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Abstract

We prove a necessary and sufficient condition for the graded algebra of automorphic
forms on a symmetric domain of type IV being free. From the necessary condition,
we derive a classification result. Let M be an even lattice of signature (2, n) splitting
two hyperbolic planes. Suppose Γ is a subgroup of the integral orthogonal group of M
containing the discriminant kernel. It is proved that there are exactly 26 groups Γ such
that the space of modular forms for Γ is a free algebra. Using the sufficient condition,
we recover some well-known results.

1. Introduction

Let Γ be a discrete automorphism group of a complex symmetric domain D with fundamental
domain of finite volume acting on the affine cone over D. The space of automorphic forms on D
for Γ is an infinite counterpart of the polynomial invariants of a finite linear group. The seminal
Shephard–Todd–Chevalley theorem [ST54, Che55] asserts that the algebra of invariants of a
finite linear group acting on a complex vector space is free if and only if this group is generated
by (complex) reflections. Similarly, a topological argument in [VP89] shows that if the algebra of
automorphic forms is free then the group Γ is generated by reflections. It is known that reflections
exist only in two infinite families of symmetric domains: complex balls and symmetric domains
of type IV in Cartan’s classification. In this paper we focus on the latter case which corresponds
to orthogonal modular forms, namely automorphic forms on symmetric domains of type IV for
orthogonal groups of signature (2, n).

It is a difficult problem to determine the structure of the algebra of automorphic forms in
general. From a geometric perspective, this is equivalent to find a projective model of the modular
variety. If the algebra of modular forms for a congruence group Γ acting on D is freely generated,
then the Satake–Baily–Borel compactification of the modular variety D/Γ is a weighted projective
space (see [BB66]). In 1962, Igusa proved that the algebra of even-weight Siegel modular forms
of genus 2 is freely generated by forms of weights 4, 6, 10, 12 in [Igu62]. Siegel modular forms
of genus 2 can be realized as modular forms for the orthogonal group O(2, 3). This is the first
example of free algebras of orthogonal modular forms in dimension larger than 2. After Igusa,
more free algebras of O(2, n)-modular forms were constructed in [AI05, DK03, DK04, Kri05,
FH00, FS07, HU14, Vin10, Vin18]. Recently, the author proved jointly with B. Williams that
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Free algebras of orthogonal modular forms

the spaces of orthogonal modular forms are free algebras for 25 groups in a universal way in
[WW20].

It is another interesting problem to derive some classification of free algebras of orthogonal
modular forms. There are only two known results in this direction. The first is attributed to
Shvartsman and Vinberg, who proved in [SV17] that the algebra of modular forms for orthogonal
groups of signature (2, n) with n > 10 is never free. They concluded the result from a criterion
of smoothness at infinity for the quotient space of the affine cone over D by Γ. We will give a
simple proof of their result in a particular case (see Theorem 4.3). The second is due to Stuken,
who gave a classification of free algebras of Hilbert modular forms which can be realized as
orthogonal modular forms of signature (2, 2) in [Stu19]. In this paper we present a classification
of free algebras of orthogonal modular forms under a mild condition. The idea starts with the
Rankin–Cohen–Ibukiyama differential operators introduced in [AI05], which can be regarded
as the Jacobian determinant of n + 1 modular forms on D for Γ (see Theorem 2.5). Following
Vinberg’s insights [Vin13], we are able to prove the following result which gives a necessary and
sufficient condition for the graded algebra of modular forms for Γ to be free.

Theorem 1.1 (Theorems 3.5 and 5.1). If the graded algebra M∗(Γ) of modular forms for Γ is
free, then the Jacobian determinant of the n + 1 free generators defines a cusp form for Γ with the
determinant character which vanishes exactly on all mirrors of reflections in Γ with multiplicity
one. Conversely, if there exists a modular form with a character for Γ which vanishes exactly on
all mirrors of reflections in Γ with multiplicity one and equals a Jacobian determinant of n + 1
modular forms for Γ, then M∗(Γ) is a free algebra.

The sufficient condition provides a powerful method for constructing free algebras of orthog-
onal modular forms. We discuss two famous examples of signature (2, 3). For full Siegel modular
forms of genus 2, the Jacobian determinant of four generators of weights 4, 6, 10, 12 is indeed the
unique Siegel modular form of odd weight 35. For Siegel modular forms of genus 2 for the sub-
group Γ2(2, 4), the Jacobian determinant of four second-order theta constants is exactly Igusa’s
cusp form χ5 which is the product of ten theta constants and vanishes precisely on the diagonal
of the Siegel upper half-plane with multiplicity one. Obviously, the Igusa theorem in [Igu62] and
the Runge theorem in [Run93] can be recovered quickly using our result.

The modular form with special divisor in Theorem 1.1 is called reflective in the literature.
Reflective modular forms have many applications in algebra and geometry, and the number of
such modular forms is finite (see [Ma18]). In [Wan21, Wan19] the author developed an approach
to classify reflective modular forms based on the theory of Jacobi forms of lattice index (see
[CG13]). Applying this approach to the present case, we find that if M∗(Γ) is a free algebra then
Γ corresponds to a root system of the same rank as L and the Coxeter numbers of the irreducible
components of the root system satisfy certain conditions. We then deduce the following theorem
from these conditions.

Theorem 1.2 (Theorem 4.4). Let M = 2U ⊕ L(−1) be an even lattice of signature (2, n) split-
ting two hyperbolic planes. Let O+(M) be the orthogonal group preserving M and the domain D.

Let Õ
+
(M) be the discriminant kernel which is a subgroup of O+(M) acting trivially on the

discriminant group of M . Suppose Γ < O+(M) is a subgroup containing Õ
+
(M). If M∗(Γ) is a

free algebra, then Γ must be one of the 26 groups defined as ΓR = 〈Õ+
(2U ⊕ LR(−1)), W (R)〉,

where R is a root system of type Ar(1 ≤ r ≤ 7), Br(2 ≤ r ≤ 4), Dr(4 ≤ r ≤ 8), Cr(3 ≤ r ≤ 8),
G2, F4, E6, E7, or E8, W (R) is the Weyl group of R, and LR is the root lattice generated by R
(we rescale its bilinear form by 2 such that it is even when LR is an odd lattice).
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Remark 1.3. The algebra of modular forms for every ΓR above is free and the constructions of
generators are known. It was proved in [HU14] that the algebra of modular forms on O+(2U ⊕
E8(−1)) is freely generated by forms of weights 4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42, and in
[DKW19] that the generators can be chosen as additive lifts of Jacobi Eisenstein series. The other
25 cases were proved in a universal and elementary way in [WW20]. A general rule characterizing
the weights of generators was also given.

The paper is organized as follows. In the next section we introduce some necessary materials
about orthogonal modular forms and Jacobi forms. In § 3 we prove the necessary condition in
Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.2. In § 5 we prove the sufficient
condition and present many applications.

2. Automorphic forms on symmetric domains of type IV

In this section we give an overview of the theory of orthogonal modular forms. We recall some
basic properties of orthogonal modular forms and introduce the theory of Jacobi forms of lattice
index and the Rankin–Cohen–Ibukiyama type differential operators.

2.1 Modular forms for orthogonal groups
Let R2,n be a pseudo-Euclidean vector space of signature (2, n) and let O2,n be the group of its
orthogonal transformations. In this paper we always assume that n ≥ 3. We set C2,n = R2,n ⊗ C

and consider the cone

L̃n = {Z ∈ C2,n : (Z,Z) = 0, (Z, Z̄) > 0}.
It has two complex conjugate connected components. We denote by Ln one of these components.
Let O+

2,n < O2,n be the subgroup of index 2 preserving the component Ln. Let Dn be the pro-
jectivization of Ln, which is identified with the Hermitian symmetric domain of type IV, namely
O+

2,n /(SO2 ×On).
Let Γ < O+

2,n be an arithmetic subgroup. By [GHS13, Proposition 5.4], there exists an even
lattice M of signature (2, n) such that Γ is contained in O+(M) which is the orthogonal group
fixing M . In this paper we are more willing to change the lattice, so we assume that Γ is a finite
index subgroup of some O+(M).

