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Abstract

Disjunctive Answer Set Programming is a powerful declarative programming paradigm with

complexity beyond NP. Identifying classes of programs for which the consistency problem is

in NP is of interest from the theoretical standpoint and can potentially lead to improvements

in the design of answer set programming solvers. One of such classes consists of dual-normal

programs, where the number of positive body atoms in proper rules is at most one. Unlike

other classes of programs, dual-normal programs have received little attention so far. In

this paper we study this class. We relate dual-normal programs to propositional theories

and to normal programs by presenting several inter-translations. With the translation from

dual-normal to normal programs at hand, we introduce the novel class of body-cycle free

programs, which are in many respects dual to head-cycle free programs. We establish the

expressive power of dual-normal programs in terms of SE- and UE-models, and compare

them to normal programs. We also discuss the complexity of deciding whether dual-normal

programs are strongly and uniformly equivalent.

KEYWORDS: answer set programming, classes of logic programs, strong and uniform

equivalence, propositional satisfiability

1 Introduction

Disjunctive Answer Set Programming (ASP) (Brewka et al. 2011) is a vibrant area

of AI providing a declarative formalism for solving hard computational problems.

Thanks to the power of modern ASP technology (Gebser et al. 2012), ASP was suc-

cessfully used in many application areas, including product configuration (Soininen

and Niemelä 1998), decision support for space shuttle flight controllers (Nogueira
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et al. 2001; Balduccini et al. 2006), team scheduling (Ricca et al. 2012), and bio-

informatics (Guziolowski et al. 2013).

With its main decision problems located at the second level of the polynomial

hierarchy, full disjunctive ASP is necessarily computationally involved. But some

fragments of ASP have lower complexity. Two prominent examples are the class of

normal programs and the class of head-cycle free (HCF) programs (Ben-Eliyahu and

Dechter 1994). In each case, the problem of the existence of an answer set is NP-

complete. Identifying and understanding such fragments is of theoretical importance

and can also help to make ASP solvers more efficient. A solver can detect whether

a program is from an easier class (e.g., is normal or head-cycle free) and, if so, use

a dedicated more lightweight machinery to process it.

HCF programs are defined by a global condition taking into account all rules in

a program. On the other hand, interesting classes of programs can also be obtained

by imposing conditions on individual rules. Examples include the classes of Horn,

normal, negation-free, and purely negative programs. For instance, Horn programs

consist of rules with at most one atom in the head and no negated atoms in the

body, and purely negative programs consist of rules with no atoms in the positive

body. A general schema to define classes of programs in terms of the numbers

of atoms in the head and in the positive and negative bodies of their rules was

proposed by Truszczyński (2011). In the resulting space of classes of programs,

the complexity of the consistency problem (that is, the problem of the existence

of an answer set) ranges from P to NP-complete to ΣP
2 -complete. The three main

classes of programs in that space that fall into the NP-complete category are the

classes of normal and negation-free programs (possibly with constraints), mentioned

above, and the class of programs whose non-constraint rules have at most one

positive atom in the body (Truszczyński 2011). While the former two classes have

been thoroughly investigated, the third class has received little attention so far. In

particular, the paper by Truszczyński (2011) only identified the class and established

the complexity of the main reasoning tasks (deciding the consistency, and skeptical

and credulous reasoning).

In this paper, we study this “forgotten” class in more detail. We call its programs

dual-normal, since the reducts of their non-constraint part are dual -Horn. In fact,

this is the reason why for dual-normal programs the consistency problem is in NP.

Lower complexity is not the only reason why dual-normal programs are of interest.

Let us consider a slight modification of the celebrated translation of a (2, ∃)-QBF

F = ∃X∀Y D into a disjunctive program P [F] devised by Eiter and Gottlob (1995).

The translation assumes that D is a 3-DNF formula, say D =
∨n

i=1(li,1 ∧ li,2 ∧ li,3),

where li,j ’s are literals over X ∪ Y . To define P [F] we introduce mutually distinct

fresh atoms w, x, for x ∈ X, y, for y ∈ Y , and set

P [F] = {x ∨ x← | x ∈ X} ∪ {y ∨ y ←; y ← w; y ← w | y ∈ Y }∪
{w ← l∗i,1, l

∗
i,2, l

∗
i,3 | 1 � i � n} ∪ {⊥ ← ¬ w}

where l∗i,j = ¬x if li,j = x, l∗i,j = ¬x if li,j = ¬x, l∗i,j = y for li,j = y, l∗i,j = y for li,j = ¬y.

It can be shown that P [F] has at least one answer set if and only if F is true. Let
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us consider the subclass of (2, ∃)-QBFs where each term li,1 ∧ li,2 ∧ li,3 in F contains

at most one universally quantified atom from Y . This restriction makes the ΣP
2 -

complete problem of the validity of a (2, ∃)-QBF NP-complete, only. Moreover, it is

easy to check that under that restriction, P [F] is a dual-normal program. Since, the

consistency problem for dual-normal programs is NP-complete (Truszczyński 2011)

as well, dual-normal programs thus allow here for a straightforward complexity-

sensitive reduction with respect to the subclass of the (2, ∃)-QBF problem mentioned

above. Janhunen et al. (2006) proposed another translation of QBFs into programs

that, with slight modifications, is similarly complexity-sensitive.

