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CLASSES OF BARREN EXTENSIONS

NATASHA DOBRINEN AND DAN HATHAWAY

Abstract. Henle,Mathias, andWoodin proved in [21] that, provided thatù→(ù)ù holds in amodelM

of ZF, then forcing with ([ù]ù,⊆∗) overM adds no new sets of ordinals, thus earning the name a “barren”

extension. Moreover, under an additional assumption, they proved that this generic extension preserves

all strong partition cardinals. This forcing thus produces a modelM [U ], where U is a Ramsey ultrafilter,

with many properties of the original modelM. This begged the question of how important the Ramseyness

of U is for these results. In this paper, we show that several classes of ó-closed forcings which generate

non-Ramsey ultrafilters have the same properties. Such ultrafilters include Milliken–Taylor ultrafilters, a

class of rapid p-points of Laflamme, k-arrow p-points of Baumgartner and Taylor, and extensions to a class

of ultrafilters constructed by Dobrinen, Mijares, and Trujillo. Furthermore, the class of Boolean algebras

P(ùα)/Fin⊗α , 2≤ α < ù1, forcing non-p-points also produce barren extensions.

§1. Introduction. In their paper, A barren extension [21], Henle, Mathias, and
Woodin proved that forcing with ([ù]ù,⊆∗) does not add new subsets of ordinals
and preserves strong partition cardinals, assuming the groundmodel satisfies certain
properties. The first of these is the infinite partition relation

ù→(ù)ù, (1)

which means that for each coloring c : [ù]ù→2, there is an infinite subset x⊆ù such
that the restriction of c to [x]ù is constant. This partition relation fails outright in
the presence of the Axiom of Choice. However, it is consistent with fragments of
Choice, as seen in the following: ADR implies ù→(ù)

ù . This was first proved by
Prikrywith the additional assumption ofDC in [34], and soon after,Mathias showed
DCwas unnecessary in [28]. Similarly AD+ +V =L(P(R)) impliesù→(ù)ù . This
was proved in the Cabal and can be seen to follow from Σ21 reflection to the Suslin
coSuslin sets (see [37] and Theorem 25 in [41]) and from the fact that every Suslin
set of reals is Ramsey (see Theorem 2.2 of [18]). Hence AD + V = L(R) implies
ù→(ù)ù (becauseAD+V =L(R) impliesAD++V =L(P(R))), and soù→(ù)ù

holds in L(R) assuming there are ùWoodin cardinals with a measurable above (see
[35]). Furthermore, the partition relation ù→(ù)ù holds in the L(R) of a model V
of ZFC if V is a model obtained by collapsing a strongly inaccessible cardinal κ to
ù1 via the Lévy collapse (see [28]).
Henle, Mathias, and Woodin proved that forcing with ([ù]ù,⊆∗) over a model

satisfying the infinitary partition relation ù→(ù)ù does not add any new subsets of
ordinals over the ground model, aptly calling this extension barren.
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Theorem 1.1 (Henle et al. [21]). Let M be a transitive model of ZF + ù→(ù)ù

and N be its extension via ([ù]ù,⊆∗). Then M and N have the same sets of ordinals;
moreover every wellordered sequence in N of elements of M lies in M.

The other key properties utilized in [21] are called LU and EP. LU is a
uniformization axiom, guaranteeing a function uniformizing a relation on the Baire
space, relative to some infinite set. EP says that the intersection of any well-ordered
collection of completely Ramsey positive sets is again completely Ramsey positive.
These assumptions are shown to preserve infinite dimensional partition relations of
the following type. Given cardinals κ,ë,ì with 2≤ ì < κ and ë≤ κ,

κ→(κ)ëì (2)

denotes that for each coloring c : [κ]ë→ì, there is a subset K ∈ [κ]κ such that the
restriction of c to [K ]ë is constant. An uncountable cardinal κ satisfying (2) for
ë= κ and for every 2≤ ì < κ is called a strong partition cardinal.

Theorem 1.2 (Henle et al. [21]). (ZF + EP + LU) Suppose 0 < ë = ù · ë ≤ κ,
2 ≤ ì < κ, κ→(κ)ëì, and that there is a surjection from [ù]

ù onto [κ]κ. Then in the

forcing extension via ([ù]ù,⊆∗), κ→(κ)ëì holds.

Forcing with ([ù]ù,⊆∗) adds an ultrafilter U which isRamsey, meaning that given
any l,n ≥ 2, X ∈ U , and coloring c : [X ]n→l , there is some U ∈ U with U⊆X such
that the restriction of c to [U ]n is constant. This is written as

U→(U)nl . (3)

It is shown in Proposition 4.1 of [21] that the hypotheses, EP + LU, of Theorem 1.2
hold in V if it satisfies AD + V = L(R). In this case, V [U ] preserves the strong
partition cardinals in V mentioned in that theorem.
One cannot help but wonder, how important is the Ramseyness of the generic

ultrafilter U for these results? Are there forcings which add non-Ramsey ultrafilters
for which the consequences of Theorems 1.1 and 1.2 still hold? The main
tools of the proofs, ù→(ù)ù , EP and LU, involve properties of [ù]ù as a
topological space. Thus, we surmised that other forcings with similar topological
properties would likely add ultrafilters with barren extensions. This turned out
to be the case. In this paper, we prove that several collections of ó-closed
partial orders forcing non-Ramsey ultrafilters produce the same conclusions as
Theorems 1.1 and 1.2.
The natural place to look for forcings satisfying analogues of ù→(ù)ù is

topological Ramsey spaces, as such spaces, by definition, satisfy analogues of this
infinitary partition relation for definable sets. These spaces are defined in Section 2,
which provides basic background and their connection with forced ultrafilters.
Topological Ramsey spaces have been shown to form dense subsets of many forcings
which add ultrafilters satisfyingweak partition relations. This includes constructions
in [10, 11, 14, 15, 16], which were motivated by questions on exact Rudin–Keisler
and Tukey structures below such ultrafilters. An exposition of this area is found
in [12]. In this paper, we utilize topological Ramsey space techniques to extend
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180 NATASHA DOBRINEN AND DAN HATHAWAY

results of Henle, Mathias, and Woodin. We first state the results for general forcing
posets.
The following two theorems extend Theorems 1.1 and 1.2. For the notions of

extended coarsened poset and the Left-Right Axiom assumed in the next theorem,
see Definitions 3.3 and 3.4. We say that all cubes of a poset 〈X, ≤ 〉 are Ramsey if
the following holds: Given x ∈ X , a positive integer k, and a coloring c : {y ∈ X :
y ≤ x}→ k, there is some y ≤ x such that c ↾ {z ∈ X : z ≤ y} is constant.

Theorem1.3. LetMbe a transitivemodel ofZF. InM, let 〈X, ≤〉 be a forcing poset
and assume that≤∗ is a ó-closed coarsening of≤ such that 〈X, ≤ 〉 and 〈X, ≤∗ 〉 have
isomorphic separative quotients. Suppose that this coarsening (or a forcing equivalent
one) satisfies the Left-Right Axiom, and suppose all cubes of 〈X, ≤ 〉 are Ramsey. Let
N be a generic extension of M by the forcing 〈X, ≤〉. Then M and N have the same
sets of ordinals; moreover, every sequence in N of elements of M lies in M.

In Lemma 3.9, we prove that if either ADR or AD
+ + V = L(P(R)) hold, then

all subsets of a topological Ramsey space are Ramsey, which makes such spaces a
source of natural examples producing barren extensions.
In Section 4, we prove the extension of Theorem 1.2. In the following, LU (P)

and EP (P) are generalizations of the axioms LU and EP of Henle, Mathias, and
Woodin (see Definitions 4.3 and 4.8). A subset S of a partial ordering 〈X, ≤ 〉 is
Ramsey if for each p ∈ X , there exists a q ≤ p such that {r ∈ X : r ≤ q} is either
contained in or disjoint from S.

Theorem 1.4. Suppose κ → (κ)ëì, where κ,ë,ì are nonzero ordinals such that
ë=ùë≤ κ and 2≤ ì< κ. Suppose also that there is a surjection from ù2 to [κ]κ. Let
P = 〈X, ≤,≤∗〉 be a coarsened poset such that EP(P) and each =∗-equivalence class
is countable. Assume every S ⊆X is Ramsey. If LU(P) holds and 〈X, ≤〉 adds no new
sets of ordinals, then 〈X, ≤〉 forces κ→ (κ)ëì.

It follows from these theorems that topological Ramsey spaces with natural ó-
closed coarsenings force barren extensions containing ultrafilters and preserving
the strong partition cardinals in the ground model. By an axiomatized topological
Ramsey space, wemean one that satisfies the four axioms of Todorcevic in [39] and is
closed as a subspace of an appropriate product space (see Definition 2.4). All known
examples of topological Ramsey spaces are axiomatized. We will say that a forcing
P is Ramsey-like if it is forcing equivalent to some axiomatized topological Ramsey
space with an (ó-closed) extended coarsening satisfying the Left-Right Axiom. The
next theorem follows from the previous two.

Theorem 1.5. AssumeMsatisfiesZF+ either 1)AD R or 2)AD
++V =L(P(R)).

Let P be a Ramsey-like forcing, and let U be an ultrafilter forced by P. Then M and
M [U ] have the same sets of ordinals; moreover, every sequence in M [U ] of elements
of M lies in M. If, further, the ó-closed coarsening ≤∗ has countable =∗-equivalences
classes, then κ→ (κ)ëì holds inM [U ] whenever κ→ (κ)

ë
ì holds in M, where κ,ë,ì are

nonzero ordinals such that ë=ùë≤ κ, 2≤ ì< κ, and there is a surjection in M from
ù2 to [κ]κ.

Instances of Theorem 1.5 are seen in Sections 5 and 6, where U ranges over a large
collection of non-Ramsey ultrafilters. The following examples are indicative of the
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types of ultrafilters for which our results guarantee barren extensions. First, there
are the Milliken–Taylor ultrafilters studied by Mildenberger in [30] which form a
hierarchy extending the stable ordered union ultrafilters of Blass in [4]. It is shown
in Section 5.1 that these forcings are Ramsey-like.
In Section 5.2 we present a property called Independent Sequencing which, when

satisfied, guarantees that a forcing isRamsey-like.All of the forcings in the remainder
of Section 5 have this property, and so their generic ultrafilters satisfy Theorem 1.5.
Our second class of forcings, seen in Section 5.3, is a collection of forcings

constructed by Laflamme in [25] which extend the forcing ([ù]ù,⊆∗) by restricting
the partial order to produce a hierarchy of ultrafilters Uα , α < ù1, for which the
partition relations get weaker and weaker. Laflamme proved that these ultrafilters
formadecreasing chain underRudin–Keisler reduction of order type (α+1)∗, where
the minimum ultrafilter is Ramsey, and the next one above it is weakly Ramsey. For
each 1 ≤ k < ù, Uk satisfies the following partition relation: Given a coloring c of
[ù]2 into finitelymany colors, there is amember ofUk onwhich c takes nomore than
k+1 colors. All of the ultrafilters Uα have interesting combinatorial properties, but
for α infinite, there are no finite bounds for colorings of pairs.
A third collection of Ramsey-like forcings includes forcings of Baumgartner and

Taylor in [2] which generate k-arrow, not (k +1)-arrow ultrafilters, as well as a
forcing of Blass in [3] producing a p-point with two Rudin–Keisler-incomparable
predecessors. In Section 5.4, we present these ultrafilters as well as a general class of
forcings constructed in [14] which encompass these as special cases. These forcings
are shown to beRamsey-like, and hence, their forced ultrafilters satisfy Theorem 1.5.
In Section 6, we investigate another line of forcings of stratified complexity over

([ù]ù,⊆∗). Noting that ([ù]ù,⊆∗) is forcing equivalent to P(ù)/Fin, we work with
the natural hierarchy of Boolean algebras P(ùα)/Fin⊗α , where for 1≤ α< â<ù1,
the projection of P(ùα)/Fin⊗α to the first â coordinates recovers P(ùâ)/Fin⊗â .
These forcings generate non-p-points for α ≥ 2, which still satisfy weak partition
relations. For example, the generic ultrafilter G2 forced by P(ù

2)/Fin⊗2 satisfies the
following partition property: Given a coloring c of [ù2]2 into finitely many colors,
there is a member of G2 on which c takes at most four colors. Each of these forcings
has been shown to contain dense subsets forming topological Ramsey spaces (see
[10, 11]), so Theorem 1.3 holds for these forcings. However, we do not know if
they preserve strong partition cardinals, since their =∗-equivalence classes have
cardinality continuum.

