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Abstract Let S2n+1{p} denote the homotopy fibre of the degree p self map of S2n+1. For primes
p ≥ 5, work by Selick shows that S2n+1{p} admits a non-trivial loop space decomposition if and only
if n = 1 or p. Indecomposability in all but these dimensions was obtained by showing that a non-trivial
decomposition of ΩS2n+1{p} implies the existence of a p-primary Kervaire invariant one element of order
p in πS

2n(p−1)−2
. We prove the converse of this last implication and observe that the homotopy decom-

position problem for ΩS2n+1{p} is equivalent to the strong p-primary Kervaire invariant problem for all
odd primes. For p = 3, we use the 3-primary Kervaire invariant element θ3 to give a new decomposition
of ΩS55{3} analogous to Selick’s decomposition of ΩS2p+1{p} and as an application prove two new

cases of a long-standing conjecture stating that the fibre of the double suspension S2n−1 −→ Ω2S2n+1

is homotopy equivalent to the double loop space of Anick’s space.
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1. Introduction

Localize all spaces and maps at an odd prime p. Let S2n+1{p} denote the homotopy
fibre of the degree p map on S2n+1 and let Wn denote the homotopy fibre of the dou-
ble suspension E2 : S2n−1 −→ Ω2S2n+1. In [20] and [21], Selick showed that there is a
homotopy decomposition

Ω2S2p+1{p} � Ω2S3〈3〉 ×Wp, (1)

where S3〈3〉 is the 3-connected cover of S3, and obtained as an immediate corollary
that p annihilates all p-torsion in π∗(S3). This exponent result is generalized by the
exponent theorem of Cohen, Moore and Neisendorfer [6,7,16], who used different loop
space decompositions to construct a map ϕ : Ω2S2n+1 −→ S2n−1 with the property that
the composite

Ω2S2n+1 ϕ−→ S2n−1 E2

−→ Ω2S2n+1
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is homotopic to the pth power map on Ω2S2n+1 and proved by induction on n that pn

annihilates the p-torsion in π∗(S2n+1). By a result of Gray [10], if p is an odd prime, then
π∗(S2n+1) contains infinitely many elements of order pn, so this is the best possible odd
primary homotopy exponent for spheres. The work of Cohen, Moore and Neisendorfer
suggested that there should exist a space T 2n+1(p) fitting in a fibration sequence

Ω2S2n+1 ϕ−→ S2n−1 −→ T 2n+1(p) −→ ΩS2n+1

in which their map ϕ occurs as the connecting map. The existence of such a fibration
was first proved by Anick for p ≥ 5 in [2]. A much simpler construction, valid for all
odd primes, was later given by Gray and Theriault in [15], in which they also show that
Anick’s space T 2n+1(p) has the structure of an H-space and that all maps in the fibration
above can be chosen to be H-maps.

A well-known conjecture in unstable homotopy theory states that the fibre Wn of
the double suspension E2 : S2n−1 −→ Ω2S2n+1 is a double loop space. Anick’s space
represents a potential candidate for a double classifying space of Wn, and one of Cohen,
Moore and Neisendorfer’s remaining open conjectures in [8] states that there should be a
p-local homotopy equivalence Wn � Ω2T 2np+1(p). A stronger form of the conjecture (see
e.g. [3,12,26]) states that

BWn � ΩT 2np+1(p),

where BWn is the classifying space of Wn first constructed by Gray [11]. Such equiv-
alences have only been shown to exist for n = 1 and n = p. In the former case, both
BW1 and ΩT 2p+1(p) are known to be homotopy equivalent to Ω2S3〈3〉. Using Anick’s
fibration, Selick showed in [23] that T 2p+1(p) � ΩS3〈3〉 and that the decomposition (1)
can be delooped to a homotopy equivalence

ΩS2p+1{p} � ΩS3〈3〉 ×BWp.

The n = p case was proved in the strong form BWp � ΩT 2p2+1(p) by Theriault [26]
using the above decomposition in an essential way. Under these identifications, he further
showed that ΩS2p+1{p} and T 2p+1(p)× ΩT 2p2+1(p) are equivalent as H-spaces.

