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The interest in business-cycle asymmetry has been steadily increasing over the past 15
years. Most research has focused on the different behavior of macroeconomic variables
during expansions and contractions, which by now is well documented. Recent evidence
suggests that such a two-phase characterization of the business cycle might be too
restrictive. In particular, it might be worthwhile to decompose the recovery phase in a
high-growth phase (immediately following the trough of a cycle) and a subsequent
moderate-growth phase. The issue of multiple regimes in the business cycle is addressed
using smooth-transition autoregressive (STAR) models. A possible limitation of STAR
models as they currently are used is that essentially they deal with only two regimes. We
propose a generalization of the STAR model such that more than two regimes can be
accommodated. It is demonstrated that the class of multiple-regime STAR (MRSTAR)
models can be obtained from the two-regime model in a simple way. The main properties
of the MRSTAR model and several issues that are relevant for empirical specification are
discussed in detail. In particular, a Lagrange multiplier-type test is derived that can be
used to determine the appropriate number of regimes. A limited simulation study indicates
its practical usefulness. Application of the new model class to U.S. real GNP provides
evidence in favor of the existence of multiple business-cycle phases.

Keywords: Business-Cycle Asymmetry, Multiple Regimes, Smooth-Transition
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1. INTRODUCTION

The notion of business-cycle asymmetry has been around for quite some time. For
example, Keynes (1936, p. 314) already observed that “the substitution of a down-
ward for an upward tendency often takes place suddenly and violently, whereas
there is, as a rule, no such sharp turning point when an upward is substituted for a
downward tendency.” Following Burns and Mitchell (1946), conventional wisdom
has long held that “contractions are shorter and more violent than expansions.”
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Starting with Neftçi (1984), interest in the subject of business-cycle asymmetry has
revived and many macroeconomic variables [output and (un)employment series
in particular] since have been examined for asymmetry. The statistical procedures
that have been employed can be divided into two main categories.1 First, various
nonparametric techniques have been used. For example, Neft¸ci (1984), Falk (1986),
Sichel (1989), Rothman (1991), and McQueen and Thorley (1993), among many
others, test for asymmetry between expansions and contractions by using Markov
chain methods to examine whether the transition probabilities from one regime
to the other differ. Second, parametric nonlinear time-series models have been
employed to render insight into the differing dynamics over the business cycle.
Regime-switching models have been particularly popular in this line of research.
Typically, these models consist of a set of linear models of which, at each point
in time, only one or a linear combination of the models is active to describe the
behavior of a time series, where the activity depends on the regime at that particular
moment.

Within the class of regime-switching models, two main categories can be dis-
tinguished, depending on whether the regimes are determined exogenously, by an
unobservable state variable, or endogenously, by a directly observable variable. The
most prominent member of the first class of models is the Markov-switching (MS)
autoregressive model, which has been applied to modeling business-cycle asym-
metry by Hamilton (1989), Boldin (1996), and Diebold and Rudebusch (1996),
among others. From the second class of models, the (self-exciting) threshold
autoregressive [(SE)TAR] model [see Beaudry and Koop (1993), Tiao and Tsay
(1994), Potter (1995), Peel and Speight (1996, 1998), and Clements and Krolzig
(1998)] and the smooth-transition autoregressive (STAR) model have been applied
most frequently [see Ter¨asvirta and Anderson (1992), Ter¨asvirta (1995), Skalin
and Teräsvirta (1996), and Jansen and Oh (1996)]. Filardo (1994) and Filardo and
Gordon (1998) consider a mixture of models, by allowing the transition probabili-
ties between the states in an MS model to depend on observable (leading-indicator)
variables.