Definition 2.1. Let k be a non-negative integer. A modular form of weight k and character
χ : Γ → C∗ for Γ is a holomorphic function F : Ln → C satisfying

F (tZ) = t−kF (Z), ∀t ∈ C∗,

F (gZ) = χ(g)F (Z), ∀g ∈ Γ.

Geometrically, the modular form F can be viewed as a Γ-invariant holomorphic section
of the kth power of the line bundle π̄, where π̄ is the line bundle obtained from the natural
O+

2,n-invariant holomorphic C∗-bundle π : Ln → Dn by filling in the zero section.
By [Bor95], the modular form F either has weight 0 in which case it is constant, or has weight

at least n/2 − 1. The minimal possible positive weight n/2 − 1 is called the singular weight.
The group Γ acts properly discontinuously on Dn, but in general there are elements of finite

order in Γ which have fixed points in Dn. This leads to singularities of Dn/Γ. The quotient Dn/Γ
is a normal complex space and is not compact. In fact, it is a quasi-projective variety of dimension
n by [BB66]. In order to compactify this quotient, we need to add some boundary components
such that the resulting space is a projective variety. The Satake–Baily–Borel compactification
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provides such a way. In our case, the Satake–Baily–Borel compactification (Dn/Γ)∗ contains
Dn/Γ as a Zariski open subset and it is obtained by adding the rational boundary components∐

c

Qc

⊔ ∐
P

XP ,

where c and P run through representatives of the finitely many Γ-orbits of isotropic lines and
isotropic planes in M ⊗ Q respectively. Each XP is a modular curve, each Qc is a point, and
Qc is contained in the closure of XQ if and only if the representatives may be chosen such that
c ⊂ P . Usually, XP and Qc are also respectively called one-dimensional and zero-dimensional
boundary components (or cusps). By Koecher’s principle, a modular form is also holomorphic
on the boundary, and it is called a cusp form if it vanishes on every such boundary component.

The space of modular forms of weight k with trivial character is a finite-dimensional vector
space. We denote this space by Mk(Γ). The graded algebra

M∗(Γ) =
∞⊕

k=0

Mk(Γ)

is known to be finitely generated. The projective variety Proj(M∗(Γ)) coincides with the above
Satake–Baily–Borel compactification of Dn/Γ (see [BB66]).

2.2 Fourier expansion of orthogonal modular forms
We first fix some notations. For an even lattice M , we denote its dual lattice by M∨ and its
discriminant group by D(M) = M∨/M . The discriminant kernel Õ

+
(M) is defined as the kernel

of the reduction map O+(M) → O(D(M)). The level of M is the minimal positive integer N
such that N(x, x) ∈ 2Z for all x ∈ M∨. For v ∈ M , we denote the positive generator of the ideal
(v, M) = {(v, x) : x ∈ M} by div(v). For any integer a, the lattice obtained by rescaling M with
a is denoted by M(a).

Let M be an even lattice of signature (2, n) with n ≥ 3. By [Ser73, p. 43], M has isotropic
vectors. Moreover, M contains an isotropic plane when n ≥ 5. Let c be a primitive isotropic
vector of M , i.e. a zero-dimensional cusp. We introduce the Fourier expansion of orthogonal
modular forms at the cusp c following [Bor95, CG13].

For any Z ∈ Ln there exists a unique α ∈ C∗ such that (αZ, c) = 1. It follows that

D(M)c =
{Z ∈ Ln : (Z, c) = 1

} ∼= D(M) := Dn.

The lattice Mc = c⊥/c is an even lattice of signature (1, n − 1). We fix an element b ∈ M∨ such
that (c, b) = 1. Then one has Mc

∼= Mc,b = M ∩ c⊥ ∩ b⊥. This yields a decomposition

M ⊗ Q = Mc,b ⊗ Q ⊕ (Qb + Qc).

Using the hyperbolic lattice Mc ⊗ R we can define a positive cone

C(Mc) = {X ∈ Mc ⊗ R : (X, X) > 0}.
Let C+(Mc) be one of the two connected components of C(Mc). The following tube domain gives
the complexification of C+(Mc):

Hc(M) = Mc ⊗ R + iC+(Mc). (2.1)

There is an isomorphism prc : Hc(M) → D(M)c
∼= D(M) defined as

prc : Z �→ Z ⊕
[
b − (Z, Z) + (b, b)

2
c

]
. (2.2)
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Using the coordinate Z ∈ Hc(M) determined by c and b, we identify an arbitrary orthogonal
modular form F of weight k with a modular form Fc,b (or simply Fc) on the tube domain
Hc(M):

Fc,b(Z) = F (prc(Z)). (2.3)

For every g ∈ O+(M) and Z ∈ Hc(M), there exist Jc,b(g, Z) ∈ C∗ and g〈Z〉 ∈ Hc(M) such that

g prc(Z) = Jc,b(g, Z) prc(g〈Z〉). (2.4)

The above relation defines an action of O+(M) on Hc(M). A modular form of weight k and
character χ can be also defined on the tube domain via

Fc,b|kg = χ(g)Fc,b,

(Fc,b|kg)(Z) := Jc,b(g, Z)−kFc,b(g〈Z〉).
Let F ∈ Mk(S̃O

+
(M)). Since the Eichler transvection

t(c, a) : v �→ v − (a, v)c + (c, v)a − 1
2(a, a)(c, v)c (2.5)

belongs to S̃O
+
(M) for all a ∈ Mc,b and t(c, a)(prc(Z)) = prc(Z + a), we have Fc(Z + a) = Fc(Z),

which gives the Fourier expansion of F at the cusp c:

Fc(Z) =
∑

l∈M∨
c,b

f(l) exp(2πi(l, Z)). (2.6)

The Koecher principle shows that the function Fc is holomorphic at the cusp c, which implies
that if f(l) �= 0 then l belongs to the closure of C+(Mc). If a modular form has singular weight
then all the Fourier coefficients associated to vectors of non-zero norm vanish.

Remark 2.2. Let Γ be a finite index subgroup of O+(M). By [PR94, § 9], Γ is a congruence sub-
group, namely there exists a positive integer d such that Õ

+
(M(d)) < Γ. Thus for any arithmetic

subgroup Γ, there is an even lattice M1 such that Õ
+
(M1) < Γ < O+(M1). Hence we have the

Fourier expansion of the above form for any modular forms.

2.3 Fourier–Jacobi expansion: Jacobi forms of lattice index
If the lattice Mc,b also contains an isotropic vector, then one has the Fourier–Jacobi expansion
of modular forms. We explain this precisely. Assume that M contains two hyperbolic planes, i.e.
M = U1 ⊕ U2 ⊕ L(−1), where L is an even positive definite lattice and Ui = Zei + Zfi, (ei, ei) =
(fi, fi) = 0, (ei, fi) = 1. We fix (e1, e2, . . . , f2, f1) as a basis of M , where . . . stands for a basis of L.
We choose c = e1 and b = f1. Then the tube domain He1(M) can be written as

H(L) = {Z = (τ, z, ω) ∈ H × (L ⊗ C) × H : (Im Z, Im Z) > 0},
where (Im Z, Im Z) = 2 Im τ Im ω − (Im z, Im z)L. Thus Fe1 = Fe1,f1 has the following expansion:

Fe1(Z) =
∞∑

m=0

∑
n∈N

2nm≥(�,�)

f(n, �, m)e2πi(nτ+(�,z)+mω)

=
∞∑

m=0

φm(τ, z)e2πimω.

