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Grid-based calculation of the Lagrangian mean
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Lagrangian averaging has been shown to be more effective than the Eulerian mean in
separating waves from slow dynamics in two time scale flows. It also appears in many
reduced models that capture the wave feedback on the slow flow. Its calculation, however,
requires tracking particles in time, which imposes several difficulties in grid-based
numerical simulations or estimation from fixed-point measurements. To circumvent these
difficulties, we propose a grid-based iterative method to calculate the Lagrangian mean
without tracking particles in time, which also reduces computation, memory footprint
and communication between processors in parallelised numerical models. To assess the
accuracy of this method several examples are examined and discussed. We also explore
an application of this method in the context of shallow-water equations by quantifying the
validity of wave-averaged geostrophic balance – a modified form of geostrophic balance
accounting for the effect of strong waves on slow dynamics.

Key words: waves in rotating fluids, computational methods, ocean circulation

1. Introduction

Large-scale geophysical flows are characterised by fast and slow time scales; the fast
dynamics consists of inertia-gravity waves, and the slow dynamics is usually described
by geostrophic and hydrostatic balance (Vanneste 2013; Vallis 2017). There is a particular
interest in decomposing the flow into these components and analysing them separately.
Focusing on the slow dynamics reduces the governing equations to a simpler set that
is easier to interpret and solve (Charney 1971; Warn 1997; McIntyre & Norton 2000;
Mohebalhojeh & Dritschel 2001). Likewise, mathematical tools specific to wave dynamics
may be employed to analyse the fast component (Bühler 2009). In addition to bringing
physical insights, such decompositions are used to parameterise the small-scale dynamics
that are not resolved in ocean and weather models (Sutherland et al. 2019).

The most straightforward decomposition is averaging the variables over the fast time
scale at fixed spatial points to derive the Eulerian mean. Although easy to implement,
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this is not the most effective way of extracting wave signal from the mean flow. For
instance, the Doppler shifting of the wave frequency by strong mean flows can eclipse
the inherent time scale separation between them. To circumvent this issue, one can
derive the Lagrangian mean (LM) instead by averaging the flow variables along particle
trajectories and assigning the mean to a fixed particle label. Recent studies have shown a
range of oceanic phenomena are better understood with Lagrangian averaging, including
spontaneous wave generation (Nagai et al. 2015; Shakespeare & Hogg 2017, 2018), internal
tides (Shakespeare & Hogg 2019) and their effect on the ecology of the coastal and reef
zones (Bachman et al. 2020).

Another motivation for calculating the LM comes from its natural appearance in reduced
models that are derived by wave averaging (Bretherton 1971; Grimshaw 1975; Andrews &
McIntyre 1978; Bühler 2009; Gilbert & Vanneste 2018). A striking prediction, highlighting
the fundamental role of the LM, is that the hydrostatic and geostrophic balance continues
to hold in the presence of strong waves for LM quantities (Kafiabad, Vanneste & Young
(2021), and references therein). Similarly, models of near-inertial waves interacting with
the mean flow naturally involve LM variables (Xie & Vanneste 2015; Wagner & Young
2015, 2016; Asselin & Young 2020). In general, these studies show that the slow dynamics
with the inclusion of wave feedback on the flow is more accurately represented by LM
quantities. To examine the validity of these models and utilise them in operational and
research models there is a growing need to compute the LM.

Computing the LM, however, requires more effort than computing the Eulerian mean.
Most numerical models are discretised using spatial grid points and the majority of
measurements are taken at fixed locations in space. To derive the LM, in these cases
passive particles are seeded in the flow and advected (forward or backward in time) based
on the interpolated velocities at particle positions (e.g. Nagai et al. 2015; Shakespeare
& Hogg 2017, 2018, 2019). This requires saving the time series of several fields, which
are not normally saved in numerical models, at high spatial resolution. The other issue
with particle tracking comes up in parallelised solvers, where the computational domain
is divided into many subdomains assigned to independent processors. Even uniformly
seeded particles may leave their initial subdomain, causing additional communication
between the processors and disturbing the computational load balance among
them.

We propose a grid-based Lagrangian averaging (GBLA) method that does not require
particle tracking. Instead, the LM is updated on grid points using the mean associated
with the trajectories that pass through the grid points in the previous time step. As
a result, there is no need for saving any additional time series. This method can
be integrated with numerical models to efficiently calculate the LM ‘on the fly’. It
also maintains a load balance between the processors in parallel implementations and
minimises the communication between them. We first describe this method and its
mathematical justification in § 2. We then investigate its validity in five examples in
§ 3. An application of GBLA is considered in § 4, where we study the wave-averaged
geostrophy for the rotating shallow-water equations. The paper concludes with a discussion
in § 5.

2. GBLA

2.1. Algorithm
Let us consider the LM of the field φ(x, t) from t0 to t0 + T . Before explaining the steps of
GBLA, we clarify some notations and definitions. We denote the Eulerian mean of φ(x, t)
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Grid-based calculation of the Lagrangian mean

over the period of t0 to t with

φ̄(x, t0, t) = 1
t − t0

∫ t

t0
φ(x, τ ) dτ. (2.1)

The LM of φ is the time average of this quantity along the trajectory, that is, at fixed
particle label instead of fixed spatial position. There are different ways of labelling
particles; for instance, the particle position at the beginning or the end of the averaging
interval may be selected as labels. Denoting this label by x, we can map it to the particle
position at time t (denoted by X ) using the particle displacement field ξ(x, t),

X = �(x, t) = x + ξ(x, t). (2.2)

Using (2.1) and (2.2), the LM operator is mathematically described as

φ
L
(x, t0, t) = 1

t − t0

∫ t

t0
φ(x + ξ(x, τ ), τ ) dτ. (2.3)