It is now well understood that recessions are different from booms, and there
seem to be possibilities for even further refinement. Ramsey and Rothman (1996)
and Sichel (1993) discuss concepts such as “deepness,” “steepness” and “sharp-
ness,” which relate to different aspects of asymmetry. A cycle is said to exhibit
steepness if the slope of the expansion phase differs from the slope of the con-
traction phase. Deepness occurs when the distance from the mean of the cycle
to the peak is not equal to the distance from the mean to the trough. Sharp-
ness focuses on the relative curvature around peaks and troughs. Sichel (1993)
argues that most research has focused exclusively on the possibility of steep-
ness, neglecting other forms of asymmetry. The evidence presented by Sichel
(1993) suggests however that deepness might be a more important characteris-
tic of macroeconomic variables. This is confirmed by the analysis by Verbrugge
(1997), which demonstrates that depth is a feature of numerous economic time
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series, whereas steepness is a feature of (un)employment-related variables but
is absent from real GDP and aggregate industrial production. Concerning sharp-
ness, peaks generally are thought to be “rounder” than troughs; see Emery and
Koenig (1992) and McQueen and Thorley (1993) for some evidence in favor of this
premise.

Intuitively, if a macroeconomic variable exhibits different types of asymmetry
simultaneously, the distinction between expansion and contraction might not be
sufficient to characterize its behavior over the business cycle completely. Sichel
(1994) observes that real GNP tends to grow faster immediately following a trough
than in the rest of the expansion phase. Wynne and Balke (1992) and Emery and
Koenig (1992) present additional evidence in favor of this “bounce-back” effect.
This suggests the possibility of three business-cycle phases—contractions, high-
growth recoveries that immediately follow troughs of the cycle, and subsequent
moderate growth phases.

The nonlinear time-series models mentioned above mainly focus on two regimes,
i.e., expansions and contractions. The MS and SETAR models can be extended eas-
ily to multiple regimes, at least conceptually. For example, Boldin (1996) presents
a three-regime MS model in which the expansion regime is split into separate
regimes for the posttrough rapid recovery period and the moderate-growth period
for the remainder of the expansion. In a similar vein, Pesaran and Potter (1997)
and Koop et al. (1996) use principles of SETAR models to construct a “floor and
ceiling” model that allows for three regimes corresponding to low, normal, and
high growth rates of output, respectively. Tiao and Tsay (1994) develop a four-
regime SETAR model for U.S. real GNP in which the regimes are labeled worsen-
ing/improving recession/expansion, thus allowing for variation in dynamics during
different phases of the business cycle. In contrast, extending the number of possi-
ble regimes in STAR models does not seem to be straightforward. Therefore, the
objective of our paper is to explore how STAR models can be modified to allow for
more than two regimes, with the purpose of examining whether a multiple-regime
STAR (MRSTAR) model can be used to describe the behavior of postwar U.S. real
GNP.

The outline of our paper is as follows: In Section 2, we discuss the STAR model
and a simple yet elegant way to generalize this model to accommodate more than
two regimes. In Section 2.2, we give a theoretical account of this MRSTAR model
and in Section 2.3, we focus on a simple example to demonstrate the main features
of the MRSTAR model. In Section 3, we discuss some of the issues that are
involved in specifying these models. Emphasis in that section is put on developing
a test statistic that can be used to test a two-regime model against a multiple-
regime alternative. Simulations are used to examine its empirical performance. In
Section 4, we discuss previous research on modeling business-cycle asymmetry in
somewhat more detail and apply the MRSTAR model to characterize the behavior
of the growth rate of postwar U.S. real GNP. Finally, Section 5 contains some
discussion.
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2. EXTENDING THE STAR MODEL

In this section we describe an extension of the STAR model that allows for more
than two regimes. We start with a brief description of the basic STAR model; for
more elaborate discussions of these models we refer to Granger and Ter¨asvirta
(1993) and Ter¨asvirta (1994, 1998). We next argue that, irrespective of the par-
ticular transition function that is used, this basic STAR model essentially allows
for only two regimes. To overcome this limitation, the class of MRSTAR models
is introduced. The potential usefulness of this class of models is illustrated by a
simple example.