Main Contributions. Our first group of results concerns connections between dual-

normal programs, propositional theories and normal programs. They are motivated

by practical considerations of processing dual-normal programs. First, we give an

efficient translation from dual-normal programs to Sat such that the models of the

resulting formula encode the answer sets of the original program. While similar in

spirit to translations to Sat developed for other classes of programs, our translation

requires additional techniques to correctly deal with the dual nature of the programs

under consideration. Second, in order to stay within the ASP framework we give

a novel translation capable to express dual-normal programs as normal ones, and

also vice versa, in each case producing polynomial-size encodings. In addition, this

translation allows us to properly extend the class of dual-normal programs to the

novel class of body-cycle free programs, a class for which the consistency problem is

still located in NP.

In the next group of results, we investigate dual-normal programs from a

different angle: their ability to express concepts modeled by classes of SE- and UE-

models (Turner 2001; Eiter et al. 2013) and, in particular, to express programs under

the notions of equivalence defined in terms of SE- and UE-models (Eiter et al. 2007).

Among others, we show that the classes of normal and dual-normal programs are

incomparable with respect to SE-models, and that dual-normal programs are strictly

less expressive than normal ones with respect to UE-models. We also present results

concerning the complexity of deciding strong and uniform equivalence between

dual-normal programs.

2 Preliminaries

A rule r is an expression H(r) ← B+(r),¬B−(r), where H(r) = {a1, . . . , al}, B+(r) =

{al+1, . . . , am}, B−(r) = {am+1, . . . , an}, l, m and n are non-negative integers, and ai,

1 � i � n, are propositional atoms. We omit the braces in H(r), B+(r), and B−(r) if

the set is a singleton. We occasionally write ⊥ if H(r) = ∅. We also use the traditional

representation of a rule as an expression a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an.
We call H(r) the head of r and B(r) = {al+1, . . . , am,¬am+1, . . . ,¬an} the body of r. A

rule r is normal if |H(r)| � 1, r is Horn if it is normal and B−(r) = ∅, r is dual-Horn

if |B+(r)| � 1 and B−(r) = ∅, r is an (integrity) constraint if H(r) = ∅, r is positive if

B−(r) = ∅, and r is definite if |H(r)| = 1. If B+(r) ∪ B−(r) = ∅, we simply write H(r)

instead of H(r)← ∅, ∅.
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A disjunctive logic program (or simply a program) is a finite set of rules. We denote

the set of atoms occurring in a program P by at(P ). We often lift terminology

from rules to programs. For instance, a program is normal if all its rules are

normal. We also identify the parts of a program P consisting of proper rules as

Pr = {r ∈ P | H(r) 
= ∅} and constraints as Pc = P \ Pr . In this paper we are

particularly interested in the following class.

Definition 1

A program P is called dual-normal if each rule r of P is either a constraint or

|B+(r)| � 1. Programs that are both normal and dual-normal are called singular.1

Note that dual-Horn programs may contain positive constraints with a single body

atom but arbitrary constraints are forbidden in contrast to dual-normal programs.

Let P be a program and t a fresh atom. We define

P [t] = {H(r)← t,¬B−(r) | r ∈ P , B+(r) = ∅} ∪ {r | r ∈ P , B+(r) 
= ∅}

This transformation ensures non-empty positive bodies in rules and turns out to

be useful in analyzing the semantics of dual-normal programs.

An interpretation is a set I of atoms. An interpretation I is a model of a

program P , written I |= P , if I satisfies each rule r ∈ P , written I |= r, that

is, if (H(r) ∪ B−(r)) ∩ I 
= ∅ or B+(r) \ I 
= ∅.
In the following when we say that a set M is maximal (minimal) we refer to

inclusion-maximality (inclusion-minimality). A Horn program either has no models

or has a unique least model. Dual-Horn programs have a dual property.

Proposition 1

Let P be dual-Horn. Then P has no models or has a unique maximal model.

We will now describe a construction that implies this result and is also of use in

arguments later in the paper. Let us define E0 = ∅ and, for i � 1,

Ei = {b | H ← b ∈ P [t], H ⊆ Ei−1}.

Intuitively, the sets Ei consist of atoms that must not be in any model of P [t] (must

be eliminated). The construction is dual to that for Horn programs. More precisely,

the sets Ei can be alternatively defined as the results of recursively applying to

E0 = ∅ the one-step provability operator for the definite Horn program P ′[t] = {b←
H | H ← b ∈ P [t]}. The following result summarizes properties of the program P [t]

and sets Ei.

Proposition 2

Let P be dual-Horn. Then, (1) E0 ⊆ E1 ⊆ . . . ⊆ at(P )∪ {t}; (2) (at(P )∪ {t}) \
⋃∞

i=0 Ei

is a maximal model (over at(P ) ∪ {t}) of P [t]; (3) for every set M of atoms, M is a

model of P if and only if M ∪ {t} is a model of P [t]; and (4) P has a model if and

only if t belongs to the maximal model (over at(P ) ∪ {t}) of P [t] (or, equivalently,

t /∈
⋃∞

i=0 Ei).