For primes p ≥ 5, similar decompositions of ΩS2n+1{p} are not possible if n �= 1 or p.
This result was obtained in [22] by first showing that for n > 1 the existence of a certain
spherical homology class imposed by a non-trivial homotopy decomposition of ΩS2n+1{p}
implies the existence of an element of p-primary Kervaire invariant one in πS2n(p−1)−2,

and then appealing to Ravenel’s [18] result on the non-existence of such elements when
p ≥ 5 and n �= p. For p = 3, the question of whether ΩS2n+1{3} admits a non-trivial
decomposition for n = 3j with j > 1 was left open. In this short note, we prove that
the strong odd primary Kervaire invariant problem is in fact equivalent to the problem
of decomposing the loop space ΩS2n+1{p}. When p = 3, this equivalence can be used to
import results from stable homotopy theory to obtain new results concerning the unstable
homotopy type of ΩS2n+1{3}, as well as some cases of the conjecture thatWn is a double
loop space.
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Theorem 1.1. Let p be an odd prime. The following conditions are equivalent.

(a) There exists a p-primary Kervaire invariant one element θj ∈ πS2pj(p−1)−2 of order p.

(b) There is a homotopy decomposition of H-spaces

ΩS2pj+1{p} � T 2pj+1(p)× ΩT 2pj+1+1(p).

Furthermore, if the above conditions hold, then there are homotopy equivalences of
H-spaces

BWpj−1 � ΩT 2pj+1(p) and BWpj � ΩT 2pj+1+1(p).

From this point of view, Selick’s decomposition of ΩS2p+1{p} and the previously known

equivalences BW1 � ΩT 2p+1(p) and BWp � ΩT 2p2+1(p) correspond to the existence (at
all odd primes) of the Kervaire invariant class θ1 = β1 ∈ πS2p2−2p−2 given by the first
element of the periodic beta family in the stable homotopy groups of spheres. By Ravenel’s
negative solution to the Kervaire invariant problem for primes p ≥ 5, Theorem 1.1 has
new content only at the prime p = 3. For example, in addition to the 3-primary Kervaire
invariant element θ1 ∈ πS10 for p = 3 and j = 1 corresponding to the decomposition of
ΩS7{3}, it is known that there exists a 3-primary Kervaire invariant element θ3 ∈ πS106
(see [18,19]), which we use to obtain the following decomposition of ΩS55{3} and prove
the n = p2 and n = p3 cases of the BWn � ΩT 2np+1(p) conjecture at p = 3.

Corollary 1.2. There are 3-local homotopy equivalences of H-spaces

(a) ΩS55{3} � T 55(3)× ΩT 163(3);

(b) BW9 � ΩT 55(3);

(c) BW27 � ΩT 163(3).

Remark 1.3. The equivalence of conditions (a) and (b) in Theorem 1.1 does not hold
for p = 2. In [4], Campbell, Cohen, Peterson and Selick showed that for n > 1 a non-
trivial decomposition of the fibre Ω2S2n+1{2} of the squaring map implies the existence
of an element θ ∈ πS2n−2 of Kervaire invariant one such that θη is divisible by 2. Since
such elements are well known to exist only for n = 2, 4 or 8, these are the only dimensions
for which Ω2S2n+1{2} can decompose non-trivially. Explicit decompositions of Ω2S5{2},
Ω2S9{2} and Ω3S17{2} corresponding to the first three 2-primary Kervaire invariant
classes θ1 = η2, θ2 = ν2 and θ3 = σ2 are given in [5], [9] and [1].

