be treated this way, have
been proposed to describe homogeneous turbulence under various conditions (cf. Hinze
1959; Maxey 1982; Kristensen et al. 1989; Mann 1994). Furthermore, the seminal work of
Hunt (1973, 1984) and Hunt & Graham (1978) describes a relatively simple procedure
to amend such homogeneous models, making them inhomogeneous in a way that is
applicable to the inertial sublayer around a large impenetrable body. (For a depiction of
the inertial sublayer, see, e.g., figure 1 in George & Castillo (1997).) The class of models
presented here can be seen as an extension of Hunt’s original ideas. The most obvious
difference between the two approaches, however, is that ours involves characterizing a
vector potential which is, in turn, post-processed to deliver the velocity field. On the
other hand, Hunt’s approach, which is briefly summarized in the next section, involves
post-processing the original homogeneous turbulence by removing a unique conservative
and solenoidal contribution.

The typical energy spectra (see, e.g., Pope 2001, p. 232), in fact, define fractional
differential operators on a physical domain. (For an introduction to fractional calculus,
see, e.g., Herrmann (2014).) The associated turbulent fluctuations are thus the solution to
a system of stochastic fractional partial differential equations (FPDEs). For homogeneous
turbulence in free space, this observation does not provide any clear advantages, in
part because the Fourier transform is the optimal solution method. However, in more
general scenarios, e.g. in the presence of anisotropy and walls with non-trivial boundary
conditions, the Fourier approach faces its limitations. In such circumstances, fractional
differential calculus proposes a natural procedure to generalize existing energy spectra
in ways which take into account the domain geometry and various non-homogeneous
physical effects. Fractional differential operators and other types of non-local operators
are important tools which may be used to represent a wide variety of random field models,
including those which are non-Gaussian. Notable recent advances in fluid mechanics
involving such operators include Chen (2006), Song & Karniadakis (2018), Mehta et al.
(2019), Egolf & Hutter (2019), Akhavan-Safaei, Samiee & Zayernouri (2020) and Di
Leoni et al. (2021). Each of these works mainly focus on extensions of Reynolds-averaged
Navier–Stokes (RANS) and LES models. In this contribution, we focus directly on
modelling and generating turbulent velocity field fluctuations.

The statistical model we propose is a boundary value problem with a stochastic
right-hand side and a (non-local) fractional differential operator with two fractional
exponents. The exponents determine the shape of the energy spectrum in the
energy-containing range and the inertial subrange, whereas the regularity of the right-hand
side specifies the shape of the dissipative range. The choice of boundary conditions and
other model parameters shape the spatial dependence of the energy spectra near the solid
boundary.

If the stochastic load appearing on the right-hand side is Gaussian, then the turbulence
model will deliver a Gaussian distributed random velocity field with zero mean and an
implicitly defined covariance tensor. Gaussian random fields are essentially ubiquitous in
contemporary UQ and many convenient features of them are well-known; see, e.g. Liu
et al. (2019) and references therein.
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Fractional PDE for turbulent velocity fields near solid walls

In §§ 3 and 4, we derive a general FPDE model for the stochastic vector potential ψ . On
simply connected domains, the expression

u = ∇ × ψ, (1.1)

then immediately defines the corresponding (incompressible) turbulent fluctuations u.
In § 3, the well-known von Kármán energy spectrum (Von Kármán 1948) is used as
motivation. The preliminary model arrived at via the von Kármán spectrum is then
embellished throughout § 4; for example, via a detailed analysis of first-order shearing
effects and through the assignment of boundary conditions. Various applications of the
turbulence models are discussed in § 5, including its use in generating synthetic turbulence
inlet boundary conditions. In § 6, numerical methods and model calibration are briefly
surveyed and, finally, the complete findings are summarized in § 7.

2. Motivation for a vector potential model

Before entering the main body of this paper, we briefly review Hunt’s classical approach to
the construction of inhomogeneous turbulence near solid walls (Hunt 1984; Nieuwstadt,
Westerweel & Boersma 2016). We denote z > 0 as the distance from the wall, ν as the
kinematic viscosity, L∞ as the integral length scale and u(H) as homogeneous turbulence,
distributed everywhere in space in the same way that the turbulent velocity field u is far
away from the wall. Moreover, here and throughout, 〈·〉 denotes ensemble averaging.

Let Ω = {(x, y, z) ∈ R3 : z > 0}. In the inviscid source layer above a infinite solid wall
∂Ω = {(x, y, z) ∈ R3 : z = 0}, we have the following idealized boundary conditions on the
turbulent velocity field u:

u · n = 0 as
z

L∞
→ 0, u → u(H) as

z
L∞

→ ∞. (2.1a,b)

Here, n = e3 represents the unit normal to ∂Ω . In, e.g., a shear-free turbulent layer, both
the energy dissipation rate ε and the mean velocity are approximately constant with the
height above the surface. Nevertheless, the turbulent fluctuations u are affected by the
boundary.

We now consider the following decomposition:

u = u(H) + u(S). (2.2)

Here, u(H) denotes the background turbulence in the absence of the boundary, and u(S)
denotes the residual fluctuations produced in the inviscid source layer. Note that such a
decomposition introduces an analogous decomposition of the vorticity; namely,

ω = ∇ × u(H) + ∇ × u(S) = ω(H) + ω(S). (2.3)

One can show that in the limit Re → ∞ (Townsend 1980, p. 42),

ε = ν〈|ω|2〉. (2.4)

Therefore, under the idealized assumption ε = const., the residual vorticity term ω(S) may
be taken as equal to zero. It is then natural to assume

u(S) = −∇φ, (2.5)

for some potential function ∇2φ = 0 in Ω and ∇φ · n = u(H) · n on ∂Ω . Alternatively,
one may consider the more general vector potential representation of u(S):

u(S) = −∇ × A, (2.6)
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where −∇2A = ω(S) and ∇· A = 0 in Ω and (∇ × A) · n = u(H) · n and A · n = 0 on
∂Ω (cf. Girault & Raviart 1986, Theorem 3.5). Clearly, when ω(S) = 0, it holds that ∇φ =
∇ × A.

A shortcoming of expression (2.5) compared with (2.6) is that (2.5) is only viable when
ω(S) = 0, however, (2.6) is viable for any ω(S). Likewise, u(H) may always be expressed
as the curl of a vector potential, but, generally, cannot be expressed as the gradient of any
scalar potential.

From now on, we completely dispense with the idealized assumption ω(S) = 0 and
cease to scrutinize the potential benefits of decompositions (2.2) and (2.3). In short, we
simply choose to write u = ∇ × ψ , as in (1.1), for some vector potential ψ , which does
not necessarily have to be incompressible. This expression is an essential ingredient in
deriving the FPDE-based model in the following.

3. Preliminaries

In this section, we introduce the main notation of the paper and connect a class free space
random fields to solutions of certain FPDEs with a stochastic right-hand side. In order
to ease the presentation in the following section, which pushes this relationship much
further, we demonstrate the FPDE connection with an explicit example coming from the
Von Kármán energy spectrum function.

3.1. Definitions
We wish to model turbulent velocity fields U(x) = 〈U(x)〉 + u(x) ∈ R3. Here, 〈U〉 =
(〈U1〉, 〈U2〉, 〈U3〉) is the mean velocity field and u = (u1, u2, u3) (sometimes also written
(u, v,w)) are the zero-mean turbulent fluctuations. All of the models we choose to consider
for u are Gaussian. That is, they are determined entirely from the two-point correlation
tensor

Rij(r, x, t) = 〈ui(x, t)uj(x + r, t)〉. (3.1)

When R(r, x, t) = R(r, t) depends only on the separation vector r, the model is said to be
spatially homogeneous. Alternatively, when R(r, x, t) = R(r, x) is independent of the time
variable t, the model is said to be temporally stationary.

Frequently, it is convenient to consider the Fourier transform of the velocity field u. In
such cases, we express the field in terms of a generalized Fourier–Stieltjes integral,

u(x) =
∫

R3
ei k·x dZ(k), (3.2)

where Z(k) is a three-component measure on R3. The validity of this expression follows
from the Wiener–Khinchin theorem (Lord, Powell & Shardlow 2014). Likewise, in the
homogeneous setting, we may consider the Fourier transform of the covariance tensor,
otherwise known as the velocity-spectrum tensor,

Φij(k, t) = 1
(2π)3

∫
R3

e− i k·r Rij(r, t) dr. (3.3)

Consider three-dimensional additive white Gaussian noise (Hida et al. 2013; Kuo 2018)
in the physical and frequency domains, denoted ξ(x) and ξ̂(k), respectively, such that

ξ(x) =
∫

R3
ei k·x ξ̂(k) dk =

∫
R3

ei k·x dW (k), (3.4)
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where W (k) is three-dimensional Brownian motion. We assume dZ(k) = G(k) dW (k) =
G(k)ξ̂(k) dk, where G(k)∗G(k) = Φ(k).

