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SUMMARY
In this paper, the kinematics and dynamics of a parallel
manipulator with a new architecture supposed to be used as
a moving mechanism in a flight simulator project is studied.
This manipulator with three independent degrees of free-
dom consists of a moving platform connected to a based
platform by means of three legs. Kinematic solutions for
this manipulator at position, velocity and acceleration levels
are obtained. Moreover, the dynamical equations of motion
of the manipulator are determined using Newton-Euler’s
equations and applying the natural orthogonal complement
(NOC) method. Using kinematics and dynamics and also
performing simulation for different manoeuvres of moving
platform, the motion and the actuator forces of the legs are
obtained.

KEYWORDS: Parallel manipulators; Forward and inverse kine-
matics; Inverse dynamics; Natural orthoganal complement

1. INTRODUCTION
Parallel manipulators have many applications in space
structures and flight simulators. The main advantages of
parallel manipulators, as compared with their counterparts,
are greater rigidity, lower intertia load, higher accuracy due
to the lack of cantilever structures, and higher load-carrying
capacity.1,2 In flight simulators comprise parallel manip-
ulators, it is possible to have manoeuvres with desired
frequencies for the cockpit. However, these manoeuvres are
impossible with serial manipulators. Therefore, parallel
manipulators are used as moving mechanism in most flight
simulators. In this paper we address the kinematics and
dynamics of a parallel manipulator with a new architecture
supposed to be used for the moving mechanism of a flight
simulator. The merits of this type of architecture, as
compared with conventional type like Stewart platform,3 are
independent and low degrees of freedom (DOF), easy to
control, advantage of manufacturing, chance to increase
DOF by changing the type of joints. This parallel manip-
ulator is composed of a moving platform (MP), a base
platform (BP), and four legs, as depicted in Figure 1. Three
legs are connected to MP by spherical joints and coupled to
BP by universal joint. The fourth or central leg is connected
to centroid of MP by universal joint and is fixed to BP. Each
leg contains two links coupled by a prismatic joint. The
DOF for the system at hand is obtained to be 3 using

Chebyshev-Grübler-Kutzbach formula. Thus three linear
hydraulic actuators are used to derive the prismatic joints of
three legs with idle prismatic joint for the central leg. This
new design with the central leg provides three independent
DOF for the MP, namely, heave h, vertical displacement of
MP along Z0; pitch �, rotation of MP about y axis; and roll
�, rotation of MP about x axis, as shown in Figure 1. The
independent DOF for MP is necessary for moving mecha-
nisms in flight simulators in which any desired and
independent motion for the MP should be available. This is
a main advantage of this new type of manipulator as
compared to its counterpart with 3 DOF.4

In this paper the kinematics and dynamics of the
manipulator at hand are studied. Kinematics and dynamics
of parallel manipulators have been considered by numerous
investigators.5–13 Inverse and forward kinematics are two
basic problems arise in kinematics of the manipulator at
hand. Inverse kinematics has been solved to obtain the
motion of linear actuators of the legs for the desired motion
of MP at position, velocity and acceleration levels. In
forward kinematics, having the motion of three actuators of
the legs, the motion of MP has been determined. Here,
having position and velocity of three linear actuators and
writing the kinematic constraint equations for the system at
hand, the dependent or passive generalized coordinates and
speeds can be expressed in terms of independent counter-
parts, i.e. position and velocity of three actuators. Then the
position and velocity of MP can be obtained by having the
positions and velocities of three noncollinear points of MP.

The governing equations of motion of this manipulator
can be expressed in terms of nonlinear differential equations
by modelling the manipulator as a mechanical system with
kinematic loops. The independent governing equations of
motion of the system can be determined using NOC
method. This method is based on determining the orthogo-
nal complement of the kinematic constraint velocity matrix.
The form of this matrix depends on whether the system is
being formulated in joint space or in Cartesian space. It has
been shown that using the methodology of NOC leads to the
elimination of the nonworking kinematic-constraint
wrenches and also to the derivation of the minimum number
of equations. A basic problem related to dynamics of the
manipulator at hand is the study of inverse dynamics.
Inverse dynamics has potential applications in obtaining the
power of actuators and in controlling the system of the
manipulator at hand. To this end, having the motion of MP
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and using the inverse kinematics of the system, the time
history of legs motion and their time derivatives are
determined. Thereafter, the actuator forces of the legs can be
obtained such that it produces the desired motion of MP.

