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We prove the existence of positive ground state solutions to the pseudo-relativistic
Schrödinger equation

√
−Δ + m2u + V u = (W ∗ |u|θ)|u|θ−2u in R

N , u ∈ H1/2(RN ),

where N � 3, m > 0, V is a bounded external scalar potential and W is a radially
symmetric convolution potential satisfying suitable assumptions. We also provide
some asymptotic decay estimates of the found solutions.

1. Introduction

The mean field limit of a quantum system describing many self-gravitating relativis-
tic bosons with rest mass m > 0 leads to the time-dependent pseudo-relativistic
Hartree equation

i
∂ψ

∂t
= (

√
−Δ + m2 − m)ψ −

(
1
|x| ∗ |ψ|2

)
ψ, x ∈ R

3, (1.1)

where ψ : R×R
3 → C is the wave field. Such a physical system is often referred to as

a boson star in astrophysics (see [12–14]). Solitary wave solutions ψ(t, x) = e−itλφ,
λ ∈ R, to (1.1) satisfy the equation

(
√

−Δ + m2 − m)φ −
(

1
|x| ∗ |φ|2

)
φ = λφ. (1.2)

For the non-relativistic Hartree equation, the existence and uniqueness (modulo
translations) of a minimizer was proved by Lieb [17] by using symmetric decreas-
ing rearrangement inequalities. Within the same setting, always for the negative
Laplacian, Lions [21] proved the existence of infinitely many spherically symmetric
solutions by application of abstract critical point theory both without the constraint
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and with the constraint for a more general radially symmetric convolution poten-
tial. The non-relativistic Hartree equation is also known as the Choquard–Pekard
or Schrödinger–Newton equation, and recently a large number of papers have been
devoted to the study of solitary states and its semiclassical limit (see [1,6–9,13,19,
22,24,25,27–29,31,32] and references therein).

In [20], Lieb and Yau solved the pseudo-relativistic Hartree equation (1.2) by
minimization on the sphere {φ ∈ L2(R3) |

∫
R3 |φ|2 = M}, and they proved that a

radially symmetric ground state exists in H1/2(R3) whenever M < Mc, the so-
called Chandrasekhar mass. These results have been generalized in [11]. Later,
Lenzmann proved in [16] that this ground state is unique (up to translations and
phase change) provided that the mass M is sufficiently small; some results about
the non-degeneracy of the ground state solution are also given.

Quite recently, Coti Zelati and Nolasco (see [10]) studied the equation√
−Δ + m2u = μu + ν|u|p−2u + σ(W ∗ u2)u

under the assumptions that p ∈ (2, 2N/(N − 1)), N � 3, μ < m, m > 0, ν � 0 and
σ � 0 but not both 0, W ∈ Lr(RN ) + L∞(RN ), W � 0, r > N/2, W is radially
symmetric and decays to 0 at ∞. They proved the existence of a positive radial
solution that decays to 0 at ∞ exponentially fast. For the case σ < 0, μ < m, we
also refer the reader to [26] where a more general nonlinear term is considered.

In the present work we consider a generalized pseudo-relativistic Hartree equation√
−Δ + m2u + V u = (W ∗ |u|θ)|u|θ−2u in R

N , (1.3)

where N � 3, m > 0, V is an external potential and W � 0 is a radially symmetric
convolution kernel such that lim|x|→+∞ W (|x|) = 0.

In [23] Melgaard and Zongo proved that (1.3) has a sequence of radially symmetric
solutions of higher and higher energy, assuming that V is a radially symmetric
potential, θ = 2, and under some restrictive assumptions on the structure of the
kernel W .

Here we are interested in finding positive ground state solutions for the pseudo-
relativistic Hartree equation (1.3) when V is not symmetric. In such a case, the non-
locality of

√
−Δ + m2 and the presence of the external potential V (not symmetric)

complicate the analysis of the pseudo-relativistic Hartree equation in a substantial
way. The main difficulty is, as usual, the lack of compactness.

In what follows, we make the following assumptions.

(V1) V : R
N → R is a continuous and bounded function, and V (y) + V0 � 0 for

every y ∈ R
N and for some V0 ∈ (0, m).

(V2) There exist R > 0 and k ∈ (0, 2m) such that

V (x) � V∞ − e−k|x| for all |x| � R, (1.4)

where V∞ = lim inf |x|→+∞ V (x) > 0.

(W) W ∈ Lr(RN ) + L∞(RN ) for some

r > max
{

1,
N

N(2 − θ) + θ

}
and 2 � θ <

2N

N − 1
.
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Our main result is the following.

Theorem 1.1. Retain assumptions (V1), (V2) and (W). Equation (1.3) then has
at least a positive solution u ∈ H1/2(RN ).

We remark that theorem 1.1 applies for a large class of bounded electric potentials
without symmetric constraints and covers the physically relevant cases of Newton-
or Yukawa-type two-body interactions, i.e. W (x) = 1/|x|λ with 0 < λ < 2, W (x) =
e−|x|/|x|.

The theorem is proved using variational methods. Firstly we transform the prob-
lem into an elliptic equation with nonlinear Neumann boundary conditions, using
a local realization of the pseudo-differential operator

√
−Δ + m2 as in [3,4,10,11].

The corresponding solutions are found as critical points of an Euler functional
defined in H1(RN+1

+ ). We show that such a functional satisfies the Palais–Smale
condition below some energy level determined by the value of V at ∞, and we prove
the existence of a mountain pass solution under the level where the Palais–Smale
condition holds. Finally, we also provide some asymptotic decay estimates of the
found solution.