2.1. Basic STAR Model

Consider the following STAR model for a univariate time seriesyt :

yt = φ′1y(p)t [1− F(st ; γ, c)] + φ′2y(p)t F(st ; γ, c)+ εt , (1)

wherey(p)t = (1, ỹ(p)t )′, ỹ(p)t = (yt−1, . . . , yt−p)
′, φi = (φi 0, φi 1, . . . , φi p)

′, i =
1, 2, andεt is a white-noise error process with mean zero and varianceσ 2. The
so-called transition functionF(st ; γ, c) is a continuous function bounded between
zero and one. The transition variablest can be a lagged endogenous value (st = yt−d

for certaind > 0), an exogenous variable (st = xt ), or a (possibly nonlinear)
function of lagged endogenous and exogenous variables [st = g(z̃t ) for some
function g(·) with z̃t = (yt−1, . . . , yt−p, x1t , . . . , xkt)

′]. One of the most often
applied choices forF(st ; γ, c), which is also central in this paper, is the logistic
function2

F(st ; γ, c) = {1+ exp[−γ (st − c)]}−1, γ > 0, (2)

whereγ andc are scalars. The requirement thatγ be positive is an identifying
restriction. The model consisting of (1) with (2) is called a logistic STAR (LSTAR)
model.

The way the model is written in equation (1) highlights the basic characteristic
of the LSTAR model, which is that, at any given point in time, the evolution ofyt

is determined by a weighted average of two different linear autoregressive (AR)
models. The weights assigned to the two models depend on the value taken by the
transition variablest . For small (large) values ofst , F(st ; γ, c) is approximately
equal to zero (one) and, consequently, almost all weight is put on the first (second)
model. The parameterγ determines the speed at which these weights change as
st increases; the higherγ , the faster is this change. Ifγ → 0, the weights become
constant (and equal to 0.5) and the model becomes linear, whereas, ifγ →∞, the
logistic function approaches a Heaviside function, taking the value 0 forst < c
and 1 forst > c. In that case, the LSTAR model reduces to a two-regime SETAR
model; see Tong (1990) for an extensive discussion.

Teräsvirta (1994) outlines a specification procedure for STAR models. Because
this will be part of the specification procedure for MRSTAR models to be discussed
later, we briefly sketch the different steps in this procedure here. After estimating
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a suitable AR model foryt , linearity is tested against the alternative of a two-
regime STAR model (1) using the tests developed by Luukkonen et al. (1988).
The testing problem suffers from what has become known as the Davies problem;
that is, the model is not identified under the null hypothesis of linearity, which can
be formulated asH0 : γ = 0. This problem of nuisance parameters that are not
identified under the null hypothesis was first considered in some depth by Davies
(1977, 1987) and occurs in many testing problems; see Hansen (1996) for a recent
account. The tests by Luukkonen et al. (1988) are based on replacing the transition
function in (1) with a suitable approximation, which leads to a reparameterized
model in which auxiliary regressorsyt− j si

t , j = 1, . . . , p, i = 1, . . . , r , appear
(wherer depends on the particular approximation that is used) and the identification
problem is no longer present. Linearity is tested by examining the joint significance
of the coefficients corresponding to these auxiliary regressors. For details, we refer
to Luukkonen et al. (1988).

