Proceedings of the Royal Society of Edinburgh, 145A, 73-90, 2015

Ground states for the pseudo-relativistic
Hartree equation with external potential

Silvia Cingolani

Dipartimento di Meccanica, Matematica e Management,
Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
(silvia.cingolani@poliba.it)

Simone Secchi

Dipartimento di Matematica e Applicazioni,

Universita di Milano Bicocca, Via R. Cozzi 55, 20125 Milan,
Italy (simone.secchi@unimib.it)

(MS received 19 February 2013; accepted 26 November 2013)

We prove the existence of positive ground state solutions to the pseudo-relativistic
Schrédinger equation

V=A+m2u+Vu=(Wx|u)u’2uinRY, uweH/2RY),

where N > 3, m > 0, V is a bounded external scalar potential and W is a radially
symmetric convolution potential satisfying suitable assumptions. We also provide
some asymptotic decay estimates of the found solutions.

1. Introduction

The mean field limit of a quantum system describing many self-gravitating relativis-
tic bosons with rest mass m > 0 leads to the time-dependent pseudo-relativistic
Hartree equation

Y =(vV-A+m2—m)p— (1>|<|¢|2>w7 z € R3, (1.1)

Yor 7]

where 1: RxR3 — C is the wave field. Such a physical system is often referred to as
a boson star in astrophysics (see [12-14]). Solitary wave solutions (¢, z) = e 1" ¢,
A € R, to (1.1) satisfy the equation

(VAT o~ (el )0 = o, (12)

||

For the non-relativistic Hartree equation, the existence and uniqueness (modulo
translations) of a minimizer was proved by Lieb [17] by using symmetric decreas-
ing rearrangement inequalities. Within the same setting, always for the negative
Laplacian, Lions [21] proved the existence of infinitely many spherically symmetric
solutions by application of abstract critical point theory both without the constraint
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and with the constraint for a more general radially symmetric convolution poten-
tial. The non-relativistic Hartree equation is also known as the Choquard—Pekard
or Schrodinger—Newton equation, and recently a large number of papers have been
devoted to the study of solitary states and its semiclassical limit (see [1,6-9,13,19,
22,24,25,27-29,31,32] and references therein).

In [20], Lieb and Yau solved the pseudo-relativistic Hartree equation (1.2) by
minimization on the sphere {¢ € L*(R?) | [ps|¢[*> = M}, and they proved that a
radially symmetric ground state exists in H'/?(R3) whenever M < M., the so-
called Chandrasekhar mass. These results have been generalized in [11]. Later,
Lenzmann proved in [16] that this ground state is unique (up to translations and
phase change) provided that the mass M is sufficiently small; some results about
the non-degeneracy of the ground state solution are also given.

Quite recently, Coti Zelati and Nolasco (see [10]) studied the equation

V=A+m2u = pu+ vjulP?u+ o(W * u®)u

under the assumptions that p € (2,2N/(N —1)), N >3, p<m, m >0, v > 0 and
o > 0 but not both 0, W € L"(RN) + L>®(RY), W > 0, » > N/2, W is radially
symmetric and decays to 0 at oo. They proved the existence of a positive radial
solution that decays to 0 at oo exponentially fast. For the case o < 0, p < m, we
also refer the reader to [26] where a more general nonlinear term is considered.

In the present work we consider a generalized pseudo-relativistic Hartree equation

V=A+m2u+Vu=(Wxu")u’ 2 inRY, (1.3)

where N > 3, m > 0, V is an external potential and W > 0 is a radially symmetric
convolution kernel such that lim|,_, 1o W(|z]) = 0.

In [23] Melgaard and Zongo proved that (1.3) has a sequence of radially symmetric
solutions of higher and higher energy, assuming that V' is a radially symmetric
potential, # = 2, and under some restrictive assumptions on the structure of the
kernel W.

Here we are interested in finding positive ground state solutions for the pseudo-
relativistic Hartree equation (1.3) when V is not symmetric. In such a case, the non-
locality of v—A + m?2 and the presence of the external potential V' (not symmetric)
complicate the analysis of the pseudo-relativistic Hartree equation in a substantial
way. The main difficulty is, as usual, the lack of compactness.

In what follows, we make the following assumptions.

(V1) V: RN — R is a continuous and bounded function, and V (y) + Vi > 0 for
every y € RY and for some Vg € (0,m).

(V2) There exist R > 0 and k € (0,2m) such that
V(z) < Voo —e F2l for all |z > R, (1.4)
where Voo = liminf || 4o V(z) > 0.
(W) W e L"(RY) + L=(RY) for some

N
N(2=06)+6

2N
N-1

r>max{1, } and 2<60<
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Our main result is the following.

THEOREM 1.1. Retain assumptions (V1), (V2) and (W). Equation (1.3) then has
at least a positive solution u € H'/?(RN).