1 Singular programs were also considered by Janhunen (2006), however under a different name.
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Properties (3) and (4) imply Proposition 1. The construction can be implemented

to run in linear time by means of the algorithm by Dowling and Gallier (1984) for

computing the least model of a Horn program.

The Gelfond-Lifschitz reduct P I of a program P relative to an interpretation I

is defined as P I = {H(r) ← B+(r) | r ∈ P , I ∩ B−(r) = ∅}. Observe that for a

dual-normal program P any reduct of Pr is dual-Horn. An interpretation I is an

answer set of a program P if I is a minimal model of P I (Gelfond and Lifschitz

1991; Przymusinski 1991). The set of all answer sets of a program P is denoted by

AS (P ).

The following well-known characterization of answer sets is often invoked when

considering the complexity of deciding the existence of answer sets.

Proposition 3

The following statements are equivalent for any program P and any set M of atoms:

(1) M ∈ AS (P ), (2) M is a model of P and a minimal model of PM
r , and (3) M is a

model of Pc and M ∈ AS (Pr).

This result identifies testing whether an interpretation M is a minimal model of

PM
r as the key task in deciding whether M is an answer set of P . For normal

programs checking that M is a minimal model of PM
r is easy. One just needs to

compute the least model of the Horn program PM
r and check whether it matches

M. The general case requires more work. A possible approach is to reduce the

task to that of deciding whether certain programs derived from PM
r have models.

Specifically, define for a program P and an atom m ∈ at(P )

P |Mm = PM
r ∪ {⊥ ← b | b ∈ at(P ) \M} ∪ {⊥ ← m}.

With this notation, we can restate Condition (2) in Proposition 3.

Proposition 4

An interpretation M is an answer set of a program P if and only if M is a model

of P and for each m ∈M, the program P |Mm has no models.

Clearly, if a program P is dual-normal, the programs P |Mm all are dual-Horn.

Combining Propositions 2 and 4 yields the following corollary, as well as an efficient

algorithm for checking whether M is an answer set of P .

Corollary 1

Let P be a dual-normal program. An interpretation M is an answer set of P if and

only if M is a model of P and for every m ∈M, tm ∈
⋃∞

i=0 Ei, where Ei are the sets

computed based on P |Mm [tm].

3 Translation into SAT

In this section, we encode dual-normal programs as propositional formulas so that

the models of the resulting formulas encode the answer sets of the original programs.

The main idea is to non-deterministically check for every interpretation whether it

is an answer set of P . In other words, we encode into our formula a guess of an
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interpretation and the efficient algorithm described above to check whether it has

models (cf. Corollary 1). Note that the latter part is dual to the Horn encoding

by Fichte and Szeider (2013).

Let P be a program and p = |at(P )|. The propositional variables in our encodings

are given by all atoms a ∈ at(P ), a fresh variable t, and fresh variables aim, for

a ∈ at(P )∪{t}, m ∈ at(P ), and 0 � i � p. We use the variables aim and tim to simulate

the computation of
⋃∞

i=0 Ei based on the program P |Mm [tm], when testing minimality

of an interpretation M by trying to exclude m (cf. Corollary 1). The superscript i

generates copies of atoms that represent the set Ei. Moreover, we write P � B as a

shorthand for {r ∈ P | B+(r) = B} and we write Ei|Mm to indicate that a set Ei is

considered with respect to P |Mm [tm] instead of P [tm].

The following auxiliary formulas simulate, according to Corollary 1, an inductive

top-down computation of the maximal models of P |Mm [tm], where M is an interpre-

tation and m ∈ M. Since P |Mm [tm] is dual-Horn the main part of our first auxiliary

formulas is the encoding of the set (at(P ) ∪ {tm}) \
⋃∞

i=0 Ei|Mm where m ∈ M and

0 � i � p (cf. Proposition 2 Properties (1) and (2)).

For the initial level 0, the following formula F0
m encodes E0|Mm . That is, it ensures

that m does not belong to a model of F0
m and all other variables belong to a model

of F0
m if and only if they do for the current interpretation over at(P ):

F0
m =¬m0

m ∧ t0m ∧
∧

a∈at(P )\{m}

(a0
m ↔ a).

The next formula encodes the set (at(P ) ∪ {tm}) \ Ei|Mm . In other words, we ensure

that an atom a does not belong to the model if and only if there is a rule r ∈ P |Mm [tm]

where already all atoms in the head do not belong to the model (according to the

previous step), and analogously for tim:

Fi
m =

∧
a∈at(P )\{m}

(
aim ↔ (ai−1

m ∧ Ci
m(Pr � {a}))

)
∧

(
tim ↔ (ti−1

m ∧ Ci
m(Pr � ∅))

)

(for 1 � i � p) where Ci
m(R) =

∧
r∈R

( ∨
a∈H(r)

ai−1
m ∨

∨
a∈B−(r)

a
)
.

Note that in Ci
m(R) the heads are evaluated with respect to the previous level while

the negative bodies are evaluated with respect to the current model candidate, thus

simulating the concept of reduct inherent in P |Mm [tm].