Different choices of x lead to different displacement fields ξ . Andrews & McIntyre (1978)
defined the ‘generalised Lagrangian mean (GLM)’ by requiring

ξ̄(x, t) = 0. (2.4)

In other words, x is now the mean position of the particle from t0 to t. If the displacement
field is small (compared with the changes in mean position), (2.4) gives the LM some
Eulerian-like character as x is more than just a label and represents the spatial location of
the trajectory for which the mean is calculated. As it will be shown in the examples of § 3.1,
this choice of label is more effective at removing the fast time scale in the LM estimate
provided that the mapping (2.2) does not have a fast time dependence. If other labels such
as instantaneous position at the end or middle of the averaging interval are chosen, the
filtered signal may still contain some fast oscillations or get distorted (see the numerical
example of § 3.1). Moreover, the GLM definition holds properties that lead to significant
analytical simplifications in modelling two time scale geophysical flows (Andrews &
McIntyre 1978; Bühler & McIntyre 1998; Xie & Vanneste 2015; Gilbert & Vanneste 2018).
Throughout this paper, we use (2.3) in conjunction with (2.4) to express the LM in terms
of the mean position. For t < (t0 + T), (2.1) and (2.3) represent partial means, and for
t = t0 + T the complete mean for the intended averaging interval. Considering that in this
section we focus only on one averaging interval with a fixed starting point, we drop t0 in
the arguments of the mean operators to lighten the notation.

The core idea behind GBLA is to calculate partial LMs recursively in time. For instance,
we assume that the partial LM from t0 to tk (t0 < tk < t0 + T) for the particles that reach
the grid points at time tk is already computed. Through the steps laid out below, the LM
is extended to tk+1 and calculated for a new set of particles that reach the grid points at
time tk+1 (using the partial averages of the previous step). In this approach, at each time
step a different set of trajectories is considered (the set that ends up at grid points at that
time step), which is in contrast with particle tracking methods where one trajectory is
followed all along over the entire averaging interval. The incremental extension of partial
LMs continues to the end of the averaging interval t0 + T . The completed LM field is then
assigned to time t0 + T/2. Note that in our demonstration we focus only on one averaging
interval, but this process can be repeated for new intervals, and averaging procedure can
be carried out simultaneously. For example, the next interval may start from tm and end at
tm+N and so on. If the beginning of a later interval exceeds t0 + T , the memory allocated
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to the first interval (from t0 to t0 + T) can be freed in a systematic way and used for the
new intervals.

Equipped with the above definitions, we present the steps to compute φ
L
(�−1(X i, tk+1),

tk+1) from φ
L
(�−1({Xα}, tk), tk), where X i is an arbitrary grid point in space and {Xα} is

a set consisting of X i and its neighbours. In other words, our steps show how to calculate
the partial LM (from t0 to tk+1) for the particle that passes through X i at tk+1 by knowing
the LM (from t0 to tk) for the particles that pass through X i and its neighbouring grid
points at tk. To simplify the notation we use one spatial index i, which can be viewed
as a multielement vector or replaced by several indices in higher than one dimension.

Considering that φ
L
(�−1(X i, tk), tk) is the partial LM for the particle that reaches Xi at

tk and φ
L
(�−1(X i, tk+1), tk+1) is the partial LM for the particle that reaches Xi at tk+1,

these two LMs belong to two separate trajectories (marked in red and blue in figure 1).

Step 1 Calculate φ(X i, tk+1) and the velocity u(X i, tk+1) by integrating the governing
equations from tk to tk+1. Note that a finer time step may be used for the time
integration of the governing equations than that used for averaging; there might be
several simulation time steps between tk and tk+1.

Step 2 Consider the particle that goes through X i at time tk+1 (red trajectory in figure 1).
Approximate the position of this particle at time tk by advecting it backward in
time,

Y i = X i − (tk+1 − tk)u(X i, tk+1). (2.5)

This point is marked in green in figure 1 and splits the red trajectory into two parts.
Step 3 Denote the partial LM of φ between t0 and tk for the red trajectory by

φ
L
(�−1(Y i, tk), tk). Then, find its value by interpolation using the LM for

the trajectories that go through the neighbouring grid points (marked by blue
curves). For example, Y i lies between {Xα} for α = i, j, l and p in figure 1.
Therefore, the four values of φ

L
(�−1({Xα}, tk), tk) may be used to interpolate

φ
L
(�−1(Y i, tk), tk). Note that φ

L
(�−1(Y i, tk), tk) and φ

L
(�−1(X i, tk), tk) are

both averages over [t0, tk] but for different trajectories (highlighted in orange and
light blue, respectively).

Step 4 Selecting the mean position of the red trajectory from t0 to tk+1 as a label for the
particle that passes through X i at tk+1 and denoting it by xi, use the definition (2.3)
to compute

φ
L
(�−1(X i, tk+1), tk+1) = 1

tk+1 − t0

∫ tk+1

t0
φ(xi + ξ(xi, η), η) dη

= tk − t0
tk+1 − t0

1
tk − t0

∫ tk

t0
φ(xi + ξ(xi, η), η) dη + 1

tk+1 − t0

∫ tk+1

tk
φ(xi + ξ(xi, η), η) dη

= tk − t0
tk+1 − t0

φ
L
(�−1(Y i, tk), tk) + 1

tk+1 − t0

∫ tk+1

tk
φ(xi + ξ(xi, η), η) dη. (2.6)

The first term on the right-hand side is already computed in the previous step. The
second term, which is the weighted mean of the red trajectory from tk to tk+1, can
be approximated by∫ tk+1

tk
φ(xi + ξ(xi, η), η) dη ≈ φ(X i, tk+1) (tk+1 − tk). (2.7)
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t0

t0

tk

tk+1

Yi

Xj

Xl
Xp

Xitk

Figure 1. Schematic view of particle trajectories that pass through the grid points X i, X j, X p and X l that are
marked by black. The trajectories that reach these grid points at tk are marked in blue and the trajectory that
reaches the grid point at tk+1 in red. For X i, the times associated with the particle position of red and blue
trajectories are shown as well.