Let ΓJ(L) be the subgroup of O+(M) preserving the above Fourier–Jacobi expansion. This
group is called the Jacobi group and can be realized as the semi-direct product of SL2(Z) with
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the integral Heisenberg group of L. We define Jacobi forms as modular forms with respect to
the Jacobi group.

Definition 2.3. For k ∈ Z, t ∈ N, a holomorphic function ϕ : H × (L ⊗ C) → C is called a
weakly holomorphic Jacobi form of weight k and index t associated to L, if it satisfies the
transformation laws,

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
iπt

c(z, z)
cτ + d

)
ϕ(τ, z),

(
a b
c d

)
∈ SL2(Z),

ϕ(τ, z + xτ + y) = exp
(−iπt((x, x)τ + 2(x, z))

)
ϕ(τ, z), x, y ∈ L,

and if its Fourier expansion takes the form

ϕ(τ, z) =
∑
n≥n0

∑
�∈L∨

f(n, �)qnζ�,

where n0 is a constant, q = e2πiτ and ζ� = e2πi(�,z). If f(n, �) = 0 whenever n < 0, then ϕ is called
a weak Jacobi form. If f(n, �) = 0 whenever 2nt − (�, �) < 0 (respectively, ≤ 0), then ϕ is called
a holomorphic (respectively, cusp) Jacobi form.

We denote by J !
k,L,t (respectively, Jw

k,L,t, Jk,L,t, Jcusp
k,L,t) the vector space of weakly holomorphic

Jacobi forms (respectively weak, holomorphic, cusp Jacobi forms) of weight k and index t for L.
The classical Jacobi forms defined by Eichler and Zagier [EZ85] Jk,N are identical to the Jacobi
forms Jk,A1,N for the lattice A1 = 〈Z, 2x2〉.

By definition, each Fourier–Jacobi coefficient φm is a holomorphic Jacobi form of weight k
and index m associated to L. For the lattice M not containing 2U , the similar Fourier–Jacobi
coefficients are holomorphic Jacobi forms with respect to some congruence subgroup of SL2(Z).

2.4 Reflective modular forms
Let M be an even lattice of signature (2, n) with n ≥ 3. We set D(M) = Dn. For any r ∈ M∨ of
negative norm, the hyperplane

Dr(M) = r⊥∩D(M) = {[Z] ∈ D(M) : (Z, r) = 0} (2.7)

is called the rational quadratic divisor associated to r. The reflection fixing Dr(M) is defined as

σr(x) = x − 2(r, x)
(r, r)

r, x ∈ M. (2.8)

The hyperplane Dr(M) is called the mirror of σr. A primitive vector r ∈ M of negative norm is
called reflective if σr ∈ O+(M), in which case we call Dr(M) a reflective divisor. For λ ∈ D(M)
and m ∈ Q, we define

H(λ, m) =
⋃

v∈M+λ
(v,v)=2m

Dv(M) (2.9)

as the Heegner divisor of discriminant (λ, m).
A primitive vector l ∈ M with (l, l) = −2d is reflective if and only if div(l) = 2d or d. We set

λ = [l/ div(l)] ∈ D(M). If div(l) = 2d, then Dλ(M) is contained in H(λ,−1/(4d)). If div(l) = d,
then it is contained in

H
(

λ,−1
d

)
−

∑
2ν=λ

H
(

ν,− 1
4d

)
.

A modular form F for Γ < O+(M) is called reflective if its zero divisor is a sum of some
reflective divisors. In particular, F is called 2-reflective if its support of zero divisor is contained in
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H(0,−1), and is called a modular form with complete 2-divisor if div(F ) = H(0,−1). Reflective
modular forms are very rare (see [Ma17, Ma18, Wan21]) and have many applications on the
theory of generalized Kac–Moody algebras, reflection groups and in algebraic geometry (see e.g.
[Bor00, Sch06, GN18, Gri18]). We refer to [Sch06, Sch17, Dit19, Wan19] for some classification
results of reflective modular forms.

Borcherds’ singular theta correspondence (see [Bor98] or [Bru02]) is a powerful way to con-
struct modular forms for orthogonal groups. It maps modular forms for the Weil representation
to orthogonal modular forms which are often called Borcherds products. By [Bru14], every reflec-
tive modular form for Õ

+
(M) is a Borcherds product of some vector-valued modular form for the

Weil representation of SL2(Z) attached to the discriminant form D(M) if M can be represented
as U ⊕ U(m) ⊕ L(−1). In this paper, we use the following variant of Borcherds product due to
Gritsenko and Nikulin in the context of Jacobi forms.

Theorem 2.4 (Theorem 4.2 in [Gri18]). We fix an ordering � > 0 in L∨ in a way similar to
positive root systems (see [Gri18, bottom of p. 825]). Let

ϕ(τ, z) =
∑

n∈Z,�∈L∨
f(n, �)qnζ� ∈ J !

0,L,1.

Assume that f(n, �) ∈ Z for all 2n − (�, �) ≤ 0. There is a meromorphic modular form of weight
1
2f(0, 0) and character χ with respect to Õ

+
(2U ⊕ L(−1)) defined as

Borch(ϕ)(Z) = qAζ
�BξC

∏
n,m∈Z,�∈L∨
(n,�,m)>0

(1 − qnζ�ξm)f(nm,�),

where Z = (τ, z, ω) ∈ H(L), q = exp(2πiτ), ζ� = exp(2πi(�, z)), ξ = exp(2πiω), the notation
(n, �, m) > 0 means that either m > 0, or m = 0 and n > 0, or m = n = 0 and � < 0, and

A =
1
24

∑
�∈L∨

f(0, �), �B =
1
2

∑
�>0

f(0, �)�, C =
1

2 rank(L)

∑
�∈L∨

f(0, �)(�, �).

The character χ is induced by the character of the first Fourier–Jacobi coefficient of Borch(ϕ)
and by the relation χ(V ) = (−1)D, where V : (τ, z, ω) → (ω, z, τ), and D =

∑
n<0 σ0(−n)

f(n, 0).
The poles and zeros of Borch(ϕ) lie on the rational quadratic divisors Dv, where v ∈ 2U ⊕

L∨(−1) is a primitive vector with (v, v) < 0. The multiplicity of this divisor is given by

multDv =
∑

d∈Z,d>0

f(d2n, d�),

where n ∈ Z, � ∈ L∨ such that (v, v) = 2n − (�, �) and v − (0, 0, �, 0, 0) ∈ 2U ⊕ L(−1).
The vector (A, �B, C) is called the Weyl vector of the Borcherds product.

2.5 The Jacobian determinant of orthogonal modular forms
The following Rankin–Cohen–Ibukiyama differential operators will play a vital role in this paper.
It was first introduced in [AI05] for Siegel modular forms. We here prove more properties of this
operator for orthogonal modular forms.

Theorem 2.5. Let M be an even lattice of signature (2, n) with n ≥ 3, and let Γ < O+(M)
be a finite index subgroup. Let fi ∈ Mki(Γ) for 1 ≤ i ≤ n + 1. We view fi as modular forms on
the tube domain at a given zero-dimensional cusp. Let zi, 1 ≤ i ≤ n, be the coordinates of the
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tube domain. We define

J := J(f1, . . . , fn+1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1f1 k2f2 · · · kn+1fn+1

∂f1

∂z1

∂f2

∂z1
· · · ∂fn+1

∂z1

...
...

. . .
...

∂f1

∂zn

∂f2

∂zn
· · · ∂fn+1

∂zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(1) The function J is a modular form of weight n +
∑n+1

i=1 ki for Γ with the character det, where
det is the determinant.

(2) The function J is not identically zero if and only if the n + 1 modular forms fi are
algebraically independent over C.