Finally, the following auxiliary formula encodes the condition that an interpreta-

tion satisfies each rule r ∈ P :

FMod =
∧
r∈P

( ∨
a∈H(r)∪B−(r)

a ∨
∨

a∈B+(r)

¬a
)
.

We now put these formulas together to obtain a formula F(P ) expressing that some

interpretation M ⊆ at(P ) is a model of P and for every atom a ∈ M, atom ta does

not belong to the maximal model of P |Ma [ta]:

F(P ) = FMod ∧
∧

a∈at(P )

[
a→

( p∧
i=0

Fi
a ∧ ¬tpa

)]
.
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It is easy to see that the formula F(P ) is of size O(‖P‖ · |at(P )|3), where ‖P‖ stands

for the size of P , and obviously we can construct it in polynomial time from P . The

correctness of the translation is formally stated in the following result.

Theorem 1

Let P be a dual-normal program. Then, AS (P ) = {M ∩ at(P ) | M ∈ Mod (F(P ))},
where Mod (F) denotes the set of all models of F .

Our encoding can be improved by means of an explicit encoding of the induction

levels using counters (see e.g., (Janhunen 2006)). This allows to reduce the size of

the encoding to O(|at(P )| · ‖P‖ · log |at(P )|).

4 Translation into normal programs

We now provide a polynomial-time translation from programs to programs that

allows us to swap heads with positive bodies. It serves several purposes. (1) The

translation delivers a normal program when the input program is dual-normal, and

it delivers a dual-normal program when the input is normal. Given the complexity

results by Truszczyński (2011), the existence of such translations is not surprising.

However, the fact that there exists a single bidirectional translation, not tailored

to any specific program class, is interesting. (2) When applied to head-cycle free

programs (Ben-Eliyahu and Dechter 1994), the translation results in programs that

we call body-cycle free. Body-cycle free programs are in many respects dual to

head-cycle free ones.

To proceed, we need one more technical result which provides yet another

characterization of answer sets of programs. It is closely related to the one given

by Corollary 1 but more convenient to use when analyzing the translation we give

below. Let P be a program and t a fresh atom. For every pair of atoms x, y, where

x ∈ at(P ) and y ∈ at(P ) ∪ {t} we introduce a fresh atom yx, as an auxiliary atom

representing a copy of y in P with respect to x; we clarify the role of these atoms

below after the proof of Proposition 5.

Moreover, for every set Y ⊆ at(P )∪ {t}, let Yx = {yx | y ∈ Y }. With this notation

in hand, we define

Px = {B+
x ← Hx,¬B− | H ← B+,¬B− ∈ Pr[t]},

and we write PM
x for (PM)x and PM

r for (PM)r = (Pr)
M .

Proposition 5

Let P be a program. An interpretation M ⊆ at(P ) is an answer set of P if and only

if M is a model of P , and for every x ∈ M, tx belongs to every minimal model of

PM
x ∪ {xx} ∪ (at(P ) \M)x.

Proof

(⇐) Since M is a model of P , M is a model of PM . Thus, M is a model of PM
r . By

Proposition 3, it suffices to show that M is a minimal model of PM
r .

Let us assume that for some N ⊂M, N |= PM
r . Let x ∈M \N. Finally, let us set

N ′ = at(P ) \N. We will show that N ′x is a model of PM
x . To this end, let us consider
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a rule Ux ← Vx in PM
x such that Ux 
= {tx}, and assume that Vx ⊆ N ′x. It follows

that V ⊆ N ′. Since the rule V ← U belongs to PM
r , N |= PM , and V ∩ N = ∅, we

have U 
⊆ N. Thus, U ∩N ′ 
= ∅ and so, Ux ∩N ′x 
= ∅. Hence, N ′x |= Ux ← Vx. Next,

let us consider a rule tx ← Vx in PM
x . Since V ← is a rule in PM

r and N |= PM
r , we

have V ∩N 
= ∅. Thus, V 
⊆ N ′ and so, Vx 
⊆ N ′x. Consequently, N ′x |= tx ← Vx.

Since {x} ∪ (at(P ) \M) ⊆ N ′, it follows that N ′x |= PM
x ∪ {xx} ∪ (at(P ) \M)x. Since

t /∈ N ′, tx /∈ N ′x. Thus, there is a minimal model of PM
x ∪{xx}∪ (at(P )\M)x that does

not contain tx, a contradiction (each minimal model of PM
x ∪ {xx} ∪ (at(P ) \M)x

contained in N ′x has this property).

(⇒) Since M ∈ AS (P ), M is a model of P . Let us assume that for some x ∈ M

and for some minimal model N ′x of PM
x ∪ {xx} ∪ (at(P ) \M)x, tx /∈ N ′x. Let us define

N = at(P ) \N ′x. Since {x} ∪ (at(P ) \M) ⊆ N ′x, N is a subset of M \ {x}. Reasoning

similarly as before, we can show that N is a model of PM
r . This is a contradiction,

as M is minimal model of PM
r . Thus, the assertion follows by Proposition 3. �

By Proposition 5 checking whether M is an answer set of P requires to verify

a certain condition for every x ∈ M. That condition could be formulated in terms

of atoms in at(P ) ∪ {t} (by dropping the subscripts x in the atoms of the program

Px and in the condition). However, if a single normal program is to represent the

condition for all x ∈ M together, we have to combine the programs Px. To avoid

unwanted interactions, we first have to standardize the programs apart. This is the

reason why we introduce atoms yx and use them to define copies of Px customized

to individual x’s.