This section and the next are devoted to deriving FPDE models for homogeneous
turbulence. The approach we follow involves a commonly used definition of fractional
differential operators facilitated by the spectral theorem (Reed 2012). Note that, for an
abstract closed normal operator A : D(A) ⊆ H → H on a complex Hilbert space H,
AA∗ = A∗A, there exists a finite measure space (Y, μ), together with a complex-valued
measurable function λ( y), defined on Y , and a unitary map U : H → L2(Y, μ), such that

UAφ = λUφ for all φ ∈ H. (3.5)

In this case, one may define the α-fractional power of A as follows:

Aα = U∗λαU. (3.6)

For an operator A : D(A) ⊆ L2(Ω) → L2(Ω) with a discrete spectrum, we may simply
write

Aαφ =
∞∑

j=1

λαj (φ, ej)Ω ej. (3.7)

Here, ej and λj denote the corresponding eigenmodes and eigenvalues of A and (φ, χ)Ω =∫
Ω
φ · χ dx denotes the L2-inner product on the domain Ω ⊆ R3.

For example, consider the vector Laplacian operator A = −Δ on Ω = Rd. Letting k =
|k| denote the magnitude of the wavenumber vector k = (k1, k2, k3) in Fourier space and
F and F−1 denote the Fourier and inverse Fourier transforms, respectively, we have

(−Δ)αφ(x) = 1
(2π)d

∫
Rd

k2α(φ, e− i k·x)Rd ei k·x dk = F−1{k2αF{φ}(k)}(x). (3.8)

Evidently, in this setting, F is the analogue of the unitary operator U present in the abstract
expression (3.6). On the other hand, when Ω = (0, 1)d is a periodic domain, it is well
known that A = −Δ has a discrete spectrum. Here, recall that

(−Δ)αφ(x) = 1
(2π)d

∑
j∈Zd

k2α
j (φ, e− i kj·x)Rd ei kj·x . (3.9)

For further details on the spectral representation of closed operators, we refer the interested
reader to de Dormale & Gautrin (1975), Weidmann (2012) and Kowalski (2009).

3.2. The von Kármán model
Let us begin with a standard form of the spectral tensor used in isotropic stationary and
homogeneous turbulence models, namely,

Φij(k) = (4π)−1k−2E(k)Pij(k). (3.10)

Here, E(k) is called the energy spectrum function and Pij(k) = δij − kikj/k2 is commonly
referred to as the projection tensor. One common empirical model for E(k), suggested by
Von Kármán (1948), is given by the expression

E(k) = c2
0ε

2/3k−5/3
(

kL
(1 + (kL)2)1/2

)17/3

. (3.11)

Here, ε is the viscous dissipation of the turbulent kinetic energy, L is a length scale
parameter and c2

0 ≈ 1.7 is an empirical constant.
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Recall that the Fourier transform of the scalar Laplacian is simply −k2. Likewise,
consider the Fourier transform Q(k) of the curl operator,

∫
R3 ∇ × v(r) e− i k·r dr =

Q(k)v̂(k), where v̂(k) = ∫
R3 v(r) e− i k·r dr. Observe that

Q(k) = i

⎡
⎣ 0 −k3 k2

k3 0 −k1
−k2 k1 0

⎤
⎦ (3.12)

and, moreover, P(k) = k−2Q(k)∗Q(k). Motivated by the decomposition Φ(k) =
G(k)∗G(k), we choose to simply write G(k) = (1/

√
4π)k−2E1/2(k)Q(k). Next, recalling

dZ(k) = G(k) dW (k), it immediately follows that

dZ(k) = Q(k)
(

1√
4πk2

E1/2(k) dW (k)
)
. (3.13)

Integrating both sides with respect to k, we arrive at the expression u = ∇ × ψ , with a
vector potential defined

ψ(x) = 1√
4π

∫
R3

k−2E1/2(k) ei k·x dW (k). (3.14)

We now proceed to relate the vector potential ψ(x) to the solution of a FPDE. Writing
ψ(x) = ∫

R3 ei k·x dY (k), similar to (3.2), and rearranging the factors in (3.14), leads to

(1 + (kL)2)17/12 dY (k) = c0ε
1/3L17/6 dW (k). (3.15)

Then, upon integrating both sides with respect to k, we arrive at the FPDE

(I − L2Δ)17/12ψ = c0ε
1/3L17/6ξ . (3.16)

This and all future differential equations are only properly understood in the sense of
distributions, yet we continue to use the ‘strong form’ for readability.

Let I denote the identity operator, A = I − L2Δ,μ = c0ε
1/3, and α = 17/12. With these

symbols in hand, the derivation above can be summarized as follows:

u = ∇×ψ, where Aαψ = μL2αξ . (3.17)

In the next section, we extend the simple FPDE model above in order to describe
inhomogeneous turbulence on bounded domains. This is achieved by both generalizing
the definition of the length scale L and the fractional operator Aα as well as introducing a
physical notion of boundary conditions.

REMARK 3.1. Note that the vector potential ψ(x), defined in (3.14), is not divergence-free.
In an alternative model, one may seek to enforce this condition. In this case, one would
naturally arrive at the Stokes-type system

Aαψ + ∇φ = μL2αξ , ∇·ψ = 0. (3.18)

Here, φ plays the role of an additional pressure-like Lagrange multiplier. Note that by
taking the curl of the first equation above, the turbulence u(x) can be characterized by just
one equation; namely,

Aαu = μL2α ∇× ξ . (3.19)

For the sake of completeness, note that we may also define a generalized vorticity field
w = −Δψ . One may show that w(x) = (1/

√
4π)

∫
E1/2(k) ei k·x dW (k). This expression,
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0

0.2

0.4

0.6

0.8

1.0
(b)(a) (c)

Figure 1. Normalized magnitudes of (a) ψ , (b) u = ∇×ψ and (c) w = −Δψ . Observe the decrease of
regularity, from left to right, with higher-order derivatives of the vector potential. The fields are computed
using a discrete Fourier transform.

in combination with the partial differential equation (PDE)

−Δu = ∇× w, (3.20)

can also be used to characterize u(x).
Both (3.19) and (3.20) are perfectly valid and equivalent characterizations of the

homogeneous turbulent velocity field considered above, u(x), on the free space domain
R3. More importantly, they will likely lead to alternative turbulence models on more
complicated domains, once appropriate boundary conditions are selected. We have chosen
not to use (3.19) because it is not valid in the presence of non-homogeneous length scales
L = L(x); a modelling consideration we wish to incorporate. The non-homogeneous
setting still requires the saddle-point problem (3.18) in order to enforce volume
conservation in ψ(x). Because u = ∇×ψ does not depend on the irrotational part of
ψ(x), equation (3.18) appears to be a valid alternative model which we leave open for
future investigation. Finally, we have chosen to avoid (3.20) because of the low regularity
of the solution variable w(x); cf. figure 1.

REMARK 3.2. The spectral tensor (3.10) is sufficient to characterize the second-order
statistics found in isotropic stationary and homogeneous turbulence. In turn, it is sufficient
to characterize the kinetic energy and the Reynolds stresses and many of the other most
important physical quantities in the flow (Pope 2001, § 6.7.2). However, it is not sufficient
to characterize higher-order effects, coherent structures, or intermittency, which are also
well-known features of turbulent flows (see, e.g., She, Jackson & Orszag 1990; Cao, Chen
& Doolen 1999). Further work is required to incorporate non-Gaussian features.

4. Main results

In this section, we relate a large class of turbulent vector fields u to the solution of a
general family of FPDEs with stochastic forcing. In particular, we put forth a general
inhomogeneous model, derive a corresponding model for shear flows and motivate a
physically meaningful choice of boundary conditions.

4.1. A general class of inhomogeneous models
Equation (3.16) was derived from a very specific form of the energy spectrum function
E(k). Under the same decomposition of the spectral tensor Φ(x) given in (3.10), a much
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more general family of homogeneous and stationary random field models derive from the
following ansatz on the energy spectrum function:

k−4E(k) = μ2 det(Θ̄)2/3γ (1 + k�Θ̄k)−2α1(k�Θ̄k)−2α2 . (4.1)

Here, Θ̄ ∈ R3×3 is a fixed symmetric positive-definite matrix and α2, α1, γ and μ are
additional scalar parameters.

Equation (4.1) is a broad generalization of (3.11) which replaces E as function of k =
|k| by E as function of k. This flexibility allows us, for example, to consider anisotropic
effects. Indeed, just as L played the role of a length scale in (3.11), here, Θ̄ plays the role
of a metric in Fourier space. In addition, observe that if Θ̄ = L2I , where I denotes the
identity matrix, 4α2 = 4 − p0, 4α1 = 5/3 + p0, γ = α1 + α2 and μ2 = Cε2/3, then (4.1)
reproduces the following common one-parameter homogeneous energy spectrum model
(see, e.g., Pope 2001, p. 232):

E(k) = Cε2/3k−5/3
(

kL
((kL)2 + 1)1/2

)5/3+p0

. (4.2)

In this scenario, p0 = 4 corresponds exactly to the von Kármán spectrum (3.11) considered
previously, i.e. α1 = γ = 17/12 and α2 = 0.