§2. Background: Topological Ramsey spaces, infinite partition relations, and

associated ultrafilters. A key assumption in the results in [21] is the infinitary
partition relation ù→(ù)ù . That this holds in models of ADR or AD

+ +
V = L(P(R) is connected with a topological characterization of the Ramsey
property due to Ellentuck. Let ô be the topology generated by basic open sets of
the form

[a,x] = {y ∈ [x]ù : a ❁ y},

where a ∈ [ù]<ù and x ∈ [ù]ù , and call [ù]ù with this topology the Ellentuck space.
Here a ❁ y means there is an n ∈ ù such that a = {0,1,...,n – 1}∩y (a is an initial
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segment of y). Notice that ô refines the metric topology on the Baire space [ù]ù .
Culminating a line of work beginning with Nash-Williams as to which subsets of
the Baire space satisfy an infinite partition relation (see for instance, [20, 31, 36])
Ellentuck proved the following theorem.

Theorem 2.1 (Ellentuck, [17]). A subset S⊆[ù]ù has the property of Baire with
respect to the Ellentuck topology if and only if the following holds: For each nonempty
Ellentuck basic open set [a,x], there is a y ∈ [a,x] such that either [a,y]⊆S or else
[a,y]∩S = ∅.

In particular, for each subset S⊆[ù]ù with the property of Baire in the Ellentuck
topology, for any x ∈ [ù]ù there is some y ∈ [x]ù such that [y]ù is either contained
in S or disjoint from S. Thus, ù→(ù)ù holds models of ZF where all sets of reals
are sufficiently definable.
Carlson andSimpson in [6] extractedproperties responsible for infinitary partition

relations on more general spaces, for instance, spaces of infinite sequences of finite
words, and called such spaces topological Ramsey spaces. Building on their work,
Todorcevic presented four axioms in [39] which are responsible for similar infinitary
partition relations on a wider array of topological spaces. The next subsection
provides the minimal background necessary for understanding this paper.

2.1. Topological Ramsey spaces. Most of the material in this subsection comes
from Chapter 5 in [39], with a few new definitions which will help the exposition
of this paper. Axioms A.1–A.4 below are defined for triples (R, ≤ ,r) of objects
with the following properties: R is a nonempty set, ≤ is a quasi-ordering on R,
and r :R×ù→AR is a map producing the sequence (rn(·) = r(·,n)) of restriction
maps, whereAR is the collection of all finite approximations to members ofR. For
u ∈ AR and X ∈R,

[u,X ] = {Y ∈R : Y ≤ X and (∃n) rn(Y ) = u}. (4)

A.1 (1) r0(X ) = ∅ for all X ∈R.
(2) X 6= Y implies rn(X ) 6= rn(Y ) for some n.
(3) rm(X ) = rn(Y ) implies m = n and rk(X ) = rk(X ) for all k < n.

LetARn = {rn(X ) :X ∈R}. It follows from A.1 (1) thatAR0 = {∅}. By A.1 (3),
the setsARm andARn are disjoint wheneverm 6= n. For each u ∈ARn andm ≤ n,
let rm(u) be defined to be rm(X ) where X is any element of R such that rn(X ) = u.
Given u ∈AR, let |u| denote the length of u. That is, |u| equals the integer n such that
u ∈ ARn. Said another way, |u| is the integer n such that rn(u) = u. For u,v ∈ AR,
we write u ❁ v exactly when r|u|(v) = u. For n> |u|, let rn[u,X ] denote the collection
of all v ∈ ARn such that u ❁ v and v ≤fin X .

A.2 There is a quasi-ordering ≤fin on AR such that

(1) {v ∈ AR : v ≤fin u} is finite for all u ∈ AR,
(2) Y ≤ X iff (∀n)(∃m) rn(Y )≤fin rm(X ),
(3) ∀u,v,y ∈ AR[y ❁ v∧v ≤fin u→∃x ❁ u (y ≤fin x)].

Given an X ∈ R, we define AR ↾ X to be the set of all finite approximations
to members Y ∈ R such that Y ≤ X . Note that A.2(1) and (2) imply that
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for any X ∈R,

AR ↾ X = {u ∈ AR : (∃m)u ≤fin rm(X )} (5)

and hence, AR ↾ X is countable. This fact will be important throughout the paper.
The number depthX (u) is the least n, if it exists, such that u ≤fin rn(X ). If such

an n does not exist, then we write depthX (u) =∞. If depthX (u) = n <∞, then
[depthX (u),X ] denotes [rn(X ),X ].

A.3 (1) If depthX (u)<∞ then [u,Y ] 6= ∅ for all Y ∈ [depthX (u),X ].
(2) Y ≤ X and [u,Y ] 6= ∅ imply that there is Y ′ ∈ [depthX (u),X ] such that

∅ 6= [u,Y ′]⊆[u,Y ].

A.4 If depthX (u)<∞ and ifO⊆AR|u|+1, then there isY ∈ [depthX (u),X ] such
that r|u|+1[u,Y ]⊆O or r|u|+1[u,Y ]⊆Oc .

Axiom A.1 implies that the map é :R→
∏

n<ùARn defined by

é(X ) = 〈rn(X ) : n < ù〉, (6)

forX ∈R, is an injection. Note that
∏

n<ùARn is a subspace ofARN, where the set
AR is given the discrete topology; this slightly streamlined notation us commonly
used in topological Ramsey space theory. Recalling the remark after axiom A.2,
we may assume without loss of generality that AR is countable, especially since in
practice, we will always be working below some member ofR.
The Ellentuck space is a good reference point for digesting this notation. In

the Ellentuck space, ARn is the set of increasing sequences of length n where the
entries are natural numbers. Then é[R] is the subset of

∏

n<ùARn consisting of all
infinite sequences of finite sequences which cohere: For X = {x0,x1,x2, ...} ∈ [ù]

ù

enumerated in increasing order,

é(X ) = 〈rn(X ) : n < ù〉= 〈∅,{x0},{x0,x1},{x0,x1,x2}, ...〉. (7)

Observe that the sequence on the right recovers X in its limit.
The metric topology on R is the topology generated by basic open sets of the

form {X ∈ R : rn(X ) = u}, where n < ù and u ∈ ARn. This corresponds to the
topology on é[R] inherited as a subspace of ARN, where the countable set AR has
the discrete topology and ARN has the product (i.e., Tychonoff) topology. When
we speak about R being closed in ARN, we mean that the é-image of R is a closed
subspace of ARN.
The Ellentuck topology on R is the topology generated by the basic open sets

[u,X ]; it refines the metric topology on R. Given the Ellentuck topology on R, the
notions of nowhere dense, and hence of meager are defined in the natural way. We
say that a subset X ofR has the property of Baire iff there is an open Ellentuck open
set O such that the symmetric difference of X and O is meager.

Definition 2.2 ([39]). A subset X of R is Ramsey if for every ∅ 6= [u,X ], there is
a Y ∈ [u,X ] such that [u,Y ]⊆X or [u,Y ]∩X = ∅. X⊆R is Ramsey null if for every
∅ 6= [u,X ], there is a Y ∈ [u,X ] such that [u,Y ]∩X = ∅.
A triple (R, ≤ ,r) is a topological Ramsey space if every subset of R with the

property of Baire is Ramsey and if every meager subset ofR is Ramsey null.

The following result is Theorem 5.4 in [39].
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Theorem 2.3 (Abstract Ellentuck Theorem). If (R, ≤,r) is closed (as a subspace
of ARN) and satisfies axioms A.1, A.2, A.3, and A.4, then every subset ofR with the
property of Baire is Ramsey, and every meager subset is Ramsey null; in other words,
the triple (R, ≤,r) forms a topological Ramsey space.

Rather than repeating the hypotheses of the Abstract Ellentuck Theorem many
times throughout this paper, we will simply make the following definition.

Definition 2.4. We say that a topological Ramsey spaces is axiomatized if it is
closed as a subspace of ARN and satisfies axioms A.1, A.2, A.3, and A.4.

Example 2.5. TheEllentuck space is the triple ([ù]ù,⊆,r), where for eachX ∈ [ù]ù

and n < ù, rn(X ) denotes the set of the n least members of X. Here, ≤fin is simply
the subset relation.

The Ellentuck space is the prototypical topological Ramsey space. All known
examples of topological Ramsey spaces contain a copy of this space. Notice that
⊆∗ is a ó-closed quasi-order coarsening the partial order ⊆ on the Ellentuck space.
This forcing ([ù]ù,⊆∗) produces a Ramsey ultrafilter on base set ù, which is in
one-to-one correspondence with [ù]1, also known as the set of first approximations
of members of the Ellentuck space.

2.2. Forcing with topological Ramsey spaces, and the ultrafilters they generate.

Given a topological Ramsey space (R, ≤,r), there are three related forcings. The first
is the Mathias-like forcing, where conditions are of the form [s,A] where s ∈ AR,
A ∈ R, and s ❁ A. The second is 〈R,≤〉. The third is 〈R,≤∗〉 where ≤∗ is some
ó-closed partial order which coarsens≤ such that the separative quotients of 〈R,≤〉
and 〈R,≤∗〉 are isomorphic. These forcings were shown to have many properties
in common with Mathias forcing in [8, 29]. Similarly to 〈[ù]ù,⊆∗〉, forcing with
〈R,≤∗〉 adds a new ultrafilter on a countable base set as follows: By Axiom A.2,
relativizing below some member of R if necessary, the collection AR1 of all first
approximations to members ofR is a countable set. We shall let

UR = {Y⊆AR1 : ∃X ∈G (AR1 ↾ X⊆Y )}, (8)

where G is some generic filter forced by 〈R,≤∗〉. By genericity and the Abstract
Ellentuck Theorem 2.3, one sees that UR is an ultrafilter on base set AR1. For all
known topological Ramsey spaces, the collection AR1 of first approximations is a
countable set. If not, then by Axiom A.2, restricting below some member Z ∈ R
provides a countable setAR1 ↾Z. If 〈R,≤

∗〉 is isomorphic to a dense subset of some
ó-closed forcing P which forces a new ultrafilter, then the ultrafilter forced by P is
isomorphic to UR. In this way, when we have a forcing P with a Ramsey space as a
dense subset, then results for forcing with P reduce to results for ultrafilters forced
by Ramsey spaces.
Ultrafilters UR forced by topological Ramsey spaces satisfy interesting partition

relations.

Definition 2.6. Given an ultrafilter U on a countable base set S, for each n ≥ 2,
we define t(U,n) to be the least number t, if it exists, such that for any ℓ ≥ 2 and any
coloring c : [S]n→ℓ, there is a member U∈ U such that c ↾ [U ]n takes no more than
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t colors. When this t(U,n) exists, the standard notation is to write

U→(U)nℓ,t(U,n),

and call t(U,n) the Ramsey degree of U for n.

Recall that U is a Ramsey ultrafilter if and only if t(U,2) = 1 if and only if
t(U,n) = 1 for all n≥ 2. The ultrafilters for which our results hold all have t(U,2)≥ 2.
The role of topological Ramsey spaces in this paper is several-fold. First, we

will need forcings which satisfy analogues of ù→(ù)ù , and topological Ramsey
spaces are natural candidates because of the Abstract Ellentuck Theorem 2.3.
Second, many topological Ramsey spaces behave similarly to the Baire space in
contexts of ADR, or AD

+, or the Solovay model. Third, in previous papers, many
known forcings producing ultrafilters with interesting Ramsey degrees were shown
to contain dense sets forming topological Ramsey spaces (see [9, 10, 11, 14, 15, 16]).
The original motivation for these constructions was to find exact Rudin–Keisler
and Tukey structures below these forced ultrafilters, as Ramsey space structure and
Theorem 2.3 make such results possible. See [12] for an overview of those results.
These topological Ramsey spaces provided a variety of ultrafilters which were likely
to have barren extensions. The topological Ramsey space approachmakes the results
in this paper possible, while streamlining proofs and making the results applicable
to a variety of known forcings.