A better approximation may be derived by the trapezoidal rule∫ tk+1

tk
φ(xi + ξ(xi, η), η) dη ≈ 1

2

[
φ(Y i, tk) + φ(X i, tk+1)

]
(tk+1 − tk). (2.8)

To calculate φ(Y i, tk), another interpolation is required. Hence, depending on the
desired accuracy and computational cost, (2.8) may or may not be preferred to
(2.7).
So far the calculation of the LM field in (2.6) is complete, but it is given for the
end position of each particle X i. If the definition of GLM with the condition (2.4)
is desired, the LM should be assigned to the mean position of particles. In other
words, we need to calculate xi = �−1(X i, tk+1), which maps the particle’s end
position X i to its mean from t0 to tk+1. To calculate the mean position, we update
it in a similar manner to (2.6) at each time step via step 5.

Step 5 Assuming �−1(X , tk) is known for all grid points from the previous time step,
compute the mean position of the red trajectory from t0 to tk+1,

�−1(X i, tk+1) = 1
tk+1 − t0

∫ tk+1

t0
xi + ξ(xi, η) dη

= tk − t0
tk+1 − t0

�−1(Y i, tk) + 1
tk+1 − t0

1
2

(Y i + X i) (tk+1 − tk),

(2.9)

where �−1(Y i, tk) is interpolated using the neighbouring grid points. Note that
(2.9) is simply a particular case of (2.6) in conjunction with (2.8) for φ(x, t) = x.

The above steps are carried out for all the grid points and iteratively in time until tk+1 =
t0 + T . The completed LM is now given on scattered mean positions �−1(X i, tN) and can
be interpolated back on the computational grid points.

2.2. Parameter set-up, convergence and numerical error
The GBLA method may be implemented on temporally and spatially decimated fields.
To distinguish between the two, we denote the (iterative) averaging time step with �t =
tk+1 − tk and the simulation time step (used to solve the governing equations) with δt
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throughout this paper. Similarly, �x denotes the spatial resolution of GBLA, which could
be coarser than the one used in simulations (i.e. weather or climate models). It is important
to keep �t and �x smaller than the characteristic time and length scales of the fast
phenomenon that is going to be filtered. To guarantee the stability of backward advection
in (2.5) the Courant–Friedrichs–Lewy condition u�t < �x should be satisfied.

Just like any numerical algorithm, GBLA is susceptible to numerical errors. Denoting
the local error at each iteration (from tk to tk+1) by ek, there are three main contributors to
ek.

(i) Finite differentiation used to advect particles backward in (2.5). Considering the
Taylor expansion of particle position on a trajectory, the difference between the exact
and approximated particle position at time tk is O(�t2).

(ii) Interpolation of LM at time tk. In the step 3 of the algorithm, we interpolate
φ

L
(�−1(Y i, tk), tk), leading to an error that depends on the selected interpolation

scheme. Considering polynomial interpolation of degree n on a grid with spacing
of �x, one can show that the interpolation error is O((�x)n+1). For example, the
linear interpolation error is O((�x)2) and the cubic interpolation error O((�x)3).
Note that the order of error is independent of spatial dimension.

(iii) Approximation of the last integral in (2.6) either by (2.7) or (2.8). The error of the
former is O(�t) and the latter O(�t3(�x)n+1) considering the interpolation required
to calculate φ(Y i, tk).

Considering that there are linear leading terms in polynomial interpolation, the error in
(i) directly translates into the total local error ek. As a result, we can write

ek = O(�t2) + O((�x)n+1) + O(�ts), (2.10)

where s = 1 or 3 if (2.7) or (2.8) are used, respectively. Hence, depending on the value
of s, the order of local error in �t may be determined by (i) or (ii). The calculation of
global error, which is the accumulation of local errors, is more complicated. It cannot
be derived simply by multiplying ek with the number of time steps N = T/�t, because
in the interpolation of the step 3 the neighbouring points contain the accumulated
interpolation errors from the previous iterations. As a result, different sources of error
become intertwined. Comparatively, the particle tracking approach does not have this type
of error accumulation, because it uses the instantaneous values at neighbouring points for
each time step. Hence, GBLA might be more affected by interpolation errors than the
particle tracking methods. We leave the analytical expression of global error for a future
study, but in § 3.1 and § 3.2.1 we calculate it numerically to investigate the convergence of
GBLA.

3. Validation

3.1. Illustrative one-dimensional flows
We consider the following example with a velocity that consists of a fast and slow
component:

u = uf + us, uf = ε sin(20x − 20t), us = e−a(x−π)2
, (3.1a–c)

where a = 15 for x < π and a = 1 for x ≥ π. Figure 2(a) displays the LM velocity of this
flow regarded as a function of mean position using GBLA with cubic interpolation (shown
in magenta) and particle tracking (shown in black). For both methods, �x = 4.2 × 10−3,
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x �x

‖e‖

(a) (b)

Figure 2. (a) The LM velocity of (3.1a–c) calculated for ε = 0.06 from t = 0 to t = 2π/3 for �x = 4.2 ×
10−3 and �t = 2.6 × 10−3 using: GBLA (with cubic interpolation) as a function of mean position (magenta);
particle tracking as a function of mean position (black); particle tracking as a function of position at the middle
of the averaging interval (blue); and particle tracking as a function of position at the end of the averaging
interval (green). (b) The error norm ‖e‖ of the GBLA scheme using linear interpolation (black dots) and cubic
interpolation (red dots). The slope of blue guide line is 1 and that of red line is 2.