As in (3.14), the vector potential ψ(x) = ∫
ei k·x dY (k) can also be written in terms of

a Fourier–Stieltjes integral, weighted by k−2E1/2(k). After rearranging factors, equation
(4.1) characterizes the vector potential ψ as the solution of the following fractional
stochastic PDE on R3:

(I − ∇ · (Θ̄∇))α1(−∇ · (Θ̄∇))α2ψ = μ det(Θ̄)γ /3ξ . (4.3)

Two immediate modifications of (4.3) are now in order. First, we may replace the
constant matrix Θ̄ by a spatially varying metric tensor Θ(x). This change immediately
induces an inhomogeneous turbulence model. Second, we may consider substituting the
white noise random variable ξ for a well-chosen coloured noise variable denoted η.
Together, these two generalizations lead to a family of random field models written

(I − ∇ · (Θ(x)∇))α1 (−∇ · (Θ(x)∇))α2 ψ = μ det(Θ(x))γ /3η. (4.4)

Physically, the metric tensorΘ(x) introduces inhomogeneous and anisotropic diffusion;
this corresponds to local changes of the turbulence length scales which may result from
complicated dynamics of interacting eddies. Statistically, it incorporates the possibility for
spatially varying correlation lengths and also may contain distortion.

In order to motivate one possible choice of the stochastic forcing term η, note that (4.2)
can adequately characterize both the energy-containing and inertial subranges, however, it
fails in the dissipative range; namely, where k is large. In order to fit the dissipative range,
one approach is to scale the energy spectrum with a decaying exponential function (see,
e.g., Pope 2001, p. 233):

Eβ(k) = E(k) e−βk, (4.5)
where β > 0 is a positive constant, usually close to the Kolmogorov length scale. In such
scenarios, we suggest using the following definition for η in (4.4) (see Stein & Weiss 1971,
Theorem 1.14):

ξβ(x) =
∫

R3
ei k·x e−βk dW (k) ∝ ξ(x) ∗ β

(β2 + |x|2)2 , (4.6)

which converges to (3.4) as β → 0. In the presence of shear, a different time-dependent
modification is also natural to consider from the point of view of rapid distortion theory.
That is the subject of the following subsection.
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α2 = 0.5
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Figure 2. The energy spectrum Eβ(k)/μ2 corresponding to (4.1) with Θ̄ = L2I . The sum α2 + α1 is fixed
to 17/12, which guarantees the slope k−5/3 in the inertial subrange. Different values of α2 control the
energy-containing range. And the exponent β/L = 10−3 defines the exponential decay in the dissipative
subrange.

REMARK 4.1. When α2 and α1 are chosen to match the energy spectrum model (4.2), it is
clear that α2 + α1 = 17/12 is independent of p0. Under this constraint, α2 mainly affect
the behaviour of the power spectrum at the origin and, likewise, the large-scale structure
of u. In other words, the shape of the spectrum in the inertial subrange is unaffected
by the precise choice of α2 and α1 = 17/12 − α2; only the shape of the spectrum in the
energy-containing range is affected (see figure 2). An illustration of some energy spectra
possibilities is included in figure 2.

4.2. A model for shear flows
Consider the velocity field U = 〈U〉 + u and define the average total derivative of the
turbulent fluctuations u = (u1, u2, u3) as follows:

D̄ui

D̄t
= ∂ui

∂t
+ 〈Uj〉∂ui

∂xj
. (4.7)

The rapid distortion equations (see, e.g. Townsend 1980; Maxey 1982; Hunt & Carruthers
1990) are a linearization of the Navier–Stokes equations in free space when the
turbulence-to-mean-shear time scale ratio is arbitrarily large. They can be written

D̄ui

D̄t
= −ui

∂〈Uj〉
∂xi

− 1
ρ

∂p
∂xi
,

1
ρ
Δp = −2

∂〈Ui〉
∂xj

∂uj

∂xi
. (4.8a,b)

Under a uniform shear mean velocity gradient, 〈Ui(x)〉 = xj∂〈Ui〉/∂xj, where ∂〈Ui〉/∂xj
is a constant tensor, a well-known form of these equations can be written out in Fourier
space. In this case, the rate of change of each frequency k(t) = (k1(t), k2(t), k3(t)) is
defined dki/dt = −kj∂〈Uj〉/∂xi. We then have the following Fourier representation of the
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average total derivative of u:

D̄ui

D̄t
=

∫
R3

ei k·x
((

∂

∂t
+ dkj

dt
∂

∂kj

)
dZi(k, t)

)
=

∫
R3

ei k·x
(

D̄ dZi(k, t)
D̄t

)
. (4.9)

With this expression, the Fourier representation of (4.8a,b) can be written

D̄ dZj(k, t)

D̄t
= ∂U�
∂xk

(
2

kjk�
k2 − δj�

)
dZk(k, t). (4.10)

Exact solutions to (4.10) are well-known (see, e.g., Townsend 1980; Mann 1994), given
the initial conditions k0 = (k10, k20, k30) and dZ(k0, 0). In the scenario

〈U(x)〉 = (U0 + Sx3)e1, (4.11)

the solution can be written in terms of the evolving Fourier modes k(t) and
non-dimensional time τ = St, as follows:

dZ(k, t) = Dτ (k)dZ(k0, 0), (4.12)

where

Dτ (k) =
⎡
⎣1 0 ζ1

0 1 ζ2
0 0 ζ3

⎤
⎦ , k0 = T τk, T τ =

⎡
⎣1 0 0

0 1 0
τ 0 1

⎤
⎦ . (4.13a–c)

In the expression for Dτ (k), the non-dimensional coefficients ζi = ζi(k, τ ), i = 1, 2, 3, are
defined

ζ1 = C1 − C2k2/k1, ζ2 = C1k2/k1 + C2, ζ3 = k2
0/k

2, (4.14a–c)

where k0 = |k0| and

C1 = τk2
1(k

2
0 − 2k2

30 + τk1k30)

k2(k2
1 + k2

2)
, C2 = k2k2

0

(k2
1 + k2

2)
3/2

arctan

(
τk1(k2

1 + k2
2)

1/2

k2
0 − τk30k1

)
.

(4.15a,b)

One may observe that⎡
⎣1 0 ζ1

0 1 ζ2
0 0 ζ3

⎤
⎦
⎡
⎣ 0 −k30 k2

k30 0 −k1
−k2 k1 0

⎤
⎦ =

⎡
⎣ 0 −k3 k2

k3 0 −k1
−k2 k1 0

⎤
⎦
⎡
⎣ ζ3 0 0

0 ζ3 0
−ζ1 −ζ2 1

⎤
⎦ , (4.16)

or, equivalently, Dτ (k)k−2
0 Q(k0) = k−2Q(k)D−�

τ (k). Moreover, dW (k0) = dW (k),
owing to translational invariance. Therefore, taking dZ(k0, 0) = Q(k0)((1/

√
4πk2

0)E
1/2

(k0) dW (k0)), it holds that

dZ(k, t) = Q(k)
(

1√
4πk2

E1/2(T τk)D−�
τ (k) dW (k)

)
. (4.17)

Finally, invoking the general expression for E(k) written in (4.1), one arrives at the rapid
distortion equation FPDE(

I − ∇ · (Θ̄τ∇)
)α1 (−∇ · (Θ̄τ∇)

)α2
ψ = μ det(Θ̄τ )

γ /3ητ (4.18)

where Θ̄τ = T �
τ Θ̄T τ and ητ (x) = ∫

R3 ei k·x(D−�
τ (k) dW (k)). Note that det(Θ̄τ ) =

det(Θ̄).
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REMARK 4.2. For each fixed t, equation (4.18) is clearly a particular case of (4.4). The
generalization of this model to an inhomogeneous instationary FPDE is discussed in § 5.2.

REMARK 4.3. An important extension of the rapid distortion model above involves
replacing the constant τ by a wavenumber-dependent ‘eddy lifetime’ τ(k) (see, e.g.,
Mann 1994). Such models are considered more realistic because, at some point, the shear
from the mean velocity gradient will cause the eddies to stretch and eventually they will
breakup within a size-dependent timescale. In this case, the generalization of ητ above
is straightforward. Meanwhile, at least when Θ̄ = L2I, one may consider replacing the
operator Θ̄τ in (4.18) by

L2 F−1

⎡
⎣1 + τ(k)2 0 τ(k)

0 1 0
τ(k) 0 1

⎤
⎦F . (4.19)

To solve such an equation numerically, one does not need to construct the closed form
of the linear operator, but may instead choose to use a matrix-free Krylov method (Saad
2003).

4.3. Boundary conditions
There are a number of different, equivalent, definitions of fractional operators on R3.
However, moving from the free-space equation (4.4) to a boundary value problem relies
on heuristics and can be done in a wide variety of ways; each of which may also differ
by the specific definition of the fractional operator being used (Lischke et al. 2020). As
stated previously, in this work, we choose to only deal with the spectral definition. In this
setting, boundary conditions are applied to the corresponding integer-order operator and
then incorporated implicitly by modifying the spectrum; cf. (3.6) and (3.7).