(3) The function J is a cusp form.
(4) Let r ∈ M . If the reflection σr belongs to Γ, then J vanishes on the hyperplane Dr(M).
(5) Assume that M = 2U ⊕ L(−1) and Õ

+
(M) < Γ. We define J at the standard one-

dimensional cusp determined by 2U . Then the Fourier–Jacobi expansion of J satisfies
J = qn−1ξn−1(· · · ), i.e.

J(Z) =
∑

a,t∈N

a,t≥n−1

∑
�∈L∨

2at≥(�,�)

f(a, �, t)qaζ�ξt.

Proof. (1) The proof is similar to that of [AI05, Proposition 2.1].
(2) Suppose that J �= 0. If the n + 1 modular forms fi are not algebraically indepen-

dent over C, then there exists a non-zero polynomial P over C in n + 1 variables such that
P (f1, . . . , fn+1) = 0. We write

P (X1, . . . , Xn+1) =
∑

(i1,...,in+1)∈Nn+1

c(i1, . . . , in+1)Xi1
1 · · ·Xin+1

n+1 .

We can assume that
∑n+1

j=1 kjij is a fixed constant c for any (i1, . . . , in+1) ∈ Nn+1 due to modu-
larity. Considering the differentials of P (f1, . . . , fn+1) with respect to z1,. . . ,zn respectively, we
obtain the following system of linear equations:

J
(

∂P

∂f1
,
∂P

∂f2
, . . . ,

∂P

∂fn+1

)t

=
(

cP,
∂P

∂z1
, . . . ,

∂P

∂zn

)t

= 0,

where J is the Jacobian matrix in the definition of J . This leads to a contradiction.
Conversely, if these fi are algebraically independent over C, then the n functions

fk1
2 /fk2

1 , . . . , fk1
n+1/f

kn+1

1 are local parameters of the n-dimensional variety Dn/Γ. Therefore their
usual Jacobian determinant equal to J up to a non-zero multiple is not identically zero.

(3) It suffices to show that J vanishes on every rational boundary component. We first define
the Jacobian on the cone Ln following [Vin13, § 9] such that the definition of J is independent
of zero-dimensional cusps. In this way, it is easier to consider the Fourier expansions of J at any
cusps. To this end, we add a function g2(Z) = (Z,Z) for Z ∈ C2,n. The functions fi are defined
only on an open subset of the hypersurface {g2 = 0}, and the differentials dfi of fi at a point of
Ln are linear forms on the tangent space of the hypersurface {g2 = 0}. Obviously, we can extend
these linear forms to the larger vector space C2,n. These extensions are not unique but they
are defined up to addition of some multiples of the differential form dg2. Let x1, x2, . . . , xn+2 be
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the coordinates of C2,n. With the help of these extensions of dfi, we can consistently define a
holomorphic function on Ln as the usual Jacobian

Ĵ =
∂(g2, f1, f2, . . . , fn+1)
∂(x1, x2, . . . , xn+2)

.

The function Ĵ is well defined and independent of the choice of these extensions because the
difference between two extensions of dfi is a scalar of dg2 at a given point of Ln. By direct
calculations, we find that the reduction of Ĵ on the tube domain coincides with the above J
up to some non-zero multiple. We then conclude that the definition of J does not depend on
the choice of zero-dimensional cusps up to some non-zero multiple. Besides, the definition of Ĵ
implies the assertion (1) immediately.

We now prove that J vanishes on cusps. At a zero-dimensional cusp, the value of J is equal
to the constant term of its Fourier expansion at this cusp. It is easy to see from the definition of
J that the constant term must be zero. At a one-dimensional cusp, the value of J is given by the
Siegel operator. More precisely, it is equal to the zeroth coefficient of the Fourier–Jacobi expansion
of J at this cusp, which is a modular form with respect to a congruence subgroup of SL2(Z).
The partial derivatives with respect to some coordinates will cancel the zeroth Fourier–Jacobi
coefficients of these fi. It follows that the value of J at a one-dimensional cusp is zero. Therefore
J is a cusp form.

(4) If σr ∈ Γ, then J(σr(Z)) = det(σr)J(Z) = −J(Z). It follows that J(Z) = −J(Z) if
(Z, r) = 0, which yields that J vanishes on the hyperplane r⊥.

(5) It follows from the number of partial derivatives in the definition of J . �

3. Necessary conditions to be free algebras

In this section we prove some necessary conditions for the space M∗(Γ) being a free algebra.
Let Γ < O+

2,n be an arithmetic subgroup. The maximal spectrum Spm(M∗(Γ)) can be viewed
as the ‘affine span’ (Ln/Γ)∗ of the quotient space Ln/Γ. Recall that the weighted projective
space P(a1, . . . , an+1) is defined as the quotient space

(Cn+1 − {0})/∼,

where ∼ is an equivalent relation defined as

(x1, . . . , xn+1) ∼ (y1, . . . , yn+1) ⇔ ∃ λ ∈ C∗ s.t. xi = λaiyi for any 1 ≤ i ≤ n + 1.

Assume that M∗(Γ) is a free algebra and fi ∈ Mki(Γ), 1 ≤ i ≤ n + 1, are free generators.
Then the Satake–Baily–Borel compactification (Dn/Γ)∗ = Proj(M∗(Γ)) is the weighted projec-
tive space P(k1, . . . , kn+1). Moreover, the manifold Spm(M∗(Γ)) = (Ln/Γ)∗ is the affine space
Cn+1 and thus has no singular points.

The next two results will be used later.

Theorem 3.1 [Got69]. Let Γ be a discrete group of analytic automorphisms of a complex man-
ifold X, and let π : X → X/Γ be the natural morphism. A point π(x) is non-singular if and only
if the stabilizer Γx of x in Γ is generated by reflections whose mirrors pass through x.

Theorem 3.2 [Arm68]. Let Γ be a discrete group of homeomorphisms of a path connected
topological space X. If the quotient space X/Γ is simply connected, then Γ is generated by
elements having fixed points in X.

The following result is a special case of [VP89, Proposition 8.3]. We give a short proof.
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Proposition 3.3. If M∗(Γ) is a free algebra, then Γ is generated by reflections.

Proof. Assume that M∗(Γ) is a free algebra. Then (Ln/Γ)∗ is an affine space. Since (Ln/Γ)∗ is
obtained from Ln/Γ by adding zero and finitely many one- and two-dimensional cones, Ln/Γ is
smooth and simply connected. By Theorem 3.2, Γ is generated by elements having fixed points.
We then conclude from Theorem 3.1 that Γ is generated by reflections. �

For any r ∈ M with (r, r) = −2, we have σr ∈ Õ
+
(M). Conversely, as a consequence of

Theorem 1.1 and Corollary 1.2 in [GHS09], one obtains the following sufficient condition for
Õ

+
(M) to be generated by reflections.

Lemma 3.4. Let M be an even lattice of signature (2, n) with n ≥ 3. Assume that M contains
an isotropic plane, represents −2, and rank3(M) ≥ 5, rank2(M) ≥ 6, where rankp(M) is the

maximal rank of the sublattices M1 in M such that det(M1) is coprime to p. Then Õ
+
(M) is

generated by σr for r ∈ M with (r, r) = −2.

The following theorem is vital to classify free algebras of orthogonal modular forms. The
assertion (2) was stated in [Vin13, Proposition 6] with a brief idea of the proof. The last two
assertions in the particular case of signature (2, 3) were mentioned at the end of [Vin13]. We
here give these results a full proof.

Theorem 3.5. Assume that M∗(Γ) is a free algebra. Let fi ∈ Mki(Γ), 1 ≤ i ≤ n + 1, be the
generators.

(1) The Jacobian determinant J = J(f1, . . . , fn+1) is not identically zero and it is a cusp form
of weight n +

∑n+1
i=1 ki for Γ with the character det.