�t = 2.6 × 10−3 and the averaging period T = 2π/3, which is longer than the period of
the fast signal 2π/20. The GBLA and particle tracking results (magenta and black curves)
perfectly lie on top of each other, which confirms the validity of GBLA. To better quantify
the accuracy and convergence of GBLA, in figure 2(b) we coarsen �x and calculate the
following error norm (representing the global error for the averaging period of T):

‖e‖ =
√

1
N

∑
(u L

GBLA − u L
exact)

2, (3.2)

where the summation is carried out over all spatial grid points, and N is the number of
spatial grid points. Here u L

GBLA is the LM calculated using GBLA and u L
exact is the exact

value of LM which is approximated by particle tracking at much finer spatial and temporal
resolutions of �x = 2 × 10−3 and �t = 2.6 × 10−3. Two different interpolation schemes
are used in computing GBLA for figure 2(b): linear (black dots) and cubic (red dots).
The overall message of this figure is that GBLA with different interpolation schemes
converges to the exact solution if �x is lowered. At smaller �x, GBLA’s error with cubic
interpolation has a slope close to 2, and with linear interpolation a slope slightly shallower
than 1. At larger �x other sources of error contribute to ‖e‖ leading to shallower slopes.

As mentioned in the previous section, we choose the definition of GLM theory by
requiring (2.4) to hold and using mean position as a label for LM. We use the above
example to clarify the importance of this choice. In figure 2(a), in addition to expressing
the LM as a function of mean position, we show the LM as a function of particle position
at the middle of the averaging interval (blue curve) and as a function of particle position
at the end of the averaging interval (green curve). We have used particle tracking methods
to calculate these results. The black and blue curves preserve the overall shape of the
slow signal, but the green curve fails to do so, which shows that the LM in terms of end
position may distort the mean-flow signal. The black and blue curves have differences as
well, which are more visible at the steep velocity gradient before x = π. To understand
the reason behind this discrepancy, consider a particle that travels through the relatively
flat part of velocity profile in the first half of the averaging interval and through the steep
velocity jump in the second half. As a result, the average speed of this particle is small in
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ūL

Figure 3. The LM velocity of (3.1a–c) over the period of 2π/3, calculated for ε = 0.15 at different times
using: GBLA in terms of mean position (magenta) and particle tracking in terms of position at the middle of
the averaging interval (blue).

the first half and large in the second half, leading to a relatively small change of position in
the first half compared with the second half. Therefore, the mean position of this particle
differs from its position at the middle of the averaging interval (which is closer to the
position at the beginning of the interval).

In figure 3 we increased the wave amplitude to ε = 0.15 to illustrate how the GLM
definition of LM can be more effective in removing the fast time scale (all other parameters
are the same as those used for figure 2a). The LM at different times is shown in terms of
the mean position calculated by GBLA (magenta curve) and in terms of the position at the
middle of the averaging interval calculated by particle tracking (blue curve). There is still
a noticeable trace of fast signal in the blue curves, which propagates rightward in time.
This is because the particle position at the middle of the averaging period oscillates with
the fast time scale, whereas the mean position is less affected by the these oscillations.
This example is deliberately chosen to amplify the difference for various choices of spatial
labels. For smaller-amplitude waves and milder background velocity gradients the magenta
and blue curves converge to each other. Applying Lagrangian filtering to oceanic flows,
many authors have used the final position as a label for LM (Shakespeare & Hogg 2017,
2019) or the position at the middle of the averaging interval (Shakespeare et al. 2021). If
a more accurate removal of fast time scale is desired, expressing LM in terms of mean
position should be considered instead.

3.2. Using a materially conserved quantity to investigate the validity of GBLA
In this section, we consider the materially conserved quantities – which are constant on
each trajectory – to study the accuracy of GBLA. For these quantities, the LM expressed
in terms of final position should be equal to their instantaneous values at the end of the
averaging interval. We employ this fact to see how reliable GBLA is. We remind the reader
that this is merely for studying the validity of GBLA; as discussed before using the GLM
definition and expressing the LM in terms of mean position instead of final position is
preferred when it comes to the applications of Lagrangian averaging. As a result, step 5 of
§ 2 is skipped in the calculations of this part.
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Figure 4. Instantaneous and LM vorticity field for two like-signed vortices. Panels (a–e) correspond to fields
at t = 10 and ( f –j) to t = 30. (a, f ) Instantaneous vorticity; (b,g) GBLA using linear interpolation and (2.7);
(c,h) GBLA using cubic interpolation and (2.7); (d,i) GBLA using cubic interpolation and (2.8); (c,h) LM by
particle tracking and using cubic interpolation.