Several numerical examples are solved for different
manoeuvres of MP to obtain the motion and forces of linear
actuators of the legs. The results are validated using the
forward kinematic and dynamics solution.

2. KINEMATICS
The forward and inverse kinematics of the manipulator at
hand are studied here.

2.1. Inverse kinematics
Inverse kinematics is determined for position, velocity and
acceleration.

With reference to Figure 1, the geometrical parameters of
the manipulator at hand are defined as follows: The
reference frame X0Y0Z0 located at O, the coordinate frame
xyz located at M and attached to MP, the ith leg is connected
to MP by Ai and to BP by ai, position vector of ai with
respect to O by ui, the length of ith leg by qi; its unit vector
by ei and position vector of Ai with respect to ai by li, angle
of leg i with Z0 by �i and angle of the projection of leg i on
BP with the axis X0 by ��, position vector of Ai with respect
to M expressed in reference frame and frame xyz by ri and
Mri, respectively (i=1,2,3). Moreover, position vector of M
with respect to O is defined by p and the rotation matrix of
MP with respect to reference frame by R. The rotation
matrix R can be readily determined by having the roll and
pitch angle of MP.

The inverse position kinematics is defined as follows:
Given p and R, determine the motion of actuators of the
legs, i.e. qi and ei. The vector li =

→
ai Ai can be written as

li =qiei =�ui +p+ri for i=1,2,3 (1)

The length of ith leg qi can be expressed as

q2
i = lT

i li = (�ui +p+ri)
T(�ui +p+ri) (2)

Having ui, p and ri =RMri, length qi can be easily determined
from equation (2). Moreover, the unit vector ei can be
obtained from equation (1) as

ei =
li

qi

=
�ui +p+ri

qi

(3)

In other words, the unit vector ei can be written in terms of
angles �i and �i as

ei = � sin �i cos �i sin �i sin �i cos �i�T (4)

The angles �i and �i are determined from equation (4) in
terms of ei for i=1,2,3.

The inverse velocity kinematics for the manipulator at
hand can be defined as follows: Given the linear velocity of
point M of MP, i.e., ṗ and Ṙ, determine the velocity of each
leg, namely, q̇i and ėi. This can be done by differentiating
both sides of equation (2) with respect to time, thus
obtaining

(� u̇i + ṗ+ ṙi)
T(�ui +p+ri)

+ (�ui +p+ri)
T(� u̇i + ṗ+ ṙi)=2qi q̇i (5)

where ui is constant and thus u̇i =0. Moreover, defining � as
the angular velocity of MP with respect to reference frame
and expanding equation (5), one can obtain

(�ui +p+ri)
Tṗ+[ri� (�ui +p+ri)]

T�=qi q̇i (6)

Equation (6) can be written in matrix form upon substituting
i=1,2,3 as follows

AtMP =Bq̇ (7)

Fig. 1. The parallel manipulator with the new architecture.
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where tMP = ��T ṗT�T is a 6-dimensional twist vector of MP
comprising of � and the linear velocity of point M in
reference frame. Moreover, A is a 3� 6 matrix, B is a 3� 3
diagonal matrix, and q̇ is a 3-dimensional vector of the legs
velocities defined, respectively, as

A=
{r1� (�u1 +p+r1)}

T (�u1 +p+r1)
T

{r2� (�u2 +p+r2)}
T (�u2 +p+r2)

T

{r3� (�u3 +p+r3)}
T (�u3 +p+r3)

T

(8)

B=
q1 0 0
0 q2 0
0 0 q3

;
q̇=

q̇1

q̇2

q̇3

The angular velocity � of MP can be determined by writing
Ṙ as �= ṘTR where � is the cross-product matrix of �.
The vector � can be readily determined from the off-
diagonal arrays of the skew-symmetric matrix �. Next,
from equation (7), q̇ can be written as

q̇=B�1AtMP (9)

Here, the inverse of B can be readily calculated because B
is a diagonal matrix.