(2) The zero divisor of J is the sum of all mirrors of reflections in Γ with multiplicity 1. In
particular, J is a reflective cusp form.

(3) Let {π1, . . . , πs} be the representatives of the Γ-equivalence classes of the mirrors of reflec-
tions in Γ. Then there exist a unique modular form Ji for Γ such that div(Ji) = 2 · Γπi for
each 1 ≤ i ≤ s, and J2 =

∏s
i=1 Ji.

(4) There exist polynomials P , Pi, 1 ≤ i ≤ s, in n + 1 variables over C such that J2 =
P (f1, . . . , fn+1) and Ji = Pi(f1, . . . , fn+1). Thus P =

∏s
i=1 Pi and these Pi are irreducible.

Proof. (1) It follows from Theorem 2.5.
(2) Let c be a zero-dimensional cusp and Hc be the associated tube domain. Let Z =

(z1, . . . , zn) be a coordinate of Hc. We view fi as modular forms on Hc. For any Z ∈ Ln, there
exist unique elements Z ∈ Hc and z0 ∈ C∗ such that Z = z0 · prc(Z). Thus the function

f̃i : Ln → C, f̃i(Z) := z−ki
0 fi(Z)

is defined well as a modular form of weight ki on Ln. We choose (z0, z1, . . . , zn) as a coordinate
of Ln. The usual Jacobian determinant J̃ of the n + 1 functions f̃i with respect to (z0, z1, . . . , zn)
is equal to J up to a power of z0. By Baily–Borel compactification, (Dn/Γ)∗ = Proj(M∗(Γ)) is
the weighted projective space P(k1, . . . , kn+1) and the natural isomorphism is given by the map

Z �→ [f1(Z), . . . , fn+1(Z)].

Besides, Ln/Γ is an open subset of Spm(M∗(Γ)) − {0} = Cn+1 − {0}. Thus we have the
holomorphic application

π : Ln → Ln/Γ ↪→ Cn+1 − {0},
which is explicitly given by Z �→ (f̃1(Z), . . . , f̃n+1(Z)). For v ∈ Ln satisfying Γv = {1}, since Γ
is acting properly discontinuously on Ln, the map π is biholomorphic around v. Thus J̃(v) �= 0,
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which yields J(v) �= 0. By Theorem 3.1, J vanishes only on mirrors of reflections in Γ. We then
conclude from Theorem 2.5(4) that J vanishes exactly on all mirrors of reflections in Γ.

We next prove that the multiplicities are all one. Let v be a vector such that σv ∈ Γ. For a
generic point x ∈ v⊥, the stabilizer Γx is generated by σv and thus has order 2. We can choose
coordinate (x0, x1, . . . , xn) around x such that v⊥ = {x0 = 0} and the map π locally at x is like

(x0, x1, . . . , xn) �→ (x2
0, x1, . . . , xn).

Then it is straightforward to see that J vanishes with multiplicity one along {x0 = 0}.
(3) Since J2 ∈ M∗(Γ), there exists a polynomial P in n + 1 variables over C such that J2 =

P (f1, . . . , fn+1). On the one hand, in Ln we have div(J2) = 2
∑s

i=1 Γπi and the divisor of J2 in
Ln/Γ ↪→ Cn+1 − {0} is the sum of hyperplanes πi. On the other hand, suppose P = P1 · · ·Pt is
the irreducible decomposition over C. Then we have the irreducible decomposition of zero locus
in P(k1, . . . , kn+1): Z(P ) = Z(P1) ∪ · · · ∪ Z(Pt). Thus each Z(Pi) will correspond to a πj . By
comparing the order of divisor, the desired claims are proved. �

Remark 3.6. If M = U ⊕ U(m) ⊕ L(−1) and Õ
+
(M) < Γ, then each Ji will be a Borcherds prod-

uct by [Bru14]. We denote the input by φi. Thus the Borcherds product Fi of 1
2φi will give a

modular form whose divisor is Γπi. It is clear that F 2
i = Ji. Therefore each Fi is a modular form

for Γ with a character (or multiplier system) of order 2 and we have J =
∏s

i=1 Fi.

4. Classification of free algebras of orthogonal modular forms

Let M = U ⊕ U(m) ⊕ L(−1), where m is a positive integer. Assume that Õ
+
(M) < Γ < O+(M).

In this section we classify the groups Γ such that M∗(Γ) is a free algebra.
It was proved in [SV17] that there is no arithmetic group Γ such that M∗(Γ) is a free algebra

when the signature (2, n) satisfies n > 10. We here prove a special case of this result. To this
aim, we need the following lemma.

Lemma 4.1. If there is a modular form with complete 2-divisor for Õ
+
(M), then there is also a

modular form with complete 2-divisor for Õ
+
(M1), where M1 is an even overlattice of M .

Proof. Let F be a modular form of weight k with complete 2-divisor for Õ
+
(M). By [Bru14],

it is a Borcherds product of a nearly holomorphic modular form of weight − rank(L)/2 for the
Weil representation of SL2(Z) attached to the discriminant group of M . We denote this input
by f . The principal part of f is (q−1 + 2k)e0. By [Bru02, Lemma 5.6], the lifting f | ↑M1

M gives a
vector-valued modular form of the same weight for the Weil representation attached to D(M1),
and this modular form has the principal part (q−1 + 2k′)e0, where k′ is a positive integer. Thus
the Borcherds product of f | ↑M1

M gives a modular form with complete 2-divisor for Õ
+
(M1). This

completes the proof. �
Remark 4.2. When M is not of the form U ⊕ U(m) ⊕ L(−1), the above lemma is not true. For
example, 2U(2) ⊕ 5A1(−1) has a modular form with complete 2-divisor (see [GN18, § 6.2]), but
2U ⊕ 5A1(−1) has no modular forms with complete 2-divisor (see [Wan19, Theorem 6.9]).

Theorem 4.3. Let M = U ⊕ U(m) ⊕ L(−1) and Õ
+
(M) < Γ < O+(M). If the graded algebra

M∗(Γ) is free, then rank(L) ≤ 8.

Proof. Assume that M∗(Γ) is a free algebra. Then the Jacobian determinant of generators gives
a reflective modular form. Since Õ

+
(M) < Γ, all reflections σr with (r, r) = −2 belong to Γ.

By Theorem 3.5, the decomposition of the Jacobian determinant will give a modular form with
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complete 2-divisor. We know from [Wan21, Theorem 3.4] that if there exists a modular form with
complete 2-divisor for M = 2U ⊕ L(−1) then either rank(L) ≤ 8 or L is a unimodular lattice of
rank 16 or 24. By Lemma 4.1, we only need to consider the two cases U ⊕ U(m) ⊕ 2E8 and
U ⊕ U(m) ⊕ 3E8. When m > 1, the two lattices are isomorphic to some lattices containing 2U
by [Nik80] because the minimal number of generators of the associated discriminant groups is two.
It follows that there is no modular form with complete 2-divisor for these lattices. When m = 1,
the orthogonal groups of 2U ⊕ 2E8 and 2U ⊕ 3E8 contain only 2-reflections. The corresponding
2-reflective modular forms have weights 132 and 12. The weight is too small, which leads to a
contradiction. For example, in the case of 2U ⊕ 2E8, the singular weight is 8. Since 132 < 8 × 19 +
18, the unique reflective modular form is impossible to be the Jacobian of free generators. Thus
the space of modular forms is not free in the case of U ⊕ U(m) ⊕ 2E8. The proof is completed. �

We next classify free algebras of modular forms in the case of M = 2U ⊕ L(−1). The following
classification result is our main theorem.