3.2.1. Conservation of vorticity in two-dimensional incompressible flow
For two-dimensional incompressible inviscid flows, vorticity is conserved on particle
trajectories,

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂v

∂y
= 0, ζ = ∂v

∂x
− ∂u

∂y
. (3.3a,b)

As a result, ζ(X , t) = ζ
L
(�−1(X , t), t), where X = (x, y). Therefore, to examine GBLA

we derive the LM vorticity (expressed in terms of the final particle position) and compare
it with the instantaneous vorticity field at the end of the averaging interval. We initialise
the numerical simulation with two like-signed vortices,

ζ(x, y, t = 0) = exp(−(x − π + 0.1)2 − ( y − π + π/3)2)

+ exp(−(x − π − 0.1)2 − ( y − π − π/3)2). (3.4)

We employ a standard pseudo-spectral code to solve (3.3a,b) on a 2π × 2π domain
with periodic boundary conditions using 256 × 256 grids points. The time step for
implementing the averaging process is 10 times coarser than the simulation time step,
δt = 0.002. Figure 4 portrays the LM vorticity calculated by different methods next to the
instantaneous vorticity at the end of the averaging interval for two different averaging
periods. For the shorter averaging interval, all methods lead to very similar results.
However, for the longer interval, GBLA with linear interpolation is less accurate than
the others. The comparison between panels (c) and (h), and (d) and (i), shows that the use
(2.8) instead of (2.7) has not made any discernible difference, because the interpolation
error exceeds other types of error due to the relatively small time step.

To have a more quantitative comparison between different methods, we calculate the
following error norm (a two-dimensional version of the norm used in (3.2)):

‖e‖ =
√

1
NxNy

∑
i

(ζ
L
(�−1(X i, T), T) − ζ(X i, T))2, (3.5)
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Figure 5. (a) Global error using different spatial resolution. (b) Global error using different averaging time
steps. Error norm is calculated for different schemes namely: GBLA with linear interpolation and using
(2.7) (red dots); GBLA with cubic interpolation and using (2.7) (black squares); particle tracking with cubic
interpolation (blue circles); and GBLA with linear interpolation and using (2.8) (magenta triangles). The blue
dashed lines have the slope of 1, and the black line has the slope of 2.

where the summation is carried out over all spatial grid points, and Nx and Ny are the
number of grid points in each dimension. Here ζ(X i, T) is an approximation for the exact
LM, which is obtained by numerically solving (3.3a,b) at a high resolution of 384 × 384

and small time step of δt = 0.002. Here ζ
L is calculated using different Lagrangian

averaging methods with temporal and spatial distancing that are lowered to investigate
their convergence and accuracy.

In figure 5(a) we set the averaging time step to �t = 0.02 = 10 δt, which is small
enough to highlight the interpolation error (see § 2.2 for discussion on different sources
of error). The GBLA method with linear interpolation and using (2.7) (red dots)
underperforms GBLA and particle tracking with cubic interpolation (black squares
and blue circles, respectively). However, after using (2.8) even GBLA with linear
interpolation (magenta triangles) yields accurate results within the same ‘ballpark’
as cubic interpolation and particle tracking approaches. With cubic interpolation, the
convergence of GBLA is O((�x)2), and that of particle tracking is O(�x). This is
similar to the spatial convergence of error observed in figure 2(b) for the one-dimensional
synthetic flow. For large �x, GBLA with cubic interpolation has higher errors than its
particle tracking counterpart, but by lowering �x both methods converge to the same
result.

In figure 5(b) the convergence of different methods with respect to �t is investigated.
For all the calculations of this plot �x = �y = 2π/384. Similar to the figure 5(a), the
error of GBLA with linear interpolation and using (2.7) (red dots) is almost two orders of
magnitude higher than the other methods. Use of (2.8) reduces the error of linear methods
by more than one order of magnitude (compare the red dots with magenta triangles).
At higher �t, all methods seem to have a slope close to one. However, at small �t, the
methods with linear interpolation plateau as they get dominated by interpolation errors.

Considering that GBLA is an iterative algorithm, different sources of error are
intertwined, and tracking their effects separately is complicated. However, from the
numerical investigation of global errors in figure 5, we can draw several insightful
conclusions. Different variations of GBLA converge robustly by lowering �x and �t. The
GBLA method is more affected by the interpolation error than the particle tracking, which
can be mitigated by using cubic interpolation (or other higher-order schemes). If in some
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Grid-based calculation of the Lagrangian mean

applications linear interpolations are selected to lighten the computations, the choice of
(2.8) over (2.7) substantially improves the result.

3.2.2. Conservation of potential vorticity in shallow water
To put our method to a more challenging test, we consider a fully developed turbulent flow
evolving under the rotating shallow-water equations on flat topography,

∂u
∂t

+ u · ∇u + f × u = −g∇h, (3.6a)

∂u
∂t

+ ∇ · (hu) = 0, (3.6b)

where h the height field, g the gravitational acceleration and f = f ẑ the Coriolis
parameter. The existence of vortices of different sizes and sharp fronts in turbulent shallow
water systems allow us to better examine the strengths and weaknesses of our method. For
this flow, the PV,

q = ∇ × u + f
h

, (3.7)

is conserved on each particle trajectory. This material conservation can be used in a
similar way to the previous section to assess the accuracy of Lagrangian averaging; the
LM PV expressed in terms of final position should be equal to the instantaneous PV at
the end of the averaging interval. Selecting f = 0.1, g = 0.1 and the mean height H = 1,
we solve the nonlinear shallow water equation using a similar pseudo-spectral method
with the same computational resolution, domain size and boundary condition as in § 3.2.1.
A viscous damping of the form ν∇2 with ν = 8 × 10−7 is included for numerical stability.
We initialise the simulations with a fully developed turbulent flow which is initially in
a geostrophic balance (see the initial PV in figure 6b). The time step of the simulation
is δt = 5 × 103, and that of GBLA �t = 2 × 103. The instantaneous PV at t = 120 in
figure 6(a) is remarkably close to the LM PV over the period of [0, 120] in figure 6(c),
where small-scale features are also captured by GBLA (see figure 6d for the difference
between the two). The small disagreement is partly caused by the viscous damping that
makes the conservation of PV less accurate. This is particularly the case for the sharp
fronts in figure 6(c) which are dampened in figure 6(a).