§3. No new sets of ordinals. We begin this section by defining the notion of
extended coarsened posets. These are used in the definition of the Left-Right
Axiom, which abstracts the key property of the forcing ([ù]ù,⊆∗) which Henle,
Mathias, and Woodin used in the proof of Theorem 1.1. This axiom along with
the assumption of infinite dimensional partition relations will allow us to prove
the more general Theorem 1.3. After proving in Lemma 3.9 that, assuming some
determinacy, all subsets of a topological Ramsey space are Ramsey, we conclude this
section with Theorem 3.10. It follows that a large collection of ultrafilters produce
barren extensions, as will be discussed in Sections 5 and 6.
In what follows, given a quasi-order ≤∗, we write x =∗y iff x ≤∗y and y ≤∗x.

Definition 3.1. A coarsened poset P is a triple P= 〈X, ≤,≤∗〉where≤ is a partial
order and ≤∗ is a quasi-order on X with the following properties:

1) For all x,y ∈ X , x ≤ y implies x ≤∗y;
2) For all x,y ∈ X , if y ≤∗x then there is some z ≤ x such that z =∗y.

Given x ∈ X , define the following notation:

[x] := {y ∈ X : y ≤ x}

[x]∗ := {y ∈ X : y ≤∗x}.

Observation 3.2. If P = 〈X, ≤ ,≤∗〉 is a coarsened poset, then the separative
quotients of 〈X,≤〉 and 〈X,≤∗〉 are isomorphic, so we say that 〈X,≤〉 and 〈X,≤∗〉 are
forcing equivalent.

Proof. For x,y ∈ X , write x‖y if x and y are compatible in 〈X,≤〉, and write
x‖∗y if x and y are compatible in 〈X,≤∗〉. If x‖y, then there is some z ∈ X such
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that z ≤ x and z ≤ y. Then z ≤∗ x and z ≤∗ y, so x‖∗y. On the other hand if x‖∗y,
then there is some z ∈X such that z ≤∗x and z ≤∗y. Using the fact that z ≤∗x and
letting z play the role of y in 2) in Definition 3.1, we see that there is some z ′ ≤ x
such that z ′ =∗ z. By 1) and transitivity of≤∗, z ′ ≤∗y, so by 2) there is some z ′′ ≤ y
such that z ′′ =∗ z ′. In particular, z ′′ witnesses that x‖y. ⊣

A typical example of a coarsened poset has the form 〈H, ⊆ , ⊆I〉 where I is
an ideal on ù and H is the coideal {X⊆ù : X 6∈ I}. Another typical example is a
topological Ramsey space 〈R, ≤ ,≤∗〉, where ≤ is the partial-order on R and ≤∗

is a ó-closed quasi-order coarsening ≤, where 〈R,≤〉 and 〈R,≤∗〉 have the same
separative quotient.

Definition 3.3. Given a coarsened poset P= 〈X, ≤,≤∗〉 and a quasi-ordered set
P
∗ = 〈X ∗,≺〉, we say that P∗ is an equivalent extension of 〈X,≤∗〉 iff the following
hold:

1) X⊆X ∗ and ≺↾ (X ×X ) equals ≤∗; and
2) 〈X,≤∗〉 is a dense subset of 〈X ∗,≺〉.

In this case, we write P∗ = 〈X,X ∗, ≤,≤∗〉, and say that P∗ is an extended coarsened
poset, or EC poset (we write ≤∗ for ≺). Given an EC poset, for x ∈ X ∗ define the
notation:

X ∗[x]∗ := {y ∈ X ∗ : y ≤∗x}.

In some cases X ∗ will simply be X, but for many of our applications in Sections 5
and 6, we shall need the flexibility of EC posets. Notice that 2) in Definition 3.3 and
Observation 3.2 imply that 〈X,≤〉, 〈X,≤∗〉, and 〈X ∗,≤∗〉 are forcing equivalent.

Definition 3.4. Let P∗ = 〈X,X ∗, ≤,≤∗〉 be an extended coarsened poset. We say
that P∗ satisfies the Left-Right Axiom (LRA) iff there are functions Left : X → X ∗

and Right : X → X ∗ such that the following are satisfied:

1) For each x ∈ X , we have Left(x),Right(x)≤∗x.
2) For each x ∈ X , there are y,z ∈ [x] such that

2a) Left(y) =∗ Right(z);
2b) Right(y) =∗ Left(z);

3) Given p ∈ X , for each x,y ∈ [p], there is some z ∈ [p] such that

3a) Left(z)≤∗x;
3b) Left(Right(z))≤∗x;
3c) Right(Right(z))≤∗ y;

We say that all cubes of a poset 〈X,≤〉 are Ramsey if the following holds: Given
x ∈X , a positive integer k, and a coloring c : [x]→ k, there is some y ≤ x such that
c ↾ [y] is constant.

Theorem 1.3. Let M be a transitive model of ZF. In M, let P = 〈X,X ∗, ≤ ,≤∗〉
be an extended coarsened poset satisfying the Left-Right Axiom, and assume that
all cubes of 〈X,≤〉 are Ramsey. Let N be a generic extension of M by the forcing
〈X,≤∗〉. Then M and N have the same sets of ordinals; moreover, every sequence in N
of elements of M lies in M.
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Proof. Recall that P∗ being an EC poset means that 〈X,≤〉, 〈X,≤∗〉, and
〈X ∗,≤∗〉 have isomorphic separative quotients. Formally, we shall force with
〈X ∗,≤∗〉, and the forcing relation  refers to this quasi-order.
It suffices to show that given any fixed p0 ∈ X

∗, ḟ, and ordinal ë satisfying

p0  ḟ : ë̌→ M̌ , there is some q ∈ X
∗[p0]

∗ satisfying q  ḟ ∈ M̌ . We will in fact
find such a q in X. Assume towards a contradiction that for some such p0 ∈ X

∗

with p0  ḟ : ë̌→ M̌ , there is no q ∈ X
∗[p0]

∗ such that q  ḟ ∈ M̌ . Then for
each p ∈ X ∗[p0]

∗, there is a least ordinal ϕ(p) < ë such that p does not decide
ḟ(ϕ̌(p)); that is, (∀u ∈M )p 6 ḟ(ϕ̌(p)) = ǔ. Notice that ϕ is invariant, meaning
that whenever x,y ∈X ∗ satisfy x =∗ y, then ϕ(x) = ϕ(y). Since 〈X,≤∗〉 is dense in
〈X ∗,≤∗〉, take some p1 ∈ X such that p1 ≤

∗ p0. Define the coloring c : [p1]→ 3 as
follows: For p ∈ [p1], let

c(p) =









0 if ϕ(Left(p))< ϕ(Right(p)),

1 if ϕ(Left(p)) = ϕ(Right(p)),

2 if ϕ(Left(p))> ϕ(Right(p)).

By the hypotheses, there is some p2 ∈ [p1] such that [p2] is homogeneous for c; that
is, c ↾ [p2] is constant. We claim that c(p2) = 1.
Suppose towards a contradiction that c(p2) = 0. Take y,z ∈ [p2] satisfying 2a)

and 2b) of the Left-Right Axiom. Since c(y) = c(p2) = 0,

ϕ(Left(y))< ϕ(Right(y)).

Since ϕ is invariant under =∗, by 2a) and 2b) of the LRA, we have

ϕ(Right(z)) = ϕ(Left(y)) and ϕ(Right(y)) = ϕ(Left(z)).

Thus,

ϕ(Right(z))< ϕ(Left(z)),

so c(z) = 2, a contradiction to c ↾ [p2] being constant. A similar argument shows
that c(p2) 6= 2.
Since p2 does not decide the value of ḟ(ϕ(p̌2)), there are x

∗,y∗ ∈ X ∗[p2]
∗ and

u 6= v in M such that x∗  ḟ(ϕ(p̌2)) = ǔ and y
∗  ḟ(ϕ(p̌2)) = v̌. Since 〈X,≤

∗〉
is dense in 〈X ∗,≤∗〉, there are x′,y′ ∈ X with x′ ≤∗x∗ and y′ ≤∗ y∗; in particular,
x′,y′ ≤∗ p2. By 2) of the definition of coarsened poset, there are x,y ∈ X such that
x ≤ p2 and x =

∗ x′, and y ≤ p2 and y =
∗ y′. Thus, we have x,y ∈ [p2] such that

x  ḟ(ϕ(p̌2)) = ǔ and y  ḟ(ϕ(p̌2)) = v̌. Fix some z ∈ [p2] satisfying 3) of the LRA
with regard to x and y. By 3a) we have that Left(z)≤∗x, which implies that

ϕ(Left(z))≥ ϕ(x).

At the same time, ϕ(x)> ϕ(p2), so

ϕ(Left(z))> ϕ(p2).

Further,Right(z)≤∗ z ≤p2 implies thatϕ(Right(z))≥ϕ(p2).At the same time, 3b)
and 3c) of LRA imply that Right(z) is≤∗-compatible with both x and y, soRight(z)
does not determine the value of ḟ(ϕ(p2)); hence, ϕ(Right(z))≤ ϕ(p2). Thus,

ϕ(Right(z)) = ϕ(p2).
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It follows that

ϕ(Left(z))> ϕ(p2) = ϕ(Right(z)),

implying that c(z) = 2, contradicting that c has constant value 1 on [p2]. ⊣

At this point, let us explain one of the main ways to show that every subset of a
topological Ramsey space is Ramsey. Recall that a subset of a Polish space is Polish
if and only if it is Gä . We will need the following:

Definition 3.5. Let X be a Polish space and P = (X, ≤) be a poset with the
property that the subspace {(x,y) ∈X ×X : x ≤ y} of X ×X is also Polish. We say
that this space is projectively presented iff there is an injection ç :X → ùù such that
the following hold:

1) Im(ç) is projective.
2) {(u,v) ∈ Im(ç)× Im(ç) : ç–1(u)≤ ç–1(v)} is projective.
3) Given p ∈ X and a function f : [p]→ ùù that is continuous with respect to
the metric topology on X, then the relation S ⊆ ùù×ùù is Σ11, where

S = {(u,f(ç–1(u))) : u ∈ Im(ç) and ç–1(u)≤ p}.

4) For every p ∈ X ,

4a) for every continuousf : [p]→ ù2, the functionf ◦ç–1 : Im(ç)→ ù2 is Σ11;
4b) the following set is projective (uniformly in ç(p)): the set of codes c ∈ ùù
for Σ11 functions g :

ùù→ ù2 such that g ◦ç : [p]→ ù2 is continuous.

RecallingDefinition 2.4, we say that a triple 〈R, ≤,r〉 is an axiomatized topological
Ramsey space if it is closed as a subspace of ARN and satisfies axioms A.1–A.4. In
most topological Ramsey spaces, the setAR of all finite approximations ofmembers
of the space is countable. In the unlikely case that it is not, AxiomA.2 guarantees that
relativizing below anymemberp ∈R, the setAR ↾p is countable. Thus, without loss
of generality, we shall assume thatAR is countable. Assuming countable choice for
sets of reals, each axiomatized topological Ramsey space is projectively presented
with the following particularly simple form.

Lemma 3.6. Assuming countable choice for sets of reals, each axiomatized
topological Ramsey 〈R, ≤ ,r〉 is projectively presented. In fact, there is a bijection
ç :R→ùù which is continuous with respect to the metric topology onR so that the set
in 2) is analytic, and 3) and 4) are true since ç is a continuous bijection.

Proof. Either AR is countable, or else fix any p ∈R and relativize the proof to
R ↾ p. For a ∈ AR, let

E(a) = {b ∈ AR|a|+1 : r|a|(b) = a}. (9)

By countable choice for reals, there is a set of bijections

ça : E(a)→ù, a ∈ AR. (10)

By definition, AR0 = {r0(x) : x ∈ R}, which has ∅ as its only member. Define
ç :R→ùù as follows: Given p ∈R, define

ç(p) = 〈çrn(p)(rn+1(p)) : n < ù〉. (11)
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This function ç is continuous with respect to the metric topology on R, and it
is a bijection onto ùù; thus, 1) trivially holds. Furthermore, the set of all pairs
(p,q)∈R×Rwith p< q is a Polish subspace ofR×R, sinceR is a closed subspace
of ARN. Thus, the continuous image of this set by ç is analytic, showing that 2)
holds.
To show 3), let p ∈ R be fixed, and let f : [p]→ùù be a continuous function.

Then the relation S in 3) is certainly Σ11, since f ◦ ç–1 is a continuous function on
[p], which is a Polish space since it is a closed subset of R. Condition 4a) is trivial,
since ç–1 is a continuous bijection. Likewise, 4b) holds. ⊣

Definition 3.7. Σ21-reflection is the statement that given any Σ
2
1 formula ϕ, if ϕ

is witnessed by some A ⊆ R, then ϕ(A) is witnessed by some A ⊆ R that is Suslin
coSuslin.