A further consequence of Theorem 1.1 unique to the p = 3 case concerns the asso-
ciativity of Anick spaces. Unlike when p ≥ 5, in which case T 2n+1(p) is a homotopy
commutative and homotopy associative H-space for all n ≥ 1, counterexamples to the
homotopy associativity of T 2n+1(3) have been observed in [13] and [24]. In particular,
in [13], it was shown that if T 2n+1(3) is homotopy associative, then n = 3j for some
j ≥ 0. The proof given there also shows that a homotopy associative H-space structure
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on T 2n+1(3) implies the existence of a three-cell complex

S2n+1 ∪3 e
2n+2 ∪ e6n+1

with non-trivial mod 3 Steenrod operation Pn, which in turn implies (by Spanier–

Whitehead duality and the Liulevicius–Shimada–Yamanoshita factorization of Ppj by
secondary cohomology operations) the existence of an element of strong Kervaire invari-
ant one. Using Theorem 1.1, we observe that the converse is also true to obtain the
following.

Theorem 1.4. Let n > 1. Then the mod 3 Anick space T 2n+1(3) is homotopy asso-
ciative if and only if there exists a 3-primary Kervaire invariant one element of order 3
in πS4n−2.

2. Proof of Theorem 1.1

The bulk of the proof of Theorem 1.1 will consist of a slight generalization of the argument
given in [26, Theorem 1.2], which we briefly describe below. As in [26], the following
extension lemma, originally proved in [3] for p ≥ 5 and later extended to include the p = 3
case in [15], will be crucial. We write Pn(pr) for the mod pr Moore space Sn−1 ∪pr en
and for a space X define homotopy groups with Z/prZ coefficients by πn(X;Z/prZ) =
[Pn(pr), X].

Lemma 2.1. Let p be an odd prime. Let X be an H-space such that pk ·
π2npk−1(X;Z/pk+1

Z) = 0 for k ≥ 1. Then any map P 2n(p) → X extends to a map
T 2n+1(p) → X.

In [15], Anick’s space is constructed as the homotopy fibre in a secondary EHP fibration

T 2n+1(p)
E−→ ΩS2n+1{p} H−→ BWn, (2)

where E is an H-map which induces in mod p homology the inclusion of

H∗(T 2n+1(p)) ∼= Λ(a2n−1)⊗ Z/pZ[c2n]

into

H∗(ΩS2n+1{p}) ∼=
( ∞⊗
i=0

Λ(a2npi−1)

)
⊗
( ∞⊗
i=1

Z/pZ[b2npi−2]

)
⊗ Z/pZ[c2n],

and H induces the projection onto

H∗(BWn) ∼=
( ∞⊗
i=1

Λ(a2npi−1)

)
⊗
( ∞⊗
i=1

Z/pZ[b2npi−2]

)
.

When n = p, it follows from Selick’s decomposition of ΩS2p+1{p} that H admits a right
homotopy inverse s : BWp → ΩS2p+1{p}, splitting the homotopy fibration (2) in this case.
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Restricting to the bottom cell of BWp, Theriault [26] extended the composite

S2p2−2 ↪−→ BWp
s−→ ΩS2p+1{p}

to a map P 2p2−1(p) → ΩS2p+1{p} and then applied Lemma 2.1 to the adjoint map

P 2p2(p) → S2p+1{p} to obtain an extension T 2p2+1(p) → S2p+1{p}. Finally, looping this
last map, he showed that the composite

ΩT 2p2+1(p) −→ ΩS2p+1{p} H−→ BWp

is a homotopy equivalence, thus proving the n = p case of the conjecture that BWn �
ΩT 2np+1(p).
In our case, we will use Lemma 2.1 to first construct a right homotopy inverse of

H : ΩS2n+1{p} → BWn in dimensions n = pj for which there exists an element θj ∈
πS2pj(p−1)−2 of strong Kervaire invariant one, and then follow the same strategy as above

to obtain both a homotopy decomposition of ΩS2pj+1{p} and a homotopy equivalence

BWpj � ΩT 2pj+1+1(p). These equivalences can then be used to compare the loops on (2)
with the n = pj−1 case of a homotopy fibration

BWn −→ Ω2S2np+1{p} −→Wnp

to further obtain a homotopy equivalence of fibres BWpj−1 � ΩT 2pj+1(p).