3.3. Stokes terms for standing wave in shallow water
The difference between the Lagrangian and Eulerian mean is termed Stokes correction
(see e.g. Andrews & McIntyre 1978; Bühler 2009) and can be written as

φ
S = φ

L − φ̄ = (ξ · ∇)φ′ + O(ε2), φ′ = φ(x, t) − φ̄, (3.8)

where the first term in the right-hand side is the leading-order approximation for this
quantity. Here ε is the amplitude of the wave term φ′ after proper scaling, where we
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Figure 6. (a) The potential vorticity (PV) at the end of the averaging interval t = 120. (b) The PV at t = 0.
(c) The LM PV from t = 0 to t = 120 using GBLA with a cubic interpolation scheme. (d) Absolute value of
the difference between (a,c). Panels (a–c) share the same colour bar, which is different from that of panel (d).

assumed that ε � 1. We consider a monochromatic standing wave of the form

h′(x, y, t) = A cos(ωt)ĥ(x, y), ĥ(x, y) = cos(kx) cos(ly), (3.9)

u′(x, y, t) = g
ω2 − f 2 (−ω sin(ωt)∇ĥ + cos(ωt)f × ∇ĥ), (3.10)

where A is a small amplitude, is a solution of linear rotating shallow water equations
provided that ω satisfies the dispersion relation

ω =
√

f 2 + gH(l2 + k2). (3.11)

Thomas, Bühler & Smith (2018) showed this standing wave induces a mean flow
characterised by the Stokes terms

h
S = 1

2
g

ω2 − f 2

∣∣∣∇ĥ
∣∣∣2

, u S = −
(

g
ω2 − f 2

)2

f × ∇
(

1
2

∣∣∣∇ĥ
∣∣∣2 + ω2 − f 2

4gH
ĥ2

)
.

(3.12a,b)

The above analytical expressions provide a good test case for GBLA. We perform a
numerical simulation for

A = 0.001, f = g = H = 1, k = l = 1, (3.13a–c)

and compare h
L − h̄ and u L − ū calculated by the grid-based averaging method with the

analytical expressions in (3.12a,b). There is an excellent agreement between these two sets
of quantities in figure 7.
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Figure 7. Stokes terms computed by GBLA (a–c) and from analytical expression in (3.12a,b) (d–f ): (a,d) u S;

(b,e) v S; (c, f ) h
S
. The averaging interval is set to 2π/ω.

4. Application: wave-averaged geostrophic balance

Geostrophic balance reliably describes the slow dynamics of large-scale geophysical flows
when the waves are absent or relatively small. However, in the presence of waves that are
at the same order or stronger than the mean flow, this balance breaks down even after
averaging over the fast time scale at fixed points. Generalised Lagrangian-mean theories
have predicted that a modified version of geostrophic balance can still hold with coexisting
strong waves if it is applied to LM quantities (Moore 1970; Bühler & McIntyre 1998;
Wagner & Young 2015; Xie & Vanneste 2015; Thomas et al. 2018). Referring to this as
wave-averaged balance, Kafiabad et al. (2021) numerically illustrated its validity for a
single barotropic vortex interacting with strong inertial waves in the context of Boussinesq
equations. Instead of directly calculating the LM, they used explicit expressions of Stokes
terms derived by Rocha, Wagner & Young (2018) in the limit of near-inertial waves. This
approach circumvented the complications of particle tracking in parallelised Boussinesq
simulation. However, for baroclinic flows and waves with ω � f , explicit expressions for
the Stokes terms are not available. Therefore, the LM has to be computed directly, and
GBLA makes this computation straightforward. In this study, we touch upon this potential
application of GBLA by investigating wave-averaged geostrophy in the context of rotating
shallow water.

We first present a brief derivation of wave-averaged balance for the momentum
equations in a form that is slightly different than the existing expressions in the literature (a
more detailed derivation for shallow water can be found in Thomas et al. (2018) and for the
Boussinesq equations in Wagner & Young (2015)). We then quantify to what extent this
balance holds for waves with different parameters and compare it with Eulerian-averaged
geostrophic balance. Similar to preceding studies, the underlying assumption in our

940 A21-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.233


H.A. Kafiabad

derivation is that the flow consists of fast waves with small amplitude ε � 1, interacting
with a slow flow of the order ε2. This relative scaling of waves and slow flow is more a
matter of convenience than necessity as the effect of waves on the mean flow appears
at lower orders. For waves at the same order as the slow flow, similar results can be
obtained with more tedious algebra and expansions to higher orders. Considering these
assumptions, we expand flow variables as

u = εu1 + ε2u2 + O(ε3), (4.1)

where u1 denotes the wave terms with u1 = 0, and the mean flow at the leading order
is ū = ε2u2 + O(ε3) (a similar expansion is carried out for h). Additionally, the mean
flow is assumed to vary on the slow time scale of quasigeostrophic dynamics, leading to
∂u2/∂t = O(ε2). At order ε, the expansion of (3.6a) leads to

∂u1

∂t
+ f × u1 = −g∇h1. (4.2)

The next-order equation after averaging is

u1 · ∇u1 + f × u2 = −g∇h2. (4.3)

After taking the time derivative of (2.2) and some algebraic manipulation, one can show
that u1 = ∂ξ/∂t + O(ε) (see Andrews & McIntyre (1978) for the detailed derivation). As
a result,

u1 · ∇u1 = −ξ · ∇ ∂u1

∂t
. (4.4)

Substituting ∂u1/∂t from (4.2) in the above equation and using (3.8), we derive

u1 · ∇u1 = f × ξ · ∇u1 + gξ · ∇(∇h1) = f × u S + g∇h
S
, (4.5)