We remark that theorem 1.1 applies for a large class of bounded electric potentials
without symmetric constraints and covers the physically relevant cases of Newton-
or Yukawa-type two-body interactions, i.e. W(x) = 1/|z|* with 0 < A < 2, W(z) =
e l#l/|x|.

The theorem is proved using variational methods. Firstly we transform the prob-
lem into an elliptic equation with nonlinear Neumann boundary conditions, using
a local realization of the pseudo-differential operator v—A 4+ m? as in [3,4,10,11].
The corresponding solutions are found as critical points of an Euler functional
defined in H 1(Rf *1). We show that such a functional satisfies the Palais-Smale
condition below some energy level determined by the value of V' at oo, and we prove
the existence of a mountain pass solution under the level where the Palais—Smale
condition holds. Finally, we also provide some asymptotic decay estimates of the
found solution.

Local and global well-posedness results for pseudo-relativistic Hartree equations
with external potential were proved by Lenzmann in [15].

2. The variational framework

Before we state our main result, we recall a few basic facts about the functional
setting of our problem. The operator v—A + m? can be defined by Fourier analysis:
given any ¢ € L?(R3) such that

/ (m? + |k|?)|Fo|? dk < +oo,
R3

we define v —A + m2¢ via the identity

F(V—=A+m2¢p) = /m? + |k|2F¢,

F being the usual Fourier transform. The condition
/ Vm2 + k2| Fol? dk < +oo
R3

is known to be equivalent to ¢ € H'/ 2(R?). In this sense, the fractional Sobolev
space H'/2(R?) is the natural space to work in. However, this definition is not
particularly convenient for variational methods, and we prefer a local realization of
the operator in the augmented half-space, originally inspired by the paper [5] for
the fractional Laplacian.

Given u € S(RY), the Schwarz space of rapidly decaying smooth functions
defined on RY, there exists one and only one function v € S(RY ™) (where RY ! =
(0, +00) x RN) such that

~Av+mPv=0 inRY*T,

v(0,y) = u(y) fory € RY = gRY.
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Setting
ov

we easily see that the problem
—Aw+mPw=0 inRYT
w(0,y) = Tu(y) fory € ORY T = {0} x RN ~ RV
is solved by w(x,y) = —(0v/0x)(x,y). From this we deduce that

ow 0%v )
T(Tu)(y) = ~ 52 (0,9) = 55(0,4) = (8,0 + m0)(0,),

and hence T’ OT (—A, +m?), namely, T is a square root of the Schrédinger oper-
ator —A +m? on RY = GRN“

In the following, we write | |, for the norm in LP(RY) and || - ||,, for the norm in
LP(R_IXH). The symbol | - || is reserved for the usual norm of H'(RY*1).

The theory of traces for Sobolev spaces ensures that every function v € H! (Rf )
possesses a trace y(v) € H'/2(RY) that satisfies the inequality (see [30, lemma 13.1])

ov
h@)E < plvlh,ty, 2z, (2.1)
whenever 2 < p < 2N/(N — 1). This also implies that, for every A > 0,
1 v
2 /\/ 2 f/ 2.2
/RN ) RY T "+ A Jpyir | O (2.2)

As a particular case, we record

1
y()2 <m v + — |Vol?. (2.3)
RN RN+1 m Jpye
+

It is also known (see [30, lemma 16.1]) that any element of HY/?(RYN) is the trace
of some function in H*(RY*?).

From the previous construction and following [3,4, 10, 11], we can replace the
non-local problem (1.3) with the local Neumann problem

—Av+m?v=0 in Rf+1,
ov (2.4)

Oz

We are looking for solutions to (2.4) as critical points of the Euler functional
I: HYRY ™) — R defined by

// (Vo> + m?v?) dzx dy
N+1

t3 / V) dy*% (W y@)[ @) dy.  (2.5)

= -V + (W)’ 20 in RY = oRYT.

We recall the well-known Young inequality.
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PROPOSITION 2.1. Assume that f € LP(RY), g € LY(RN) with 1 < p, ¢,r < o0,
pt4+q P =147t Then

£+ gl < |flplglg- (2.6)

A major tool for our analysis is the generalized Hardy—Littlewood—Sobolev in-
equality. We recall that L% (RY) is the weak L9 space; see [18] for a definition. We
denote by | - |4 the usual norm in LY (RY).