Proof of Theorem 1.1. We first show that condition (b) implies condition (a). Given
any homotopy equivalence

ψ : T 2pj+1(p)× ΩT 2pj+1+1(p)
∼−→ ΩS2pj+1{p},

set n = pj and let f denote the composite

f : S2np−2 ↪−→ ΩT 2np+1(p)
i2−→ T 2n+1(p)× ΩT 2np+1(p)

ψ−→ ΩS2n+1{p},

where the first map is the inclusion of the bottom cell of ΩT 2np+1(p) and the second map
i2 is the inclusion of the second factor. Then

f∗(ι) = b2np−2 ∈ H2np−2(ΩS
2n+1{p}),

where ι is the generator of H2np−2(S
2np−2). Since the homology class b2np−2 is spherical

if and only if there exists a stable map g : P 2n(p−1)−1(p) → S0 such that the Steenrod
operation Pn acts non-trivially on H∗(Cg) by [22], it follows that πS2n(p−1)−2 contains an
element of p-primary Kervaire invariant one and order p.
Conversely, suppose there exists a p-primary Kervaire invariant one element

θj ∈ πS2pj(p−1)−2 of order p. Then, by [22], the homology class b2pj+1−2 ∈
H2pj+1−2(ΩS

2pj+1{p}) is spherical, so there exists a map f : S2pj+1−2 → ΩS2pj+1{p} with
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Hurewicz image b2pj+1−2. Now, following the proof of [26, Theorem 1.2], since ΩS2pj+1{p}
has H-space exponent p, it follows that f has order p and hence extends to a map

e : P 2pj+1−1(p) −→ ΩS2pj+1{p}.
Let ê : P 2pj+1

(p) → S2pj+1{p} denote the adjoint of e. Again, because ΩS2pj+1{p} has
H-space exponent p, we have that

p · π∗(S2pj+1{p};Z/pkZ) = 0

for all k ≥ 1, and since S2pj+1{p} is an H-space [17], the map ê satisfies the hypotheses
of Lemma 2.1 and therefore admits an extension

s : T 2pj+1+1(p) −→ S2pj+1{p}.
Note that this factorization of ê through s implies that the adjoint map e factors through
Ωs, so we have a commutative diagram

S2pj+1−2 ��

f

����
���

���
���

���
���

���
���

���
��

P 2pj+1−1(p) ��

e

���
��

��
��

��
��

��
��

��
�

ΩT 2pj+1+1(p)

Ωs

��

ΩS2pj+1{p}

where the maps along the top row are skeletal inclusions; hence, (Ωs)∗ is an isomorphism

on H2pj+1−2( ) since f∗ is. Now, since H : ΩS2pj+1{p} → BWpj induces an epimorphism
in homology, the composite

ΩT 2pj+1+1(p)
Ωs−→ ΩS2pj+1{p} H−→ BWpj

induces an isomorphism of the lowest non-vanishing reduced homology group

H2pj+1−2(ΩT
2pj+1+1(p)) ∼= H2pj+1−2(BWpj ) ∼= Z/pZ.

By [14], any map ΩT 2np+1(p) → BWn which is degree one on the bottom cell must
be a homotopy equivalence, and thus H ◦ Ωs is a homotopy equivalence. Composing a
homotopy inverse of H ◦ Ωs with Ωs, we obtain a right homotopy inverse of H, which
shows that the homotopy fibration

T 2pj+1(p)
E−→ ΩS2pj+1{p} H−→ BWpj

splits. Moreover, letting m denote the loop multiplication on ΩS2pj+1{p}, the composite

T 2pj+1(p)× ΩT 2pj+1+1(p)
E×Ωs−−−−→ ΩS2pj+1{p} × ΩS2pj+1{p} m−→ ΩS2pj+1{p}

defines an equivalence of H-spaces, since E and Ωs are H-maps and m is homotopic to
the loops on the H-space multiplication on S2pj+1{p}.
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The homotopy equivalence H ◦ Ωs : ΩT 2pj+1+1(p) → BWpj is not necessarily multi-

plicative, but the H-space decomposition of ΩS2pj+1{p} constructed above can now
be used exactly as in the proof of [26, Theorem 1.1] to produce an H-map BWpj →
ΩT 2pj+1+1(p) which is also a homotopy equivalence.