Thereafter, ėi can be determined by differentiating both
sides of equation (3) with respect to time, namely,

ėi =
(� q̇iei + ṗ+ ṘMri)

qi

(10)

The time rate of changes for the angles �i and �i, i.e., �̇i and
�̇i, are determined upon differentiating both sides of
equation (4) with respect to time.

Finally, the inverse acceleration kinematics are solved to
obtain the leg acceleration q̈i and angular acceleration of
legs with the axes of the reference frame, i.e., �̈i and �̈i for
a given linear and angular acceleration of MP. To this end,
upon differentiating both sides of equation (9) with respect
to time, thus obtaining q̈ as

q̈=(Ḃ)�1AtMP +B�1ȦtMP +B�1AṫMP (11)

Then ëi can be determined from differentiation of equation
(10) with respect to time. Finally, �̈i and �̈i obtain from
twice differentiation of equation (4) with respect to time.

2.2. Forward kinematics
The forward kinematics can be defined as follows: Given
the time history of motion of the legs, i.e. position, velocity
and acceleration of the legs, namely, qi, q̇i and q̈i, determine
the motion of moving platform.

The main problem in forward position kinematics is how
to express the passive generalized coordinates in terms of
independent ones. The system at hand has 3 DOF and thus
it has three independent generalized coordinates. Here, the
manipulator has nine generalized coordinates which are
three independent generalized coordinates, the length of the
legs qi, and six dependent of passive ones, angles �i and �i;
for i=1,2,3. Therefore, six kinematic constraint equations
for the system are necessary in order to express the passive

generalized coordinates in terms of independent ones. The
first three equations are from the fact that Euclidean norms
of the three sides of the MP are constant, namely,

� →
A1 A2 �2 =(

→
A1 A2)

T(
→

A1 A2)= Const.
� →
A2 A3 �2 =(

→
A2 A3)

T(
→

A2 A3)= Const.
� →
A3 A1 �2 =(

→
A3 A1)

T(
→

A3 A1)= Const.
(12)

where 
→

A1 A2, 
→

A2 A3 and 
→

A3 A1 are readily written from Figure
1 in terms of ui and ei.

Moreover, three more kinematics constraint equations
exist since the architecture of the manipulator forces the
central leg to be always vertical and fixed to BP. This
implies that the point M has no movement in X0 and Y0

directions in addition to the fact that MP has no swive, i.e.
rotation about z axis of MP that can be expressed as the
vector s1 is always located in the Y0Z0 plane. These
constraint equations can be written as

p	iX0
=0; p	iY0

=0; s1	iX0
=0 (13)

where iX0
and iY0

are the unit vectors along X0 and Y0

respectively. The vector si can be expressed from Figure 1
as

si =ui +qiei for i=1,2,3 (14)

Moreover, the position vector p can be related in terms of si

as

p=
s1 +s2 +s3

3
(15)

Upon substitution of si from equation (14) into equation
(15), p can be expressed in terms of qi and ei as

p=
u1 +u2 +u3 +q1e1 +q2e2 +q3e3

3
(16)

Introducing ei from equation (4) into above equation, p can
be expressed in terms all dependent and independent
generalized coordinates.