(4.5) and (4.3) lead to

f ×
(

ū + u S
)

= −g
(
∇h + ∇h

S
)

, (4.6)

where we replaced u2 with ū (and removed the book-keeping parameter ε). Rewriting (4.6)
in terms of LM variables gives to the final form of wave-averaged geostrophy

f × u L = −g∇h
L
. (4.7)

We emphasise that ∇h
L

is the LM of the height gradient which is different from the
gradient of the LM height ∇h

L
. The right-hand side of (4.7) can also be written as

−g∇(h̄ + h
S
/2) (see e.g. Thomas et al. (2018) or Wagner & Young (2015) for the

counterpart pressure gradient in the Boussinesq equations). We prefer to keep the current
form of (4.7) as expressions in terms of h

S
/2 unnecessarily complicate the computation

and derivation.
To verify (4.7), we study two examples of slow flow interacting with strong waves. In

the first example, we consider an initial condition that consists of a Gaussian anticyclone
similar to what was studied by Kafiabad et al. (2021). The vertical vorticity of this vortex
is defined as

ζ(r, t = 0) = −ζmax e−r2/a2
, (4.8)

where r is the radial coordinate, a the vortex radius and ζmax the initial maximum vorticity.
The velocity fields associated with this vorticity are set to zero far from the vortex, and the
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Figure 8. The vectors of Lagrangian- and Eulerian-mean Coriolis forces and height gradients (scaled by

g) using GBLA: black arrows, f × u L (a) and f × ū (b); Magenta arrows, g∇h
L

(a) and g∇h̄ (b). The
background colour shows ∇ × u L (a) and ∇ × ū (b). Only a part of resolved domain is shown.

associated height field is defined such that the geostrophic balance is initially maintained.
This vortex is superimposed with a Poincaré wave of the form

u′ = A cos x, v′ = f
ω

A sin x, h′ = H + H
ω

A cos x, (4.9a–c)

where ω satisfies (3.11) (for k = 1 and l = 0). Selecting a = 0.4, f = 20, g = H = 1,
ζmax = 0.5 and A = 3, we numerically solve the nonlinear shallow-water equations for
three periods of the initial wave and time average the variables over this interval (3 ×
2π/ω). The time step – which is the same for both the simulation and averaging – is set to
10−4, and all other parameters are kept the same as those in § 3.2.2.

Figure 8 portrays the vectors of Lagrangian- and Eulerian-mean Coriolis forces and
height gradients (scaled by g) using GBLA. It is clear that the geostrophic balance holds
very well for the LM values as described by (4.7), whereas the Eulerian-mean version
has broken down. In the background ∇ × u L and ∇ × ū are shown, which are slightly
different fields. Unlike the initial vortex, ∇ × ū (and to a lesser extent ∇ × u L) are not
completely radially symmetric due to the wave feedback on the mean flow.

To better investigate the accuracy of (4.7), we take a cross-section of this flow at y = 0
in figure 9 and show the profiles of Coriolis force and (scaled) height gradient. The
most outstanding difference in this figure is between −f ū and ghy (the dashed lines in
figure 9b), which is expected from the form of the initial wave. Let us assume a
hypothetical scenario that the linear wave in (4.9a–c) does not interact with the vortex.
The following Stokes expressions can be derived for this linear wave:

f ξ · ∇u′ = f
−A
ω

sin(x − ωt)
∂

∂x
A cos(x − ωt) = f

A2

2ω
≈ 4.5, (4.10a)

f ξ · ∇v′ = g ξ · ∇hx = g ξ · ∇hy = 0, (4.10b)

where the averaging is carried over one or several wave periods. In the presence of a
vortex, the fast component of the flow changes in time leading to more complicated
Stokes expressions than those in (4.10). Nevertheless, these values can provide a ‘ballpark’
estimate for the difference between the Eulerian and Lagrangian velocities. This explains
the significant difference between −f ū and ghy as we expect u S to be the largest
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Figure 9. The profiles of different components of Coriolis force and (scaled) height gradient at y = 0. All the
quantities in (a) are Lagrangian averaged, and in (b) Eulerian averaged.

Stokes term from (4.10). In fact, several other numerical simulations with different wave
amplitudes have been performed to verify that this difference proportionally changes with
fA2/(2ω). Leaving this major difference aside, f v L and ghx

L
are also closer to each other

than their Eulerian counterparts. Even after removing the constant shift between −f ū
and ghy, −f u L more closely follows ghy

L
. These observations illustrate the merits of

wave-averaged balance over classical geostrophic balance when strong waves are present.
Figure 10 displays the scatter plots of Lagrangian and Eulerian means for ghx and ghy

as functions of f v and −fu, respectively (using all the computational grid points). For
perfect geostrophic balance, one expects the data points to lie on y = x (shown in black
in figure 10). We consider three simulations with g = H = 1, g = H = 6 and g = H =
10 leading to wave frequencies of ω = 20.03, 20.88 and 22.36, respectively. It is clear
that the geostrophic balance holds much better for the LM quantities as the red markers
are closer to y = x than the green ones for all three cases. Considering these different
wave frequencies implies that (4.7) is a good approximation in the presence of non-inertial
waves as well as inertial waves. Unfortunately, we could not investigate much higher wave
frequencies due to the formation of shocks at the high wave-amplitude, which is considered
in our simulations.