Assume that (4.4) is posed on a three-dimensional simply connected domain Ω � R3

with boundary Γ = ∂Ω . We begin with the following heuristically chosen impermeability
condition for the velocity field:

u = ∇×ψ in Ω, u · n = 0 on Γ. (4.20)

Although more relaxed boundary conditions are also possible, we choose to enforce (4.20)
via a no-slip condition on the vector potential ψ ; specifically,

ψ − (ψ · n)n = 0 on Γ. (4.21)

It turns out that (4.21) is not enough to uniquely define ψ on Ω . In fact, the remaining
boundary condition must restrict ψ normal to Γ .

We are somewhat free to select what the remaining boundary condition will be. Both the
Dirichlet-type boundary condition ψ · n = 0 and the Neumann-type boundary condition
(Θ(x)∇ψ)n · n = 0 are possible candidates which would close the equations. Another
option is to enforce a weighted average of those two boundary conditions. To be more
specific, we may also consider the generalized (homogeneous) Robin boundary condition

κψ · n + (Θ(x)∇ψ)n · n = 0 on Γ, (4.22)

where the new model parameter κ ≥ 0 could be inferred from available data.
In this work, we choose to close the equations with (4.22) because it is flexible enough

to fit a wide variety of data and simple to implement alongside (4.21). We note that κ
affects the horizontal velocity near the surface because of its control over the normal
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component of ψ . Thus, in the proposed model, κ may be a parameter which distinguishes
between different types of surfaces. We also note that, in the limit κ → ∞, we recover
the boundary condition ψ · n = 0. Together with (4.21), it implies the complete Dirichlet
boundary condition, ψ = 0 on Γ . Hereon, we use the notation κ = ∞ to indicate this
special limiting scenario.

Note that (4.4) can be written Lψ = b, where

L := (I − ∇ · (Θ(x)∇))α1 (−∇ · (Θ(x)∇))α2 and b := μ det(Θ(x))γ /3η.
(4.23a,b)

In order to define the domain D(L) of the multi-fractional operator L : D(L) ⊆
[L2(Ω)]3 → [L2(Ω)]3, we start by letting A := (I − ∇ · (Θ(x)∇)) : D(A)⊆ [L2(Ω)]3 →
[L2(Ω)]3. For notational convenience, we assume that A has a discrete spectrum.

In the spectral definition of Aα1 , the domain D(A) characterizes the boundary conditions
on Γ . In this work, assuming that det(Θ(x)) is uniformly bounded from above and below
by positive constants, we define

D(A) = {ψ ∈ [H2(Ω)]3 : (4.21) and (4.21) hold in the sense of traces}. (4.24)

For this operator domain, there exists an orthonormal basis of eigenvectors {aj}∞j=1 ⊆
D(A), with corresponding eigenvalues {aj}∞j=1 in non-increasing order (cf. Bolin, Kirchner
& Kovács 2020). Then, following (3.7), the fractional differential operator Aα1 : D(Aα1) ⊆
[L2(Ω)]3 → [L2(Ω)]3 is defined

Aα1ψ =
∞∑

j=1

aα1
j (ψ, aj)Ω aj (4.25)

and D(Aα1) = {ψ ∈ [L2(Ω)]3 :
∑∞

j=1 a2α1
j (ψ, aj)

2
Ω < ∞}.

Now consider A − I : D(A) → [L2(Ω)]3 and note that L = Aα1(A − I)α2 . In this case,
Aα1 and (A − I)α2 commute because they share the same eigenmodes:

Aα1(A − I)α2ψ =
∞∑

j=1

aα1
j (aj − 1)α2(ψ, aj)Ω aj = (A − I)α2Aα1ψ . (4.26)

Accordingly, we define the domain of the operator L as follows:

D(L) =
⎧⎨
⎩ψ ∈ [L2(Ω)]3 :

∞∑
j=1

a2α1
j (aj − 1)2α2(ψ, aj)

2
Ω < ∞

⎫⎬
⎭ . (4.27)

We may now write the boundary value problem given by (4.4), (4.21) and (4.22) as the
abstract operator equation Lψ = b, with D(L) defined in (4.27). Nevertheless, we will
still usually refer to this problem in the ‘strong form’

(I − ∇ · (Θ(x)∇))α1 (−∇ · (Θ(x)∇))α2 ψ = μ det(Θ(x))γ /3η, in Ω,
ψ − (ψ · n)n = 0, on Γ,

κψ · n + (Θ(x)∇ψ)n · n = 0, on Γ,

⎫⎬
⎭ (4.28)

because it is much more physically illustrative.
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Fractional PDE for turbulent velocity fields near solid walls

5. Physical applications

In this section, we document three applications of (4.28) and some theoretical results.
The first two applications describe turbulent conditions which may be modelled using
the general FPDE model (4.28). In the final subsection, we highlight an important wind
engineering application. Here, the model is used to generate a turbulent inlet profile for a
numerical wind tunnel simulation of the atmospheric boundary layer.

5.1. Shear-free boundary layers
There are many different examples of turbulence confined by a solid boundary, without
any significant mean shear (Hunt 1984). In such flows, the rate of turbulent kinetic energy
dissipation ε can be assumed to be approximately constant with height. This setting has
been studied in detail by various authors (see, e.g., Hunt 1984; Hunt et al. 1989; Perot &
Moin 1995a,b; Aronson, Johansson & Löfdahl 1997 and references therein) and so forms
a solid proving ground to validate (4.28).

5.1.1. A von Kármán-type model
We begin with the inhomogeneous turbulence model (4.28), with fractional coefficients
corresponding to the von Kármán energy spectrum (3.11), on the open half space domain
R3+ = {(x, y, z) ∈ R3 : z > 0}. Based on the supposed absence of shear, we also consider
the following simple diagonal form for the diffusion tensor, in Cartesian coordinates:

Θ(z) =
⎡
⎣L1(z)2 0 0

0 L2(z)2 0
0 0 L3(z)2

⎤
⎦ . (5.1)

Defining L(z) = 3
√

L1(z)L2(z)L3(z), the appropriate form of (4.28) can be written as
follows:

(I − ∇·(Θ(z)∇))17/12 ψ = μL(z)17/6ξ , in R3+,

κψ3 + L3(z)2
∂ψ3

∂z
= ψ1 = ψ2 = 0, at z = 0.

⎫⎬
⎭ (5.2)

Both the Robin coefficient κ and an explicit parametric expression for each Li(z) give
rise to a model design parameter vector, say θ . This vector θ may then be subject to
calibration with respect to experimental data, e.g. using the technique described in § 6.2.
This process of model calibration is important because wall roughness, Reynolds number
and the nature of the turbulence may affect the near-wall statistics (Pope 2001) and may
be incorporated through proper parameter selection. For instance, let us consider the
following exponential expansion

Li(z) = L∞ ·
(

1 +
K∑

k=1

ci,k e−di,k(z/L∞)
)
, (5.3)

with each di,k ≥ 0, c1,k = c2,k and d1,k = d2,k. Taking only two terms in each expansion
above (K = 2), we arrive through calibration at a statistical model which closely matches
the experimental data found in Thomas & Hancock (1977). Note that with such a model,
L1(z) = L2(z) and each Li(z) exponentially converges to the homogeneous length scale
L∞, as z → ∞, as illustrated in figure 3.

The prescribed boundary conditions will affect the physical length scales of the random
velocity field u = ∇ × ψ . Therefore, the diffusion coefficients Li(z) do not necessarily
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0.5 1.0 1.5 2.0
0

1

2

3

4
L1(z)
L3(z)

Von Kármán model
Parameter Value

c1,1 2.22
c1,2 −2.80
c3,1 5.04
c3,2 −4.33
d1,1 2.78
d1,2 17.38
d3,1 2.17
d3,2 2.55

κ/L∞ 4.02

z/L∞

Li(z)/L∞
Figure 3. Optimal diffusion coefficients Li(z) and Robin constant κ determined by fitting the Reynolds stress

data in figure 4. Note that L1(z) = L2(z).

correspond to the physical length scales. For this reason, we follow Lee & Hunt (1991)
and define the (physical) so-called integral length scales

�
(xm)
ij (z) =

∫
R

〈ui(x + rem)uj(x)〉 dr

〈ui(x)uj(x)〉 =

∫
R

Rij(rem, z) dr

Rij(0, z)
. (5.4)

In these expressions, we have accounted for the fact that all solutions of (5.2) are temporary
stationary and statistically homogeneous in the x- and y-directions, i.e. R(r, x, t) = R(r, z).

In § 6, we explain how to solve this problem numerically and to calibrate its solutions to
Reynolds stress data. The difference between the Reynolds stress profiles in the calibrated
model and the corresponding experimental data is depicted in figure 4, alongside the
resulting integral length scales �(xm)

ij (z). Because this model has many free parameters
which can be calibrated to experimental data, it is much more flexible than the classical
theory proposed by Hunt (1973, 1984) and Hunt & Graham (1978). Indeed, a comparison
between the two theories, which highlights this flexibility, is given in the next subsection.
Note that the exact definitions of the optimized model parameters used in the results above
are stated explicitly in the table in figure 3.