It remains to show that there is an equivalence of H-spaces BWpj−1 � ΩT 2pj+1(p). In
his construction of a classifying space of Wn, Gray [11] introduced a p-local homotopy
fibration

BWn
j−→ Ω2S2np+1 φ−→ S2np−1,

where the map j has order p and hence lifts to a map j′ : BWn → Ω2S2np+1{p}. By [25], j′

can be chosen to be anH-map when p ≥ 3. Since j∗ is an isomorphism in degree 2np− 1, it
follows by commutativity with the Bockstein that j′∗ is an isomorphism in degree 2np− 2.

Let γ denote the equivalence of H-spaces T 2pj+1(p)× ΩT 2pj+1+1(p)
∼−→ ΩS2pj+1{p} con-

structed above. As Ωγ is also an equivalence of H-spaces, it has a homotopy inverse
(Ωγ)−1 which is also an H-map. Consider the composite

BWpj−1
j′−→ Ω2S2pj+1{p} (Ωγ)−1

−−−−−→ ΩT 2pj+1(p)× Ω2T 2pj+1+1(p)
π1−→ ΩT 2pj+1(p),

where j′ is the lift of j with n = pj−1 and π1 is the projection onto the first factor. Since
all three maps in this composition induce isomorphisms on H2pj−2( ), it again follows
from the atomicity result in [14] that the composite defines a homotopy equivalence

BWpj−1 � ΩT 2pj+1(p), which is an equivalence of H-spaces since each map above is an
H-map. �

3. Applications

In this section we derive Corollary 1.2 and Theorem 1.4 from Theorem 1.1 and discuss
some other consequences in the p = 3 case.

3.1. The homotopy decomposition of ΩS55{3}
Since, by [22], ΩS2n+1{p} is atomic for all n such that πS2n(p−1)−2 contains no element of

p-primary Kervaire invariant one, ΩS2n+1{p} is indecomposable for n �= pj and it follows
from Theorem 1.1 that the decomposition problem for ΩS2n+1{p} is equivalent to the
strong p-primary Kervaire invariant problem for odd primes p. The 3-primary Kervaire

invariant problem is open, but the elements bj−1 ∈ Ext
2,2pj(p−1)
Ap

(Fp,Fp) in the E2-term of
the Adams spectral sequence which potentially detect elements of odd primary Kervaire
invariant one are known to behave differently for p = 3 than for primes p ≥ 5.
While b0 is a permanent cycle representing θ1 ∈ πS2p(p−1)−2 at all odd primes, Ravenel

showed in [18] that for j > 1 and p ≥ 5 the elements bj−1 support non-trivial differentials
in the Adams spectral sequence and hence that none of the θj exist for j > 1 and p ≥ 5.
For p = 3, however, it is known (see [18,19]) that although b1 supports a non-trivial
differential, b2 is a permanent cycle representing a 3-primary Kervaire invariant class
θ3 ∈ πS106.
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Proof of Corollary 1.2. According to [19], πS106
∼= Z/3Z after localizing at p = 3, so

θ3 has order 3 and the result follows from Theorem 1.1. �

Remark 3.1. We note that the non-existence of θ2 at p = 3 implies that ΩS2p2+1{p} =
ΩS19{3} is atomic and hence indecomposable by the result in [22] mentioned above.

Observe that since the mod p Moore space P 2(p) is the homotopy cofibre of the
degree p self map p : S1 → S1, by applying the functor Map∗(−, S2n+1) to the homotopy
cofibration

S1 p−→ S1 −→ P 2(p)

we obtain a homotopy fibration

Map∗(P
2(p), S2n+1) −→ ΩS2n+1 p−→ ΩS2n+1,

which identifies the mapping space Map∗(P
2(p), S2n+1) with the homotopy fibre

ΩS2n+1{p} of the pth power map on the loop space ΩS2n+1. The decomposition of
ΩS55{3} in Corollary 1.2 therefore induces the following splitting of homotopy groups
with Z/3Z coefficients, analogous to Selick’s [21] splitting of π∗(S2p+1;Z/pZ).