Local and global well-posedness results for pseudo-relativistic Hartree equations
with external potential were proved by Lenzmann in [15].

2. The variational framework

Before we state our main result, we recall a few basic facts about the functional
setting of our problem. The operator

√
−Δ + m2 can be defined by Fourier analysis:

given any φ ∈ L2(R3) such that∫
R3

(m2 + |k|2)|Fφ|2 dk < +∞,

we define
√

−Δ + m2φ via the identity

F(
√

−Δ + m2φ) =
√

m2 + |k|2Fφ,

F being the usual Fourier transform. The condition∫
R3

√
m2 + |k|2|Fφ|2 dk < +∞

is known to be equivalent to φ ∈ H1/2(R3). In this sense, the fractional Sobolev
space H1/2(R3) is the natural space to work in. However, this definition is not
particularly convenient for variational methods, and we prefer a local realization of
the operator in the augmented half-space, originally inspired by the paper [5] for
the fractional Laplacian.

Given u ∈ S(RN ), the Schwarz space of rapidly decaying smooth functions
defined on R

N , there exists one and only one function v ∈ S(RN+1
+ ) (where R

N+1
+ =

(0, +∞) × R
N ) such that

−Δv + m2v = 0 in R
N+1
+ ,

v(0, y) = u(y) for y ∈ R
N = ∂R

N+1
+ .
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Setting

Tu(y) = −∂v

∂x
(0, y),

we easily see that the problem

−Δw + m2w = 0 in R
N+1
+ ,

w(0, y) = Tu(y) for y ∈ ∂R
N+1
+ = {0} × R

N � R
N

is solved by w(x, y) = −(∂v/∂x)(x, y). From this we deduce that

T (Tu)(y) = −∂w

∂x
(0, y) =

∂2v

∂x2 (0, y) = (−Δyv + m2v)(0, y),

and hence T ◦T = (−Δy +m2), namely, T is a square root of the Schrödinger oper-
ator −Δ + m2 on R

N = ∂R
N+1
+ .

In the following, we write | · |p for the norm in Lp(RN ) and ‖ · ‖p for the norm in
Lp(RN+1

+ ). The symbol ‖ · ‖ is reserved for the usual norm of H1(RN+1
+ ).

The theory of traces for Sobolev spaces ensures that every function v ∈ H1(RN+1
+ )

possesses a trace γ(v) ∈ H1/2(RN ) that satisfies the inequality (see [30, lemma 13.1])

|γ(v)|pp � p‖v‖p−1
2(p−1)

∥∥∥∥∂v

∂x

∥∥∥∥
2

(2.1)

whenever 2 � p � 2N/(N − 1). This also implies that, for every λ > 0,
∫

RN

γ(v)2 � λ

∫
R

N+1
+

|v|2 +
1
λ

∫
R

N+1
+

∣∣∣∣∂v

∂x

∣∣∣∣
2

. (2.2)

As a particular case, we record∫
RN

γ(v)2 � m

∫
R

N+1
+

|v|2 +
1
m

∫
R

N+1
+

|∇v|2. (2.3)

It is also known (see [30, lemma 16.1]) that any element of H1/2(RN ) is the trace
of some function in H1(RN+1

+ ).
From the previous construction and following [3, 4, 10, 11], we can replace the

non-local problem (1.3) with the local Neumann problem

−Δv + m2v = 0 in R
N+1
+ ,

−∂v

∂x
= −V (y)v + (W ∗ |v|θ)|v|θ−2v in R

N = ∂R
N+1
+ .

⎫⎬
⎭ (2.4)

We are looking for solutions to (2.4) as critical points of the Euler functional
I : H1(RN+1

+ ) → R defined by

I(v) = 1
2

∫∫
R

N+1
+

(|∇v|2 + m2v2) dxdy

+ 1
2

∫
RN

V (y)γ(v)2 dy − 1
2θ

∫
RN

(W ∗ |γ(v)|θ)|γ(v)|θ dy. (2.5)

We recall the well-known Young inequality.
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Proposition 2.1. Assume that f ∈ Lp(RN ), g ∈ Lq(RN ) with 1 � p, q, r � ∞,
p−1 + q−1 = 1 + r−1. Then

|f ∗ g|r � |f |p|g|q. (2.6)

A major tool for our analysis is the generalized Hardy–Littlewood–Sobolev in-
equality. We recall that Lq

w(RN ) is the weak Lq space; see [18] for a definition. We
denote by | · |q,w the usual norm in Lq

w(RN ).