ADR implies that every set of reals is Suslin coSuslin. It is also well known that
the axiom AD++V = L(P(R)) implies Σ21-reflection. See, for example, [37] and
Theorem 25 in [41]. We will use this shortly.
The following lemma appears in a modified form in [18] in Theorem 2.2, where it

is shown that assuming ZFC, every universally Baire set of reals is Ramsey using a
countable elementary substructure argument. Instead of a countable model, we use
an inner modelM such that ù1 is inaccessible inM. Given a cardinal κ and a tree
T ⊆ <ù(ù×κ), let

p[T ] := {x ∈ ùù : (∃y ∈ ùκ)(∀n ∈ ù)〈(x(0),y(0)),...,(x(n),y(n))〉 ∈ T}.

Lemma 3.8. Assume there is no injection of ù1 into R. Let A ⊆ [ù]ù . Let
e : [ù]ù → ùù be the function that maps each q ∈ [ù]ù to its increasing enumeration.
Assume A′ := {e(q) : q ∈ A} ⊆ ùù is Suslin, meaning there is a cardinal κ and a tree
T ⊆ <ù(ù×κ) such that A′ = p[T ]. Then A is Ramsey.

Proof. Let [u,q]⊆ [ù]ù be a basic openneighborhood in theEllentuck topology.
We will find a g ∈ [u,q] such that either [u,g]⊆A or [u,g]∩A= ∅. LetM =L[T,q]
be the inner model generated by T and q. It satisfies the Axiom of Choice (because
T and q can be coded by a set of ordinals), and so since there is no injection of ù1
into R, it must be that ù1 is inaccessible inM.
By the nature of tree representations, if N is any inner model which contains

M, then A′∩N = (p[T ])N . Now let P ∈M be the Mathias forcing ofM. We have
[u,q] ∈M . Let ġ ∈M be the canonical name for the generic real, so 1  ġ ∈ [ù]ù .
Consider the statement “ e(ġ) ∈ p[Ť ]”. Since P has the Prikry property, there is an
s ∈ [u,q] such that the condition [u,s] decides the statement to be either true or false.
Assume for now that

[u,s]  e(ġ) ∈ p[Ť ].

Now sinceù1 is inaccessible inM, fix a real g ∈ [ù]
ù that is P-generic overM such

that g ∈ [u,s]. But one property of Mathias forcing is “the Mathias property” (see
[26, 27]). In this case, it tells us that every h ∈ [u,g] (in V) is P-generic overM. And
so the condition [u,s] forces each h ∈ [u,g] (in V) to be such that e(h) ∈ p[T ] =A′,
so h ∈ A. Hence, [u,g]⊆ A.
The proof for the case that [u,s]  e(ġ) 6∈ p[Ť ] is similar. ⊣
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If there exists a supercompact cardinal, then inL(R) every subset of a topological
Ramsey space is Ramsey. This can be shown by considering a topological Ramsey
space R ∈ L(R) and a set S ⊆ R in L(R). Fix a continuous bijection ç :R→ ùù
in L(R). We see that f(S) is 2ù-universally Baire in V (because large cardinals
imply every subset of ùù in L(R) is 2ù-universally Baire). Next f–1(f(S)) = S has
the property of Baire in R. Then we apply the Abstract Ellentuck Theorem 2.3.
In the next theorem, we show that this follows directly from either ADR or else
AD++V = L(P(R)).

Lemma 3.9. Assume either 1) ADR or 2) AD
++V = L(P(R)). Let 〈R, ≤,r〉 be

an axiomatized topological Ramsey space. Then every S ⊆R is Ramsey.

Proof. First, suppose there is a counterexample (〈R, ≤ ,r〉,S). Since R is
axiomatized, there is a continuous bijection ç : R → ùù as in Lemma 3.6. Then
there must be a counterexample of the form (〈R, ≤ ,r〉,S) such that there is a
bijection ç :R→ ùù such that

• {(x,y) ∈ ùù×ùù : ç–1(x) = ç–1(y)} is Suslin,
• {(x,y) ∈ ùù×ùù : ç–1(x)≤ ç–1(y)} is Suslin,
• the set coding the r function is Suslin, and
• {x : ç–1(x) ∈ S} is Suslin.

Here is why: if we have 1), then every set of reals is Suslin. If we have 2), then by Σ21
reflection, if there were (a set of reals coding) a counterexample, there would be one
that is Suslin coSuslin. We will now show that if Z ⊆ ùù is a set of reals coding a
(〈R, ≤,r〉,S), then in fact S ⊆R is Ramsey.
We now argue just as in the previous lemma. Fix [u,q]. We will find a g ∈ [u,q]

such that either [u,g]⊆ S or [u,g]∩S = ∅. Let κ be a cardinal and T ⊆ <ù(ù×κ)
be a tree such that Z = p[T ]. LetM be the inner model L[T,g]. Again T and g can
be coded as sets of ordinals. Both 1) and 2) imply there is no injection of ù1 into R,
so ù1 is inaccessible inM. Note that in any inner model N containingM, T can be
used to talk about R∩N and S ∩N . For example, given any s ∈ R∩N , N knows
whether or not s ∈ S.
Let P be the Mathias forcing associated with R inM. Conditions are nonempty

basic open sets [a,q] where a ∈ AR and q ∈ R. The ordering is [a,q] ≤ [b,s] iff
[a,q] ⊆ [b,s]. Let ġ be the name for the generic object, so 1  ġ ∈ R. The forcing
P has the Prikry property (see Theorem 6.7 in [8]). So fix s ∈ [a,q] such that either
[a,s]  ġ ∈ S or [a,s]  ġ 6∈ S. Without loss of generality, assume the former.
Since ù1 is inaccessible in M, fix a g ∈ R that is P-generic over M such that

g ∈ [a,s]. But P also has the Mathias property (see Theorem 6.24 in [8]). So every
h ∈ [a,g] (in V) is P-generic overM. So [a,s] forces each h ∈ [a,g] (in V) to be such
that h ∈ S. Hence [a,g]⊆ S. ⊣

In the following theorem, recall the definition at the end of Section 2.2 of the
ultrafilter UR forced by 〈R,≤

∗〉.

Theorem 3.10. Assume that either 1) ADR holds in V or 2) AD
++V =L(P(R)).

Let 〈R, ≤ ,r〉 be an axiomatized topological Ramsey space and ≤∗ be a ó-closed
coarsening ofR. Suppose there is some extended coarsening 〈R,R∗, ≤,≤∗〉 satisfying
the Left-Right Axiom, and let UR be the ultrafilter forced by 〈R,≤

∗〉 over V. Then
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V and V [UR] have the same sets of ordinals; moreover, every sequence in V [UR] of
elements of V lies in V.

Proof. By the previous lemma, all subsets ofR are Ramsey. Hence it holds that
for any x ∈R, k ≥ 1 and coloring c : [x]→k, there is some y ∈ [x] such that c ↾ [y]
is constant. The rest follows from Theorem 1.3. ⊣

The first half of Theorem 1.5 follows from Theorem 3.10.

§4. Preservation of strong partition cardinals. In [21], Henle, Mathias, and
Woodin proved that P(ù)/fin preserves strong partition cardinals over a model
of ZF + EP + LU (Theorem 1.2). In this section, we extend their result to a wide
array of forcings, providing conditions which guarantee that a forcing preserves
uncountable strong partition cardinals.
Given a coarsened poset 〈X, ≤, ≤∗〉, a function f from X to some other set Y is

called invariant if and only if whenever p,q ∈ X satisfy p =∗ q, then f(p) = f(q).
Similarly, for any subset S⊆X , a function f : S → Y is invariant if and only if
whenever p,q ∈ S and p =∗ q, then f(p) = f(q). We call a set S ⊆ X invariant if
and only if its characteristic function (from X to 2) is invariant. Given a function
f whose domain is a subset of X (a partial function), we call f invariant iff for
p,q ∈ Dom(f) with p =∗ q, then f(p) = f(q). We call a function f : X → Y
invariant below p ∈ X iff f ↾ [p] is an invariant partial function. A set S ⊆ X is
invariant below p iff (∀q1,q2 ≤ p) if q1 =

∗ q2, then q1 ∈ S⇔ q2 ∈ S.

Definition 4.1. Given S ⊆ X and p ∈ X , define

S+p = {q ≤ p : [q]⊆ S},

S–p = {q ≤ p : [q]∩S = ∅}. (12)

We call S Ramsey below p, or simply R below p, iff S+p ∪S–p is ≤-dense below p. We
say that S is R+ below p iff S+p is ≤-dense below p, and S is R

– below p iff S–p is
≤-dense below p.
We shall say that S is Ramsey iff S is Ramsey below p for each p ∈ X . Likewise

for R+ and R–.

Remark 4.2. Note that the definition of Ramsey in Definition 4.1 is weaker than
that of Todorcevic in Definition 2.2. As no ambiguity will arise, we use this term
rather than defining yet more terminology.

Note that if S is invariant and [q] ⊆ S, then [q]∗ ⊆ S. Likewise, if S is invariant
and [q]∩S = ∅, then [q]∗∩S = ∅.
The following definition of LU(P) extends the Axiom LU in [21] for ([ù]ù,⊆∗) to

all partial orderings P.

Definition 4.3. Given a poset P= 〈X, ≤〉, LU(P) is the statement that given any
relation R ⊆ X ×ù2 and p ∈ X such that

(∀x ≤ p)(∃y ∈ ù2)R(x,y),
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there is some q ≤ p and some function f : [q]→ ù2 such that

(∀r ≤ q)R(r,f(r)).

Observation 4.4. Let P= 〈X, ≤〉 be a poset for which there is an injection ç :X →
ùù. Then the Uniformization Axiom implies LU(P).

Proof. Fix p ∈ X and a relation R ⊆ X × ù2 such that (∀x ≤ p)(∃y ∈
ù2)R(x,y). Consider the relation R̃ ⊆ ùù × ù2 defined by R̃(x̃,y) iff either
x̃ 6∈ Im(ç), orR(ç–1(x̃),y). By the Uniformization Axiom, there is a uniformization
f̃ : ùù→ ù2 of R̃. This induces a uniformization function f = f̃ ◦ç for R. That is,

(∀x ≤ p)R(x,f(x)).

Thus, LU(P) holds, as witnessed by f ↾ [p]. ⊣

Definition 4.5. Let 〈R, ≤,r〉 be a topological Ramsey space and let P= 〈R, ≤〉.
Then LCU(P) is the statement LU(P), where additionally f is required to be
continuous with respect to the metric topology on R. LCU+(P) is the same
statement as LCU(P) but replacing ù2 with ùù.

Certainly LCU+(P) implies LCU(P). The other direction holds as well:

Proposition 4.6. LCU(P) implies LCU+(P).

Proof. Recall that there is an injection ϕ : ùù→ ù2 such that ϕ–1 : Im(ϕ)→ ùù
is continuous. For example, the function ϕ that takes a sequence 〈a0,a1,...〉 ∈

ùù to
the sequence

a0
︷︸︸︷

0...01

a1
︷︸︸︷

0...01....

is such a function.Nowconsider any R̃⊆X×ùù andp ∈X such that (∀x≤p)(∃y ∈
ùù)R̃(x,y). Define R ⊆ X × ù2 by (x,y) ∈ R iff y ∈ Im(ϕ) and (x,ϕ–1(y)) ∈ R̃.
ApplyingLCU(X ) toR, there is some q≤p and some continuousf : [q]→ ù2which
uniformizes R below q. But then ϕ–1 ◦f uniformizes R̃ below q and is continuous.⊣

The following proposition was proved by Mathias [28] for relations of the form
R ⊆ [ù]ù × ùù, assuming ù→ (ù)ù2 . Todorcevic extended this to relations of the
form R ⊆ [ù]ù×X , where R is coanalytic and X is an arbitrary Polish space. This
is stated in [39]; a proof appears as Theorem 7 in [9], and we follow the structure of
that proof. First we use the hypotheses to find a uniformization f, and then perform
a fusion argument to find a set [q] on which f is continuous.

Proposition 4.7. Let 〈R, ≤,r〉 be a closed axiomatized topological Ramsey space,
and let P be the poset 〈R, ≤〉. Also assume that either 1) ADR holds or 2) AD

++V =
L(P(R)) holds. Then LCU(P) holds.