PrROPOSITION 2.2 (Lieb [18]). Assume that p, ¢ and t lie in (1,400) and that
p~t+ gt +t71 =2. Then, for some constant N, 4+ > 0 and for any f € LP(RY),
g € LY(RY) and h € LY (RYN), we have the inequality

M/ﬂme—wmwmwy<Aaqummmw. (2.7

For the sake of completeness, we check that the functional I is well defined. As
a consequence of (2.1), for every p € [2,2N/(N — 1)] we deduce that
p—1
p

(@)l < [vll2p—1) + Voll2 < Gyl (2.8)

and the term [py V(y)7(v)?dy in the expression of I(v) is finite because of the
boundedness of V. Writing W = Wi + Wa € L™(RY) + L (R") and using (2.7) we
can estimate the convolution term as follows:

/(W*MMWW@W:/(WMW@WWMW+/(WﬂW@WWMW
RN RN RN

< Wil (V) 37 2r—1) + [Walso 1 (v)[3°

< Wil [[0]17% + [Wa ool [0 (2.9)
Since
> 7]\[ d 2<0< 72N
il X 5
""Ne—-oro ° N1

we have that

2r—-1 1 1 _1 N2-0)+0 N-1

%0r 0 20r 0 20N oN

and thus
20r 2N

27"—1<N—1’

and from (2.9) we see that the convolution term in I is finite. It is easy to check,
by the same token, that I € C*(H'(RYT1)).

REMARK 2.3. As we have just seen, estimates involving the kernel W always split
into two parts. As a rule, those with the bounded kernel Wy € L (RY) are straight-
forward. In the following, we often focus on the contribution of Wy € L"(RY) and
drop the easy computation with Ws.
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3. The limit problem

We consider the space of the symmetric functions
H* = {ue H'RY™) | u(z, Ry) = u(z,y) for all R € O(N)}.
We consider the functional .J,: H* — R defined by setting

// (IVv|* + m?v?) dz dy
N+1

*5/]1@ ay(v)* dy‘% W+ @)@’ dy,  (3.1)

where W > 0 is radially symmetric, lim;|— 4o W(|z|) = 0 and assumption (W)
holds. If @ > —m, we can extend the arguments in [10, theorem 4.3], for the case
6§ = 2, and prove that the functional .J, has a mountain pass critical point v, € H¥,
namely,

a\Va :Ea: f 5 2
Ja(v) = B = inf max Ja(g(t) (3.2

where Iy = {g € C([0,1]; H*) | g(0) = 0, Ja(g(1)) < 0}. The critical point v,

corresponds to a weak solution of

~Av+mPv=0 in RV

ov (3.3)

—o = —owt (W W) |v]? 20 in RY = oRY L.
xr

In the following, we need a standard characterization of the mountain pass level
E,. We define the Nehari manifold N, associated with the functional .J, as

:{véHﬁ‘// |Vo|? + m?v? dz dy
RN xRN
= fa/ v(v)Qdy+/ (W I’V(v)le)v(v)ledy} (34)
RN RN
LEMMA 3.1. The following identities hold true:

vler}\f/a Jo(v) = U}Enlgu max Jo(tv) = E,. (3.5)

Proof. The proof is straightforward, since .J, is the sum of homogeneous terms; we
follow the method of [33]. First of all, for v € H* we compute

t2
o (tv) (// Vo|? + m? 2dxdy+a/ w(v)Qdy>
RN xRN RN

t29 - P 6‘d
~ 55 | W h @) @) a (36)

Since 6 > 2, and by using (2.3), it is easy to check that ¢ € (0,+00) — J(tv)
possesses a unique critical point ¢t = t(v) > 0 such that t(v)v € N,. Moreover, since
Jo has the mountain pass geometry, ¢t = t(v) is a maximum point. It follows that

mf Jo(v )—vlenkt;l1 I{l;ig(]a(tv).

vEN,
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The manifold N, splits H* into two connected components, and the component
containing 0 is open. In addition, J, is non-negative on this component, because
(J.(tv),v) > 0 when 0 < t < ¢(v). It follows immediately that any path ~: [0,1] —
H* with 7(0) = 0 and J,(7(1)) < 0 must cross A, so

E, > inf Ja(’U).
veEN,

The proof of (3.5) is complete. O

Following a completely analogous argument in [10, theorems 3.14 and 5.1], we
can state the following result.

THEOREM 3.2. Let a+m > 0 and let (W) hold. Then v, € C°([0, +00) x RY),
vo(z,y) > 0 in [0,00) x RN and for any 0 < o € (—a,m) there exists C > 0 such
that

0 < vo(z,y) < Ce™(MOWVe>Flyl? g=ow

for all (x,y) € [0,+00) x RN In particular,
0 < va(0,y) < Ce W for every y e RN,

where 0 <d <m+aifa<0, andd=m if a > 0.

4. The Palais—Smale condition

For any v € H'(RY™) we define

o) = ([ W= nhe)@ @) dd.

Inequality (2.9) immediately yields that
D(v) < K|lv]|* (4.1)
for every v € H'(RY ™).

LeEMMA 4.1. Let {v,}, be a sequence in H'(RY ™) such that v, — 0 weakly in
Hl(Rerl),
I(v,) > c< By, and I'(v,)—0,

where Voo := liminf|, o V() > 0. A subsequence of {vn},, then converges strongly
to 0 in HY(RY ™).