Equations (12) and (13) are the six constraint equations,
which are in terms of qi, �i and �i, that should be solved
numerically in order to obtain the six passive legs angles in
terms of qi. Therefore, the position vector p can be
expressed in terms of independent generalized coordinates,
qi using equation (16). Moreover, the rotation matrix of MP
with respect to reference frame can be written as

R=[ex ey ez] (17)

where ex, ey and ez are unit vectors, along x, y and z axes of
the coordinate frame attached to MP, expressed in reference
frame with x axis parallel to 

→
A2 A3 and z axis perpendicular

to plane A1A2A3. These unit vectors are, in turn, calculated
as

ex =
s3 �s2

� s3 �s2 �
;ez =

ex� eA2A1

� ex� eA2A1
�
; ey =ez� ex (18)

while eA2A1
is unit vector along A2A1.

The roll and pitch angles of MP, � and � are readily
obtained from the components of the rotation matrix R.
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Thus the forward position kinematics solution is complete
by having p and R from equations (16) and (17),
respectively.

Forward velocity kinematics is solved as follows: Differ-
entiating both sides of six kinematic constraint equations
with respect to time and expansion of the equations thus
obtained, one derives the six dimensional vector of passive
generalized speeds, �̇, symbolically in terms of vector of
independent generalized speeds, q̇ as

�̇=Jq̇ (19)

where J is a 6� 3 matrix which components are functions of
legs length and legs angles with the axes of reference
frame.14 Here, �̇ is a 6-dimensional vector defined as

�̇= ��̇1 �̇1 �̇2 �̇2 �̇3 �̇3�T (20)

After expressing all passive generalized speeds in terms
of independent ones, one obtains the velocity of three
noncollinear points of MP, A1, A2 and A3 that are now
expressed in terms of independent generalized speeds, q̇.

The linear velocity of point M of MP and angular velocity
of MP can be calculated using the method presented in
reference 15. The velocity of point M is expressed as

ṗ=
ṡ1 + ṡ2 + ṡ3

3
(21)

The angular velocity of MP with respect to reference frame
can be calculated by having the velocity of three points of
MP as

�=T�1vect(�̇ ) (22)

where T�1 is defined, under the condition that neither tr(� )
nor tr2(� )-tr(� 2) vanish, as

T�1 =
2

tr�
133 +

4

tr� [tr2(� )� tr(� 2)]
� 2 (23)

where 133 is the 3� 3 indentity matrix. While � and �̇ are
3� 3 matrices defined as

�=[s1 �p s2 �p s3 �p] (24)

�̇=[ṡ1 � ṗ ṡ2 � ṗ ṡ3 � ṗ]

with tr� and vect� are trace and vector of matrix �,
respectively.

Forward acceleration kinematics can be also solved by
differentiating equations (21) and (22) with respect to time
to obtain p̈ and �̇.

3. DYNAMICS
The governing equations of motion can be determined as
follows: First the dynamical equations of motion for each
link of the legs and MP are written using Newton-Euler
equations. These equations are expressed in terms of the
twist vector of each link that is a six dimensional vector
composed of angular and linear velocities of the link. Then
by assembling all equations of motion of all links together,
the governing equations of the whole system are obtained.
The next step is to formulate the NOC matrix N and

premultiplying the governing equations by N to obtain the
minimum number of equations of motion of the system at
hand.

3.1. Modelling
The Newton-Euler’s formula for each link of the system can
be written as

Miṫi +�iMiti =wi (25)

wi =wE
i +wC

i (26)

where ti is twist vector of link i which can be expressed in
terms of angular velocity of link i, i.e., �i and linear velocity
of center of mass of link i, i.e., ċi as

ti =
�i

ċi

(27)

Moreover, Mi and �i are extended mass matrix and angular
velocity matrix that can be defined as

Mi =
Ii

033

033

mi133

; �i =
�i� 133

033

033

033

(28)

Here Ii is inertia matrix of link i about its center of mass, 033

and 133 are 3� 3 zero and identity matrices, respectively, mi

is the mass of link i and �i� 133 is cross product matrix of
angular velocity. wi is the wrench of link i comprises the
resultant forces and moments fi and ni applied on link i. wE

i

is the external forces and moments as well as actuators
forces applied on link i and wC

i is nonworking kinematic
constraint wrenches due to the coupling of the links
together. The governing equations of motion of the whole
system are determined by assembling the dynamics of all
links, represented by equation (25), thereby obtaining