Given a program P and the customized programs Px, we now describe the

promised translation. To this end, for every atom x ∈ at(P ), we introduce a fresh

atom x. We set:

Pxor = {x← ¬x; x← ¬x | x ∈ at(P )}
Paux = {xx ← ¬x; yx ← ¬x,¬y | x, y ∈ at(P )}

Pdiag =Pxor ∪ Paux ∪
⋃

x∈at(P )

Px

Pmod = {⊥ ← ¬H,B+,¬B− | H ← B+,¬B− ∈ P }
Ptrue = {⊥ ← x,¬tx | x ∈ at(P )}
Ptrans =Pdiag ∪ Pmod ∪ Ptrue

The following observations are immediate and central:

1. For a dual-normal program P , Ptrans is normal.

2. For a normal program P , Ptrans is dual-normal.

Hence, the following result not only establishes the connection between the answer

sets of P and Ptrans but also proves that the transformation encodes dual-normal

as normal programs, as desired, and at the same time, encodes normal programs
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as dual-normal ones. Moreover, the transformation can be implemented to run in

polynomial time and so, produces polynomial-size programs.

Theorem 2

Let P be a program, M ⊆ at(P ), P ′ =
⋃

x∈M(PM
x ∪ {xx} ∪ (at(P ) \ M)x) and

MP = M ∪ {x | x ∈ at(P ) \M}. Then M ∈ AS (P ) if and only if for every minimal

model N of P ′, MP ∪N ∈ AS (Ptrans). Moreover, every answer set of Ptrans is of the

form MP ∪N for M ⊆ at(P ) and a minimal model N of P ′.

Proof

(⇒) Let M be an answer set of P and let N be any minimal model of P ′. Since M is

a model of P by Proposition 3, MP ∪N satisfies all constraints in Pmod. Proposition 5

implies that for every x ∈ M, tx ∈ N. Thus, MP ∪ N also satisfies all constraints

in Ptrue. To prove that MP ∪ N ∈ AS (Ptrans) it remains to show that MP ∪ N ∈
AS (Pdiag) (cf. Proposition 3). To this end, we observe that, for each x ∈ at(P ),

PMP∪N
x = PM

x and thus PMP∪N
diag =

⋃
x∈at(P ) P

M
x ∪MP ∪

⋃
x∈M

(
{xx} ∪ (at(P ) \M)x

)
.

Since all rules in
⋃

x∈at(P )\M PM
x have a nonempty body that is disjoint with MP ∪N,

and since N is a model of P ′ =
⋃

x∈M(PM
x ∪ {xx} ∪ (at(P ) \M)x), MP ∪N is a model

of PMP∪N
diag . Since N is a minimal model of P ′, MP ∪N is a minimal model of PMP∪N

diag .

(⇐) Let N be a minimal model of P ′ and MP ∪N an answer set of Ptrans. Clearly,

MP ∪N satisfies the constraints in Pmod and so, M is a model of P . Let x ∈M. Since

MP ∪N satisfies all constraints in Ptrue, tx ∈MP ∪N. Thus, tx ∈ N. By Proposition 5,

M is an answer set of P .

To prove the second part of the assertion, let us consider an answer set A of Ptrans.

Let us define M = A ∩ at(P ). Because of the rules in Px
xor , A = MP ∪ N for some

set N ⊆
⋃

x∈at(P )(at(P ) ∪ t)x. By Proposition 3, A is an answer set of Pdiag that is,

A is a minimal model of PA
diag. As above, we have PA

diag =
( ⋃

x∈at(P ) Px

)M ∪MP ∪⋃
x∈M

(
{xx} ∪ (at(P ) \M)x

)
and conclude that N is a minimal model of P ′. �

Our translation allows us to extend the class of dual-normal programs so that the

problem to decide the existence of answer sets remains within the first level of the

polynomial hierarchy. We recall that a program P is head-cycle free (HCF) (Ben-

Eliyahu and Dechter 1994) if the positive dependency digraph of P has no directed

cycle that contains two atoms belonging to the head of a rule in P . The positive

dependency digraph of P has as vertices the atoms at(P ) and a directed edge (x, y)

between any two atoms x, y ∈ at(P ) for which there is a rule r ∈ P with x ∈ H(r) and

y ∈ B+(r). It is well known that it is NP-complete to decide whether a head-cycle

free program has an answer set. The class of HCF programs arguably is the most

natural class of programs that contains all normal programs and for which deciding

the existence of answer sets is NP-complete.

We now define a program P to be body-cycle free (BCF) if the positive dependency

graph of P , has no directed cycle that contains two atoms belonging to the positive

body of a rule in P . In analogy to HCF programs, BCF programs trivially contain

the class of dual-normal programs. Inspecting our translation, yields the following

observations:

1. For a HCF program P , Ptrans is BCF.

2. For a BCF program P , Ptrans is HCF.

https://doi.org/10.1017/S1471068415000186 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000186


504 J. K. Fichte et al.

Since Ptrans is efficiently obtained from P , the following result is a direct consequence

of Theorem 2 and the fact that the consistency problem for HCF programs is NP-

complete.