Proposition 2.2 (Lieb [18]). Assume that p, q and t lie in (1, +∞) and that
p−1 + q−1 + t−1 = 2. Then, for some constant Np,q,t > 0 and for any f ∈ Lp(RN ),
g ∈ Lt(RN ) and h ∈ Lq

w(RN ), we have the inequality
∣∣∣∣
∫

f(x)h(x − y)g(y) dxdy

∣∣∣∣ � Np,q,t|f |p|g|t|h|q,w. (2.7)

For the sake of completeness, we check that the functional I is well defined. As
a consequence of (2.1), for every p ∈ [2, 2N/(N − 1)] we deduce that

|γ(v)|p � p − 1
p

‖v‖2(p−1) + ‖∇v‖2 � Cp‖v‖, (2.8)

and the term
∫

RN V (y)γ(v)2 dy in the expression of I(v) is finite because of the
boundedness of V . Writing W = W1 +W2 ∈ Lr(RN )+L∞(RN ) and using (2.7) we
can estimate the convolution term as follows:∫

RN

(W ∗ |γ(v)|θ)|γ(v)|θ =
∫

RN

(W1 ∗ |γ(v)|θ)|γ(v)|θ +
∫

RN

(W2 ∗ |γ(v)|θ)|γ(v)|θ

� |W1|r|γ(v)|2θ
2rθ/(2r−1) + |W2|∞|γ(v)|2θ

θ

� |W1|r‖v‖2θ + |W2|∞‖v‖2θ. (2.9)

Since

r >
N

N(2 − θ) + θ
and 2 � θ <

2N

N − 1
,

we have that

2r − 1
2θr

=
1
θ

− 1
2θr

>
1
θ

− N(2 − θ) + θ

2θN
=

N − 1
2N

,

and thus
2θr

2r − 1
<

2N

N − 1
,

and from (2.9) we see that the convolution term in I is finite. It is easy to check,
by the same token, that I ∈ C1(H1(RN+1

+ )).

Remark 2.3. As we have just seen, estimates involving the kernel W always split
into two parts. As a rule, those with the bounded kernel W2 ∈ L∞(RN ) are straight-
forward. In the following, we often focus on the contribution of W1 ∈ Lr(RN ) and
drop the easy computation with W2.
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3. The limit problem

We consider the space of the symmetric functions

H� = {u ∈ H1(RN+1
+ ) | u(x, Ry) = u(x, y) for all R ∈ O(N)}.

We consider the functional Jα : H� → R defined by setting

Jα(v) = 1
2

∫∫
R

N+1
+

(|∇v|2 + m2v2) dxdy

+ 1
2

∫
RN

αγ(v)2 dy − 1
2θ

∫
RN

(W ∗ |γ(v)|θ)|γ(v)|θ dy, (3.1)

where W � 0 is radially symmetric, lim|x|→+∞ W (|x|) = 0 and assumption (W)
holds. If α > −m, we can extend the arguments in [10, theorem 4.3], for the case
θ = 2, and prove that the functional Jα has a mountain pass critical point vα ∈ H�,
namely,

Jα(vα) = Eα = inf
g∈Γ�

max
t∈[0,1]

Jα(g(t)), (3.2)

where Γ� = {g ∈ C([0, 1];H�) | g(0) = 0, Jα(g(1)) < 0}. The critical point vα

corresponds to a weak solution of

−Δv + m2v = 0 in R
N+1
+ ,

−∂v

∂x
= −αv + (W ∗ |v|θ)|v|θ−2v in R

N = ∂R
N+1
+ .

⎫⎬
⎭ (3.3)

In the following, we need a standard characterization of the mountain pass level
Eα. We define the Nehari manifold Nα associated with the functional Jα as

Nα =
{

v ∈ H�

∣∣∣∣
∫∫

RN ×RN

|∇v|2 + m2v2 dxdy

= −α

∫
RN

γ(v)2 dy +
∫

RN

(W ∗ |γ(v)|θ)|γ(v)|θ dy

}
. (3.4)

Lemma 3.1. The following identities hold true:

inf
v∈Nα

Jα(v) = inf
v∈H�

max
t>0

Jα(tv) = Eα. (3.5)

Proof. The proof is straightforward, since Jα is the sum of homogeneous terms; we
follow the method of [33]. First of all, for v ∈ H� we compute

Jα(tv) =
t2

2

( ∫∫
RN ×RN

|∇v|2 + m2v2 dxdy + α

∫
RN

γ(v)2 dy

)

− t2θ

2θ

∫
RN

(W ∗ |γ(v)|θ)|γ(v)|θ dy. (3.6)

Since θ � 2, and by using (2.3), it is easy to check that t ∈ (0, +∞) �→ J(tv)
possesses a unique critical point t = t(v) > 0 such that t(v)v ∈ Nα. Moreover, since
Jα has the mountain pass geometry, t = t(v) is a maximum point. It follows that

inf
v∈Nα

Jα(v) = inf
v∈H�

max
t>0

Jα(tv).

https://doi.org/10.1017/S0308210513000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513000450


Ground states for the pseudo-relativistic Hartree equation 79

The manifold Nα splits H� into two connected components, and the component
containing 0 is open. In addition, Jα is non-negative on this component, because
〈J ′

α(tv), v〉 � 0 when 0 < t � t(v). It follows immediately that any path γ : [0, 1] →
H� with γ(0) = 0 and Jα(γ(1)) < 0 must cross Nα, so

Eα � inf
v∈Nα

Jα(v).

The proof of (3.5) is complete.

Following a completely analogous argument in [10, theorems 3.14 and 5.1], we
can state the following result.

Theorem 3.2. Let α + m > 0 and let (W) hold. Then vα ∈ C∞([0, +∞) × R
N ),

vα(x, y) > 0 in [0,∞) × R
N and for any 0 � σ ∈ (−α, m) there exists C > 0 such

that
0 < vα(x, y) � Ce−(m−σ)

√
x2+|y|2e−σx

for all (x, y) ∈ [0, +∞) × R
N . In particular,

0 < vα(0, y) � Ce−δ|y| for every y ∈ R
N ,

where 0 < δ < m + α if α � 0, and δ = m if α > 0.