Mṫ+�Mt=wE +wC (29)

where M is the generalized extended mass matrix, � is the
generalized angular velocity matrix, t is the generalized
twist vector and w is the generalized wrench vector of the
system and can be written as

M=diag(M1,M2, …, Mr) (30)

�=diag(�1,�2, …, �r) (31)

t = �tT
1 tT

2 … tT
r �T (32)

w = �wT
1 wT

2 … wT
r �T (33)

Here, r is the number of moving links plus the MP of the
system.

For an n-degree-of-freedom (DOF) system, the gener-
alized twist vector t can be expressed as a linear
transformation of q̇, which is an n-dimensional vector of
independent generalized speeds, namely, t=Nq̇, where N is
orthogonal complement of kinematic constraint velocity
matrix and because of its definition, it was named the
natural orthogonal complement.16 By definition, the power
developed by the nonworking kinematic constraint wrench
wC vanishes and therefore by premultiplying both sides of
equation (29) by NT and inserting t=Nq̇, the governing
equations of motion of the system can be obtained as
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NTMNq̈+NT(MṄ+�MN)q̇=NTwE (34)

wE =wM +wG +wD

where wM, wG and wD are actuator wrench, gravity wrench
and damping wrench, respectively. The generalized angular
velocity matrix � can be determined by kinematic analysis
of the manipulator at hand as explained in Section 2 and the
generalized mass matrix is readily computed by having the
inertia of each link. The effect of damping forces is
neglected in this problem. Moreover, the gravity wrench for
each link of the leg is a vector which all arrays are zero
except the last one which is mig. Having the geometric and
inertia properties of the manipulator at hand and solving its
kinematics, it is possible to compute 
=NTwM from equation
(34). It may be noted that the components of the vector 
 are
actuator forces of the three legs because the lengths of three
legs have been chosen as the independent generalized
coordinates for the system at hand. The computation of N is
the most important part which will be described in next
subsection.

3.2. Computation of NOC matrix N
The natural orthogonal complement (NOC) matrix N can be
computed symbolically or numerically. Symbolic computa-
tion of N for parallel manipulators and in general for
mechanical systems with kinematic loops is very cumber-
some and it is sometimes impossible to express explicit
relations in terms of independent generalized speeds.
Therefore, numerical computation of N is an alternative
method which can be used.13,17 Here, N is computed
symbolically as follows: With reference to Figure 2, qi the

length of legs are joint space variables; � roll, � pitch and
h heave of MP are cartesian space variables; and �i and �i

the angles of legs with coordinate axes are passive joint
variables. The twist vector of each leg can be expressed in
terms of independent generalized speeds q̇=[q̇1, q̇2, q̇3]

T and
passive generalized speeds �̇=[�̇1, �̇1, �̇2, �̇2, �̇3, �̇3]

T. Then
expressing the kinematic constraint equations governing the
system and in the light of their time derivatives, vector �̇
can be expressed in terms of q̇ and thereafter the generalized
twist vector of the system can be expressed, in turn, in terms
of q̇. Finally, having the above relations, matrix N can be
derived symbolically.

The twist vector of the lower and upper links of each leg
is written, respectively, as

t1i =� �1i

l1i�1i
�� �̇i

�̇i
� i=1, 2, 3 (35)

t2i =� 031

ei
�q̇i +� �2i

(qi � l2i)�2i
�� �̇i

�̇i
� i=1, 2, 3 (36)

where ei is the unit vector along the leg i and �1i, �2i, �1i,
and �2i, are 3� 2 matrices written as

�1i =
1
0
1

�sin�i

�cos�i

0
�li =

�sin�isin�i

�cos�isin�i

0

cos�icos�i

sin�icos�i

�sin�i

i=1,2,3

(37)