Theorem 3

The problem to decide whether a BCF program P has an answer set is NP-complete.

The translation Ptrans preserves the cycle-freeness of the positive dependency

graph (the positive dependency graph of P is cycle-free if and only if the positive

dependency graph of Ptrans is cycle-free). That is essential for our derivation of

Theorem 3. However, in general, there is no one-to-one correspondence between

answer sets of P and answer sets of Ptrans. Thus, as a final result in this section,

we provide a slight adaption of the translation Ptrans in which the answer sets

of programs P and Ptrans are in a one-to-one correspondence. To this end define,

P ∗ = Ptrans ∪ {yx ← tx | x, y ∈ at(P )}. Note that P ∗ still turns dual-normal programs

to normal programs and vice versa, but we lose the property that cycle-freeness is

preserved (the new rules may introduce additional cycles in the positive dependency

graph). Thus, both Theorem 2 and Theorem 4 are of interest.

Theorem 4

Let P be a program, M ⊆ at(P ) and MP as in Theorem 2. Then, M ∈ AS (P ) if and

only if M ′ = MP ∪
⋃

x∈M(at(P ) ∪ {t})x ∈ AS (P ∗). Moreover, every answer set of P ∗

is of the form M ′ for some M ⊆ at(P ).

5 Expressibility of dual-normal programs

SE-models, originating from the work by Turner (2001), and UE-models, proposed

by Eiter and Fink (2003), characterize strong and uniform equivalence of programs,

respectively. More recently, they turned out to be useful also for comparing program

classes with respect to their expressivity (see e.g., work by Eiter et al. (2013)). In what

follows, we first recall the main results from the literature, focusing on disjunctive

and normal programs. Then, we complement these results by characterizations of

collections of SE- and UE-models of dual-normal programs. Finally, we strengthen

existing complexity results.

SE-models and UE-models. An SE-interpretation is a pair (X,Y ) of sets of atoms

such that X ⊆ Y . We denote by SZ the class { (X,Y ) | Y ⊆ Z } of all SE-

interpretations over Z . An SE-interpretation (X,Y ) is an SE-model of a program P ,

written (X,Y ) |=SE P , if Y |= P and X |= PY . SE-models of a program P contain,

in particular, all information needed to identify the answer sets of P . Specifically,

Y is an answer set of P if and only if 〈Y , Y 〉 is an SE-model of P and for every

X ⊂ Y , 〈X,Y 〉 is not.

An SE-model (X,Y ) of P is a UE-model of P if for every SE-model (X ′, Y ) of P

such that X ⊂ X ′, X ′ = Y holds. We write SE (P ) (UE (P )) for all SE-interpretations

that are SE-models (UE-models) of a program P .

Programs P and Q are equivalent, denoted by P ≡ Q, if P and Q have the same

answer sets. They are strongly equivalent, denoted by P ≡s Q, if for every program R,
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P ∪R ≡ Q∪R; and uniformly equivalent, denoted P ≡u Q, if for every set F of normal

facts, P ∪ F ≡ Q ∪ F . The main results concerning these notions are (1) P ≡s Q if

and only if SE (P ) = SE (Q) (Lifschitz et al. 2001) and (2) P ≡u Q if and only if

UE (P ) = UE (Q) (Eiter and Fink 2003).

We now recall definitions of useful properties of sets of SE-interpretations (Eiter

et al. 2013). A set S of SE-interpretations is complete if (1) (X,Y ) ∈ S implies

(Y , Y ) ∈ S; and (2) (X,Y ), (Z,Z) ∈ S and Y ⊆ Z imply (X,Z) ∈ S. Next, S is

closed under here-intersection if for all (X,Y ), (X ′, Y ) ∈ S we have (X ∩X ′, Y ) ∈ S.

Finally, S is UE-complete if (1) (X,Y ) ∈ S implies (Y , Y ) ∈ S; (2) (X,Y ), (Z,Z) ∈
S and Y ⊂ Z imply that there is Y ′ such that Y ⊆ Y ′ ⊂ Z and (Y ′, Z) ∈ S; and

(3) (X,Y ), (X ′, Y ) ∈ S and X ⊂ X ′ imply X ′ = Y .

The following results are due to Eiter et al. (2013). For each program P , SE (P )

is complete. Conversely, for every complete set S ⊆ SA there is a program P with

at(P ) ⊆ A and SE (P ) = S. For each normal program P , SE (P ) is complete and

closed under here-intersection. Conversely, for every set S of SE-interpretations

over A that is complete and closed under here-intersection there is a normal

program P with at(P ) ⊆ A and SE (P ) = S. Next, for every program P , UE (P ) is

UE-complete. Conversely, for every UE-complete set U ⊆ SA of SE-interpretations

over A there is a normal program P such that at(P ) = A and U = UE (P ). Hence, for

every disjunctive program P there exists a normal program P ′ with UE (P ) = UE (P ′)

(however, such P ′ can be exponentially larger than P (Eiter et al. 2004)). Finally,

we make use of the following technical result.