Proof. Claim. Suppose R ⊆ R× ù2 is a relation and f : [p∗] → ù2 is a
uniformization for R. Then there is a q ≤ p∗ for which f ↾ [q] is continuous.
First, let p0 ≤ p

∗ be such that each q ≤ p0 has the same value for f(q)(0). Such
a p0 exists because, by Lemma 3.9, all subsets of R are Ramsey, including the set
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{q ≤ p : f(q)(0) = 0}. Let s1 = r1(p0). The proof proceeds by induction, recalling
the definition of depth in Section 2 just before Axiom A.3.
Let n ≥ 0 be fixed and suppose that we have chosen pm for all m ≤ n and, letting

sm+1 = rm+1(pm), the following hold for each 0≤m ≤ n – 1:

1. pm+1 ∈ [sm+1,pm]; and
2. For each t ≤fin sm+1 with depthpm (t) = depthpm (sm+1), there is a sequence

gt :m+1→{0,1} such that for each q ∈ [t,pm+1] and each k ≤m, f(q)(k) =
gt(k).

Note that this induction hypothesis is satisfied vacuously for n = 0, and that for each
m ≤ n, depthpm (sm+1) =m+1.

Given sn+1 = rn+1(pn), letT denote the set of all t ≤fin sn+1 for which depthpn (t) =

depthpn (sn+1). T is finite, by Axiom A.2 (1). Let ◁ be the ordering of the members
of T induced by ç.
Let t be the◁–least member of T for which pt has not yet been chosen. If t is not

◁–minimum in T, then let u denote the ◁–predecessor of t in T. If t is ◁–minimal
in T, then let pu denote pn. For each sequence g : n+1→ 2, define

X tg = {q ∈ [t,pu] : ∀k ≤ n (f(q)(k) = g(k))}. (13)

These sets X tg , g ∈
n+12, form a partition of the basic open set [t,pu] into finitely

many pieces. Since each piece of the partition is Ramsey, there are qt ∈ [t,pu] and
gt ∈

n+12 for which [t,qt ]⊆X tgt . By Axiom A.3 (2), there is some pt ∈ [sn+1,pu] such
that [t,pt ] ⊆ [t,qt ]. At the end of this induction on (T,◁), let pn+1 = pt∗ , where t

∗

denotes the ◁–maximum member of T. Note that for each t ∈ T , pn+1 ≤ pt , so in
particular,

[t,pn+1]⊆ [t,pt ]⊆ [t,qt ]. (14)

Thus, for each q ∈ [t,pn+1] and k ≤ n, f(q)(k) = gt(k). Hence, (1) and (2) hold for
pn+1.
Let q =

⋃

n≥1 sn. Since each sn+1 ❂ sn andR is a closed topological Ramsey space,
it follows that q is a member of R. We claim that f is continuous on [q]. Suppose
q′ ≤ q and n < ù. Then f(q′)(n) is determined by rk(q

′), where k is minimal such
that depthq(rk(q

′)) > n. To see this, let g : n+1→ 2 be given, and let Ng denote

{h ∈ ù2 : h ↾ (n+1) = g}, the basic open set in ù2 determined by g. Then

f–1(Ng)∩ [q] = {q′ ≤ q : f(q) ↾ (n+1) = g}

=
⋃

{[t,q] : t ∈ AR|q, depthq(t)> n, and gt ↾ (n+1) = g},

(15)

which is a union of basic open set in the metric topology onR restricted to [q]. This
concludes the proof of the Claim.
Supposing ADR holds, let p

∗ in R be given, and let R ⊆ R× ù2 be a relation
with the property that for each x ≤ p∗ there exists y ∈ ù2 such that R(x,y). By the
argument in Observation 4.4, there is a uniformization f : [p∗]→ ù2 for R. Then
the Claim implies that there is some q ≤ p∗ such that f ↾ [q] is continuous. Thus,
LCU(P) holds.
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Now assume AD++V = L(P(R)). Let ç :R→ ùù be the continuous bijection
defined in Lemma 3.6. Given any relation R̃⊆ ùù×ù2, let ϕ(R̃) be the conjunction
of the following formulas:

• (∀x ∈ ùù)(∃y ∈ ù2)R̃(x,y);
• (∀p ∈R)(∀ continuous f : [p]→ ù2)(∃q ≤ p)¬R̃(ç(q),f(q)).

By part 4) of Definition 3.5, quantifying over continuous functions is equivalent to
quantifying over reals. By Lemma 3.6, ∃R̃ϕ(R̃) is Σ21. For any relation R̃⊆ ùù×ù2,

let N (R̃)⊆R×ù2 be the relation

N (R̃)(x,y)⇔ R̃(ç(x),y).

Note that for any R̃,ϕ(R̃) holds if and only ifN (R̃) witnesses the failure of LCU(P).
Suppose toward a contradiction that there is some p∗ ∈ R and some relation

R′ ⊆R×ù2 which witnesses the failure of LCU(P) below p∗. Define R̃′ by

R̃′(x̃,y)⇔R′(ç–1(x̃),y).

Note that R′ =N (R̃′), so ϕ(R̃′) holds. By Σ21-reflection, there is a Suslin, co-Suslin

set R̃ such that ϕ(R̃). Since R̃ is Suslin, co-Suslin it has a uniformization. Now
R :=N (R̃) has a uniformization on [p∗] as well.
By the Claim, there is some q ≤ p∗ for which f ↾ [q] is continuous, contradicting

our assumption thatR′ witnesses the failure of LCU(P). Therefore, LCU(P) holds.⊣

This next definition differs from [21] in that we require the sets to be invariant.

Definition 4.8. Given a coarsened poset P= 〈X, ≤,≤∗〉, EP(P) is the statement
that given any p ∈ X and well-ordered sequence 〈Cα ⊆ X : α < κ〉 of sets that are
invariant and R+ below p, the intersection of the sequence is also invariant and R+

below p.

Definition 4.9. We say that 〈R, ≤, ≤∗ ,r〉 is a coarsened topological Ramsey space
if 〈R, ≤,r〉 is an axiomatized topological Ramsey space and the following hold:

1) ≤∗ is a ó-closed partial order;
2) 〈R, ≤, ≤∗ ,r〉 is a coarsened partial order in the sense of Definition 3.1;
3) Whenever p,q ∈ R and there is an a ∈ AR satisfying ∅ 6= [a,q]⊆[a,p], then
q ≤∗ p.

Note that if 〈R, ≤, ≤∗,r〉 is a coarsened topological Ramsey space, then whenever
S⊆R is invariant, ([p]⊆S→[p]∗⊆S).

Proposition 4.10. Suppose 〈R, ≤, ≤∗,r〉 is a coarsened topological Ramsey space.
Let 〈Cn ⊆R : n < ù〉 be a sequence of invariantR+ sets. Then

⋂

nCn is invariantR
+.

Proof. For each n <ù, letDn := {q ∈R : [q]⊆Cn}. Note that eachDn is dense
in 〈R,≤〉 (since Cn is R

+) and is open in the Ellentuck topology. Furthermore,
each Dn is R

+ and invariant. Fix p ∈ R. It suffices to find some q ≤ p such that
[q]⊆

⋂

nCn.
Since D0 is dense, take some p0 ≤ p in D0. Suppose now that n < ù and pn

has been chosen. Since Dn+1 is open in the Ellentuck topology, by Theorem 2.3
there is some pn+1 ∈ [rn(pn),pn] such that either [rn(pn),pn+1]⊆Dn+1 or else
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[rn(pn),pn+1]∩Dn+1= ∅. The secondoption cannot happen sinceDn+1 isR
+.Hence,

[rn(pn),pn+1]⊆Dn+1; and in particular, pn+1 ∈ [rn(pn),pn]∩Dn+1.
At the end of this process, we have conditions pn such that r0(p0) ❁ r1(p1) ❁

r2(p2)❁ ··· . Since the space R is closed, there is a q ∈ R such that for each n < ù,
rn(q) = rn(pn). Then for each n, [rn(q),q]⊆[rn(q),pn]; so by (3) of Definition 4.9,
we have q ≤∗ pn. Since eachDn is closed downwards in 〈R,≤〉, each Cn is invariant,
and 〈R, ≤,≤∗〉 is a coarsened poset, it follows that [q]∗⊆

⋂

n<ùCn. Hence
⋂

n<ùCn
is R+; and the intersection of invariant sets is again invariant. ⊣

Corollary 4.11. Let 〈R, ≤, ≤∗ ,r〉 be a coarsened closed axiomatized topological
Ramsey space. Let 〈Cn ⊆R : n < ù〉 be a sequence of invariant R– sets. Then

⋃

nCn
is invariant R–.

Proof. Apply Proposition 4.10 to the complements of the Cn’s. ⊣

The proof of the next proposition will use the Kunen–Martin Theorem, which
states that given an infinite cardinal κ and a wellfounded relation ≺ on ùù which is
κ-Souslin as a subset of ùù×ùù, then ñ(≺) < κ+. (See Theorem 25.43 on p. 503
in [23].)

Proposition 4.12. Let 〈R, ≤ , ≤∗ ,r〉 be a coarsened topological Ramsey space.
Assume LCU(〈R, ≤〉), countable choice for sets of reals, and every subset of R is
Ramsey. Then EP (P) holds.

Proof. Towards a contradiction, assume there is a sequence of length è which
witnesses the failure of EP (P), but EP (P) holds for all sequences strictly shorter
than è. By Proposition 4.10, it must be that è is an uncountable cardinal, and by
minimality of è for the failure of EP (P), è must be regular. Fixp ∈X and a sequence
〈Cα : α< è〉 of invariant subsets ofR that are R

+ below p, such that
⋂

α<èCα is not
R+ below p.
For each α < è, let

Dα := {p ∈ X : (∀â < α) [p]⊆ Câ}.

Each Dα is downward ≤-closed and is a subset of
⋂

â<αCâ . Note that each Dα is

invariant, because if [p] ⊆ Câ , then [p]
∗ ⊆ Câ (by the invariance of Câ and since

≤∗ coarsens ≤) and so any p′ =∗ p satisfies [p′]⊆ Câ . Next, we claim that each Dα
is R+ below p. This is immediate from the hypothesis that

⋂

â<αCâ is R
+ below p.

The sequence 〈Dα : α < è〉 is decreasing. Let Dè =
⋂

α<èDα .
Since

⋂

α<èCα is not R
+ below p, but is Ramsey (since we are assuming every

subset ofR is Ramsey), we may fix a p′ ≤ p such that
⋂

α<èCα and therefore Dè is
empty below p′. Now define the function ÷ : [p′]→ è as follows:

÷(q) = min{α < è : q 6∈Dα}.

Let the continuous bijection ç : R → ùù come from Proposition 3.6. Let W ⊆
R×ùù be the relation

W (x,y′) ⇐⇒ ç–1(y′)≤ x and ÷(ç–1(y′))> ÷(x).
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SinceLCU(〈R, ≤〉) (and thereforeLCU+(〈R,≤〉) holds, fix p̄≤p′ anda continuous
f : [p̄]→ ùù such that

(∀r ≤ p̄)W (r,f(r)).

Now define S ⊆ ùù×ùù by

S(x′,y′) ⇐⇒ ç–1(x′)≤ p̄ and f(ç–1(x′)) = y′.

Note that

S(x′,y′) =⇒ ç–1(x′)≥ ç–1(y′) and ÷(ç–1(x′))< ÷(ç–1(y′)).

So, S is well-founded, meaning there is no sequence 〈x′0,x
′
1,...〉 of elements of

ùù
such that

···∧S(x′2,x
′
1)∧S(x

′
1,x

′
0).

Let D = {x′ ∈ ùù : ç–1(x′) ≤ p̄}. Note that for each x′ ∈ D, (∃y′ ∈ D)S(x′,y′).
Since S is a well-founded relation, we may assign an S-rank ñ′(x′) to each x′ ∈D.
Specifically, for y′ ∈D,

ñ′(y′) := sup{ñ(x′)+1 : x′ ∈D and S(x′,y′)}.

For x′ ∈ ùù not in D, define ñ′(x′) :=– 1. Since f is continuous, by part 3) of the
Definition 3.5 of being projectively presented, S is a Σ11 relation. Since S is Σ

1
1, by

the Kunen–Martin theorem, fix an ordinal ã < ù1 such that

(∀x′ ∈D)ñ′(x′)< ã.

For each 0≤ α < ã, let

E ′
α := {x′ ∈ ùù : ñ′(x) = α}.