Proof. First, we recall (2.3), and we rewrite I(v) as

1 1
I(v) = 5 Vol +m?lo + 5 | (V4 Vo)) = == [ 4()? = 5D(v),
2 ]Rf*l 2 JpN 2 Jgn 20

so that V 4+ Vy > 0 everywhere. Now,

e+ 1+ ol > T(om) = 500" (vn), o) (1—1)D@@, (4.2)
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which implies that, for some constants Cy and Cs,

1
@D(UTL) < Clen” + CQ.

But then, using (2.3),

c+1=1I(vy)

2
1 m
>3 [P [ P
Rf*l 2 Rf*l

Ve 1
~ 0 m/ |vn|2+f/ Vo, |2 | = Ctlvn]l — Cs
2 Rf+1 m Rf+1

1 \%Z m(m — V;
N (1_ O)/ |V’U”|2+M/ + |vn|2_01||’l)n|| _027
R+

RY+1 2

and since m — Vg > 0 we deduce that {v,} is a bounded sequence in H'(RY ™).
A standard argument shows that ||v, || is bounded in H*(RY ™),

% <||vn|2 + /RN V(y)y(vn)? dy) — ¢ and 92;91]])(@") —c.

Therefore, ¢ > 0. If ¢ = 0, then
o) = (Inli + [ Vit ay)
RN

> (1 - VO) / |an|2 +m(m — VO)/ \vn|2,
m ) Jpy+i R+

and m — Vp > 0 yields that v, — 0 strongly in H*(RY*?).

Assume, therefore, that ¢ > 0. Fix a < V, such that ¢ < E,, and fix Ry > 0 such
that V(z) > a if |z| > Ro. Let ¢ € (0,1). Since {v,}, is bounded in H'(RY ™),
there exists R. > Ry such that R. — 400 as ¢ — 0 and, after passing to a
subsequence,

// (Vo> + m*v?) da dy +/ V(y)y(ve)?dy <e forallmeN, (4.3)
SRe ARE

where

Sp, ={z=(,y) RV | R. < |2| < R +1},
Ap. ={y e RY | R. < |y| < R. +1}.

If this is not the case, for any m € N, m > Ry, there exists v(m) € N such that

// (IVoul? +m?02) de dy + /A V(o) dy > ¢ (4.4)
Sm m
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for any n € N, n > v(m). We can assume that v(m) is non-decreasing. Therefore,
for any integer m > Ry there exists an integer v(m) such that

lonl?+ [ Ve // (Vo + ) dedy+ [ V(o) dy
(m— Ro)e h (4.5)

for any n > v(m), where Tp, = {z = (z,y) € RY™ | Ry < |2| < m} and B,, =
{y € RY | Ry < |y| < m}, which contradicts the fact that ||v,|| is bounded.

We may assume that |v,,| — 0 strongly in LT (RY) with p < 2N/(N — 1), and
thus |y(v,)| — 0 strongly in LY (RY).

Let & € COO(RNH) be a symmetric function, namely, & (z, gy) = & (z,y) for all
g € O(N), z > 0, y € RN. Moreover, assume that £.(z) = 0 if |2| < R., £&.(2) = 1
if |z] > R. + 1 and £(%) € [0,1] for all z € Rf“. Set wy, = &v,. We now apply
Young’s inequality (2.7) with p = ¢ =2r/(2r — 1) and

h=W, f=Pw)l’,  g=vwa)l® = |y(wn)l
to obtain

[D(vn) — D(wy)]

< [ W=Dl @ ) W = ) @) ) )] drdy

- // W@l @ PR )0~ R @) b ) @)
+ 1) @) ) W) = [y () @)y (wa) (9)|°] da dy

< //wauw W (x = y) |y (va) (@) °||v(vn) W)I° = |7 (wn) (y)|°| dz dy
[ W= D)) @ - b)) drdy

2 [ W= )@ )0 - ) @) drdy

<2CIW v (va) 5,0 2r—1y [ (0)I” = |7 (wn)[%2r (2r—1) = 0(1), (4.6)

since |y(vp)|? — |v(wy)|? — 0 strongly in L2r/(2r 1)(}RN) Here and in the following

C' denotes some positive constant 1ndependent of n, not necessarily the same one
each time. Similarly,

O BB P2 wn)
= [ s ) ) ) 2 )

< 2CIW 1y (vn) 5,0 20 —1) 17 (0n)|” = [Y(w0i)[ |21y 2r—1)
= o(1).
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Therefore,
[T’ (vn)wn — I’ (wn ) wy,|

< C//SS(WUTLP +m?v )dxdy—f—/A V (y)v(vn)? dy + o(1).

€

Set u,, = (1 — &)v,. Analogously, we have
1 (vp)un — T’ (wn ) un|

< C//&(Wun? + m3u )d:cdy+/A V(y)y(un)? dy + o(1).

e

Therefore,
I/(un)un = 0(6) + 0(1) (47)
and
I'(wp)w, = O(€) 4+ o(1). (4.8)
From (4.7), we derive that
I(un) = 22 2D(un) + O(e) + 0(1) > O(e) + 01).