4. The Palais–Smale condition

For any v ∈ H1(RN+1
+ ) we define

D(v) =
∫∫

RN ×RN

W (x − y)|γ(v)(x)|θ|γ(v)(y)|θ dxdy.

Inequality (2.9) immediately yields that

D(v) � K‖v‖2θ (4.1)

for every v ∈ H1(RN+1
+ ).

Lemma 4.1. Let {vn}n be a sequence in H1(RN+1
+ ) such that vn ⇀ 0 weakly in

H1(RN+1
+ ),

I(vn) → c < EV∞ and I ′(vn) → 0,

where V∞ := lim inf |x|→∞ V (x) > 0. A subsequence of {vn}n then converges strongly
to 0 in H1(RN+1

+ ).

Proof. First, we recall (2.3), and we rewrite I(v) as

I(v) = 1
2

∫
R

N+1
+

|∇v|2 + m2|v|2 + 1
2

∫
RN

(V + V0)γ(v)2 − V0

2

∫
RN

γ(v)2 − 1
2θ

D(v),

so that V + V0 � 0 everywhere. Now,

c + 1 + ‖vn‖ � I(vn) − 1
2
〈I ′(vn), vn〉 =

(
1
2

− 1
2θ

)
D(vn), (4.2)
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which implies that, for some constants C1 and C2,

1
2θ

D(vn) � C1‖vn‖ + C2.

But then, using (2.3),

c + 1 � I(vn)

� 1
2

∫
R

N+1
+

|∇vn|2 +
m2

2

∫
R

N+1
+

|vn|2

− V0

2

(
m

∫
R

N+1
+

|vn|2 +
1
m

∫
R

N+1
+

|∇vn|2
)

− C1‖vn‖ − C2

=
1
2

(
1 − V0

m

) ∫
R

N+1
+

|∇vn|2 +
m(m − V0)

2

∫
R

N+1
+

|vn|2 − C1‖vn‖ − C2,

and since m − V0 > 0 we deduce that {vn} is a bounded sequence in H1(RN+1
+ ).

A standard argument shows that ‖vn‖ is bounded in H1(RN+1
+ ),

θ − 1
2θ

(
‖vn‖2 +

∫
RN

V (y)γ(vn)2 dy

)
→ c and

θ − 1
2θ

D(vn) → c.

Therefore, c � 0. If c = 0, then

o(1) =
(

‖vn‖2 +
∫

RN

V (y)γ(vn)2 dy

)

�
(

1 − V0

m

) ∫
R

N+1
+

|∇vn|2 + m(m − V0)
∫

R
N+1
+

|vn|2,

and m − V0 > 0 yields that vn → 0 strongly in H1(RN+1
+ ).

Assume, therefore, that c > 0. Fix α < V∞ such that c < Eα, and fix R0 > 0 such
that V (x) � α if |x| � R0. Let ε ∈ (0, 1). Since {vn}n is bounded in H1(RN+1

+ ),
there exists Rε > R0 such that Rε → +∞ as ε → 0 and, after passing to a
subsequence,

∫∫
SRε

(|∇vn|2 + m2v2
n) dxdy +

∫
ARε

V (y)γ(vn)2 dy < ε for all n ∈ N, (4.3)

where

SRε = {z = (x, y) ∈ R
N+1
+ | Rε < |z| < Rε + 1},

ARε = {y ∈ R
N | Rε < |y| < Rε + 1}.

If this is not the case, for any m ∈ N, m � R0, there exists ν(m) ∈ N such that
∫∫

Sm

(|∇vn|2 + m2v2
n) dxdy +

∫
Am

V (y)γ(vn)2 dy � ε (4.4)
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for any n ∈ N, n � ν(m). We can assume that ν(m) is non-decreasing. Therefore,
for any integer m � R0 there exists an integer ν(m) such that

‖vn‖2 +
∫

RN

V (y)γ(vn)2 dy �
∫∫

Tm

(|∇vn|2 + m2v2
n) dxdy +

∫
Bm

V (y)γ(vn)2 dy

� (m − R0)ε (4.5)

for any n � ν(m), where Tm = {z = (x, y) ∈ R
N+1
+ | R0 < |z| < m} and Bm =

{y ∈ R
N | R0 < |y| < m}, which contradicts the fact that ‖vn‖ is bounded.

We may assume that |vn| → 0 strongly in Lp
loc(R

N ) with p < 2N/(N − 1), and
thus |γ(vn)| → 0 strongly in Lp

loc(R
N ).

Let ξε ∈ C∞(RN+1
+ ) be a symmetric function, namely, ξε(x, gy) = ξε(x, y) for all

g ∈ O(N), x > 0, y ∈ R
N . Moreover, assume that ξε(z) = 0 if |z| � Rε, ξε(z) = 1

if |z| � Rε + 1 and ξ(z) ∈ [0, 1] for all z ∈ R
N+1
+ . Set wn = ξεvn. We now apply