LetEα := {ç–1(x′) : x′ ∈E ′
α}. Note that theEα ’s form a partition of [p̄], because the

E ′
α ’s form a partition of D. Here is the second place where we use the assumption
that every subset of R is Ramsey. We will show that each Eα is R

–. Fix 0 ≤ α < ã.
The set Eα is Ramsey, so to show it is R

–, it suffices to show

(∀q ∈ Eα)(∃r ≤ q)q
′ 6∈ Eα .

This is immediate, because given q ∈ Eα , there is an r ≤ q such that S(ç(q),ç(r)).
Thus, by definition of ñ′,

α = ñ′(ç(q))< ñ′(ç(r)).

Hence, r 6∈ Eα .
We now have that the Eα ’s form a partition of [p̄], and that they are each R

–. By
Corollary 4.11, the countable union of all the Eα ’s is R

–. Hence, [p̄] is R–, which is
impossible. ⊣

Proposition 4.13. Let P= 〈X, ≤,≤∗〉 be a coarsened poset such that EP(P) holds.
Fix p ∈ X . Let 〈Cα ⊆ X : α < κ〉 be a sequence of subsets of X that are Ramsey and
invariant below p. Then there is some q ≤ p such that for each α< κ, either [q]∗ ⊆Cα
or [q]∗∩Cα = ∅.
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Proof. Fix α < κ. Let Dα ⊆ X be the set

Dα = {q ≤ p : [q]⊆ Cα or [q]∩Cα = ∅}.

Because Cα is Ramsey, the set Dα is R
+. Note also that because Cα is invariant, we

have

Dα = {q ≤ p : [q]∗ ⊆ Cα or [q]
∗∩Cα = ∅}.

This also establishes that Dα is invariant.
All we need is a q that is in the intersection of the Dα ’s. This follows from EP(P),

because each Dα is invariant and R
+. ⊣

Proposition 4.14. Let P = 〈X, ≤ ,≤∗〉 be a coarsened poset and assume EP(P).
Assume every S ⊆X is Ramsey. Let κ be a cardinal, p ∈X , and Φ : [p]→ [κ]κ be an
invariant function. Then there is a p′ ≤ p such that Φ ↾ [p′] is constant.

Proof. For each α < κ, put Cα := {q ≤ p : α ∈Φ(q)}. Each Cα is Ramsey and
invariant below p. By Proposition 4.13, fix a q ≤ p such that for each α < κ, either
[q]∗ ⊆ Cα or [q]

∗∩Cα = ∅. It suffices to show that for each r ≤ q that (∀α < κ)α ∈
Φ(q)⇔ α ∈Φ(r). Fix such α and r. We have

α ∈Φ(q)⇒ q ∈ Cα ⇒ [q]
∗ ⊆ Cα ⇒ r ∈ Cα ⇒ α ∈Φ(r)

and

α 6∈Φ(q)⇒ q 6∈ Cα ⇒ [q]
∗∩Cα = ∅⇒ r 6∈ Cα ⇒ α 6∈Φ(r). ⊣

Proposition 4.15. Suppose κ→ (κ)ëì, where κ,ë,ì are nonzero ordinals such that
ë=ùë≤ κ and 2≤ ì< κ. Let P= 〈X, ≤,≤∗〉 be a coarsened poset with the property
that each =∗ equivalence class is countable, and assume LU(P). Assume there is
a surjection ø from ù2 onto [κ]κ. Let 〈ðp : p ∈ X 〉 be a collection of functions
ðp : [κ]

ë → ì. Then below any p ∈ X there exists p∗ ≤ p and an invariant function
Φ : [p∗]→ [κ]κ such that (∀q ∈ [p∗])Φ(q) is homogeneous for ðq .

Proof. Given a set of ordinals x in ordertype ë, let Ω(x) be the set of all limits
of the ù-blocks of x. That is, if {xα : α< ë} is the increasing enumeration of x, then

Ω(x) = {sup
n∈ù
xùâ+n : â < ë}.

Note that since ùë= ë, Ω(x) is in [κ]ë whenever x is.
For each q ≤ p define ñq : [κ]

ë→ ì by

ñq(y) = ðq(Ω(y)).

Let R ⊆ X ×ù2 be the relation

R(q,r)⇐⇒ ø(r) is homogeneous for ñq .

By LU(P), we may fix a p∗ ≤ p and a function f : [p∗]→ ù2 such that

(∀q ≤ p∗)R(q,f(q)).
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Thus,

(∀q ∈Dom(f))ø(f(q)) is homogeneous for ñq .

Write B(q) for ø(f(q)).
For each q ∈Dom(f), define C (q) ∈ [κ]κ as follows: C (q)(0) is the least ordinal

greater than B(q′)(0) for all q′ such that q′ =∗ q. Let C (q)(í) be the least ordinal
î such that letting ç = sup{C (q)(í ′) : í ′ < í}, the interval [ç,î) contains at least
one element of each B(q′) for each q′ =∗ q. It is in this definition of C (q) that we
use that each =∗ equivalence class is countable. Without this assumption, we might
have C (q)(0) = κ. Note that if q′ =∗ q then C (q′) = C (q). Hence, C is invariant.
Now for each q ∈ Dom(f), define Φ(q) := Ω(C (q)). We have that Φ is

invariant. We claim that Φ(q) is homogeneous for ðq . Consider any x ∈ [Φ(q)]ë.
By construction of C (q), there is some y ∈ [B(q)]ë such that x = Ω(y). Now
ðq(x) = ðq(Ω(y)) = ñq(y). B(q) is homogeneous for ñq(y), so each such value of
ñq(y) is the same. Hence, each x ∈ [Φ(q)]ë has the same ðq(x) value, so Φ(q) is
homogeneous for ðq . ⊣

Remark 4.16. It is not known if the previous proposition holds if the =∗

equivalence classes are uncountable.

Theorem 1.4. Suppose κ → (κ)ëì, where κ,ë,ì are nonzero ordinals such that
ë = ùë ≤ κ and 2 ≤ ì < κ. Suppose also that there is a surjection from ù2 to [κ]κ

(which happens if we assume AD and κ<Θ). Let P= 〈X, ≤,≤∗〉 be a coarsened poset
such that EP(P) and each =∗-equivalence class is countable. Assume every S ⊆ X is
Ramsey. If LU(P) holds and 〈X, ≤〉 adds no new sets of ordinals, then 〈X, ≤〉 forces
κ→ (κ)ëì.

Proof. The relation  corresponds to the forcing 〈X, ≤〉. Note that the

assumption κ→ (κ)ëì implies that κ→ (κ)
ë
ì+1 also holds. Supposep0  ḟ : [κ̌]

ë̌→ ì̌.

We will find a p2 ≤ p0 in X and some A ∈ [κ]κ such that p2  ḟ is constant on [Ǎ]
ë̌.

For each p ≤ p0, define a partition ðp : [κ]
ë→ ì+1 by

ðp(A) =

{

æ if pḟ(Ǎ) = æ̌,

ì if there is no such æ.

Using Proposition 4.15 and assuming LU(P), there is a p1 ≤ p0 and an invariant
function Φ : [p1]→ [κ]

κ such that for each p ≤ p1, Φ(p) is homogeneous for ðp. By
Proposition 4.14, there is some p2 ≤ p1 with Φ constant on [p2]. Set A=Φ(p2). We
claim that

p2Ǎ is homogeneous for ḟ.

If not, there are D,E ∈ [A]ë, q ≤ p2 and α < â < ì such that

qḟ(Ď) = α̌ and ḟ(Ě) = â̌ .

So, ðq(D) = α and ðq(E) = â . Thus A is not homogeneous for ðq , contradicting
that A=Φ(q), which is homogeneous for ðq . ⊣

Theorem 4.17. Assume either ADR or AD
++V = L(P(R)). Let P = 〈R, ≤ ,

≤∗, r〉 be a coarsened topological Ramsey space, where the =∗-equivalences classes
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are countable. Then forcing with 〈R,≤〉 preserves κ→ (κ)ëì, whenever κ→ (κ)
ë
ì holds

in the ground model, where κ,ë,ì are nonzero ordinals such that ë = ùë ≤ κ and
2≤ ì < κ, and there is a surjection from ù2 to [κ]κ.

Proof. Assuming AD, countable choice for reals holds, so there is a continuous
bijection between R and ùù, by Proposition 3.6. Lemma 3.9 gives us that every
subset ofR is Ramsey. Then LCU (P) holds by Proposition 4.7, so Proposition 4.12
implies EP (P) holds. Theorem 1.4 yields the result. ⊣

The second part of Theorem 1.5 follows from Theorem 4.17.
In Section 5 we shall show that three families of topological Ramsey spaces

forcing ultrafilters with weak partition properties satisfy the conditions of
Theorem 4.17.

§5. Ultrafilters with barren extensions preserving strong partition cardinals.

In this and the next section, we provide examples of many forcings producing
barren extensions with ultrafilters satisfying different partition relations. Recall
Definition 2.6: Given an ultrafilter U on a countable base set S, for each n ≥ 2,
t(U,n) is the least number t, if it exists, such that for any ℓ ≥ 2 and any coloring
c : [S]n→ℓ, there is a memberU ∈ U such that c ↾ [U ]n takes no more than t colors.
An ultrafilter U is Ramsey if and only if t(U,n) = 1 for all n.
In this section, we show that three classes of topological Ramsey spaces forcing

non-Ramsey ultrafilters have generic extensions with no new sets of ordinals
and preserve strong partition cardinals. These are the class of Milliken–Taylor
ultrafilters investigated by Mildenberger in [30], a hierarchy of ultrafilters of
Laflamme in [25] extending weakly Ramsey ultrafilters, and a class of ultrafilters of
Dobrinen,Mijares and Trujillo in [14] which encompass k-arrow, non-(k+1)-arrow
ultrafilters of Baumgartner and Taylor in [2] as well as n-square forcing of Blass
in [3].

5.1. Milliken–Taylor ultrafilters. The first class of coarsened posets that we look
at are topological Ramsey spaces of infinite block sequences of vectors. The reader
is referred to Section 5.2 in [39] for a thorough presentation of these spaces. The
members of FIN[∞]k are infinite sequences x = 〈xi : i < ù〉 such that for each i < ù,
the following hold:

1) xi is a function fromù into k+1, and the support of xi , defined by supp(xi ) =
{n ∈ ù : xi (n) 6= 0}, is finite;

2) There is some n ∈ supp(xi ) such that xi (n) = k;
3) max(supp(xi ))<min(supp(xi+1)).

The nth approximation to x is rn(x) = 〈xi : i < n〉. For x,y ∈FIN
[∞]
k , y ≤ x iff y is

obtainable from x using the tetris operation. The definition of the tetris operation is
not needed for the proof in this section, so we refer the interested reader to [39]. For
x ∈ FIN[∞]k and n < ù, let x/n denote the tail 〈xn,xn+1,xn+2, ...〉. The coarsening

≤∗ on FIN[∞]k is defined as follows: y ≤∗x iff there is some n such that y/n ≤

x. This quasi-order ≤∗ is ó-closed and 〈FIN[∞]k ,≤〉 and 〈FIN[∞]k ,≤
∗〉 are forcing

equivalent.
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〈FIN[∞]k ,≤
∗〉 forces ultrafilters, referred to as Milliken–Taylor ultrafilters in [30].

For k = 1, such ultrafilters are called stable ordered union ultrafilters and were
first investigated by Blass in [4]. In [30], Mildenberger showed that forcing with
〈FIN[∞]k ,≤

∗〉 produces an ultrafilter, denoted Uk , with at least k+1-near coherence
classes of ultrafilters Rudin–Keisler below it.

Lemma 5.1. The coarsened topological Ramsey space 〈FIN[∞]k , ≤, ≤
∗, r〉 satisfies

the Left-Right Axiom. Furthermore, each =∗-class is countable.

Proof. In order to show that the Left-Right Axiom is satisfied by the coarsened
topological Ramsey space 〈FIN[∞]k , ≤ , ≤

∗, r〉, if suffices to know the following

simple fact: Given any x ∈ FIN[∞]k , both sequences 〈x2i : i < 〉 and 〈x2i+1 : i < ù〉 are

members of FIN[∞]k . Define the functions Left and Right onX ∈FIN[∞]k as follows:

Givenx = 〈xi : i <ù〉 ∈X ∈FIN[∞]k , let Left(x)= 〈x2i : i < 〉 andRight(x)= 〈x2i+1 :
i < ù〉. Then in the Left-Right Axiom, 1) is satisfied, since in fact, Left(x)≤ x and

Right(x) ≤ x. To show that 2) holds, given x ∈ FIN[∞]k , let y = x and z = 〈xi :
i ≥ 1〉. Then both y,z ≤ x, Left(y) =∗ Right(z) since Left(y)/1 = Right(z), and
Right(y) = Left(z).
For 3), given p ∈ FIN[∞]k and x,y ≤ p, define z as follows: Take zi = xi for i < 3.