20
Consider t,, > 0 such that I’ (t,w,)(t,wy,) = 0 for any n, namely,

£200-1) _ [[wn]* + fRN V(y)y(w,)? dy
! D(wn) '

From (4.8), we have that ¢,, = 1+ O(e) + o(1). Therefore, from the characterization
of E, we have

c+o(1)

I(vy) = I(up) + I(wy) + O(e)
I(wy) 4+ O(e) + o(1)

I(t,wy) + O(e) + o(1)
E, + O(e) + o(1).

\YAR\VARWV]

As n — +00, € = 0, we derive that ¢ > E,, which is a contradiction. Hence, ¢ = 0
and v,, — 0 strongly in H*(RY ™). O

LEMMA 4.2. Let {vn}n be a sequence in H*(RY ™) such that v, — v weakly in
Hl(RfH). The following hold.

(i) D' (v,)u — D' (v)u for all u € HYRYT).

(i) After passing to a subsequence, there exists a sequence {vy,}, in H'(RY ™)
such that v, — v strongly in H(RY 1),

D(v,) — D(v, — 0,) = D(v) in R,
D' (vy,) — D' (v, — B) = D' (v) in H-HRYT).
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Proof. The proof is completely analogous to that of [1, lemma 3.5]. The function
U, is the product of v, with a smooth cut-off function, so v, belongs to H 1(Rf +1)
if v,, does. We omit the details. O

PROPOSITION 4.3. The functional I: Hl(RfH) — R satisfies the Palais—-Smale
condition (PS). at each c < By, where Vo := liminf ;o V(z).

Proof. Let v, € HY(RY ™) satisty
I(v,) > c¢< Ey, and I'(v,)—0

strongly in the dual space H~'(RY ™). Since {v,}, is bounded in H*(RY ™), it
contains a subsequence such that v, — v weakly in H'(RY ™) and v(v,) — v(v)
in LP(RY) for any p € [2,2N/(N — 1)].

By lemma 4.2, v solves (1.3) and, after passing to a subsequence, there exists a
sequence {0y}, in Hl(RfH) such that u,, := v, — ¥, — 0 weakly in H' (Rf“),

I(v,) — I(up) — I(v) inR,
I'(vy) = I'(un) = 0 strongly in H—1(RY ™).
Hence, I(v) = ((0 — 2)/20)D(v) > 0,
I(uy) > c—I(v) <c and [I'(u,)—0

strongly in H 1 (Rf *1). By lemma 4.1 a subsequence of {u,, },, converges strongly to
0in H 1(Rf *1). This implies that a subsequence of {v,}, converges strongly to v
in HY(RY ). O
5. Mountain pass geometry

We consider the limit problem

—Av+m?v=0 in Rf“,

(5.1)
—% = —Veev+ (W [v|")[v|° 20 in RN = oRY T,

where Voo := liminf|;|_,o, V(z) > 0. By theorem 3.2, the first mountain pass value
Ey__ of the functional Jy,_ associated with (5.1) is attained at a positive function
woo € HYRYT), which is symmetric, woo (2, gy) = woo(x,y), for all g € O(N),
x>0,y € RY. Moreover, since V,, > 0, we are allowed to choose o = 0, and there
exists C' > 0 such that

0 < weol(m,y) < Ce~mVe+ul? (5.2)
for all (z,y) € [0, +00) x RV, In particular, v(ws) is radially symmetric in RV and
0 < Y(woo)(y) < Ce™ ™!

for any y € RV. As in theorem 3.2, a bootstrap procedure shows that

Woo € C°°([0, +00) x RY).
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LEMMA 5.1. We have
|Vweo (2)] = O(e™™)  as |2] = oc. (5.3)
Proof. We consider the equation

V=A+m2u+ Voou = (W % |[u”)|u|'2u  in RV

satisfied by weo. For any index i = 1,2,..., N we write v; = Owoo/Jy; and observe
that v; satisfies

V=A A+ m2v; + Vaov; = OW 5 w7 0)wf7 4+ (0 — 1YW s %)% (5.4)
or, equivalently,

—Av; +m?v; =0 in Rﬂy“,
81)1'
or

= —Voov; + O(W 5 0?7 0) w0 + (0 = D)W x wf )wl %0 in RY,

The differentiation of the equation is allowed by the regularity of the solution
weo (see [10, theorem 3.14]). Moreover, w, € LP(RYT!) for any p > 1, because
it is bounded and decays exponentially fast at oco. By elliptic regularity, we €
Wz’p(RfH) for any p > 1, and, in particular, v; € LP(RZH) for any p > 1. An
interpolation estimate shows that w9 lv; € L”(Rf“) for any p > 1. Then the
convolution W (w9 1v;) € L>® (Rf“), and the term

(W = (i toi))wis t € LA(RY™)
by the summability properties of wo,. The term
W ol o, € L2(RY )
trivially.
The proof of [10, theorem 3.14] now shows that v;(z,y) — 0 as x + |y| — +00. A

comparison with the function e~V +1¥1* a5 in [10, theorem 5.1] shows the validity
of (5.3). O
Fix ¢ € (0,(2m — k)/(2m + k)). For R > 0, we consider a symmetric cut-off
function &g € COO(RfH), namely, £r(x,gy) = Er(z,y) for all g € O(N), z > 0,
y € RY such that &r(2) = 0 if 2| > R and &g(z) = 1if 2| < R(1 — ¢) and
¢r(z) €[0,1] for all z € RYTL.
We define wf(2) := weo (2)€R(2) for any z € ]Rf“.