Young’s inequality (2.7) with p = q = 2r/(2r − 1) and

h = W, f = |γ(vn)|θ, g = |γ(vn)|θ − |γ(wn)|θ

to obtain

|D(vn) − D(wn)|

�
∫∫

RN ×RN

W (x − y)||γ(vn)(x)|θ|γ(vn)(y)|θ − |γ(wn)(x)|θ|γ(wn)(y)|θ| dxdy

=
∫∫

RN ×RN

W (x − y)||γ(vn)(x)|θ|γ(vn)(y)|θ − |γ(vn)(x)|θ|γ(wn)(y)|θ

+ |γ(vn)(x)|θ|γ(wn)(y)|θ − |γ(wn)(x)|θ|γ(wn)(y)|θ| dxdy

�
∫∫

RN ×RN

W (x − y)|γ(vn)(x)|θ||γ(vn)(y)|θ − |γ(wn)(y)|θ| dxdy

+
∫∫

RN ×RN

W (x − y)|γ(wn)(y)|θ||γ(vn)(x)|θ − |γ(wn)(x)|θ| dxdy

� 2
∫∫

RN ×RN

W (x − y)|γ(vn)(x)|θ||γ(vn)(y)|θ − |γ(wn)(y)|θ| dxdy

� 2C|W |r|γ(vn)|θ2rθ/(2r−1)||γ(vn)|θ − |γ(wn)|θ|2r/(2r−1) = o(1), (4.6)

since |γ(vn)|θ −|γ(wn)|θ → 0 strongly in L
2r/(2r−1)
loc (RN ). Here and in the following

C denotes some positive constant independent of n, not necessarily the same one
each time. Similarly,∣∣∣∣

∫
RN

(W ∗ |γ(vn)|θ)|γ(vn)|θ−2γ(vn)γ(wn)

−
∫

RN

(W ∗ |γ(wn)|θ)|γ(wn)|θ−2γ(wn)γ(wn)
∣∣∣∣

� 2C|W |r|γ(vn)|θ2rθ/(2r−1)||γ(vn)|θ − |γ(wn)|θ|2r/(2r−1)

= o(1).
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Therefore,

|I ′(vn)wn − I ′(wn)wn|

� C

∫∫
Sε

(|∇vn|2 + m2v2
n) dxdy +

∫
Aε

V (y)γ(vn)2 dy + o(1).

Set un = (1 − ξ)vn. Analogously, we have

|I ′(vn)un − I ′(un)un|

� C

∫∫
Sε

(|∇un|2 + m2u2
n) dxdy +

∫
Aε

V (y)γ(un)2 dy + o(1).

Therefore,

I ′(un)un = O(ε) + o(1) (4.7)

and

I ′(wn)wn = O(ε) + o(1). (4.8)

From (4.7), we derive that

I(un) =
θ − 1
2θ

D(un) + O(ε) + o(1) � O(ε) + o(1).

Consider tn > 0 such that I ′(tnwn)(tnwn) = 0 for any n, namely,

t2(θ−1)
n =

‖wn‖2 +
∫

RN V (y)γ(wn)2 dy

D(wn)
.

From (4.8), we have that tn = 1+O(ε)+ o(1). Therefore, from the characterization
of Eα we have

c + o(1) = I(vn) = I(un) + I(wn) + O(ε)
� I(wn) + O(ε) + o(1)
� I(tnwn) + O(ε) + o(1)
� Eα + O(ε) + o(1).

As n → +∞, ε → 0, we derive that c � Eα, which is a contradiction. Hence, c = 0
and vn → 0 strongly in H1(RN+1

+ ).

Lemma 4.2. Let {vn}n be a sequence in H1(RN+1
+ ) such that vn ⇀ v weakly in

H1(RN+1
+ ). The following hold.

(i) D
′(vn)u → D

′(v)u for all u ∈ H1(RN+1
+ ).

(ii) After passing to a subsequence, there exists a sequence {ṽn}n in H1(RN+1
+ )

such that ṽn → v strongly in H1(RN+1
+ ),

D(vn) − D(vn − ṽn) → D(v) in R,

D
′(vn) − D

′(vn − ṽn) → D
′(v) in H−1(RN+1

+ ).
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Proof. The proof is completely analogous to that of [1, lemma 3.5]. The function
ṽn is the product of vn with a smooth cut-off function, so ṽn belongs to H1(RN+1

+ )
if vn does. We omit the details.

Proposition 4.3. The functional I : H1(RN+1
+ ) → R satisfies the Palais–Smale

condition (PS)c at each c < EV∞ , where V∞ := lim inf |x|→∞ V (x).

Proof. Let vn ∈ H1(RN+1
+ ) satisfy

I(vn) → c < EV∞ and I ′(vn) → 0

strongly in the dual space H−1(RN+1
+ ). Since {vn}n is bounded in H1(RN+1

+ ), it
contains a subsequence such that vn ⇀ v weakly in H1(RN+1

+ ) and γ(vn) ⇀ γ(v)
in Lp(RN ) for any p ∈ [2, 2N/(N − 1)].

By lemma 4.2, v solves (1.3) and, after passing to a subsequence, there exists a
sequence {ṽn}n in H1(RN+1

+ ) such that un := vn − ṽn ⇀ 0 weakly in H1(RN+1
+ ),

I(vn) − I(un) → I(v) in R,

I ′(vn) − I ′(un) → 0 strongly in H−1(RN+1
+ ).

Hence, I(v) = ((θ − 2)/2θ)D(v) � 0,

I(un) → c − I(v) � c and I ′(un) → 0

strongly in H−1(RN+1
+ ). By lemma 4.1 a subsequence of {un}n converges strongly to

0 in H1(RN+1
+ ). This implies that a subsequence of {vn}n converges strongly to v

in H1(RN+1
+ ).