5.1.2. Comparison with the classical theory
It is important to consider the special case of (5.2) where each Li(z) is constant in z. In
Hunt’s idealized shear-free boundary layer (SFBL) theory (Hunt & Graham 1978; Hunt
1984), derived from the energy spectrum ansatz (3.11) and briefly summarized in § 2, one
can show that

〈u2〉
〈u2∞〉 = 〈v2〉

〈v2∞〉 → 1.5 and
〈w2〉
〈w2∞〉 = O

((
z

L∞

)2/3
)

as
z

L∞
→ 0, (5.5)
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0.5 1.0 1.5 2.0
0

〈u2〉 data
〈w2〉 data
〈u2〉 model
〈w2〉model

0 0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

z/L∞

〈ui
2〉/〈ui

2〉∞ �ij
(xm)

(b)(a)
�uu

(x)

�uu
(y)

�ww
(x)

Figure 4. Reynolds stress data from Thomas & Hancock (1977) compared with Reynolds stresses from (a) the
calibrated SFBL turbulence model (5.2) and (b) corresponding integral length scales. Observe that the model
is able to closely fit the experimental data.

where 〈u2∞〉 = 〈v2∞〉 = 〈w2∞〉 denotes the far-field limit z → ∞ of the non-zero Reynolds
stresses. The limit 〈u2〉/〈u2∞〉 → 1.5 is not always achieved in experiments (cf. figure 4),
however, the limiting behaviour 〈w2〉/〈w2∞〉 = O((z/L∞)2/3) is well-established in the
literature (Priestley 1959; Kaimal et al. 1976).

The corresponding scenario in our class of models is exactly (5.2) with each Li = L∞.
In this setting, the non-zero Reynolds stresses, 〈u2〉 = 〈v2〉 and 〈w2〉, can be derived
analytically, at least for certain values of κ ≥ 0. These exact analytical solutions are
summarized in Lemmas 5.1–5.3, the proofs of which can be found in Appendix A. Exact
analytical solutions for the integral length scales �(xm)

ij (z) can also be derived by a similar
technique, but we do not include their derivation in this work for the sake of brevity. Plots
of the analytical Reynolds stresses and integral length scales are depicted in figure 5.

LEMMA 5.1. Given u = (u, v,w) = ∇ × ψ , where ψ is any solution of (5.2) with
constant L1 = L2 = L∞, it holds that

〈w2〉
〈w2∞〉 = 1 − M1/3

(
2z
L∞

)
, (5.6)

where Mν(x) is the Matérn kernel (Matérn 1986; Stein 1999; Khristenko et al. 2019) given
by

Mν(x) = xνKν(x)
2ν−1Γ (ν)

, ν ≥ 0, (5.7)

and Kν(x) denotes the modified Bessel function of the second kind (Abramowitz &
Stegun 1948; Bateman 1953; Watson 1995). Moreover, near the boundary the following
asymptotic holds:

〈w2〉
〈w2∞〉 ∼ Γ (2/3)

Γ (4/3)

(
z

L∞

)2/3

as
z

L∞
→ 0. (5.8)
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0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

z/L∞

〈u2〉 for κ = 0
〈u2〉 for κ = ∞
〈w2〉 for all κ

0 0.2 0.4 0.6 0.8 1.0 1.2

κ = 0 κ = ∞
�uu

(x)

�uu
(y)

�ww
(x)

〈ui
2〉/〈ui

2〉∞ �ij
(xm)

(b)(a)

Figure 5. (a) The analytically derived non-zero Reynolds stresses stated in Lemmas 5.1–5.3 and (b)
corresponding integral length scales.

LEMMA 5.2. Given u = (u, v,w) = ∇ × ψ , whereψ is the solution of (5.2) with constant
Θ = L2∞I and κ = 0, it holds that

〈u2〉
〈u2∞〉 = 〈v2〉

〈v2∞〉 = 1 + (ν + 1)Mν

(
2z
L∞

)
− νMν+1

(
2z
L∞

)
. (5.9)

Hence, near the boundary,

〈u2〉
〈u2∞〉 = 〈v2〉

〈v2∞〉 → 2 as
z

L∞
→ 0. (5.10)

LEMMA 5.3. Given u = (u, v,w) = ∇ × ψ , where ψ is any solution of (5.2) with
constant Θ = L2∞I and κ = ∞, it holds that

〈u2〉
〈u2∞〉 = 〈v2〉

〈v2∞〉 = 1 + νMν

(
2z
L∞

)
− νMν+1

(
2z
L∞

)
. (5.11)

Hence, near the boundary,

〈u2〉
〈u2∞〉 = 〈v2〉

〈v2∞〉 → 1 as
z

L∞
→ 0. (5.12)

REMARK 5.4. The Robin boundary condition κψ3 + L2∞(∂ψ3/∂z) = 0 has no effect on
〈w2〉. Therefore, the asymptotic expansion of the well-known (Priestley 1959; Kaimal et al.
1976; Hunt 1984; Hunt et al. 1989) asymptotic behaviour 〈w2〉/〈w2∞〉 = O((z/L∞)2/3) as
z/L∞ → 0 always holds when L1 = L2 = L∞.

REMARK 5.5. The limit 〈u2〉/〈u2∞〉 → 1.5 from Hunt’s theory lies exactly in between the
range of analogous limits, 〈u2〉/〈u2∞〉 → 1 and 〈u2〉/〈u2∞〉 → 2, coming from the exact
solutions of (5.2) when κ = ∞ and κ = 0, respectively. Numerical experiments show that
〈u2〉/〈u2∞〉 = 〈v2〉/〈v2∞〉 always limits to a value in the interval (1, 2) when κ ∈ (0,∞)

and Θ = L2∞I.
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0

0.2

0.4

0.6

0.8

1.0
(b)(a) (c)

Figure 6. Normalized magnitudes of u = ∇×ψ from (a) (5.2), (b) (5.13) with β/L∞ = 10−2 and (c) (5.15)
with τ = 1.0. The additional model parameters are specified in figure 3. Observe that the central field is visibly
smoother than its counterpart on the left owing to the high regularity load ξβ . The field on the right, issued
from the same noise, presents distortion.

5.1.3. A more general energy spectrum
In order to illustrate the dependence of (4.28) on the parameter α2 = 17/12 − α1, we may
consider an alternative form of (5.2) which corresponds to the energy spectrum (4.2) with
p0 = 2. Here, for additional complexity, we also consider the load η = ξβ with β/L∞ =
10−2:

(I − ∇·(Θ(z)∇))11/12 (−∇·(Θ(z)∇))1/2 ψ = μL(z)17/6ξβ, in R3+,

κψ3 + L3(z)2
∂ψ3

∂z
= ψ1 = ψ2 = 0, at z = 0.

⎫⎬
⎭ (5.13)

We do not analyze these equations in detail here, however, we present a single realization
of their solution figure 6 for visual comparison. Observe that the velocity field coming
from (5.13) is visibly smoother than its counterpart coming from (5.2). This is due to the
high regularity load ξβ .

5.2. Uniform shear boundary layers
Classically, rapid distortion theory is used to describe the short time evolution of isotropic
turbulence. As pointed out in, e.g., Lee & Hunt (1991), it is also possible to extend its
use to some examples of inhomogeneous turbulence. In this example, we follow Lee &
Hunt (1991) in considering a uniform shear boundary layer (USBL) model where the only
effect of the wall is to block velocity fluctuations in the normal direction. Our derivation
begins from the assumption 〈U(x)〉 = (U0 + Sx3)e1 taken in § 4.2, but we also allow for
a z-dependent inhomogeneous diffusion tensor,

Θτ (z) =
⎡
⎣L1(z)2 + τ 2L3(z)2 0 τL3(z)2

0 L2(z)2 0
τL3(z)2 0 L3(z)2

⎤
⎦ . (5.14)

With this expression in hand, we may consider the following inhomogeneous version of
(4.4) with τ = 1.0:

(I − ∇ · (Θτ (z)∇))17/12 ψ = μL(z)17/6ητ , in R3+,

κψ3 + L3(z)2
(
∂ψ3

∂z
+ τ

∂ψ3

∂x

)
= ψ1 = ψ2 = 0, at z = 0.

⎫⎪⎬
⎪⎭ (5.15)

It is possible that the inhomogeneous length scales in this tensor, Li(z), may be tuned to
compensate for the presence of small non-zero Reynolds stress gradients, however, we do
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not seek to verify that hypothesis here. Instead, we settle for a visual comparison between
the solutions of the various models.

Figure 6 depicts a reference velocity field coming from a single realization of (5.2),
(5.13) and (5.15). In order to demonstrate the flexibility of the models, we have taken the
same calibrated model parameters used in § 5.1.1. For a fair reference, we have also used
the same additive white Gaussian noise vector to generate the load for each realization.

5.3. Turbulent inlet generation for numerical wind tunnel simulations
The mean profile 〈U(z)〉 in many wall-bounded shear flows is often assumed to follow a
logarithmic curve, sometimes with a Reynolds number modification (see, e.g., Barenblatt
& Chorin 2004). In the atmospheric boundary layer, one such model for the mean velocity,
〈U(x)〉 = U(z)e1, found in the wind engineering community is written in terms of the
height above ground, z, as follows (Mendis et al. 2007; Kareem & Tamura 2013):

U(z) = u∗
κ

ln
(

z − d
z0

)
. (5.16)

Here, u∗ is the friction velocity, z0 is the roughness length and d is the zero-plane
displacement. Although all such models violate the uniform shear assumption made in
deriving (4.18), it has been argued that the assumption is still valid for describing eddies
of ‘linear dimension smaller than the length over which the shear changes appreciably’
(Mann 1994, p. 145). For this reason, turbulence models similar to those presented in the
previous subsections (see, e.g. Mann 1994, 1998; Chougule et al. 2018), have established
themselves in wind engineering (IEC 61400-1:2005). An account of some physical
violations of such models is given in detail in Hunt (1984) and Hunt et al. (1989). It
remains to be demonstrated whether the non-homogenous diffusion coefficient in, e.g.,
(5.15) may ameliorate some of these issues.