LEMMA 5.2. As R — oo,

[ 1D = 95| = Ot (53)
+

D(wee) = D(w™)] = O(RN e~ 0mU=IR), (5.6)
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Proof. The proof of (5.5) is standard. Indeed, using (5.3) and cylindrical coordinates
in RN-‘:—I
=+ ’

‘// |VWR|2 — Vw2
RYT!

< C'// |Vwso|?
{zeRY T |(1—2)R<|2|}

<Ch // e~ 2mlzl 4,
{zeRY T (1—¢)R<|2[}

< ClRNflef2m(178)R.

To prove (5.6), we recall that W = W, + W, € L"(RY) + L (RY). The difference
D(7(wao)) — D(y(w®)) can be split into two parts, the one with Wi and the one
with Ws. The former can be estimated as

ID(v(woo)) = D(v(w™))]

< / [V (woo) (@) (woo) )N = 17 (@) (@)° [y (W) () ° Wi (& - y) da dy
RN xRN

< 2/ Wiz = y) 1 (wee) (@) |17 (wee) )7 = [y (@) ()|°| dar dy
RN xRN
< 2/l (woo)” = V@) l2rs2r—1) IV (@oo )5 20—y Wi I

o0 (2r—1)/2r
< C(/ tN—le—m(2r0/(2'r—1))t dt) _ CQRN_le_em(l_E)R,
(1—e)R

The latter is simpler, since we directly use the L*°-norm of Wj. O

For s € RN, set Ry := ((k + 2m)/4m)|s|. Since k& € (0,2m), it results that
R € (0,|s]). Hence, |s| — Ry — 400, as |s| = +oo. With this notation, we define

the function
R
S

Wy (2) i= woo (2, Y — 8)R. (2,y — 9),

where z = (z,y) € RV+L.
LEMMA 5.3. There exist g, do € (0,00) such that

I(t(wF)) < By —doe ™™ for all t > 0,
provided that |s| = 0o.

Proof. For u € H*(RY™") we have by (2.3) that max;>o I(tu) = I(t,u) if and only

if
(el fa V(2 g\
g D(w)
Indeed,
Y
Jul® + / V(y)y(u) dy > (1) / Vul? + m(m — Vo) / ul? > 0.
RN m R+ RY+1

(5.7)
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So, since wfs — we in HY(RY™) as |s| — oo, and taking into account that
Iv,_ (weo) = maxy>o I, (H(weo)), there exist 0 < t; < t2 < 400 such that
I(t(wh)) = I(t(wh
max I (t(w;")) max (t(ws™))

=

for all large enough |s|.

Let t € [t1,t2]. Write V = VT =V~ where VT (x) = max{V(x),0} and V~(x)
max{—V(z),0}, and remark that the assumption Vo, > 0 implies that V(z) =
VT (z) whenever |z| is sufficiently large. Assumption (V) therefore yields that

. V(y)(ty(wi))?(y) dy

<2 / VH(y + 5)(v(w™))2 () dy
|[y|<Rs
2 — e Kluts] Wao))? T
<t /lyKstoo . )(Y(wne))? () d

< [ Vel = (et [ M) ) ay ot

for |s| large enough.
Therefore, using lemma 5.2, we get that

TH™)e) = ™l + 5 [ V)0 w)? dy = gpD(tl)

N
<P+ 3 [ Vieltrwo) dy - 5pD(tw)
3 2 Jon 20

. Cefk|s| + O(Révfleme(lfe)Rs)

< max Iy (tws) — doe ™ 1#!
X 50 VOC( oo) 0

= E]\/Oo - doe_k‘s|

for sufficiently large |s|, as our choices of € and R, ensure that 2m(1 —e)R, > k|s|.
O

6. Proof of theorem 1.1

The proof of theorem 1.1 is now immediate. The Euler functional I satisfies the
geometric assumptions of the mountain pass theorem (see [2]) on H'(RY ™). Since
it also satisfies the Palais—Smale condition, as we showed in the previous sections,
we conclude that I possesses at least a critical point v € H 1(]1%{;] +1). In addition,
I(v) =c= inf I(y(t
(v) = = inf max I(y(t)),

where I' = {y € C((0, 1], HY(RY*1)) [ 1(0) < 0, I((1)) < 0}.