Theorem 4.4. Let M = 2U ⊕ L(−1) and Õ
+
(M) < Γ < O+(M). If M∗(Γ) is a free algebra,

then (L,Γ) can only take one of the following 26 pairs:

(A1, O+), (2A1, O+), (3A1, O+), (4A1, O+), (A2, Õ
+
), (A2, O+),

(A3, Õ
+
), (A3, O+), (A4, Õ

+
), (A5, Õ

+
), (A6, Õ

+
), (A7, Õ

+
),

(D4, Õ
+
), (D5, Õ

+
), (D6, Õ

+
), (D7, Õ

+
), (D8, Õ

+
),

(D4, O+), (D5, O+), (D6, O+), (D7, O+), (D8, O+),

(D4, O+
1 ), (E6, Õ

+
), (E7, O+), (E8, O+),

where O+ stands for the full orthogonal group, Õ
+

denotes the discriminant kernel, and O+
1 is

the subgroup generated by Õ
+

and a sign change of odd number of coordinates in D4 ⊗ C.

The following lemma is an advanced version of the Jacobi forms approach used to classify
reflective modular forms in [Wan19].

Lemma 4.5. Let M = 2U ⊕ L(−1) and Õ
+
(M) < Γ < O+(M). Assume that F is a reflective

modular form of weight k for Γ whose zero divisor is the sum of all mirrors of reflections in Γ
with multiplicity one. We define

R(L∨) = {x ∈ L∨ : F vanishes on D(0,0,x,1,0)}.
Let R(L) be the subset of L consisting of vectors dxx, where x ∈ R(L∨) and dx is the order of
x in L∨/L. Suppose that R(L) is non-empty. Then the set R(L) defines a reduced root system
of rank equal to rank(L). Moreover, R(L) is a direct sum of some irreducible root systems and
all irreducible components have the same modified Coxeter numbers defined below (a given root
system may have different modified Coxeter numbers in our definition; the reason is given in the
proof):

(1) An(d) with n ≥ 1 and d ≥ 1, modified Coxeter number: (n + 1)/d;
(2) Bn(2d) with n ≥ 2 and d ≥ 1, modified Coxeter number: (n + 1)/d;
(3) Cn(d) with n ≥ 3 and d ≥ 1, modified Coxeter number: (2n − 1)/d;
(4) Dn(d) with n ≥ 4 and d ≥ 1, modified Coxeter number: 2(n − 1)/d;
(5) E6(d) with d ≥ 1, modified Coxeter number: 12/d;
(6) E7(d) with d ≥ 1, modified Coxeter number: 18/d;
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(7) E8(d) with d ≥ 1, modified Coxeter number: 30/d;
(8) G2(d) with d ≥ 1, modified Coxeter number: 4/d;
(9) F4(2d) with d ≥ 1, modified Coxeter number: 9/d.

(10) A1(d) with d ≥ 1, modified Coxeter number: 1/(2d);
(11) A1(d) with d ≥ 1, modified Coxeter number: 3/(2d);
(12) Bn(2d) with n ≥ 2 and d ≥ 1, modified Coxeter number: (2n − 1)/(2d);
(13) Bn(2d) with n ≥ 2 and d ≥ 1, modified Coxeter number: (2n + 1)/(2d).

Proof. By [Bru14], F should be a Borcherds product. In view of the isomorphism between the
spaces of vector-valued modular forms and Jacobi forms, there exists a weakly holomorphic
Jacobi form φ of weight 0 and index 1 for L such that F = Borch(φ) (see Theorem 2.4). The
divisors of the form D(0,0,x,1,0) determine the q0-term of φ. More precisely, we have

φ = q−1 +
∑

x∈R(L∨)
2x 	∈R(L∨)
x/2	∈L∨

ζx +
∑

y∈R(L∨)
y/2∈L∨

(ζy − f(y)ζy/2) + 2k + O(q),

where f(y) = 0 if y/2 ∈ R(L∨) and f(y) = 1 if y/2 �∈ R(L∨), because the above q0-term of the
input determines that in the zero divisor of Borch(φ), the divisor D(0,0,y,1,0) has multiplicity 1
and the divisor D(0,0,y/2,1,0) has multiplicity 1 − f(y) (see Theorem 2.4). Note that the term q−1

corresponds to the divisor D(0,−1,0,1,0). For convenience, we write φ = q−1 +
∑

f(0, r)ζr + O(q).
By [Gri18, Proposition 2.6], we have∑

r∈L∨
f(0, r)(r, z)2 = 2C(z, z), z ∈ L ⊗ C, (4.1)

C =
1
24

∑
r∈L∨

f(0, r) − 1 =
1

2 rank(L)

∑
r∈L∨

f(0, r)(r, r). (4.2)

We remark that the above constant C also appears in the Weyl vector (A, �B, C) of the Borcherds
product F and it satisfies the relation A = C + 1 in this case. We claim that R(L) generates
the whole space L ⊗ R, otherwise there will be a vector in L ⊗ C orthogonal to R(L), which
contradicts the first identity. By definition, we have that σ(0,0,u,1,0) ∈ Γ for u ∈ R(L∨). Let v ∈
R(L∨). Since

σ(0,0,u,1,0)((0, 0, v, 1, 0)) = (0, 0, σu(v), 1 − 2(u, v)/(u, u), 0) =: l,

we have σu(v) ∈ L∨ and 2(u, v)/(u, u) ∈ Z for any v ∈ R(L∨). Moreover, F vanishes on the
hyperplane l⊥. Notice that (0, 0, σu(v), 1, 0) is primitive in L∨. By the Eichler criterion (see
[GHS09, Proposition 3.3]), there exists g ∈ Õ

+
(M) such that g(l) = (0, 0, σu(v), 1, 0). Thus F also

vanishes on (0, 0, σu(v), 1, 0)⊥, which yields σu(v) ∈ R(L∨). It follows that R(L) is a reduced root
system. Therefore R(L) can be written as a direct sum of rescaled irreducible root systems (see
[Bou68]). Let R be an irreducible component of R(L) and R∗ be the corresponding component
in R(L∨). The modified Coxeter number of R will be defined as the constant C in the identity
of type (4.1) for R∗. Recall that the usual Coxeter number of an irreducible root system R is
defined as the constant h appearing in the following equality:∑

r∈R
(r, z)2 = 2h(z, z), z ∈ R⊗ C.

(a) If R equals An(d) with n ≥ 2, Dn(d) with n ≥ 4, E6(d), E7(d), or E8(d), every root r ∈ R
has norm 2d and div(r) = d in R, here we view R as a lattice generated by its roots.
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Thus div(r) = d in L because it defines a reflective vector in M . In this case, R∗ = An(1/d),
Dn(1/d), E6(1/d), E7(1/d), E8(1/d), respectively. By (4.1), it is easy to prove that the
constant C is equal to h/d, where h is the usual Coxeter number of R.

(b) If R = Cn(d) with n ≥ 3, every short root r has norm 2d and div(r) = d in R. Thus div(r) =
d in L. Every long root s has norm 4d and div(s) = 2d in R. Thus div(s) = 2d in L. In this
case, R∗ = Bn(1/d). By (4.1), C = h/d, where h = 2n − 1 is the Coxeter number of Bn.

(c) If R = G2(d), every short root r has norm 2d and div(r) = d in R. Thus div(r) = d in L.
Every long root s has norm 6d and div(s) = 3d in R. Thus div(s) = 3d in L. In this case,
R∗ = G2(1/3d). By (4.1), C = 4/d.

(d) If R = F4(2d), every short root r has norm 2d and div(r) = d in R. Thus div(r) = d in L.
Every long root s has norm 4d and div(s) = 2d in R. Thus div(s) = 2d in L. In this case,
R∗ = F4(1/d). By (4.1), C = 9/d.