Then let z3 = yj for j minimal such that min(supp(yj)) > max(supp(x2)). Given
zi for i ≡ 0,1,3 (mod 4), let zi+1 = xj for j minimal such that min(supp(xj)) >
max(supp(zi)). Given zi for i ≡ 2 (mod 4), let zi+1 = yj for j minimal such that

min(supp(yj))>max(supp(zi)). Then this z = 〈zi : i < ù〉 is in FIN
[∞]
k , z ≤ a, and

z satisfies 3) for x and y. Thus, the Left-Right Axiom holds.
By the definition of ≤∗, x =∗ y if and only if there are m,n such that x/m = y/n.

Thus, each =∗-equivalence class is countable. ⊣

Since 〈FIN[∞]k , ≤ , ≤
∗, r〉 is a coarsened closed axiomatized topological Ramsey

space, it produces a barren extension.

Corollary 5.2. Assume M is a model of ZF + either 1) ADR or 2) AD
++V =

L(P(R)). Then forcing with 〈FIN[∞]k ,≤
∗〉 over M adds an ultrafilter Uk such that

M [Uk] has the same sets of ordinals as M. Furthermore, for all nonzero ordinals κ,ë,ì
such that ë=ùë≤ κ and 2≤ ì≤ κ<Θ, if κ→(κ)ëì inM, then it also holds inM [Uk].

Proof. This follows from Theorems 3.10 and 4.17 and Lemma 5.1. ⊣

5.2. Extended coarsened posets with independent sequencing. We define a general
property called Independent Sequencing for partial orders and then for extended
coarsened partial orders. We show that when an EC poset has Independent
Sequencing, then the Left-Right Axiom is satisfied and hence, Theorem 1.3 holds.
If further the =∗-equivalence classes are countable, then Theorem 1.4 holds. In the
following subsections, we show that the classes of topological Ramsey spaces in
the papers [10, 11, 14, 15, 16] have extended coarsenings which have Independent
Sequencing.

Definition 5.3 (Independent Sequencing for posets). A poset P = 〈X,≤〉 has
Independent Sequencing (IS) if the following hold:
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1) For each x ∈X , x can be written as a sequence 〈x(n) : n < ù〉. Each x(n) is a
countable set, possibly with some structure on it.

2) Given x,y ∈ X , y ≤ x iff there is a strictly increasing sequence (in)n<ù such
that each y(n)⊆x(in).

3) Given x,y ∈ X and a partition of ù into three pieces, P0,P1,P2, where at
least one of P0 and P1 is infinite, there is a z ∈ X such that for each n ∈ P0,
z(n)⊆x(i) for some i, and for each n ∈ P1, z(n)⊆y(i) for some i. Moreover,
if x,y ≤ p ∈ X , then there is such a z ≤ p.

This last property 3) is why we call the sequencing “independent”.

Definition 5.4 (Independent Sequencing for EC posets). An extended coarsened
posetP∗= 〈X,X ∗, ≤,≤∗〉 has Independent Sequencing (IS) if 〈X,≤〉 has IS for posets
and additionally,

4) X ∗ is the collection of all subsequences of members of X. Thus, a = 〈a(n) :
n < ù〉 ∈ X ∗ iff there is an x ∈ X and a strictly increasing sequence (in)n<ù
such that each a(n) = x(in).

5) Given a,b ∈ X ∗, b ≤ a iff there is a strictly increasing sequence (in)n<ù such
that each b(n)⊆a(in).

6) The coarsening ≤∗ has the property that for a,b ∈ X ∗, if 〈b(n) : n ≥m〉 ≤ a
for some m, then b ≤∗ a.

Notice that 4) implies thatX⊆X ∗. By 2) and 5), the order≤ onX is the restriction
to X of the order ≤ on X ∗. By 3) and 4), for each a ∈ X ∗ there is an x ∈ X such
that x ≤ a. Thus, 〈X,≤〉 is dense in 〈X ∗,≤〉 and hence, 〈X,≤∗〉 is dense in 〈X ∗,≤∗〉.

Lemma 5.5. Each extended coarsened poset with Independent Sequencing satisfies
the Left-Right Axiom.

Proof. Let P
∗ = 〈X,X ∗, ≤ ,≤∗〉 be an extended coarsened poset having

Independent Sequencing. For each x ∈ X , define Left(x) = 〈x(2n) : n < ù〉 and
Right(x) = 〈x(2n+1) : n<ù〉. Then IS 4) implies that Left and Right are functions
from X into X ∗ and IS 5) implies that Left(x),Right(x)≤ x, so LRA 1) holds. For
LRA 2), given x ∈ X , let y = x and z = 〈x(n) : n ≥ 1〉. Then

Left(y) = 〈x(2n) : n < ù〉=∗ 〈x(2n+2) : n < ù〉= 〈z(2n+1) : n < ù〉=Right(z),

where the =∗ holds by IS 6), so LRA 2a) holds; and

Right(y) = 〈y(2n+1) : n < ù〉= 〈x(2n+1) : n < ù〈z(2n) : n ≥ 1〉= Left(z),

so LRA 2b) holds.
Now let p,x,y ∈ X with x,y ≤ p be given. By IS 3), there is some z ≤ p in X

such that for each n ≡ 0,1,2 (mod 4), z(n) = x(i) for some i, and for each n ≡ 3
(mod 4), z(n) = y(i) for some i. Furthermore, Left(z)≤ x, Left(Right(z))≤ x, and
Right(Right(z))≤ y, so LRA 3) holds. ⊣

Given an extended coarsened topological Ramsey space 〈R,R∗, ≤,≤∗,r〉, the
forcing 〈R,≤∗〉 adds an ultrafilter on the countable base setAR1 as follows: Letting
G be the generic filter on 〈R,≤∗〉, defineUR to be the filter generated by the collection
of sets AR1 ↾ X := {s ∈ AR1 : ∃Y ≤ X (s = r1(Y ))}, for X ∈G . By genericity and
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Theorem 2.3, U is an ultrafilter. When the space 〈R,≤∗〉 is dense inside some poset
P forcing an ultrafilter, then UR is isomorphic to the ultrafilter forced by P. This fact
was behind the work in [14, 15, 16], which investigated structural results on known
ultrafilters constructed by Laflamme in [25], Baumgartner and Taylor [2], Blass [3],
as well as new ultrafilters related to these. In the next several subsections, we will
show that these classes of ultrafilters have Independent Sequencing and countable
=∗-equivalence classes, so generic extensions by these ultrafilters will satisfy the next
theorem.
The ultrafilters in Section 6 are forced by Ramsey spaces constructed in [10] and

[11], forming a hierarchy over the ultrafilter investigated by Szymanski andXua [38],
forced by P(ù×ù)/Fin⊗Fin. These forcings have Independent Sequencing, but
their =∗-equivalence classes are uncountable, so the first part of the next theorem
holds for them, but we do not know if they preserve strong partition cardinals.

Theorem 5.6. Assume M is a model of ZF + either 1) ADR or 2) AD
++V =

L(P(R)). In M, suppose 〈R,R∗, ≤, ≤∗ ,r〉 is an extended coarsened topological
Ramsey space with Independent Sequencing. Then forcing with (R, ≤∗) adds an
ultrafilter UR such thatM [UR] has the same sets of ordinals as M. If furthermore, the
=∗-equivalence classes are each countable, then κ→(κ)ëì holds in M [UR] whenever

ë=ùë≤ κ, 2≤ ì< κ, there is a surjection from ù2 to [κ]κ, and κ→(κ)ëì holds in M.

Proof. This follows from Lemma 5.5 and Theorems 1.3 and 4.17. ⊣

5.3. A hierarchy of rapid p-points above a weakly Ramsey ultrafilter. Laflamme
constructed a sequence of forcings Pα , 1 ≤ α < ù1, in [25] where Pα forces an
ultrafilter Uα which is a rapid p-point satisfying some weak partition relation.
Moreover, the Rudin–Keisler structure below Uα contains a decreasing sequence of
order-type (α+1)∗, where theminimal filter is a Ramsey ultrafilter. For k ≥ 1 a finite
integer, theRamsey degrees ofUk are as follows: For each n≥ 1, t(Uk,n) = (k+1)

n–1.
These Ramsey degrees are stated in [25] and succinct proofs using Ramsey theoretic
techniques appear in [13]. In particular, t(U1,n) = 2, so U1 is a weakly Ramsey
ultrafilter.
In [15] and [16], for each 1 ≤ α < ù1, a topological Ramsey space Rα was

constructed which is dense in Pα . In those papers, these Ramsey spaces were
used to find exact Tukey and Rudin–Keisler structures below each Uα . Recalling
Theorem 2.3, each Rα satisfies the infinite partition relations required in the
hypothesis of Theorem 1.3.
The definitions of the spacesRα are somewhat involved and the interested reader

is referred to the original papers [15] and [16]. What is important here is that each
member x ∈Rα is a sequence 〈x(n) : n<ù〉where each x(n) is a finite tree, and that
〈Rα,≤〉 has Independent Sequencing. We define R∗

α to be the set of all sequences
〈x(in): n < 〉 for x ∈ Rα and (in)n<ù strictly increasing so that IS 4) holds. Extend
≤ to R∗

α so that the first sentence of IS 5) holds. The ó-closed partial order ≤
∗ on

Rα is simply mod finite initial segment of the sequence, so IS 6) holds.
Given y ≤∗x in X, letting k be least such that for each n ≥ k, y(n)⊆x(in) for

some in, the sequence z = rk(x)
⌢
〈y(n) : n ≥ k〉 is a member of Rα . Furthermore,

this z ≤ x and z =∗ y. Hence 〈Rα, ≤,≤
∗〉 is a coarsened poset. We extend this order
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to R∗
α to again mean mod finite initial segment. Thus, for a,b ∈ R∗

α , b ≤
∗ a iff for

some k, for all n ≥m, b(n)⊆a(i) for some i. This coarsening satisfies IS 6).
Thus, 〈Rα,R

∗
α, ≤,≤

∗〉 is an EC poset having IS. Furthermore, since each a(n) is
finite, for a ∈R∗

α and n<ù, and since≤
∗ is mod finite initial segment, it follows that

each =∗-equivalence class is finite. Therefore, by Theorem 5.6 Laflamme’s forcings
produce barren extensions preserving strong partition cardinals, provided that the
ground model satisfies ADR or AD

++V = L(P(R)).

5.4. k-Arrow ultrafilters, n-square ultrafilters, and their extended family of rapid

p-points. Ultrafilters with asymmetric partition relations were constructed by
Baumgartner and Taylor in [2]. For k ≥ 3, a k-arrow ultrafilter is an ultrafilter
U such that for each function f : [ù]2→2, either there is a set X ∈ U such that
f([X ]2) = {0} or else there is a setY ∈ [ù]k such thatf([Y ]2) = {1}. This is written
as

U→(U,k)2.

For each k ≥ 3, Baumgartner and Taylor constructed a partial order, let’s call it PBTk
which, by using CH, MA or p = c, constructs a p-point which is k-arrow but not
(k+1)-arrow. The partial order PBTk used finite ordered k-clique-free graphs and
applications of a theorem of Nešetřil and Rödl, that the collection of finite ordered
k-clique-free graphs has the Ramsey property [33, 32]. Recall that a k-clique is a
complete graph on k vertices, and is denoted by Kk .
In [14], for each k ≥ 3, a topological Ramsey space Ak which is dense in

Baumgartner and Taylor’s partial order PBTk was constructed. Thus, forcing with
Ak produces a p-point which is k-arrow and not (k+1)-arrow. Furthermore, since
Ak is a topological Ramsey space, it satisfies Theorem 2.3, so the desired infinite
dimensional partition relation holds. To make a spaceAk , all that is required is that
we fix some sequence 〈An : n<ù〉 of finite orderedKk-free graphs such that eachAn
embeds as an induced subgraph intoAn+1 and that each finite orderedKk-free graph
embeds as an induced subgraph into some An, and hence into all but finitely many
An. The members ofAk are sequences 〈x(n) : n < ù〉 where each x(n) is a subgraph
of Ain for some strictly increasing sequence (in)n<ù . In particular, the topological
Ramsey space 〈Ak, ≤,r〉 has Independent Sequencing.
The extended coarsening ofAk is obtained by lettingA

∗
k be defined as in 2) of IS.