Our final application involves using (5.15) to generate synthetic turbulent inlet
conditions, which is an important application in computational fluid dynamics as a whole
(Tabor & Baba-Ahmadi 2010). We choose to follow an established approach used in the
wind engineering industry (see Michalski et al. 2011; Andre, Mier-Torrecilla & Wüchner
2015 and references therein). Here, a contiguous section of spatially correlated turbulence
is transformed into a stationary Gaussian process by identifying the x-component of the
turbulent velocity field with a time axis via the transformation x = Umt. Then, at each
time step t = tk, the turbulent fluctuations U(x)|x=tk/Um are projected onto the inflow
boundary of a numerical wind tunnel; see the depiction in figure 7. Here, Um > 0 is
a mean velocity parameter which directly affects the spatial-to-temporal correlation of
the synthetic turbulent inlet boundary conditions. With this application, we highlight the
potential of calibrated FPDE models to improve the accuracy of numerical wind tunnel
simulations.

REMARK 5.6. The physical justification for the transformation x = Umt derives from a
manipulated Taylor’s hypothesis, as described in Mann (1994, § 2.3).

6. Numerical solution and calibration

In this section, we briefly summarize numerical strategies for solution of FPDEs and, in
particular, the rational approximation method which we used to solve the problems given
in § 5. We then describe how to calibrate such models so that its solutions best represent
experimental data.
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Figure 7. Snapshots of synthetic wind, U(x) = 〈U(x)〉 + u(x), mapped onto the inlet boundary in a numerical
wind tunnel test of a modern high rise building. Turbulent fluctuations u(x) generated using model (5.15) with
τ = 1.0, κ = 0, and L1(z) = L2(z) = L3(z) = L∞. The LES was performed with the finite element software
Kratos Multiphysics (Dadvand, Rossi & Oñate 2010).

6.1. Numerical solution of FPDEs
Numerical solution of boundary value problems involving fractional powers of elliptic
operators is challenging and computationally expensive, owing in part to the non-locality
of the resulting operator. Methods based on direct diagonalization of the elliptic operator
(Ilic et al. 2005; Yang et al. 2011) are generally too expensive for practical applications.
Common methods for solving fractional differential equations involve introducing an
additional dimension, provided the extension operator is local, which defines the increased
computational complexity. A typical example is Caffarelli–Silvestre extension (Caffarelli
& Silvestre 2007; Nochetto, Otárola & Salgado 2015), where the FPDE solution is
viewed as a restriction onto a subspace of the solution to an associated integer-order
boundary value problem on a higher-dimensional semi-infinite cylinder. The resulting
higher-dimensional integer-order PDEs can thus be solved using Galerkin approach
(see, e.g., Meidner et al. 2018; Banjai et al. 2019; Banjai, Melenk & Schwab 2020). In
Balakrishnan et al. (1960), Bonito & Pasciak (2015) and Bonito, Lei & Pasciak (2019),
the integral representation of the inverse fractional operator is considered, introducing
a special quadrature rule, which yields a series of integer-order PDEs. Alternatively,
Vabishchevich (2015) and Lazarov & Vabishchevich (2017) propose to represent the FPDE
as a transient pseudo-parabolic problem. Then, numerical integration in ‘time’ (transition
parameter) provides a sequence of integer-order PDEs. In this work, we follow the rational
approximation approach (see, e.g., Harizanov & Margenov 2018; Bolin & Kirchner 2019).
It consists of approximating of the operator’s spectrum with a rational function. Multipole
expansion of this function defines a family of independent integer-order PDEs, which can
be solved in parallel. The method is briefly summarized in the following. The interested
reader is referred to Bonito et al. (2018) and Lischke et al. (2020) and the references therein
for further information on fractional diffusion problems.

Let A be an abstract bounded elliptic symmetric positive definite operator with spectrum
σ(A) ⊆ [λmin, λmax], 0 < λmin < λmax. For illustration, consider the associated fractional
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problem
Aαψ = b, (6.1)

for some α > 0. If the rational function rN(λ) = ∑N
n=1(cn/λ+ dn) approximates the

function f (λ) = λ−α on the interval [λmin, λmax], then the solution ψ can be approximated
as the weighted average of solutions of N other elliptic problems; namely,

ψ ≈
N∑

n=1

cnψn, (dnI + A)ψn = b. (6.2a,b)

If A is an integer-order differential operator, e.g. A = I − ∇ · (Θ(x)∇), then each of
these N problems can be solved using standard discretization methods for integer-order
operators, e.g. finite elements. Remark 6.2 contains a number of general comments about
such discretizations. For the reader’s interest, an example of the numerical method we
used for the problems in § 5 is described in brief in Appendix B.

The rational approximation technique above can be extended to the solution of (4.28),
which, notably, has two fractional powers, α1 and α2. Indeed, in this case, we need to
construct a rational approximation rN(λ) for the function f (λ) = λ−α1(λ− 1)−α2 . With
this alternative rational approximation in hand, the approximate vector potential ψ̃ is again
given by (6.2a,b).

REMARK 6.1. Note that in the general case of an unbounded non-definite operator,
approximation (with any method) of the fractional power with low values of the exponent
can be an issue. Indeed, small exponents induce a heavy tail in the spectrum, and this tail
becomes flatter as the exponent approached zero. However, in our case, boundedness and
definiteness of the operator A guarantees compactness of its spectrum, σ(A). Moreover,
introducing (physically meaningful) boundary conditions increases λmin.

REMARK 6.2. Note that the load b = μ det(Θ(x))γ /3η in (4.28) is a random variable.
The reader is referred to Lindgren, Rue & Lindström (2011), Du & Zhang (2002) and
Croci et al. (2018) for details of numerical solution to stochastic PDEs and approximation
of additive white Gaussian noise. Typically, a discretization of the integer-order operator
equation (dnI + A)ψn = b results in a linear system

(dnM + A)pn = b, with b ∼ N (0,B), (6.3)

where the vector pn denotes the coefficients of the discrete solution ψh
n in a preselected

basis, say Φ. Here, M is a discretization of the identity operator I, A is a discretization of
the integer order differential operator A, and B = 〈bb�〉 is a given covariance matrix. Via
a change of variables, the random load may also be written b = Hξ , where HH� = B and
ξ ∼ N (0, I) is a standard Gaussian vector 〈ξξ�〉 = I, with I denoting the identity matrix.
One particular form of H comes from the Cholesky decomposition, although many other
are factorizations are also possible (Croci et al. 2018; Kessy, Lewin & Strimmer 2018).
Finally, note that if the same basis Φ is used the solve for each ψh

n, then the discrete
solution ψh = ∑N

n=1 cnψ
h
n ≈ ψ can also be expressed usingΦ, with the coefficient vector

p = ∑N
n=1 cnpn.

REMARK 6.3. The weights cn and the poles −dn of the rational function rN(λ) can be
obtained with one of the various rational approximation algorithms (see, e.g., Harizanov
& Margenov 2018; Bolin & Kirchner 2019; Nakatsukasa, Sète & Trefethen 2018). In this
work, we used the adaptive Antoulas–Anderson (AAA) algorithm proposed in Nakatsukasa
et al. (2018) because of its speed and robustness in our experiments.
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6.2. Fitting Reynolds stress data
Various statistical quantities of a turbulent flow field can be measured experimentally. Near
a solid boundary, some of the most important of these quantities are the Reynolds stresses
τij = 〈uiuj〉. In order to calibrate the parameters in (5.2) to Reynolds stress data τ data

ij (xl),
collected at a number of locations in the flow domain xl ∈ S, we propose the following
optimization problem:

min
θ

J (θ), where J (θ) = 1
|S|

∑
xl∈S

3∑
i,j=1

(
τij(xl; θ)− τ data

ij (xl)
)2
. (6.4)

Here, the design variable θ denotes a coefficient vector taking accounting for all of the
undetermined model parameters present in (4.28). For instance, in (5.1.1) we used

θ = (c1,1, d1,1, c3,1, d3,1, . . . , c1,K, d1,K, c3,K, d3,K, κ) ∈ R4K+1, (6.5)

where ci,k and di,k, i = 1, 3, k = 1, . . . ,K, appear in the representation of each Li(z) with
K = 2 terms; cf. (5.3).