Corollary 3.2. For k ≥ 4, there are isomorphisms

πk(S
55;Z/3Z) ∼= πk−2(T

55(3))⊕ πk−1(T
163(3))

∼= πk−4(W9)⊕ πk−3(W27).

3.2. Homotopy associativity and exponents for mod 3 Anick spaces

The following two useful properties of T 2n+1(p) were conjectured by Anick and Gray [2,
3].

(a) T 2n+1(p) is a homotopy commutative and homotopy associative H-space.

(b) T 2n+1(p) has homotopy exponent p.

Both properties have been established for all p ≥ 5 and n ≥ 1, but only partial results
have been obtained in the p = 3 case. For example, it was found in [24] that T 7(3) is both
homotopy commutative and homotopy associative but that homotopy associativity fails
for T 11(3). More generally, Gray showed in [13] that if T 2n+1(3) is homotopy associative,
then n = 3j for some j ≥ 0 and, moreover, property (i) implies property (ii).
Concerning property (ii), in general T 2n+1(3) is only known to have homotopy exponent

bounded above by 9. (This can be seen using fibration (2) and the fact that BWn has
3-primary exponent 3, for example.) Since T 2n+1(p) is an H-space for all p ≥ 3, one could
also ask for the stronger property that T 2n+1(p) has H-space exponent p, i.e. that its pth
power map is null homotopic. We note that decompositions of ΩS2n+1{3}, when they
occur, give some evidence for (ii).
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Corollary 3.3. The following hold.

(a) T 7(3) and T 55(3) are homotopy commutative and homotopy associative H-spaces.

(b) T 7(3), T 55(3), ΩT 19(3) and ΩT 163(3) each have H-space exponent 3.

Proof. Since the homotopy equivalences ΩS7{3} � T 7(3)× ΩT 19(3) and ΩS55{3} �
T 55(3)× ΩT 163(3) which follow from Theorem 1.1 are equivalences of H-spaces, part (b)
follows immediately from the fact that ΩS2n+1{3} has H-space exponent 3 [17], and
part (a) follows from the fact that ΩS2n+1{3} is homotopy associative and homotopy
commutative as it is the loop space of an H-space. �

Proof of Theorem 1.4. Let n > 1 and suppose T 2n+1(3) is homotopy associative.
Then the proof of [13, Theorem A.2] shows that there exists a three-cell complex

X = S2n+1 ∪3 e
2n+2 ∪ e6n+1

with non-trivial mod 3 Steenrod operation Pn : H2n+1(X) → H6n+1(X). The attaching
map of the middle cell of a Spanier–Whitehead dual of X then defines an element of
Kervaire invariant one in πS4n−2, which has order 3 since it extends over a mod 3 Moore
space. Alternatively, by [24, Proposition 7.1], the homotopy associativity of T 2n+1(3)
implies that a certain composite

S6n−3 [ι,[ι,ι]]−−−−→ ΩS2n r−→ S2n−1

is divisible by 3, where [ι, [ι, ι]] denotes the triple Samelson product of the generator of
π2n−1(ΩS

2n) and r is a left homotopy inverse of the suspension E : S2n−1 → ΩS2n. It is
easy to check that the composite above coincides with the image of the generator of the
lowest non-vanishing 3-local homotopy group π6n−3(Wn) ∼= Z/3Z under the homotopy
fibre map Wn → S2n−1, and the divisibility of this element is a well-known equivalent
formulation of the strong Kervaire invariant problem.
Conversely, if there exists a 3-primary Kervaire invariant element of order 3 in πS4n−2,

then n = 3j for some j ≥ 1, and it follows from Theorem 1.1 that T 2n+1(3) is a homotopy
associative H-space as it is an H-space retract of a loop space. �

4. A stable splitting of ΩS2n+1{p}
It is well known that S2n+1{p} splits as a wedge of mod p Moore spaces after suspending
once. In this section, we determine the stable homotopy type of the loop space ΩS2n+1{p}
by observing that although the homotopy fibration

T 2n+1(p)
E−→ ΩS2n+1{p} H−→ BWn

only splits in Kervaire invariant one dimensions, it splits for all n after suspending twice.
As in the previous sections, p denotes an odd prime and all spaces and maps are assumed
to be localized at p.
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Proposition 4.1. For all n ≥ 1, there is a homotopy equivalence

Σ2ΩS2n+1{p} � Σ2(T 2n+1(p)×BWn).