5. Mountain pass geometry

We consider the limit problem

−Δv + m2v = 0 in R
N+1
+ ,

−∂v

∂x
= −V∞v + (W ∗ |v|θ)|v|θ−2v in R

N = ∂R
N+1
+ ,

⎫⎬
⎭ (5.1)

where V∞ := lim inf |x|→∞ V (x) > 0. By theorem 3.2, the first mountain pass value
EV∞ of the functional JV∞ associated with (5.1) is attained at a positive function
ω∞ ∈ H1(RN+1

+ ), which is symmetric, ω∞(x, gy) = ω∞(x, y), for all g ∈ O(N),
x > 0, y ∈ R

N . Moreover, since V∞ > 0, we are allowed to choose σ = 0, and there
exists C > 0 such that

0 < ω∞(x, y) � Ce−m
√

x2+|y|2 (5.2)

for all (x, y) ∈ [0, +∞)×R
N . In particular, γ(ω∞) is radially symmetric in R

N and

0 < γ(ω∞)(y) � Ce−m|y|

for any y ∈ R
N . As in theorem 3.2, a bootstrap procedure shows that

ω∞ ∈ C∞([0, +∞) × R
N ).
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Lemma 5.1. We have

|∇ω∞(z)| = O(e−m|z|) as |z| → ∞. (5.3)

Proof. We consider the equation
√

−Δ + m2u + V∞u = (W ∗ |u|θ)|u|θ−2u in R
N

satisfied by ω∞. For any index i = 1, 2, . . . , N we write vi = ∂ω∞/∂yi and observe
that vi satisfies

√
−Δ + m2vi + V∞vi = θ(W ∗ ωθ−1

∞ vi)ωθ−1
∞ + (θ − 1)(W ∗ ωθ

∞)ωθ−2
∞ vi (5.4)

or, equivalently,

−Δvi + m2vi = 0 in R
N+1
+ ,

−∂vi

∂x
= −V∞vi + θ(W ∗ ωθ−1

∞ vi)ωθ−1
∞ + (θ − 1)(W ∗ ωθ

∞)ωθ−2
∞ vi in R

N .

The differentiation of the equation is allowed by the regularity of the solution
ω∞ (see [10, theorem 3.14]). Moreover, ω∞ ∈ Lp(RN+1

+ ) for any p > 1, because
it is bounded and decays exponentially fast at ∞. By elliptic regularity, ω∞ ∈
W 2,p(RN+1

+ ) for any p > 1, and, in particular, vi ∈ Lp(RN+1
+ ) for any p > 1. An

interpolation estimate shows that ωθ−1
∞ vi ∈ Lp(RN+1

+ ) for any p > 1. Then the
convolution W ∗ (ωθ−1

∞ vi) ∈ L∞(RN+1
+ ), and the term

(W ∗ (ωθ−1
∞ vi))ωθ−1

∞ ∈ L2(RN+1
+ )

by the summability properties of ω∞. The term

(W ∗ ωθ
∞)ωθ−2

∞ vi ∈ L2(RN+1
+ )

trivially.
The proof of [10, theorem 3.14] now shows that vi(x, y) → 0 as x + |y| → +∞. A

comparison with the function e−m
√

x2+|y|2 as in [10, theorem 5.1] shows the validity
of (5.3).

Fix ε ∈ (0, (2m − k)/(2m + k)). For R > 0, we consider a symmetric cut-off
function ξR ∈ C∞(RN+1

+ ), namely, ξR(x, gy) = ξR(x, y) for all g ∈ O(N), x > 0,
y ∈ R

N such that ξR(z) = 0 if |z| � R and ξR(z) = 1 if |z| � R(1 − ε) and
ξR(z) ∈ [0, 1] for all z ∈ R

N+1
+ .

We define ωR(z) := ω∞(z)ξR(z) for any z ∈ R
N+1
+ .

Lemma 5.2. As R → ∞,
∣∣∣∣
∫∫

R
N+1
+

|∇ω∞|2 − |∇ωR|2
∣∣∣∣ = O(RN−1e−2m(1−ε)R), (5.5)

|D(ω∞) − D(ωR)| = O(RN−1e−θm(1−ε)R). (5.6)
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Proof. The proof of (5.5) is standard. Indeed, using (5.3) and cylindrical coordinates
in R

N+1
+ ,

∣∣∣∣
∫∫

R
N+1
+

|∇ωR|2 − |∇ω∞|2
∣∣∣∣ � C

∫∫
{z∈R

N+1
+ |(1−ε)R<|z|}

|∇ω∞|2

� C1

∫∫
{z∈R

N+1
+ |(1−ε)R<|z|}

e−2m|z| dz

� C1R
N−1e−2m(1−ε)R.

To prove (5.6), we recall that W = W1 + W2 ∈ Lr(RN ) + L∞(RN ). The difference
D(γ(ω∞)) − D(γ(ωR)) can be split into two parts, the one with W1 and the one
with W2. The former can be estimated as

|D(γ(ω∞)) − D(γ(ωR))|

�
∫

RN ×RN

|γ(ω∞)(x)|θ|γ(ω∞)(y)|θ − |γ(ωR)(x)|θ|γ(ωR)(y)|θ|W1(x − y) dxdy

� 2
∫

RN ×RN

W1(x − y)|γ(ω∞)(x)|θ||γ(ω∞)(y)|θ − |γ(ωR)(y)|θ| dxdy

� 2‖|γ(ω∞)|θ − |γ(ωR)|θ‖2r/(2r−1)‖γ(ω∞)‖θ
2rθ/(2r−1)‖W1‖r

� C

( ∫ ∞

(1−ε)R
tN−1e−m(2rθ/(2r−1))t dt

)(2r−1)/2r

= C2R
N−1e−θm(1−ε)R.