REMARK 6.4. It turns out that (6.4) can be rewritten as a deterministic
optimization problem. To see this, recall Remark 6.2 and consider the common
basis Φ = {φmei : m = 1, . . . ,M, i = 1, 2, 3} ⊆ [H1(Ω)]3 for the discretization
(6.3) of each sub-problem (6.2a,b). We may then write p = (p1, . . . , p3M) ∈
R3M and ψh = ∑3

i=1
∑M

m=1 pm+(i−1)·Mφmei. Likewise, we may also write uh =∑3
i=1

∑M
m=1 pm+(i−1)·M ∇×(φmei). As remarked previously, p = ∑N

n=1(dnM + A)−1cnb,
where b ∼ N (0,B). Note that both matrices A and B generally depend on θ . Throughout
the rest of this section, we use the shorthand L−1 to denote the linear operator∑N

n=1(dnM + A)−1cn. With this notation at our disposal, we may simply write p = L−1b
or, equivalently, Lp = b. An associated adjoint problem can be used to approximate τij at
any location xl.

Suppose that we wish to evaluate the covariance tensor 〈ui(x)uj(y)〉 at a point, say xl.
This may be approximated by applying the delta function (or some approximation thereof)
in both x- and y-coordinates to 〈uh

i (x)u
h
j (y)〉:

〈uh
i (xl)uh

j (xl)〉 =
∫
Ω

∫
Ω

δ(x − xl)〈uh
i (x)u

h
j (y)〉δ(y − xl) dx dy. (6.6)

Upon substitution of the expression uh
j = ∑3

i=1
∑M

m=1 pm+(i−1)·M ∇×(φmei) · ej, we find
that

〈uh
i (xl)uh

j (xl)〉 = d�
i,l〈pp�〉dj,l = d�

i,lL
−1〈bb�〉L−1dj,l = d�

i,lL
−1BL−1dj,l, (6.7)

where each vector dj,l = (dj,l,1, . . . , dj,l,3M) ∈ R3M is defined component-wise as
dj,l,m+(i−1)·M = ∫

Ω
δ(x − xl)ej · ∇×(φm(x)ei) for m = 1, . . . ,M and i = 1, 2, 3. Hence,

upon discretization, we may rewrite

J (θ) = 1
|S|

∑
xl∈S

3∑
i,j=1

(f�i,lBfj,l − τ data
ij (xl))

2, where each Lfi,l = di,l. (6.8)

Because expression (6.8) is deterministic, equation (6.4) can be solved accurately and
efficiently using a very wide variety of standard optimization software.
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REMARK 6.5. Owing to the fact that the loss function J (θ) may simply be written

J (θ) = 1
|S|

∑
xl∈S

3∑
i,j=1

(E[ui(θ)uj(θ)|xl − τ data
ij (xl)])2, (6.9)

the optimization problem (6.4) can be solved with many stochastic optimization techniques
commonly used in, e.g., the machine learning community. However, it is much more
efficient to proceed by rewriting (6.4) as the deterministic optimization problem (6.8).

Alternatively, the optimization problem can be posed in the abstract setting of Bayesian
inference. In this framework, the parameters are defined as random distributions (Stuart
2010).

7. Conclusion

In this article, a class of FPDEs have been presented which describe various scenarios
of fully developed wall-bounded turbulence. Each model in this class derives from a
simple ansatz on the spectral velocity tensor which, in turn, describes a wide variety of
experimental data. The various models differ from each other in the shape of their spectra
in the energy-containing and dissipative ranges, in their boundary conditions (and, thus,
some of their near-wall effects), in the regularity and spatial correlation of their stochastic
forcing terms, and in the possible form of their diffusion tensor.

Three related applications of these models have been considered. First, calibration was
performed in a SFBL setting using experimental data obtained from Thomas & Hancock
(1977). Here, a close match with the experimental data has been clearly observed, as
well as the well-known z2/3 growth of the Reynolds stress 〈w2〉 under a wide variety of
boundary conditions. The same calibrated model was then applied to render a turbulent
velocity field in a USBL. Finally, the model has been used to generate a synthetic turbulent
inlet boundary condition that has inhomogeneous fluctuations in the height above ground.

The presented class of turbulence models has also been compared with classical theory.
This comparison demonstrates that the FPDE description goes beyond previous methods;
delivering a flexible tool for the design of new covariance models, in various flow settings,
which fit experimental data.
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Appendix A. Proofs

In this appendix, we prove Lemmas 5.1–5.3.

Proof of Lemma 5.1. The third velocity component is defined by w = ∂ψ1/∂y − ∂ψ2/∂x,
where (

I − L2
∞Δ

)α
ψi = μL2α

∞ξi, ψi|z=0 = 0, i = 1, 2, (A1)

with α = 17/12 and μ = C1/2ε1/3. Note that solutions of (A1) can be written

ψi(x) =
∫

R3

μ ξ̂i(k)

(1/L2∞ + k2
1 + k2

2 + k2
3)
α

ei(k1x1+k2x2) sin(k3x3) dk. (A2)

Hence, the third velocity component is

w(x) = μ

∫
R3

i k2ξ̂1(k)− i k1ξ̂2(k)
(1/L2∞ + |k|2)α ei(k1x1+k2x2) sin(k3x3) dk (A3)

and the corresponding Reynolds stress is

〈w2〉 = μ2
∫

R3

k2
2 + k2

1
(1/L2∞ + |k|2)2α sin2(k3z) dk, (A4)

because 〈ξ2
1 〉 = 〈ξ2

2 〉 = 1 and 〈ξ1ξ2〉 = 0. Now, observe that, for any x, a, and b, it holds
that

∂2
x

[
1

(a2 + x2)b−2

]
= 4(b − 2)(b − 1)x2

(a2 + x2)b
− 2(b − 2)
(a2 + x2)b−1 . (A5)

Moreover, for any spatial dimension d ≥ 1, the Fourier transform of the Matérn kernel can
be written (see, e.g., Roininen, Huttunen & Lasanen 2014; Khristenko et al. 2019)

Mν (a|x|) = a2ν Γ (ν + d/2)
πd/2Γ (ν)

∫
Rd

1
(a2 + |k|2)ν+d/2

d∏
i=1

cos(xiki) dk. (A6)

Therefore,

〈w2〉 = μ2L2ν
∞

∫
R3

[(
∂2

k1
+ ∂2

k2

) (4(2α − 2)(2α − 1))−1

(1 + |k|2)2α−2 + (2α − 1)−1

(1 + |k|2)2α−1

]

×
1 − cos

(
2k3z
L∞

)
2

dk

= μ2L2ν∞
2(2α − 1)

∫
R3

1 − cos
(

2k3z
L∞

)
(1 + |k|2)2α−1 dk

= μ2L2ν∞
2(ν + d/2)

πd/2Γ (ν)

Γ (ν + d/2)
Mν (|x|)

∣∣∣∣
(0,0,0)

(0,0,2z/L∞)

= μ2L2ν∞
2(ν + d/2)

πd/2Γ (ν)

Γ (ν + d/2)︸ ︷︷ ︸
=〈w2∞〉

[
1 − Mν

(
2z
L∞

)]
(A7)

where d = 3 and ν = 2α − 1 − d/2 = 17/6 − 1 − 3/2 = 1/3.
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Finally, the modified Bessel function of the second kind, for ν /∈ Z, is defined by the
expansion

Kν(x) = Γ (ν)Γ (1 − ν)

2

( ∞∑
m=0

1
m!Γ (m − ν + 1)

( x
2

)2m−ν

−
∞∑

m=0

1
m!Γ (m + ν + 1)

( x
2

)2m+ν
)
. (A8)

Hence, we have

Mν

(
2z
L∞

)
∼ 1 − Γ (1 − ν)

Γ (1 + ν)

(
z

L∞

)2ν

as
z

L∞
→ 0. (A9)

From this and (5.6), the statement follows. �

Proof of Lemma 5.2. The first two components of the vector potential ψ are defined by
(A1), whereas the third component is defined by

(I − L2
∞Δ)

αψ3 = μL2α
∞ξ3, ∂zψ3|z=0 = 0, (A10)

with α = 17/12 and μ = C1/2ε1/3. Note that solutions of (A10) can be written

ψ3(x) =
∫

R3

μ ξ̂3(k)
(1/L2∞ + |k|2)α ei(k1x1+k2x2) cos(k3x3) dk. (A11)

Hence, the two first velocity components are

u(x) = μ

∫
R3

i k2ξ̂3(k)− k3ξ̂2(k)
(1/L2∞ + |k|2)α ei(k1x1+k2x2) cos(k3x3) dk, (A12)

v(x) = μ

∫
R3

k3ξ̂1(k)− i k1ξ̂3(k)
(1/L2∞ + |k|2)α ei(k1x1+k2x2) cos(k3x3) dk, (A13)

and the corresponding Reynolds stresses are

〈u2〉 = 〈v2〉 = μ2
∫

R3

k2
3 + k2

i

(1/L2∞ + |k|2)2α cos2(k3z) dk, i = 1 or 2, (A14)
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because 〈ξ2
1 〉 = 〈ξ2