Proof. In [11], Gray showed that the classifying space BWn of the fibre of the double
suspension fits in a homotopy fibration

S2n−1 E2

−→ Ω2S2n+1 ν−→ BWn

and that there is a homotopy equivalence Σ2Ω2S2n+1 � Σ2(S2n−1 ×BWn). Let
s : Σ2BWn → Σ2Ω2S2n+1 be a right homotopy inverse of Σ2ν. In the construction of
Anick’s fibration in [15], T 2n+1(p) is defined as the homotopy fibre of the map H, where
H is constructed as an extension

Ω2S2n+1
∂

��

ν

��

ΩS2n+1{p}

H���
�
�
�
�

BWn

of ν through the connecting map of the homotopy fibration ΩS2n+1{p} −→ ΩS2n+1 p−→
ΩS2n+1. Therefore, by composing s with Σ2∂, we obtain a right homotopy inverse
s′ : Σ2BWn → Σ2ΩS2n+1{p} of Σ2H. Next, consider the composite map f defined by

f : T 2n+1(p) ∧ Σ2BWn
E∧s′−−−→ ΩS2n+1{p} ∧ Σ2ΩS2n+1{p} −→ Σ2ΩS2n+1{p},

where the second map is obtained by suspending the Hopf construction ΣΩS2n+1{p} ∧
ΩS2n+1{p} → ΣΩS2n+1{p} on ΩS2n+1{p}. Finally, since Σ2E, s′ and f each induce
monomorphisms in mod p homology, it follows that the map

Σ2(T 2n+1(p)×BWn) � Σ2T 2n+1(p) ∨ Σ2BWn ∨ (Σ2T 2n+1(p) ∧BWn) −→ Σ2S2n+1{p}

defined by their wedge sum is a homology isomorphism and hence a homotopy equivalence.
�

Since T 2n+1(p) stably splits as a wedge of mod p Moore spaces [3], it follows from
Proposition 4.1 that ΩS2n+1{p} has the stable homotopy type of a wedge of Moore
spaces, Snaith summands D2,k(S

2n−1) of the stable splitting of Ω2S2n+1, and their smash
products.
A similar argument can be used to give a stable splitting of the homotopy fibre E2n+1

of the natural inclusion i : P 2n+1(p) → S2n+1{p}, where BWn is a stable retract. More
precisely, it follows from [15] that the extension H of ν appearing in the proof of Propo-
sition 4.1 can be chosen to factor through a map δ : ΩS2n+1{p} → E2n+1, and thus BWn
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also retracts off E2n+1 after suspending twice. The space E2n+1, along with a homotopy
pullback diagram

Ω2S2n+1 ��

��

E2n+1 �� F 2n+1 ��

��

ΩS2n+1

��

ΩS2n+1{p} δ
�� E2n+1 �� P 2n+1(p)

i
��

q

��

S2n+1{p}

��

S2n+1 S2n+1

(3)

determined by the factorization of the pinch map q : P 2n+1(p) → S2n+1 in the bottom
right square, was thoroughly analysed in Cohen, Moore and Neisendorfer’s study of the
homotopy theory of Moore spaces [6,7], where decompositions of ΩE2n+1, ΩF 2n+1 and
ΩP 2n+1(p) were used to determine the homotopy exponents of spheres and Moore spaces.