Fig. 2. Geometric properties of parallel manipulator with the new architecture.
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Here, l1i is the center of mass of lower link of leg i with
respect to ai and l2i is the center of mass of upper link of leg
i with respect to Ai. It is apparent from Figure 2 that �1i =�2i

and �1i =�2i for i=1,2,3. The velocity of three non-collinear
points ai of the MP are expressed in terms of the
independent generalized speed q̇ and passive joint speeds �̇.
Then the twist vector of the MP can be written as

tMP =N1MPq̇+N2MP�̇ (38)

where N1MP and N2MP are 6� 6 matrices. Therefore, the twist
vector of the whole system can be defined as

t=[tT
11 tT

21 tT
12 tT

22 tT
13 tT

23 tT
MP]T (39)

where t1i and t2i for i=1,2,3 are twist vectors of lower and
upper links of leg i.

Upon substitution of twist vectors of each leg from
equations (35) and (36) and MP into equation (39), one
obtains,

t=N1q̇+N2�̇ (40)

where N1 and N2 are 42� 3 and 42� 6 matrices. By
substituting �̇ from equation (19) into equation (40) and
factoring out q̇, one derives,

t=(N1 +N2J)q̇ (41)

Therefore, the matrix N obtains as

N=N1 +N2J (42)

Moreover, Ṅ is also computed as

Ṅ= Ṅ1 + Ṅ2J+N2J̇ (43)

It may be noted that the forms of N1 and N2 are described by
Kasaei.14

4. NUMERICAL EXAMPLE
The geometric properties of the manipulator at hand are as
follows: The moving and based platforms are equilaterals
with side of 1 meter and 2 meter, respectively. The
minimum length of central leg is 1 meter and its stroke,
heave of MP, is 0.4 meter. The pitch and roll angles of MP
are varied from �30 deg to +30 deg.

The mass of MP is 500 kg, the mass of each leg is 10 kg,
and the moment inertia matrix of MP and each link of the
leg expressed in the coordinate frame attached to their
center of masses are expressed as

IMP =

800

0

0

0

800

0

0

0

800

; I1i =I2i =
4
0
0

0
4

0.02

0
0.02

4
; (kg�m2)

(44)

while the vector of center of mass of MP with respect to
point M the center of xyz coordinate is written as

r*=[0.0, 0.3, 0.4]T(m) (45)

For solving inverse position kinematics, position vector of
point M of MP, p, with respect to reference frame is defined
by a prescribed cycloidal manoeuvre as

p = [0 0 h(t)]T

h(t) = 1+0.4� t
T �

1
2� sin 2� t

T �, (m) 0≤ t≤T
(46)

where h(t) shows the heave of MP and T is the period of the
manoeuvre in second. The rotation matrix R of MP with
respect to reference frame for the motion of heave is the
3� 3 identity matrix. However, R can be defined, in turn, for
the pitch and roll motion of MP as

R=Rp =
cos�(t)

0
�sin�(t)

0
1
0

sin�(t)
0

cos�(t)
(47)

R=RR =
1
0
0

0
cos�(t)
sin�(t)

0

�sin�(t)
cos�(t)

while in the combined motion of roll-pitch-heave(RPH) for
the MP, the rotation matrix is written as R=RRPH =RRRP

Fig. 3. Time history of legs length qi, its speed q̇i and its
acceleration q̈i (q1, q̇1, q̈1, …; q2, q̇2, q̈2, - - -; q3, q̇3, q̈3, —).
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with �(t) and �(t) expressed in terms of a cycloidal
maneouvre as

�(t) = �
6� 2t

T �
1
� sin 2�t

T �1�
�(t) = �

6� 2t
T �

1
� sin 2�t

T �1�
(48)

here, the time t is defined as 0≤ t≤T while �(t) and �(t) are
varied from �30 deg to +30 deg.