2 〉 = 1 and 〈ξ1ξ2〉 = 0. Taking into account (A5) and (A6), we obtain

〈u2〉 = μ2L2ν
∞

∫
R3

(
1

(1 + |k|2)2α−1 − 1 + k2
i

(1 + |k|2)2α
) 1 + cos

(
2k3z
L∞

)
2

dk

= μ2L2ν∞
2

∫
R3

(
1 − (2(2α − 1))−1

(1 + |k|2)2α−1 − 1
(1 + |k|2)2α

)[
1 + cos

(
2k3z
L∞

)]
dk

= μ2L2ν∞πd/2

2

⎛
⎜⎝ Γ (ν)

Γ (ν + d
2
)

ν + 1

ν + d
2

[
1 + Mν

(
2z
L∞

)]

− Γ (ν + 1)

Γ (ν + 1 + d
2
)

[
1 + Mν+1

(
2z
L∞

)]⎞⎟⎠
= 〈u2

∞〉
[

1 + (ν + 1)Mν

(
2z
L∞

)
− νMν+1

(
2z
L∞

)]
, (A15)

where d = 3 and ν = 2α − 1 − d/2 = 17/6 − 1 − 3/2 = 1/3, and 〈u2∞〉 = 〈w2∞〉. �

Proof of Lemma 5.3. The components of the vector potential ψ are defined by equations
(A1) and (A10) with homogeneous Dirichlet boundary condition ψ3|z=0 = 0, and thus
have form

ψi(x) =
∫

R3

μ ξ̂i(k)
(1/L2∞ + |k|2)α ei(k1x1+k2x2) sin(k3x3) dk, i = 1, 2, 3. (A16)

Hence, the two first velocity components are

u(x) = μ

∫
R3

i k2ξ̂3(k) sin(k3x3)− k3ξ̂2(k) cos(k3x3)

(1/L2∞ + |k|2)α ei(k1x1+k2x2) dk, (A17)

v(x) = μ

∫
R3

k3ξ̂1(k) cos(k3x3)− i k1ξ̂3(k) sin(k3x3)

(1/L2∞ + |k|2)α ei(k1x1+k2x2) dk, (A18)

and the corresponding Reynolds stresses are

〈u2〉 = 〈v2〉 = μ2
∫

R3

k2
3 cos2(k3z)+ k2

i sin2(k3z)
(1/L2∞ + |k|2)2α dk

= μ2
∫

R3

(k2
3 + k2

i ) cos2(k3z)
(1/L2∞ + |k|2)2α dk − μ2

∫
R3

k2
i cos(2k3z)

(1/L2∞ + |k|2)2α dk, (A19)

because 〈ξ2
1 〉 = 〈ξ2

2 〉 = 1 and 〈ξ1ξ2〉 = 0. Taking into account the two previous proofs, we
obtain

〈u2〉 = 〈u2
∞〉

([
1 + (ν + 1)Mν

(
2z
L∞

)
− νMν+1

(
2z
L∞

)]
− Mν

(
2z
L∞

))

= 〈u2
∞〉

[
1 + νMν

(
2z
L∞

)
− νMν+1

(
2z
L∞

)]
, (A20)

where d = 3 and ν = 2α − 1 − d/2 = 17/6 − 1 − 3/2 = 1/3, and 〈u2∞〉 = 〈w2∞〉. �
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Appendix B. Numerical method for the half-space domain

In this appendix, we deal with the numerical approximation of the boundary values
problems given in § 5. We focus at first on (5.15) as a representative example, as it is
the most challenging. Our intention here is only to explain the details our computations for
the purposes of transparency and reproducibility.

Like all numerical approximations of problems on unbounded domains Ω , we only
seek to render the solution in a prespecified bounded subdomain Ω0 � Ω . In practice,
this also requires us to define a larger domain for computation, say Ωcomp. := [0, xmax] ×
[0, ymax] × [0, zmax] ⊆ Ω , containing Ω0. If adequate care is taken in defining it, the
solution ucomp. of a related problem on Ωcomp. will be close to the true solution u, once
they are both restricted to Ω0 � Ωcomp. (Khristenko et al. 2019), i.e. ucomp.|Ω0 ≈ u|Ω0 .

Consider the solution ψ(x; τ) of (5.15). After applying a Fourier transform in the x- and
y-directions, we arrive at the transformed vector potential

ψ̂(k1, k2, z; τ) = 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
e− i(k1x1+k2x2) ψ(x1, x2, z; τ) dx1 dx2. (B1)

For each k1, k2 ∈ R and t ≥ 0, we can then rewrite (5.15) as a one-dimensional boundary
value problem for ψ̂ = ψ̂(k1, k2, z; τ), as follows:

Â(k1, k2, z; τ)αψ̂ = b(k1, k2, z; τ), for z > 0,

κψ̂3 + L3(z)2
(
∂ψ̂3

∂z
+ ik1τ ψ̂3

)
= ψ̂1 = ψ̂2 = 0, at z = 0,

⎫⎪⎪⎬
⎪⎪⎭ (B2)

where α = 17/12, b(k1, k2, z; τ) = μL(z)2αF−1
z [D−�

τ ξ̂ ](k1, k2, z), and

Â(k1, k2, z; τ) = I + (L1(z)2 + τ 2L3(z)2)k2
1 + L2(z)2k2

2

− iτk1

(
L3(z)2

∂

∂z
+ ∂

∂z
L3(z)2

)
− ∂

∂z
L3(z)2

∂

∂z
. (B3)

The continuous Fourier transforms in the x- and y-directions used in deriving (B2) can
be replaced by discrete Fourier transforms on uniform grids over the intervals [0, xmax] and
[0, ymax], respectively. Likewise, the equation Âαψ̂ = b can be solved in a finite interval
[0, zmax], once supplementary boundary conditions are applied at the artificial boundary
z = zmax in order to close the resulting system of equations. For instance, one may apply
the Dirichlet boundary condition

ψ̂ = 0 at z = zmax. (B4)

In our experiments, we also experimented with zero flux boundary conditions at z = zmax
and witnessed similar results near the boundary z = 0. In general, a wide variety of
different boundary conditions may be applied at the artificial interfaces/boundaries x =
xmax, y = ymax, and z = zmax, with negligible cost to solution accuracy, so long as xmax,
ymax, and zmax are each sufficiently large (cf. Khristenko et al. 2019).

The numerical approximation of (5.15) then proceeds by applying the rational
approximation algorithm presented in (6.1) to a discrete form of (B2), applying an inverse
discrete Fourier transform in both the k1- and k2-coordinates, and restricting the resulting
solution to Ω0 � Ωcomp..

For example, let Vh = span{φ1, . . . , φM} ⊆ H1
0(0, zmax) be a suitable approximation

subspace (e.g. each φi could be a piecewise-linear hat function) and consider the
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special case τ = 0 and κ = ∞. We wish to compute an approximation ψh =
(ψh

1 , ψ
h
2 , ψ

h
2 ) ≈ ψ in Vh. In this setting, the basis function expansion of ψh

i =
F−1

x,y [
∑N

n=1
∑M

m=1 pn,(i−1)·M+mφm], i = 1, 2, 3, is determined by the solution of the N
linear systems,⎛
⎝dn

⎡
⎣M 0 0

0 M 0
0 0 M

⎤
⎦ +

⎡
⎣A 0 0

0 A 0
0 0 A

⎤
⎦
⎞
⎠ pn = cnb, with b ∼ N

⎛
⎝0,

⎡
⎣B 0 0

0 B 0
0 0 B

⎤
⎦
⎞
⎠ ,
(B5)

as in (6.3). Here, [M]lm = ∫ zmax
0 φl(z)φm(z) dz,

[A]lm =
∫ zmax

0
(1 + L1(z)2k2

1 + L2(z)2k2
2)φl(z)φm(z) dz +

∫ zmax

0
L3(z)2

∂φl(z)
∂z

∂φm(z)
∂z

dz,

(B6)

and [B]lm = ∫ zmax
0 μ2L4α(z)φl(z)φm(z) dz. Finally, the discrete vector field uh = ∇×ψh

can be post-processed immediately using the fact that

Fx,y

[
∇×ψh

]
=

⎡
⎢⎢⎢⎢⎣

0
∂

∂z
i k2

− ∂

∂z
0 − i k1

− i k2 0 i k1

⎤
⎥⎥⎥⎥⎦ ψ̂h. (B7)

REMARK B.1. When the diffusion coefficients Li(z) are constant, it is possible to apply
the z-direction Fourier transform Fz to (B2). In this case, the operator Fz[Â(k1, k2, z; τ)α]
can be inverted algebraically and the rational approximation algorithm can be avoided.
This fact is useful in proving Lemmas 5.1–5.3; cf. Appendix A. We hesitate to advocate
for a complete discrete Fourier transform approach to numerical solution in the constant
coefficient scenario because additional care is required in order to handle the Robin
boundary condition

Fz

[
κψ̂3 +

(
∂ψ̂3

∂z
+ ik1τ ψ̂3

)
L2

3

]
= (κ + i(k3 + k1τ)L2

3)Fz[ψ̂3] = 0, (B8)

when κ ∈ (0,∞); see Daon & Stadler (2016) and Khristenko et al. (2019) and references
therein.

REMARK B.2. Experience indicates that in order to produce an accurate velocity field
u = ∇×ψ with the approach above, it is necessary to include high frequencies k1 and k2.
This may be due in part to the slow decay rate of the energy spectrum function (4.1).
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