In the next example, we initialise the slow flow with two opposite-sign vortices,

u = − cos y, v = cos x, h = − f
g
(sin x + sin y). (4.11a–c)

A similar form of wave to (4.9a–c) is superimposed with these vortices. We set the flow
and wave parameters as f = 100, g = 100, H = 4 and A = 20. All other parameters and the
numerical set-up are kept the same as the previous example. In figure 11, we observe that

the vectors of f × u L and g∇h
L

balance each other very well (figure 11a), whereas the
balance for their Eulerian counterparts breaks down (figure 11b). The background fields
indicate that ∇ × ū is more affected by the wave signal than ∇ × u L is. Further assurance
comes from figure 12 where the LM Coriolis force components much more closely follow
the LM scaled height-gradient components. Figure 13 also verifies that the Eulerian-mean
quantities are farther from y = x and wider spread.
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Figure 10. The scaled height gradient as a function of the Coriolis force after Lagrangian averaging (in red)
and Eulerian averaging (in green). The black line is y = x, which represents the geostrophic balance. Every
marker represents the mean values for a computation grid point in space: (a,b) g = H = 1; (c,d) g = H = 6;
(e, f ) g = H = 10. All other parameters are kept the same as those in figures 8 and 9.

5. Discussion

Through several examples, we find that GBLA reliably calculates the LM of flow variables
and has several advantages over its particle tracking counterparts. Particle-tracking
methods are performed either forward or backward in time to calculate LM fields. The
forward-time tracking cannot guarantee that the particles at a later time are uniformly
distributed. In fact, in regions of confluence the particles get cluttered in a small part
of domain. The backward particle tracking does not suffer from this issue but requires
storing times series of several fields: the instantaneous value of the desired field, its
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Figure 11. Similar figure to figure 8 for two opposite-sign vortices described in (4.11a–c). The entire
computational domain is shown in this figure.
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Figure 12. Similar figure to figure 9 for two opposite-sign vortices described in (4.11a–c).

interpolated values at particle positions, particle positions along the trajectories and
velocity components. The GBLA method does not need to store any time series; it
only stores a few fields such as partial means at two time steps. As a result, it can
significantly reduce the memory consumption if a large number of grid points or time
steps are employed. For the LM of any field other than velocity, GBLA does not require
interpolation of velocities, whereas the particle tracking methods do. For instance, assume
that the LM temperature needs to be calculated. For particle tracking, in addition to the
temperature, the velocity field needs to be interpolated at the particles’ instantaneous
positions to advect them backward or forward. However, for GBLA there is no need for
interpolating velocities, and only one set of interpolation for temperature partial means is
needed; as a result, the amount of interpolation in GBLA is at least half of those in particle
tracking. Depending on the spatial dimension, it could be even less than half. For example
in three-dimensional flows, it is only a quarter of the interpolations required by particle
tracking.

All the advantages said, we caution that the GBLA results could be affected by
interpolation errors for long averaging periods or coarse spatial resolutions; better
interpolation schemes and finer time steps can significantly reduce these errors.
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Grid-based calculation of the Lagrangian mean
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Figure 13. Similar figure to figure 10 for two opposite-sign vortices described in (4.11a–c).

Our numerical investigations establish a robust spatial and temporal convergence of GBLA
even for linear interpolation. Hence, by using finer grids one obtains reliable LM fields.

In this study, we explained the averaging process only for a single interval, but in some
applications the evolution of mean flow or wave field in time is desired. This can be
achieved by a moving time-window that frees up the memory from completed intervals
and allocates it to the new intervals. Note that GBLA does not require the discretisation
in time or space to be uniform. Hence, it can be improved by adaptive time stepping or
a more advanced interpolation scheme. Another direction of improvement is by using
more advanced filtering schemes. Many studies in geophysical fluids employ low-pass
filtering in Fourier space (see e.g. Shakespeare & Hogg 2017; Shakespeare et al. 2021),
which can be more effective than simple averaging used in (2.3). This filtering (as well
as other advanced filtering schemes) can be achieved by using GBLA, if an appropriate
kernel is included in the definition of mean in (2.3). Considering other definitions of
mean/perturbation than the one used in (2.3) and (2.4) (Soward & Roberts 2010; Gilbert &
Vanneste 2018), it is an open question to the author whether a similar approach to GBLA
can be used to derive these forms of mean.

We mainly focused on the description and validation of our method and touched upon
one application of GBLA. We leave other applications of GBLA for future work. Recent
studies such as Shakespeare & Hogg (2017, 2018, 2019) have demonstrated that Lagrangian
filtering is more effective in extracting wave signals from the flow. The GBLA method
can make Lagrangian filtering more accessible by making the parallel implementation
easier and reducing the memory footprint. Another application of GBLA is the study
of the reduced models described for LM quantities (e.g. Xie & Vanneste 2015; Wagner
& Young 2015), which was briefly considered in this paper. Studying these models in
the context of Boussinesq equations is often challenging due to complications of particle
tracking in high-resolution parallelised solvers. The GBLA method can also be applied
to observations or more realistic global circulation models to gain more insight about the
ocean and climate dynamics.

Ultimately, GBLA can improve the parameterisation schemes used in ocean and weather
models that need to dissipate energy at much larger scales than viscous scales. Such
dissipation – which is required for numerical stability and closing the energy budget –
reduces the effective resolution of these models (see e.g. Skamarock 2004). Several
studies have shown that the unbalanced and fast processes such as waves dynamics initiate
the downscale flux of energy toward dissipation range in the ocean and atmosphere
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(Waite & Snyder 2009; Barkan, Winters & McWilliams 2017; Kafiabad & Bartello 2018;
Taylor & Straub 2020; Xie 2020). Hence, one can argue that the dissipation of the fast
component after removing the LM preserves the slow dynamics better than the less
selective dissipation of all fields or their Eulerian high-pass part.
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