To prove that v > 0, we note that, reasoning as in (5.7), the map ¢ — I(tw)

has one and only one strict maximum point at ¢t = 1 whenever w € H 1(]Rf 1 is a
critical point of I. Since I(|w|) < I(w) for all w € H'(RY ™), and

I(tlw]) < I(tw) < I(w) for every ¢ >0, t # 1,
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we conclude that

c<supI(tv]) < I(v) =c.
>0

We claim that |v] is also a critical point of I. Indeed, otherwise, we could deform
the path ¢ — t|v| into a path v € I' such that I(y(t)) < ¢ for every t > 0, a
contradiction with the definition of c.

7. Further properties of the solution

In the next statement we collect some additional features of the weak solution found
above.

THEOREM 7.1. Let u be the solution to (1.3) provided by theorem 1.1. Then u €
C=(RN) N LIRN) for every q¢ > 2. Moreover,

0 < u(y) < Ce™ ™I, (7.1)

Proof. The regularity of u can be established by mimicking the proofs in [10, § 3].
The potential function V' is harmless, being bounded from above and below.
To prove the exponential decay at oo, we introduce a comparison function

Wg(z,y) = Cre™ ™V 22+l for every (z,y) € Rf“,
and we fix R > 0 and Cr > 0 in a suitable manner. We also introduce the notation
Bf = {(x,y) e R{* | Va2 + [y|2 < R},
2 ={(z,y) eRY [ Va2 + [y > R},
I'r ={(0,y) € ORY™ | |y| > R}.
It is easily seen that

—AWg +m*Wg >0 in 2f,

_OWg
or

0 onFI}L.

Set w(z,y) = Wg(z,y) — v(z,y), and remark that —Aw +m?w > 0 in 2. If
Cp=emlt max, g+ v, then w > 0 on OBy, and lim, 4 |y 400 w(z,y) = 0. We claim
that w > 0 in the closure 2}.

If not, then inf apw < 0, and the strong maximum principle provides a point
(0,90) € I'g such that

w(0,yo) = ip+fw <w(z,y) forevery (z,y) € QE.
0

R
For some 0 < A < m, we introduce z(z,y) = w(z,y)e’*. As before,

lim z(z,y)=0
z+|y|—+oo
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and z > 0 on (‘3B§. Since

0< —Aw+m?w=e?* <—Az + 2)\% + (m? — )\2)z>,

the strong maximum principle applies and yields that inf -, z = inf 5+ 2z < z(z,y) for
every (x,y) € .QE. Therefore, z(0,y9) = infp,z = infp,w < 0. HoSf’s lemma now
gives

ow

*%(ano) — Aw(0,y0) < 0.

But this is impossible. Indeed,
Jw

=55 (0:80) = =V (0)v(0, 50) = (W [v[")[o(0, 30)|"~*v (0, o),
and hence
—%(O,yo)—m(& o) = —Mv(0,0) =V (40)v(0, 30) — (W *[v]|")[0(0, 0)|° ~2v(0, yo ).

Recall that v(0,y0) < 0 and A > 0; if we can show that
~V(y0)v(0,50) — (W * [v]”) (0, 0)|°~20(0, o) = 0,
we will be done. First of all, we recall (see [10, p. 70] and also [7, lemma 2.3]) that

lim (W [0]?)[0(0,)|"%0(0,) = 0,

ly|—=+oo

since lim|y| 1o W(y) = 0. So, we choose R > 0 large enough that
(W 0] ") [0(0, 40)|*~>0(0, 30)|

is very small. Choosing R even larger, we can also assume that V(yo) > 0, since
Vo > 0. Hence, —V (y0)v(0,y0) — (W x |v|?)[v(0, 40)|?~2v(0,y0) > 0, and the proof
is finished.

To summarize, we have proved that, whenever z + |y| is sufficiently large,

’U(Z‘,y) < WR(l‘,y),

and hence the validity of (7.1) follows. O

Acknowledgements

S.C. was supported by the MIUR (Project PRIN 2009 ‘Variational and topological
methods in the study of nonlinear phenomena’) and by the GNAMPA (INDAM)
(Project 2013 ‘Problemi differenziali di tipo ellittico nei fenomeni fisici non lin-
eari’). S.S. was supported by the MIUR (Project PRIN 2009 ‘Teoria dei punti

critici e metodi perturbativi per equazioni differenziali nonlineari’).

https://doi.org/10.1017/50308210513000450 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210513000450

Ground states for the pseudo-relativistic Hartree equation 89

References

1 N. Ackermann. On a periodic Schrodinger equation with nonlocal superlinear part. Math.
Z. 248 (2004), 423-443.

2 A. Ambrosetti and P. H. Rabinowitz. Dual variational methods in critical point theory and
applications. J. Funct. Analysis 14 (1973), 349-381.

3 X. Cabré and J. Sola-Morales. Layers solutions in a half-space for boundary reactions.
Commaun. Pure Appl. Math. 58 (2005), 1678-1732.