Lemma 1

For every SE-interpretation (X,Y ), (X,Y ) |=SE A ← B,¬C if and only if at least

one of the following conditions holds: (1) Y ∩C 
= ∅; (2) B \ Y 
= ∅; (3) X ∩A 
= ∅;
(4) Y ∩ A 
= ∅ and B \X 
= ∅.

Properties of Dual-Normal Programs. Our results rely on some new classes of sets

of SE-interpretations. First, we introduce sets of SE-interpretations that are closed

under here-union. This is the dual concept to sets closed under here-intersection. We

will use it to characterize the SE-models of dual-normal programs. To characterize

the UE models of dual-normal programs we need an additional, quite involved,

concept of a splittable set.

Definition 2

A setS of SE-interpretations is called (1) closed under here-union if for any (X,Y ) ∈
S and (X ′, Y ) ∈ S, also (X ∪ X ′, Y ) ∈ S; (2) splittable if for every Z such that

(Z,Z) ∈ S and every (X1, Y1), . . . , (Xk, Yk) ∈ S such that Yi ⊆ Z (i = 1, . . . , k),

(X1 ∪ . . .∪Xk, Z) ∈ S or (Z ′, Z) ∈ S for some Z ′, such that X1 ∪ . . .∪Xk ⊆ Z ′ ⊂ Z .

Neither property implies the other in general. However, for UE-complete sets of

SE-interpretations, splittability implies closure under here-union.
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Proposition 6

If a UE-complete collection S of SE-interpretations is splittable, it is closed under

here-union.

Proof

Let (X1, Z), (X2, Z) ∈ S. By UE-completeness, (Z,Z) ∈ S. Thus, if X1 ∪ X2 = Z

then (X1 ∪ X2, Z) ∈ S. Otherwise, by splittability, X1 ∪ X2 ⊆ Z ′ for some Z ′ such

that Z ′ ⊂ Z and (Z ′, Z) ∈ S. Since X1 ⊆ Z ′ ⊂ Z and (X1, Z), (Z ′, Z) ∈ S,

Z ′ = X1 (by Condition (3) of UE-completeness). Consequently, X1 ∪ X2 = X1 and

so, (X1 ∪X2, Z) ∈ S in this case, too. �

The converse does not hold, that is, for UE-complete sets, splittability is a strictly

stronger concept than closure under here-union. As an example consider the setS =

{(b, b), (c, c), (ab, abcd), (cd, abcd), (abcd, abcd)} that is UE-complete and closed under

here-union. This set is not splittable. Indeed, (abcd, abcd), (b, b), (c, c) ∈ S, yet there

is no Z ′ such that {bc} ⊆ Z ′ ⊂ {abcd} and (Z ′, abcd) ∈ S.

As announced above, closure under here-union is an essential property of sets of

SE-models of dual-normal programs.

Theorem 5

For every dual-normal program P , SE (P ) is complete and closed under here-union.

Proof

SE (P ) is complete for every program P . Let (X,Y ), (X ′, Y ) ∈ SE (P ). We need to

show that for every rule r = A← B,¬C in P , (X ∪X ′, Y ) |=SE r. To this end, let us

assume that none of Conditions (1), (2), and (3) of Lemma 1 holds for (X ∪ X ′, Y )

and r. Since X ⊆ X ∪ X ′ and X ′ ⊆ X ∪ X ′, none of Conditions (1), (2), and (3)

holds for (X,Y ) and r either. Since (X,Y ) |=SE r, Condition (4) must hold, that is,

we have Y ∩ A 
= ∅ and B \ X 
= ∅. The same argument applied to (X ′, Y ) implies

that also B \ X ′ 
= ∅. Since P is dual-normal, B = {b} and b /∈ X ∪ X ′. Thus,

B \ (X ∪ X ′) 
= ∅ and so, Condition (4) of Lemma 1 holds for (X ∪ X ′, Y ) and r.

Consequently, (X ∪X ′, Y ) |=SE r. �

The conditions of Theorem 5 are not only necessary but also sufficient.

Theorem 6

For every set S ⊆ SA of SE-interpretations that is complete and closed under

here-union, there exists a dual-normal program P with at(P ) ⊆ A and SE (P ) =S.

Proof

We refer to the online appendix (Appendix A). �

Thus the two theorems together provide a complete characterization of collections

of SE-interpretations that can arise as collections of SE-models of dual-normal

programs.

We now turn to the corresponding results for sets of UE-models of dual-normal

programs. The key role here is played by the notion of splittability.
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Theorem 7

For every dual-normal program P , UE (P ) is UE-complete and splittable.