The latter is simpler, since we directly use the L∞-norm of W2.

For s ∈ R
N , set Rs := ((k + 2m)/4m)|s|. Since k ∈ (0, 2m), it results that

Rs ∈ (0, |s|). Hence, |s| − Rs → +∞, as |s| → +∞. With this notation, we define
the function

ωRs
s (z) := ω∞(x, y − s)ξRs(x, y − s),

where z = (x, y) ∈ R
N+1.

Lemma 5.3. There exist �0, d0 ∈ (0,∞) such that

I(t(ωRs
s )) � EV∞ − d0e−k|y| for all t � 0,

provided that |s| � �0.

Proof. For u ∈ H1(RN+1
+ ) we have by (2.3) that maxt�0 I(tu) = I(tuu) if and only

if

tu =
(‖u‖2 +

∫
RN V (y)γ(u)2 dy

D(u)

)1/(2θ−2)

.

Indeed,

‖u‖2 +
∫

RN

V (y)γ(u)2 dy �
(

1 − V0

m

) ∫
R

N+1
+

|∇u|2 + m(m − V0)
∫

R
N+1
+

|u|2 > 0.

(5.7)
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So, since ωRs
∞ → ω∞ in H1(RN+1

+ ) as |s| → ∞, and taking into account that
IV∞(ω∞) = maxt�0 IV∞(t(ω∞)), there exist 0 < t1 < t2 < +∞ such that

max
t�0

I(t(ωRs
s )) = max

t1�t�t2
I(t(ωRs

s ))

for all large enough |s|.
Let t ∈ [t1, t2]. Write V = V + −V −, where V +(x) = max{V (x), 0} and V −(x) =

max{−V (x), 0}, and remark that the assumption V∞ > 0 implies that V (x) =
V +(x) whenever |x| is sufficiently large. Assumption (V2) therefore yields that∫

RN

V (y)(tγ(ωRs
s ))2(y) dy

� t2
∫

|y|�Rs

V +(y + s)(γ(ωRs))2(y) dy

� t2
∫

|y|�Rs

(V∞ − c0e−k|y+s|)(γ(ω∞))2(y) dx

�
∫

RN

V∞(tγ(ω∞))2 −
(

c0t
2
1

∫
|y|�1

e−k|y|(γ(ω∞))2(y) dy

)
e−k|s|

for |s| large enough.
Therefore, using lemma 5.2, we get that

I(t(ωRs)s) = 1
2
‖t(ωRs)s‖2 + 1

2

∫
RN

V (y)(tγ(ω∞))2 dy − 1
2θ

D(tωRs
s )

� 1
2
‖tω∞‖2 + 1

2

∫
RN

V∞(tγ(ω∞))2 dy − 1
2θ

D(tω∞)

− Ce−k|s| + O(RN−1
s e−2m(1−ε)Rs)

� max
t�0

IV∞(tω∞) − d0e−κ|s|

= EV∞ − d0e−k|s|

for sufficiently large |s|, as our choices of ε and Rs ensure that 2m(1 − ε)Rs > k|s|.

6. Proof of theorem 1.1

The proof of theorem 1.1 is now immediate. The Euler functional I satisfies the
geometric assumptions of the mountain pass theorem (see [2]) on H1(RN+1

+ ). Since
it also satisfies the Palais–Smale condition, as we showed in the previous sections,
we conclude that I possesses at least a critical point v ∈ H1(RN+1

+ ). In addition,

I(v) = c = inf
γ∈Γ

max
0�t�1

I(γ(t)),

where Γ = {γ ∈ C([0, 1], H1(RN+1
+ )) | γ(0) < 0, I(γ(1)) < 0}.

To prove that v � 0, we note that, reasoning as in (5.7), the map t �→ I(tw)
has one and only one strict maximum point at t = 1 whenever w ∈ H1(RN+1

+ ) is a
critical point of I. Since I(|w|) � I(w) for all w ∈ H1(RN+1

+ ), and

I(t|w|) � I(tw) < I(w) for every t > 0, t �= 1,
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we conclude that
c � sup

t�0
I(t|v|) � I(v) = c.

We claim that |v| is also a critical point of I. Indeed, otherwise, we could deform
the path t �→ t|v| into a path γ ∈ Γ such that I(γ(t)) < c for every t � 0, a
contradiction with the definition of c.

7. Further properties of the solution

In the next statement we collect some additional features of the weak solution found
above.

Theorem 7.1. Let u be the solution to (1.3) provided by theorem 1.1. Then u ∈
C∞(RN ) ∩ Lq(RN ) for every q � 2. Moreover,

0 < u(y) � Ce−m|y|. (7.1)

Proof. The regularity of u can be established by mimicking the proofs in [10, § 3].
The potential function V is harmless, being bounded from above and below.

To prove the exponential decay at ∞, we introduce a comparison function

WR(x, y) = CRe−m
√

x2+|y|2 for every (x, y) ∈ R
N+1
+ ,

and we fix R > 0 and CR > 0 in a suitable manner. We also introduce the notation

B+
R = {(x, y) ∈ R

N+1
+ |

√
x2 + |y|2 < R},

Ω+
R = {(x, y) ∈ R

N+1
+ |

√
x2 + |y|2 > R},

ΓR = {(0, y) ∈ ∂R
N+1
+ | |y| � R}.