4 X. Cabré and J. Tan. Positive solutions of nonlinear problems involving the square root of
the Laplacian. Adv. Math. 224 (2010), 2052-2093.

5 L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian.
Commun. PDEs 32 (2007), 1245-1260.

6 Y. Cho and T. Ozawa. On the semirelativistic Hartree-type equation. SIAM J. Math.
Analysis 38 (2006), 1060-1074.

7 S. Cingolani, S. Secchi and M. Squassina. Semiclassical limit for Schrodinger equations
with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. A 140 (2010),
973-1009.

8 S. Cingolani, M. Clapp and S. Secchi. Multiple solutions to a magnetic nonlinear Choquard
equation. Z. Angew. Math. Phys. 63 (2012), 233-248.

9 S. Cingolani, M. Clapp and S. Secchi. Intertwining semiclassical solutions to a Schrédinger—
Newton system. Discrete Contin. Dynam. Syst. 6 (2013), 891-908.

10 V. Coti Zelati and M. Nolasco. Existence of ground state for nonlinear, pseudorelativistic
Schrodinger equations. Rend. Lincei Mat. Appl. 22 (2011), 51-72.

11 V. Coti Zelati and M. Nolasco. Ground states for pseudo-relativistic Hartree equations of
critical type. Rev. Mat. Ibero. 29 (2013), 1421-1436.

12 A. Elgart and B. Schlein. Mean field dynamics of boson stars. Commun. Pure Appl. Math.
60 (2007), 500-545.

13 J. Frohlich and E. Lenzmann. Mean-field limit of quantum Bose gases and nonlinear Hartree
equation. In Séminaire sur les E‘quations auzx Dérivées Partielles, 2003-2004, Exp. XVIII,
26 pp. (Palaiseau: Ecole Polytechnique, 2004).

14 J. Frohlich, J. Jonsson and E. Lenzmann. Boson stars as solitary waves. Commun. Math.
Phys. 274 (2007), 1-30.

15 E. Lenzmann. Well-posedness for semi-relativistic Hartree equations with critical type.
Math. Phys. Analysis Geom. 10 (2007), 43—64.

16 E. Lenzmann. Uniqueness of ground states for pseudo relativistic Hartree equations. Analy-
sis PDEs 2 (2009), 1-27.

17 E. H. Lieb. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear
equation. Stud. Appl. Math. 57 (1977), 93-105.

18 E. H. Lieb. Sharp constants in the Hardy—Littlewood—Sobolev and related inequalities.
Annals Math. 118 (1983), 349-374.

19 E. H. Lieb and B. Simon. The Hartree—Fock theory for Coulomb systems. Commun. Math.
Phys. 53 (1977), 185-194.

20 E. H. Lieb and H.-T. Yau. The Chandrasekhar theory of stellar collapse as the limit of
quantum mechanics. Commun. Math. Phys. 112 (1987), 147-174.

21 P.-L. Lions. The Choquard equation and related questions. Nonlin. Analysis TMA 4 (1980),
1063-1073.

22 L. Ma and L. Zhao. Classification of positive solitary solutions of the nonlinear Choquard
equation. Arch. Ration. Mech. Analysis 195 (2010), 455-467.

23 M. Melgaard and F. Zongo. Multiple solutions of the quasirelativistic Choquard equation.
J. Math. Phys. 53 (2012), 033709.

24 I. M. Moroz and P. Tod. An analytical approach to the Schrédinger—-Newton equations.
Nonlinearity 12 (1999), 201-216.

25 I. M. Moroz, R. Penrose and P. Tod. Spherically-symmetric solutions of the Schrédinger—
Newton equations. Class. Quant. Grav. 15 (1998), 2733-2742.

26 D. Mugnai. The pseudorelativistic Hartree equation with a general nonlinearity: existence,
non existence and variational identities. Adv. Nonlin. Studies 13 (2013), 799-823.

27 R. Penrose. Quantum computation, entanglement and state reduction. Phil. Trans. R. Soc.

Lond. A 356 (1998), 1927-1939.

https://doi.org/10.1017/50308210513000450 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210513000450

90

28
29

30
31

32

33

S. Cingolani and S. Secchi

R. Penrose. The road to reality: a complete guide to the laws of the universe (New York:
Knopf, 2005).

S. Secchi. A note on Schrodinger—Newton systems with decaying electric potential. Nonlin.
Analysis 72 (2010), 3842-3856.

L. Tartar. An introduction to Sobolev spaces (Springer, 2007).

P. Tod. The ground state energy of the Schrodinger—Newton equation. Phys. Lett. A 280
(2001), 173-176.

J. Wei and M. Winter. Strongly interacting bumps for the Schréodinger—Newton equation.
J. Math. Phys. 50 (2009), 012905.

M. Willem. Minimaz theorems, Progress in Nonlinear Differential Equations and Their
Applications, vol. 4 (Birkhauser, 1996).

(Issued 6 February 2015)

https://doi.org/10.1017/50308210513000450 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210513000450