The double suspension fibrationWn −→ S2n−1 E2

−→ Ω2S2n+1 was shown to retract off the
homotopy fibration along the top row of the loops on (3), with Wn and S2n−1 appearing
as factors containing the bottom cells in product decompositions of ΩE2n+1 and ΩF 2n+1,
respectively.
Consider the morphism of homotopy fibrations

T 2n+1(p) ��

E

��

X

��

ΩS2n+1{p} δ
��

H

��

E2n+1

��

BWn BWn

(4)

determined by the factorization of H through δ. As with the splitting in Proposition 4.1,
the retraction of Σ2BWn off Σ2E2n+1 can be desuspended in Kervaire invariant one
dimensions. One difference, however, is that since Wn is always a retract of ΩE2n+1

by Cohen, Moore and Neisendorfer’s decomposition, the image of the homology class
b2np−2 ∈ H2np−2(ΩS

2n+1{p}) under δ∗ is spherical for all n (as opposed to just those
n = pj for which πS2n(p−1)−2 contains an element of strong Kervaire invariant one), and
thus the non-existence of Kervaire invariant elements does not obstruct the possibility
of an unstable decomposition of E2n+1 as it does for ΩS2n+1{p}. It would there-
fore be interesting to know whether a homotopy class S2np−2 → E2n+1 with Hurewicz
image δ∗(b2np−2) could be extended to a map ΩT 2np+1(p) → E2n+1, as in the proof of
Theorem 1.1, to prove the conjectured homotopy equivalence BWn � ΩT 2np+1(p) for all
n and split the homotopy fibration in the second column of the diagram above. We show
below that BWn is in fact a retract of E2n+1 for all n, delooping the result of Cohen,
Moore and Neisendorfer (see [7, Theorem 3.2]).
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Proposition 4.2. For all n ≥ 1, BWn is a retract of E2n+1.

Proof. By the construction of BWn in [11], there is a homotopy fibration sequence

Ω2S2n+1 −→ BWn × S4n−1 −→ S2n E−→ ΩS2n+1,

where the connecting map factors as Ω2S2n+1 ν−→ BWn
i1−→ BWn × S4n−1. Since the

composite S2n E−→ ΩS2n+1 −→ S2n+1{p} is just the inclusion of the bottom cell of
S2n+1{p}, there is a homotopy commutative diagram

BWn × S4n−1 ��

��

E2n+1

��

S2n ��

E

��

P 2n+1(p)

i

��

ΩS2n+1 �� S2n+1{p}

where the induced map of fibres determines a map g : BWn → E2n+1. Observe that the
connecting map Ω2S2n+1 → BWn × S4n−1 of the first column induces an isomorphism
on H2np−2( ) since ν does, and the connecting map δ : ΩS2n+1{p} → E2n+1 of the second
column induces an isomorphism on H2np−2( ) by the commutativity of (4). Therefore,
since the map Ω2S2n+1 → ΩS2n+1{p} given by the loops on the bottom horizontal map
induces a monomorphism in homology by a Serre spectral sequence argument, we conclude
that g : BWn → E2n+1 induces an isomorphism on H2np−2( ) so that the composition

BWn
g−→ E2n+1 → BWn with the extension in (4) is degree one on the bottom cell and

thus a homotopy equivalence. �

In cases of strong Kervaire invariant one, Proposition 4.2 can be improved to a product
decomposition of E2n+1.

Corollary 4.3. If πS2n(p−1)−2 contains a p-primary Kervaire invariant one element of
order p, then there is a homotopy equivalence

E2n+1 � BWn ×X.

Proof. Let a : ΩS2n+1{p} × E −→ E be the homotopy action of the fibre on the total

space of the principal homotopy fibration ΩS2n+1{p} δ−→ E −→ P 2n+1(p). Under the
given assumption, it follows from the proof of Theorem 1.1 that H : ΩS2n+1{p} → BWn

has a right homotopy inverse s. Let j denote the fibre inclusion in (4) and consider the
composite

BWn ×X
s×j−−→ ΩS2n+1{p} × E

a−→ E.
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Since the restriction to each factor induces a monomorphism in homology, it follows that
a ◦ (s× j) is a homotopy equivalence. �
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