After defining p and R for any desired motion of MP and
computing their time rate of changes, inverse kinematics of
the problem is solved for any chosen motion of MP using
the method presented in Secion 2.1. As an example, the
results for the RPH motion of MP and for T=3 s is shown
in Figures 3, 4 and 5. The time history of legs length, linear
velocity and linear acceleration of the legs are shown in
Figure 3. Moreover, the angle of the projection of leg i on
BP with the axis X0 and their time rate of changes, i.e., �i,
�̇i, �̈i are depicted in Figure 4; and the legs angles with the
vertical axis of reference frame and their time rate of
changes, namely, �i, �̇i, �̈i are shown in Figure 5. The
forward kinematics is solved as follows: Given the time
histories of independent generalized coordinates and gener-
alized speeds qi and q̇i. determine the leg angles and their

time rate of changes in terms of independent generalized
coordinates and generalized speeds using the kinematic
constraint equations and then compute the motion of MP
using the method presented in Section 2.2. It may be noted
that all results from inverse kinematics have been validated
by the forward kinematic solution and the results are in a
very good agreement in the order of 10�9.

The forces of the actuators of each leg for different
manoeuvres of MP, i.e., roll, pitch, heave and the combined
motion of RPH are determined using the result of Section 3.
The results show that these forces depend highly on the kind
of motion of MP, the mass of MP, position of center of mass
of MP, and moment of inertia of the MP. As an example, the
time history of leg forces for different manoeuvres of heave,
roll, pitch and RPH motion are shown in Figure 6. 

In order to highlight the effect of leg masses, the above
mentioned example is also solved for the case of zero mass
for the legs in RPH motion. The results for the leg forces
with considering the leg masses and the force differences
for two cases, one with considering the leg masses, and one
without considering the leg masses are shown in Figure 7.
The results show that there is not noticeable effect due to the
masses of the legs and it is possible to neglect the masses of
the legs in dynamic computation of this manipulator.

Fig. 4. Time history of legs angle and its first and second time rate
of changes (�1, �̇1, �̈1, …; �2, �̇2, �̈2, - - -; �3, �̇3, �̈3, —).

Fig. 5. Time history of legs angle and its first and second time rate
of changes (�1, �̇1, �̈1, …; �2, �̇2, �̈2, - - -; �3, �̇3, �̈3, —).
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Moreover, the effect of position of center of mass of MP is
shown by solving the problem for two cases one with
assuming r*=0, and one with r*=[0.0, 0.3, 0.4]T (m) which
the results are shown in Figure 8. It was noticed that, the

position of center of mass of MP has an important role on
the forces of the legs.

Fig. 6. Time history of leg forces for different manoeuvres of MP; a: RPH motion, b: Roll motion, c: Pitch motion, d: Heave motion
Force in leg 1:—, Force in leg 2:- - -, Force in leg 3-.-.-.

Fig. 7. The effect of leg masses on the leg forces in RPH motion
a) Leg forces with considering leg masses
b)Force differences for two cases.

Fig. 8. The effect of position of center of mass of MP on the leg
forces in RPH motion
a) Leg forces with r*=[0.0, 0.3, 0.4]T (m)
b) Leg forces with r*=0.
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5. CONCLUSION
The kinematic and dynamics analysis of a new architecture
parallel manipulator has been studied in this paper. This
manipulator consists of a base platform(BP) and a moving
platform(MP) which are connected by means of three legs.
Each leg is connected to BP by a universal joint and to the
MP by a spherical joint. There is also a central leg
connected to MP by a universal joint and fixed to the BP.
The role of the central leg is to provide 3 independent DOF
for the manipulator at hand. Inverse and forward kinematics
problems were studied for the problem in position, velocity
and acceleration. The minimum number of equations of
motion of the manipulator have been derived using the
natural orthogonal complement methodology.

Numerical examples are solved for the different motions
of MP in order to obtain the motion of the legs and the
actuator forces of the legs. The effects of leg masses and
position of the center of mass of MP on the results have
been examined. The present study can be used in design and
control of this type of manipulator. Moreover, it can further
display the potential applications of the proposed manip-
ulator as a moving mechanism in flight simulators.
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