The coarsened quasi-order ≤∗ is simply mod finite initial segment. This order is ó-
closed and 〈Ak,Ak,

∗, ≤, ≤∗, r〉 forms an extended coarsened poset with Independent
Sequencing. Furthermore, the=∗-equivalence classes are countable, since≤∗ is mod
finite. Thus, Theorem 5.6 holds for Baumgartner and Taylor’s p-points which are
k-arrow and not (k+1)-arrow.
Another hierarchy of interesting p-points are forced by the hypercube Ramsey

spaces (see [14, 40]). The basis for these spaces is the n-square forcing Pn–square

which Blass constructed in [3] in order to show that under MA, there is a p-point
which has twoRudin–Keisler incomparable predecessors. Conditions in Pn–square are
subsets p⊆ù×ù such that for each n ≥ 1, there areK,L∈ [ù]n such thatK×L⊆p;
the partial ordering is inclusion mod finite. A topological Ramsey space forming a
dense subset of Pn–square was constructed in [40]; this was used to show that both
the Rudin–Keisler structure and the Tukey structure below this forced p-point is
exactly the four element Boolean algebra, that is, a diamond shape. This result was
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generalized in [14] where it was shown that for each k ≥ 2, there is a topological
Ramsey spaceHk in which eachmember is a sequence x = 〈x(n) : n<ù〉where each
x(n) is a k-dimensional cube with side length n. These were used to show that for
each k ≥ 2, there is a p-point with both the initial Rudin–Keisler structure and the
initial Tukey structure being the Boolean algebra on k atoms, that is, of cardinality
2k . In particular, this answered a question about the initial Tukey structure of G2,
which was left open in [5].
In fact, 〈Hk,≤〉 as defined in [14] has Independent Sequencing. Defining X ∗ as in

4) of Definition 5.4 and≤∗ to bemod finite initial segment, then 〈Hk,X ∗, ≤,≤∗〉 has
Independent Sequencing. Furthermore, the =∗-equivalence classes are countable,
since ≤∗ is mod finite. Thus, Theorem 5.6 holds for Blass’ n-square forcing as well
as the collection of hypercube topological Ramsey spacesHk , k ≥ 2.
Combining the approaches for the k-arrow p-points and the hypercube spaces,

the authors of [14] formed a general template for constructing topological Ramsey
spaces from countable collections of Fraı̈ssé classes. These spaces are formed as
follows: For each n < ù, let Jn ≥ 1 such that either all Jn are equal or else they
form an increasing sequence. For each j < J := supn<ù Jn, let Kj be a Fraı̈ssé class
of finite structures satisfying the Ramsey property. For each j < J , let 〈An,j : n <
ù〉 be a sequence of members of Kj such that each member of Kj embeds into
all but finitely many An,j , and each A0,j has cardinality one. Given a sequence
Ā = 〈An,j : n < ù〉, a member of the space R(Ā) is a sequence x = 〈x(n) : n <
ù〉, where for each n < ù, x(n) is a sequence 〈Bn,j : j < Jn〉 where each Bn,j is
a substructure of some Am,j for m ≥ n which is isomorphic to An,j . Each such
topological Ramsey space R(Ā) has Independent Sequencing where each =∗-class
is countable. Hence, Theorem 5.6 holds for Blass’ n-square forcing as well as the
collection of hypercube topological Ramsey spacesHk , k ≥ 2. Moreover, the forced
p-points have the following interesting property: Given U

Ā
the forced p-point from

R(Ā), its initial Rudin–Keisler structure is isomorphic to the embedding structure
of the sequence of Fraı̈ssé classes, whereas its initial Tukey structure is either a finite
Boolean algebra (if J is finite) or else has the structure of ([ù]<ù,⊆) if J = ù.

§6. A hierarchy of non-p-points with barren extensions. The forcing ([ù]ù,⊆∗)
produces a Ramsey ulftrafilter, which we shall denote by G1 in this section. Recall
that the separative quotient of ([ù]ù,⊆∗) is the collection of nonzero elements of
the Boolean algebra P(ù)/Fin. There is natural hierarchy of Boolean algebras,
P(ùk)/Fin⊗k , k ≥ 2, extending P(ù)/Fin. In fact, an even more general collection
of Boolean algebras P(B)/Fin⊗B , where B is a uniform barrier of countable rank,
was constructed in [11]; these can be thought of as very precise means of forming
P(ùα)/Fin⊗α , for all 1 ≤ α < ù1. This collection of Boolean algebras differs
substantially from the hierarchies of forcings described in the previous section: in
particular, these forced ultrafilters are not p-points and their =∗-equivalence classes
are not countable. Nevertheless, we will see that there are extended coarsened partial
orders having Independent Sequencingwhich are forcing equivalent to theseBoolean
algebras, so they will all produce barren extensions.
The ideal Fin⊗2 consists of those sets A⊆ù×ù such that for all but finitely

many n < ù, the nth fiber {j < ù : (n,j) ∈ A} is finite. Fin⊗2 is a ó-ideal under the

quasi-order⊆Fin
⊗2
and the Boolean algebraP(ù×ù)/Fin⊗2 forces an ultrafilter G2

https://doi.org/10.1017/jsl.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.40


CLASSES OF BARREN EXTENSIONS 205

which is not a p-point but in the terminology of [5] is the next best thing to a p-point
in the following sense: t(G2,2) = 4. This is the strongest partition property that a
non-p-point can have, since any ultrafilter satisfying t(U,2) = 3 actually is a p-point.
Furthermore, the projection of P(ù ×ù)/Fin⊗2 to its first coordinate recovers
P(ù)/Fin, and this projection of members of G2 recovers a Ramsey ultrafilter
on ù. Properties of this ultrafilter G2 have been studied in [5, 10, 22, 38. The
only nonprincipal ultrafilter Rudin–Keisler strictly below G2 is exactly the Ramsey
ultrafilter ð1(G2), or any ultrafilter isomorphic to it (Corollary 3.9 in [5]). Thus, G2
is RK-minimally more complex than a Ramsey ultrafilter.
The construction of Fin⊗2 from Fin can be extended recursively to obtain ó-

closed ideals on ùk as well. Given k ≥ 2 and the ó-closed ideal Fin⊗k on ùk , define
A⊆ùk+1 to be a member of Fin⊗k+1 iff for all but finitely many n < ù, the nth fiber
{ Ej ∈ùk : (n)⌢ Ej ∈A} is in Fin⊗k . This produces a hierarchy of Boolean algebraswith

the property that for any 1 ≤ j < k < ù, projecting the members of P(ùk)/Fin⊗k

to the first j coordinates recovers P(ùj)/Fin⊗j . Likewise, given an ultrafilter Gk
forced by P(ùk)/Fin⊗k , projecting its members to the first j coordinates produces
an ultrafilter on ùj which is generic for P(ùj)/Fin⊗j . A formula for the Ramsey
degrees of these ultrafilters was found by Navarro Flores and appears in [13]: For
each 1≤ k < ù,

t(Gk,2) =
k–1
∑

i=0

3i .

Moving to the countable transfinite, similarly to countable iterations of Fubini
products of ultrafilters, there are choices to be made in deciding how to define
Fin⊗α for ù ≤ α < ù1. However, if one works with barriers, the construction is
concrete. This paper will not go into the definition and theory of barriers, but refers
the interested reader to [1] for an introduction to this area. Suffice it to mention
here that given a uniform barrier B on ù, the order type of B with its lexicographic
order is some countable ordinal, say αB , and every countable ordinal is achievable
in this way. The recursive construction of the ideals continues by recursion on the
rank of the barrier to form Fin⊗B . Each B produces a different Boolean algebra
P(B)/Fin⊗B , which force interesting ultrafilters GB with the property that if B
projects to a barrier C, then GB has a copy of GC Rudin–Keisler below it. If αB
is infinite, then for any 1 ≤ k < ù, the projection of GB to its first k coordinates
reproduces Gk . We point out that the forcing properties of a related hierarchy was
studied byKurilić in [24]; his hierarchy agreeswith the one here for k finite, but differs
for α ≥ ù.
In [10, 11], topological Ramsey spaces were constructed forming dense subsets of

P(ùk)/Fin⊗k for 2≤ k<ù andP(B)/Fin⊗B for all uniformbarriersB of countable
rank, respectively. These Ramsey spaces are denoted Ek and EB , respectively; here we
shall simply use EB as it subsumes the former case. TheRamsey structurewas utilized
in [10] to prove that both the initial Rudin–Keisler and initial Tukey structures below
the forced ultrafilter Gk is exactly a chain of length k. (The extension of this to the
broader collection of GB forB a barrier is in preparation.) In particular, it was shown
that G2 is Tukey-minimal above the projected Ramsey ultrafilter ð1(G2), answering
a question that was left open in [5].
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Refraining from going into detail about these spaces here, what is important for
this paper is that given a uniform barrier B, each member of the space EB may be
regarded as an infinite sequence x = 〈x(n) : n < ù〉 such that each x(n) is a fiber of
B (so infinite) and that 〈EB,≤〉 has Independent Sequencing. Furthermore, letting
E∗
B be defined as in 4) of IS and ≤

∗ be defined by b ≤∗ a iff for all but finitely many
n, b(n)⊆a(i) for some i, then 〈EB,E

∗
B, ≤,≤

∗〉 is an extended coarsened poset having

Independent Sequencing. The forcings 〈EB,≤〉, 〈E∗
B,≤

∗〉 and 〈(Fin⊗B)+,⊆Fin
⊗B

〉
each have separative quotient which is isomorphic to the nonzero members of
P(B)/Fin⊗B , hence all force the same ultrafilter, GB . The properties of the spaces
that make this true are contained in the work in [10, 11]. Thus, Theorem 5.6 yields
that forcing with P(B)/Fin⊗B adds no new sets of ordinals inM [GB ], assumingM
satisfies ZF and either ADR or AD

+ + V = L(P(R)).

§7. Further directions and open problems. As forcings, topological Ramsey spaces
have so many characteristics in common with P(ù)/Fin that a natural goal is to
find out exactly how far these similarities persist. One direction is preservation of
strong partition cardinals. In Section 6, we showed that the forcings P(ùα)/Fin⊗α ,
2 ≤ α < ù1, produce barren extensions. However, our methods do not prove that
these forcings preserve strong partition cardinals.

Question 7.1. Does forcing with P(ù × ù)/Fin⊗2 preserve strong partition
cardinals? If so, does the same hold for each P(ùα)/Fin⊗α , 2≤ α < ù1?

If so, then the following question is worth pursuing, as Navarro Flores has shown
that each topological Ramsey space adds a new ultrafilter with a Ramsey ultrafilter
Rudin–Keisler below it [19].

Question 7.2. Does forcing with any topological Ramsey space preserve strong
partition cardinals?

Recently, Zheng proved in [42] and [44] that the ultrafilters considered in
Sections 5.1 and 5.3 are preserved under side-by-side Sacks forcing with countable
support, and it follows from work in [44] that this also holds for the ultrafilters
considered in 5.4. In [43], Zheng also proved that ultrafilters forced byP(ùk)/Fin⊗k

are preserved under side-by-side Sacks forcing with countable support, and her
methods should also hold for the whole hierarchy into countable ordinals, using
work in [11].

Question 7.3. Is there a connection between an ultrafilter being preserved by side-
by-side Sacks forcing and having a barren extensions? Does one imply the other?

By Corollary 5.3 in [7], if L(R) is a Solovay model, then the P(ù)/Fin extension
of L(R) satisfies the perfect set property. So we ask the following:

Question 7.4. AssumeADR orAD
++V =L(P(R)). Which topological Ramsey

spaces preserve the perfect set property via forcing?

In particular, we conjecture that topological Ramsey spaces with Independent
Sequencing will preserve the perfect set property. It may well be the case that all
topological Ramsey spaces behave like ([ù]ù,⊆∗) in this and many more respects.
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[22] M. Hrušák and J. L. Verner, Adding ultrafilters by definable quotients. Rendiconti del Circolo

Matematico di Palermo, vol. 60 (2011), no. 3, pp. 445–454.
[23] T. Jech, Set Theory, third millennium edition, revised and expanded, Springer, New York, NY,

2003.
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