(e) If R = A1(d), every root r has norm 2d and div(r) = 2d in R. If div(r) = d in L, then
R∗ = A1(1/d) and C = 2/d. If div(r) = 2d in L, then there are three possible cases:

(i) r/d �∈ R(L∨), in which case R∗ = A1(1/4d) and C = 1/2d;
(ii) r/d ∈ R(L∨) and r/(2d) ∈ R(L∨), in which case R∗ = A1(1/d) ∪ A1(1/4d) and C =

2/d;
(iii) r/d ∈ R(L∨) and r/(2d) �∈ R(L∨), in which case R∗ = A1(1/d) but C = 3/2d.

(f) If R = Bn(2d) with n ≥ 2, every short root r has norm 2d and div(r) = 2d in R. Every
long root s has norm 4d and div(s) = 2d. Thus div(s) = 2d in L. If div(r) = d in L, then
R∗ = Cn(1/2d) and C = (n + 1)/d. If div(r) = 2d in L, then there are three possible cases:

(i) r/d �∈ R(L∨), in which case R∗ = Bn(1/2d) and C = (2n − 1)/2d;
(ii) r/d ∈ R(L∨) and r/(2d) ∈ R(L∨), in which case R∗ = Cn(1/2d) ∪ nA1(1/4d) and C =

(n + 1)/d;
(iii) r/d ∈ R(L∨) and r/(2d) �∈ R(L∨), in which case R∗ = Cn(1/2d) but C = (2n + 1)/2d.

By the above discussions, we complete the proof. �
Proof of Theorem 4.4. Suppose that M∗(Γ) is a free algebra. Then the Jacobian determinant J
of rank(L) + 3 free generators is a cusp form and it defines a reflective modular form satisfying
all conditions in Lemma 4.5. The set R(L) is non-empty, otherwise the reflective modular form
has weight 12 and is not a cusp form because it has the Weyl vector (1, 0, 0). We only need
to consider the case of rank(L) ≤ 8. The modified Coxeter number is just the constant C in
the Weyl vector of the Borcherds product (see the above lemma and Theorem 2.4). The term
qAζ

�BξC corresponding to the Weyl vector is one of the first Fourier coefficients of the Jacobian
determinant. From the assertion (5) of Theorem 2.5, we derive that C ≥ (rank(L) + 2) − 1 and
thus the number C is an integer no less than rank(L) + 1. This forces that the irreducible
components of R(L) must be of type (1)–(5), (8), (9) with d = 1, or type (6) with d = 1, 2, or
type (7) with d = 1, 2, 3. All possible cases are as follows.

(a) When R(L) = An, L must be An because it is an even overlattice of R(L). By [Wan19],
2U ⊕ A8(−1) has no modular forms with complete 2-divisor, which yields that M∗(Γ) is not
a free algebra in this case. By Theorem 3.5(3), if Γ contains a 2d-reflection then there is a
modular form vanishing exactly on the Γ-orbit of the mirror of this reflection. This modular
form should be a Borcherds product of a Jacobi form. From the q0-term of this Jacobi form,
we see that there is a 2d-reflection in R(L). Thus Γ must be the discriminant kernel because
it only contains 2-reflections. Note that when n = 1 we have Õ

+
= O+.

(b) When R(L) = Dn with 4 ≤ n ≤ 8, L must be Dn. Similarly, Γ = Õ
+
.
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(c) When R(L) = Cn with 3 ≤ n ≤ 8, L is equal to Dn. Note that A3 = D3. The Weyl group of
Bn is equal to O(Dn) if n �= 4 and is generated by W (D4) and the odd sign change if n = 4.
It is easy to check that the natural homomorphism O(Dn) → O(D(Dn)) is surjective. Thus
O+ is generated by Õ

+
and O(Dn). Hence Γ = O+ if n �= 4 and Γ = O+

1 if n = 4.
(d) When R(L) = Bn(2) with 2 ≤ n ≤ 8, L is equal to nA1 or N8, where N8

∼= D∨
8 (2) is the

Nikulin lattice whose root sublattice is 8A1. Note that O(nA1) = W (Cn) and the nat-
ural homomorphism O(nA1) → O(D(nA1)) is surjective. Thus Γ = O+ when 2 ≤ n ≤ 4.
It is known by [Wan19] that there is no modular form with complete 2-divisor for
2U ⊕ nA1(−1) when n ≥ 5. It remains to consider the case of L = N8. In this case, we
have W (B8) = W (C8) = O(D8) = O(D∨

8 ) = O(N8), which implies that Γ = O+. Since N8

has level 2, there are only 2-reflections and 4-reflections. The 2-reflective modular form and
4-reflective modular form have the same weight 28 (the two modular forms do exist; we
refer to [GN18] for a construction.). The Weyl vector of the Jacobian determinant has the
form (10, ∗, 9). Suppose that the algebra of orthogonal modular forms in the case of N8 is
free. Then there will be ten generators of weight 4 and one generator of weight 6, because
the sum of the weights of the eleven generators is equal to 46 = 56 − 10. We can kill the
first Fourier–Jacobi coefficients of a given modular form of weight 4 by a linear combination
of the generators of weight 4. Therefore there will be a generator of weight 4 with Fourier
expansion of the form q2ξ2(· · · ). This forces that the Fourier expansion of the Jacobian
determinant of generators has the form q10ξ10(· · · ), which contradicts the Weyl vector of
the Jacobian determinant.

(e) When R(L) = G2, L = A2 and W (G2) = O(A2). Thus Γ = O+.
(f) When R(L) = F4(2), L = D4 and W (F4) = O(D4). Thus Γ = O+.
(g) When R(L) = E6, L = E6 and Γ = Õ

+
.

(h) When R(L) = E7, L = E7 and Γ = Õ
+

= O+.
(i) When R(L) = E8, L = E8 and Γ = Õ

+
= O+.

(j) When R(L) = E8(3), by (4.2), the weight of J will be given by
1
24

(240 + 2k) − 1 =
30
3

,

which follows that k = 12. This is impossible.
(k) When R(L) = E8(2), L is of level 2 and equal to E8(2), otherwise L will contain 2-roots

which contradicts the assumption R(L) = E8(2). Since the natural homomorphism O(E8) →
O(D(E8(2))) is surjective, O+ is generated by Õ

+
and O(E8). It follows that Γ = O+. Note

that the 2-reflective modular form and 4-reflective modular form for Γ have weights 12
and 60, respectively. It is known from [Wan18, § 6] that dimM4(Γ) = dimM6(Γ) = 1. This
contradicts the weight of the Jacobian determinant because 12 + 60 < 10 + 4 + 6 + 8 × 9.
This case also follows from the case (m) below because we have the following isomorphisms
among orthogonal groups:

O+(2U ⊕ E8(2)) = O+((2U ⊕ E8(2))∨) = O+(2U ⊕ E8(1/2))

= O+(2U(2) ⊕ E8) ∼= O+(2U ⊕ 2D4).

(l) When R(L) = E7(2), we have E7(2) < L and E7(1/2) < L∨, which forces that L = E7(2).
We deduce from (4.2) that J has weight 57 and the Weyl vector (10, ∗, 9). Since O(E7) =
W (E7) is contained in Γ, the non-zero modular forms for Γ have even weight. It is
easy to prove that dimM4(Γ) ≤ 3 using the argument in [WW20, § 3]. Indeed, we take
δ = 10 in [WW20, Inequality (3.3) in § 3]. Notice that O(E7(2)) = O(E7) = W (E7) and
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J
w,W (E7)
k,E7(2),m = J

w,W (E7)
k,E7,2m . We then obtain the upper bound of the dimension by dimJ

w,W (E7)
4,E7,0 =

dimJ
w,W (E7)
−8,E7,2 = dim J

w,W (E7)
−20,E7,4 = 1. Since 57 − 9 < 4 × 3 + 6 × 7, we get a contradiction.