It is easily seen that

−ΔWR + m2WR � 0 in Ω+
R ,

−∂WR

∂x
= 0 on Γ+

R .

Set w(x, y) = WR(x, y) − v(x, y), and remark that −Δw + m2w � 0 in Ω+
R . If

CR = emR max∂B+
R

v, then w � 0 on ∂B+
R and limx+|y|→+∞ w(x, y) = 0. We claim

that w � 0 in the closure Ω̄+
R .

If not, then infΩ̄+
R

w < 0, and the strong maximum principle provides a point
(0, y0) ∈ ΓR such that

w(0, y0) = inf
Ω̄+

R

w < w(x, y) for every (x, y) ∈ Ω+
R .

For some 0 < λ < m, we introduce z(x, y) = w(x, y)eλx. As before,

lim
x+|y|→+∞

z(x, y) = 0
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and z � 0 on ∂B+
R . Since

0 � −Δw + m2w = e−λx

(
−Δz + 2λ

∂z

∂x
+ (m2 − λ2)z

)
,

the strong maximum principle applies and yields that infΓR
z = infΩ̄+

R
z < z(x, y) for

every (x, y) ∈ Ω+
R . Therefore, z(0, y0) = infΓR

z = infΓR
w < 0. Hopf’s lemma now

gives

−∂w

∂x
(0, y0) − λw(0, y0) < 0.

But this is impossible. Indeed,

−∂w

∂x
(0, y0) = −V (y0)v(0, y0) − (W ∗ |v|θ)|v(0, y0)|θ−2v(0, y0),

and hence

−∂w

∂x
(0, y0)−λv(0, y0) = −λv(0, y0)−V (y0)v(0, y0)−(W ∗|v|θ)|v(0, y0)|θ−2v(0, y0).

Recall that v(0, y0) < 0 and λ > 0; if we can show that

−V (y0)v(0, y0) − (W ∗ |v|θ)|v(0, y0)|θ−2v(0, y0) � 0,

we will be done. First of all, we recall (see [10, p. 70] and also [7, lemma 2.3]) that

lim
|y|→+∞

(W ∗ |v|θ)|v(0, y)|θ−2v(0, y) = 0,

since lim|y|→+∞ W (y) = 0. So, we choose R > 0 large enough that

|(W ∗ |v|θ)|v(0, y0)|θ−2v(0, y0)|

is very small. Choosing R even larger, we can also assume that V (y0) > 0, since
V∞ > 0. Hence, −V (y0)v(0, y0) − (W ∗ |v|θ)|v(0, y0)|θ−2v(0, y0) � 0, and the proof
is finished.

To summarize, we have proved that, whenever x + |y| is sufficiently large,

v(x, y) � WR(x, y),

and hence the validity of (7.1) follows.

Acknowledgements

S.C. was supported by the MIUR (Project PRIN 2009 ‘Variational and topological
methods in the study of nonlinear phenomena’ ) and by the GNAMPA (INDAM)
(Project 2013 ‘Problemi differenziali di tipo ellittico nei fenomeni fisici non lin-
eari’ ). S.S. was supported by the MIUR (Project PRIN 2009 ‘Teoria dei punti
critici e metodi perturbativi per equazioni differenziali nonlineari’ ).

https://doi.org/10.1017/S0308210513000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513000450


Ground states for the pseudo-relativistic Hartree equation 89

References

1 N. Ackermann. On a periodic Schrödinger equation with nonlocal superlinear part. Math.
Z. 248 (2004), 423–443.

2 A. Ambrosetti and P. H. Rabinowitz. Dual variational methods in critical point theory and
applications. J. Funct. Analysis 14 (1973), 349–381.
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4 X. Cabré and J. Tan. Positive solutions of nonlinear problems involving the square root of
the Laplacian. Adv. Math. 224 (2010), 2052–2093.

5 L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian.
Commun. PDEs 32 (2007), 1245–1260.

6 Y. Cho and T. Ozawa. On the semirelativistic Hartree-type equation. SIAM J. Math.
Analysis 38 (2006), 1060–1074.

7 S. Cingolani, S. Secchi and M. Squassina. Semiclassical limit for Schrödinger equations
with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. A140 (2010),
973–1009.

8 S. Cingolani, M. Clapp and S. Secchi. Multiple solutions to a magnetic nonlinear Choquard
equation. Z. Angew. Math. Phys. 63 (2012), 233–248.

9 S. Cingolani, M. Clapp and S. Secchi. Intertwining semiclassical solutions to a Schrödinger–
Newton system. Discrete Contin. Dynam. Syst. 6 (2013), 891–908.

10 V. Coti Zelati and M. Nolasco. Existence of ground state for nonlinear, pseudorelativistic
Schrödinger equations. Rend. Lincei Mat. Appl. 22 (2011), 51–72.

11 V. Coti Zelati and M. Nolasco. Ground states for pseudo-relativistic Hartree equations of
critical type. Rev. Mat. Ibero. 29 (2013), 1421–1436.

12 A. Elgart and B. Schlein. Mean field dynamics of boson stars. Commun. Pure Appl. Math.
60 (2007), 500–545.
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