Proof

The set UE (P ) is UE-complete for every program P . Thus, we only need to show

splittability. Toward this end, let (X1, Y1), . . . , (Xk, Yk), (Z,Z) ∈ UE (P ), where Yi ⊆ Z ,

for every i = 1, . . . , k. Since,(X1, Y1), . . . , (Xk, Yk), (Z,Z) ∈ SE (P ), it follows that

(X1, Z), . . . , (Xk, Z) ∈ SE (P ) (by the second condition of completeness). Since SE (P )

is closed under here-union, (X1∪. . .∪Xk, Z) ∈ SE (P ). If (X1∪. . .∪Xk, Z) ∈ UE (P ) we

are done. Otherwise, X1∪ . . .∪Xk ⊂ Z (since (Z,Z) ∈ UE (P )) and, by the definition

of UE-models and finiteness of P , there is Z ′ such that X1 ∪ . . .∪Xk ⊂ Z ′ ⊂ Z such

that (Z ′, Z) ∈ UE (P ). �

As before, the conditions are also sufficient.

Theorem 8

For every set U ⊆ SA of SE-interpretations that is UE-complete and splittable,

there is a dual-normal program P with at(P ) ⊆ A such that UE (P ) = U.

Proof

We refer to the online appendix (Appendix A). �

We briefly discuss some implications of our results. Let P = {a ∨ b; ⊥ ←
¬c; c ← a, b; a ← c; b ← c}. Then SE (P ) = {(abc, abc), (a, abc), (b, abc)} and

it is neither closed under here-union nor under here-intersection. Thus, for P

there are no strongly equivalent programs in the classes of normal and dual-

normal programs. Moreover, UE (P ) is not closed under here-union and so, not

splittable (Proposition 6). Therefore there is no dual-normal program P ′ such that

P ≡u P ′ (such a normal P ′ exists, however). Now let us consider the normal

program Q = P \ {a ∨ b}. We have SE (Q) = SE (P ) ∪ {(∅, abc)}. Since SE (Q) is

not closed under here-union, there is no dual-normal program strongly equivalent

to Q. Finally, consider the dual-normal program R = P \ {c ← a, b}. We have

SE (R) = SE (P ) ∪ {(ab, abc)}. Since SE (R) is not closed under here-intersection,

there is no normal program strongly equivalent to R.

Complexity. We complement the following known results (Eiter et al. 2007): Check-

ing strong equivalence between programs is coNP-complete; tractability is only

known for the case when both programs are Horn. Checking uniform equivalence

between programs is ΠP
2 -complete. If one of the programs is normal, then the

problem is coNP-complete.

Theorem 9

Checking strong equivalence between singular programs remains coNP-hard.

Proof

Take the standard reduction from UnSat (as e.g. used by Pearce et al. (2009)) and

let F =
∧n

i=1(li1∨ li2∨ li3). Define the singular program P [F] = {v ← ¬v̄; v̄ ← ¬v; ←
v,¬v | v ∈ at(F)}∪ {← ¬l∗i1,¬l∗i2,¬l∗i3 | 1 � i � n} where l∗ = l for positive literals

and l∗ = v̄ for negative ones. One can show that F is a positive instance of UnSat
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if and only if P [F] ≡s {a ←; ← a}. Since the reduction works in polynomial time,

coNP-hardness follows. �

Theorem 10

Checking uniform equivalence between dual-normal programs is coNP-complete.

Hardness holds even in the case the programs are singular.

Proof

For membership, consider the following algorithm for the complementary problem.

We guess (X,Y ) and check whether (X,Y ) ∈ UE (P ) \UE (Q) or (X,Y ) ∈ UE (Q) \
UE (P ). Checking whether (X,Y ) ∈ UE (P ) can be done efficiently: First check

(Y , Y ) ∈ UE (P ) which reduces to classical model checking. If the test fails or

X = Y we are done. Otherwise, we compute for each y ∈ Y \ X the maximal

models of the dual-Horn theories PY ∪ X ∪ {← z | z ∈ At \ Y } ∪ {← y}. This can

be done in polynomial time, too. If all maximal models are equal to X, we return

true; otherwise false. For hardness, one can employ the reduction used in the proof

of Theorem 6.6 in (Eiter et al. 2007). �

6 Conclusions

We studied properties of dual-normal programs, the “forgotten” class of dis-

junctive programs, for which deciding the existence of answer sets remains NP-

complete. We provided translations of dual-normal programs to propositional

theories and to normal programs, and characterizations of sets of SE-interpretations

that arise as sets of SE- and UE-models of dual-normal programs. We also

established the coNP-completeness of deciding strong and uniform equivalence

between dual-normal programs, showing hardness even under additional syntactic

restrictions.

Our paper raises several interesting issues for future work. First, the BCF programs

that we introduced as a generalization of dual-normal programs deserve further study

because of their duality to HCF programs, and good computational properties (NP-

completeness of deciding existence of answer sets). We believe that BCF programs

provide a promising class to encode certain problems, since they also allow certain

conjunctions in the positive body. Recall that the operation of shifting transforms

HCF programs into normal ones while preserving the answer sets (Ben-Eliyahu and

Dechter 1994). An analog of shifting for BCF programs would introduce negations

in the heads of the rules. Thus, we plan to explore shifting within the broader

setting of Lifschitz-Woo programs (Lifschitz and Woo 1992). On the other hand,

singular programs, another class of programs we introduced, deserve attention due

to their simplicity — they are both normal and dual-normal. As concerns dual-

normal programs themselves, the key question is to establish whether more concise

translations to Sat and normal programs are possible, as such translations may lead

to effective ways of computing answer sets.
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