(m) When R(L) = 2F4(2), we have L > 2D4. Thus L can only take 2D4, D8 or E8. We only need
to consider the case L = 2D4. It is easy to see that the exchange of two copies of D4 does
not belong to Γ. If M∗(Γ) is a free algebra, we know by Theorem 3.5 that the decomposition
of the Jacobian determinant J will give a modular form with divisor Γv⊥, where v is a
4-reflective vector in the first copy of D4. This modular form should be a Borcherds product
of a weak Jacobi form of weight 0 and index 1 for 2D4. By the similar argument as in the
proof of Lemma 4.5, this leads to a contradiction because the 4-reflective vectors in the first
copy of D4 do not span the whole space of dimension 8.

We then finish the proof of the theorem. �

5. A sufficient condition to be free algebras

In this section we prove that the converse of Theorem 3.5 holds, which gives a sufficient condition
for the graded algebra of orthogonal modular forms being free.

Theorem 5.1. Let Γ < O+
2,n be an arithmetic group. If there exists a modular form F (with a

character) on Γ which vanishes exactly on all mirrors of reflections in Γ with multiplicity one and
equals the Jacobian determinant of n + 1 certain modular forms on Γ, then the graded algebra
M∗(Γ) is freely generated by the n + 1 modular forms. Moreover, the group Γ is generated by
all reflections whose mirrors are contained in the divisor of the modular form F .

Proof. Assume that fi ∈ Mki(Γ), 1 ≤ i ≤ n + 1, and F = J = J(f1, . . . , fn+1) vanishes exactly
on all mirrors of reflections in Γ. Suppose that M∗(Γ) is not a free algebra. Then there are
non-trivial modular forms not in C[f1, . . . , fn+1]. Let fn+2 ∈ Mkn+2(Γ) be such a modular form
of minimal weight. For 1 ≤ t ≤ n + 2 we define Jt as the Jacobian determinant of the n + 1
modular forms fi except ft. It is clear that J = Jn+2. By Theorem 2.5(4), the quotient Jt/J is
a holomorphic modular form on Γ and we denote it by gt. It is easy to check that the following
identity holds:

n+2∑
t=1

(−1)tktftJt = 0.

By Jt = Jgt, we have
n+2∑
t=1

(−1)tktftgt = 0,

which yields

(−1)n+2kn+2fn+2 = −
n+1∑
t=1

(−1)tktftgt

because gn+2 = 1. The assumption on the weight of fn+2 forces that all gt are contained in
C[f1, . . . , fn+1]. Then fn+2 ∈ C[f1, . . . , fn+1], which leads to a contradiction. Hence the graded
algebra M∗(Γ) is free. From Proposition 3.3 and Theorem 3.5(2), we conclude that Γ is generated
by all reflections related to the divisor of the Jacobian determinant. The proof is completed. �

For the 26 orthogonal groups in Theorem 4.4, the expected Jacobian determinant of gen-
erators can be constructed as quasi pull-backs of the Borcherds form of weight 12 for II2,26
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(see [GN18]). Thus it is possible to prove the associated algebras of orthogonal modular forms
are free using the above theorem. The main difficulty is to verify that the Jacobian is not zero, or
equivalently, those generators are algebraically independent. But the computation will be very
cumbersome when the dimension of the modular variety is large, especially in the case of E8.

We give an application of our result. The main theorem in [FS07] asserts that the graded
algebra of modular forms on Õ

+
(2U(2) ⊕ D4(−1)) is freely generated by six forms of weight 2

and one form of weight 6. It was also verified that the Jacobian determinant of the seven modular
forms is not zero. We know from [Woi17] that there is a reflective modular form of weight 24 on
O+(2U ⊕ D4(−1)) whose divisor is a sum of Dv for all v ∈ 2U ⊕ D4(−1) with (v, v) = −4 and
div(v) = 2. In view of the isomorphisms

O+(2U ⊕ D4(−1)) = O+(2U ⊕ D∨
4 (−1)) = O+(2U(2) ⊕ D4(−1)), D∨

4 (2) ∼= D4,

this reflective modular form can be regarded as a 2-reflective modular form on O+(2U(2) ⊕
D4(−1)). This gives a new proof of the main theorem in [FS07]. This also proves that Õ

+
(2U(2) ⊕

D4(−1)) is generated by all 2-reflections, which can not be covered by Lemma 3.4. The structure
results in [AI05] can also be verified in a similar way.

It is clear that Theorem 5.1 also holds for Hilbert modular forms with respect to real quadratic
fields because the Koecher principle is satisfied in this case. The first free algebras of Hilbert
modular forms was determined by Gundlach [Gun63]. He showed that the space of symmetric
Hilbert modular forms of even weight for SL2(OF ) with F = Q(

√
5) is freely generated by three

forms of weights 2, 6, 10. This space can be identified with the algebra of modular forms on
O+(U ⊕ B5), where B5 =

(
2 1
1 −2

)
. The Jacobian determinant of the three generators is the prod-

uct of two Gundlach’s cusp forms of weights 5 and 15, which can be constructed as a reflective
Borcherds product. Thus we can recover Gundlach’s theorem.

We hope to construct more free algebras of orthogonal modular forms using the above
theorem.

At the end of the paper, we formulate the following conjecture, which also gives a nice way
to construct free algebras of modular forms.

Conjecture 5.2. Let Γ < O+
2,n be an arithmetic group generated by reflections. Let Γ′ be a

finite index subgroup of Γ. If M∗(Γ′) is a free algebra, then the smaller algebra M∗(Γ) is also
free.

By Lemma 3.4, O+(2U ⊕ E8(−1)) is generated by reflections. Since D8 is a sublattice of
E8, Õ

+
(2U ⊕ D8(−1)) is a finite index subgroup of O+(2U ⊕ E8(−1)). We know from [WW20]

that M∗(Õ
+
(2U ⊕ D8(−1))) is a free algebra. Thus the above conjecture implies the freeness

of the algebra M∗(O+(2U ⊕ E8(−1))). Similarly, the freeness of M∗(Õ
+
(2U ⊕ A7(−1))) implies

the freeness of M∗(Õ
+
(2U ⊕ E7(−1))). But M∗(O+(2U ⊕ A7(−1))) is not free because O+(2U ⊕

A7(−1)) is not generated by reflections.
We remark that the modularity of formal Fourier–Jacobi expansions of modular forms on

O+(2U ⊕ E8(−1)) holds (see [WW20, Corollary 4.4] for the definition). In fact, every formal
Fourier–Jacobi expansion for E8 is automatically a formal Fourier–Jacobi expansion for D8.
Therefore, the modularity in the case of E8 follows from the modularity in the case of D8 proved
in [WW20].

Acknowledgements

I would like to thank Eberhard Freitag for many valuable comments, Ernest Vinberg for answer-
ing questions related to the paper [Vin13], and Zhiwei Zheng for many fruitful discussions.

2042

https://doi.org/10.1112/S0010437X21007429 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007429


Free algebras of orthogonal modular forms

I am greatly indebted to Riccardo Salvati Manni for suggesting the proof of Theorem 5.1 and for
many helpful discussions. I also like to thank Brandon Williams for performing many computer
calculations. I am grateful to Max Planck Institute for Mathematics in Bonn for its hospitality
and financial support. I also thank the referee for their careful reading and useful comments.

References

AI05 H. Aoki and T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators
and Borcherds products, Internat. J. Math. 16 (2005), 249–279.

Arm68 M. A. Armstrong, The fundamental group of the orbit space of a discontinuous group, Math.
Proc. Cambridge Philos. Soc. 64 (1968), 299–301.

BB66 W. L. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric
domains, Ann. of Math. (2) 84 (1966), 442–528.

Bor95 R. E. Borcherds, Automorphic forms on Os+2,2 and infinite products, Invent. Math. 120 (1995),
161–213.

Bor98 R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 123
(1998), 491–562.

Bor00 R. E. Borcherds, Reflection groups of Lorentzian lattices, Duke Math. J. 104 (2000), 319–366.
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