It is common practice to carry out the linearity test for different choices of the
transition variablest in order to select the most appropriate transition variable(s)
prior to estimation of the STAR model. For example, ifst is limited to (functions of)
lagged endogenous variables, it usually is assumed that only a single lagged value
acts as transition variable, i.e.,st = yt−d for certaind > 0. An alternative that might
be of interest is when a lagged first difference1yt−d is taken to be the threshold
variable. Following Enders and Granger (1998), the resulting model might be
called a momentum STAR (MSTAR) model because the regime is determined by
the direction in which the time series is moving, that is, by its momentum; see also
Skalin and Ter¨asvirta (1998). The choice ofst for which linearity is rejected most
convincingly is considered to render the most appropriate one. The argument that
is used to justify this approach is that the linearity test might be expected to have
maximum power whenst is correctly specified.3

If linearity is rejected, the parameters in the STAR model can be estimated
by nonlinear least squares4; see Ter¨asvirta (1994) for a discussion of the issues
involved. One of the characteristic features of estimating STAR models that has
emerged from previous applications is that often one obtains a large and apparently
insignificant estimate ofγ . The reason that it is difficult to obtain a precise estimate
of this parameter is that, for large values ofγ , the switching of the transition
function is almost instantaneous atc. In that case, a large number of observations
for whichst is equal or close toc would be required to estimateγ with a fair degree
of accuracy. Furthermore, whenγ is large, the shape ofF is hardly affected by
(even relatively large) changes inγ . This implies that convergence of the estimates
to the optimum is slow and the standard error ofγ tends to be large when the point
estimate of this parameter is large. See Bates and Watts (1988, p. 87) for more
on this issue. The implication from all this is that an insignificant estimate ofγ

should not be interpreted as insignificance of the regime switching. Put differently,
the estimate ofγ cannot be employed to infer the adequacy of the STAR model.
This should be assessed by other means, such as inspection of the number of
observations in the different regimes, application of diagnostic checks, or the out-
of-sample forecast accuracy of the model.
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The final stage of building a STAR model is to subject the estimated model to
some diagnostic tests to check whether it adequately captures the main features
of the data. Eitrheim and Ter¨asvirta (1996) develop appropriate test statistics for
serial correlation, constancy of parameters, and remaining nonlinearity. Needless
to say, the model can be modified if these diagnostic tests indicate possible mis-
specification. In particular, in case there is evidence that the model cannot describe
all nonlinear features that are present in the time series under scrutiny, one might
consider the possibility of extending the model to allow for multiple regimes. It is
to this topic that we now turn our attention.

2.2. MRSTAR Model

The LSTAR model seems particularly well suited to describe asymmetry of the
type that is encountered frequently in macroeconomic time series. For example,
the model has been successfully applied by Ter¨asvirta and Anderson (1992) and
Teräsvirta et al. (1994) to characterize the different dynamics of industrial pro-
duction indexes in a number of OECD countries during expansions and recessions
[see also Ter¨asvirta (1995)]. As argued in the introduction, sometimes more than
two regimes might be required to describe adequately the behavior of a particular
time series.

The notation in (1) shows that the set of linear AR models of which the STAR
model is composed contains only two elements. Hence, it is immediately clear
that the STAR model cannot accommodate more than two regimes, irrespective
of what form the transition function takes. It has been suggested, though, that a
three-regime model is obtained by using the exponential function

F(st , γ, c) = 1− exp
[−γ (st − c)2

]
, γ > 0, (3)

as transition function in (1). According to Ter¨asvirta and Anderson (1992), if
st = yt−d the resulting exponential STAR (ESTAR) model allows expansions and
contractions to have different dynamics than the “middle ground,” similar to the
“floor and ceiling” model of Pesaran and Potter (1997). However, the models in
the two outer regimes, associated with very small and large values ofyt−d (and,
hence, corresponding with the expansions and contractions), are restricted to be
the same, so that effectively there still are only two distinct regimes. Furthermore,
the ESTAR model does not nest the SETAR model as a special case because, for
eitherγ → 0 or γ → ∞, the model becomes linear. The latter can be remedied
by using the quadratic logistic function

F(st ; γ, c1, c2) = {1+exp[−γ (st −c1)(st −c2)]}−1, c1 ≤ c2, γ > 0 , (4)

as proposed by Jansen and Ter¨asvirta (1996). In this case, ifγ → 0, the model
becomes linear, whereas ifγ → ∞, the functionF(st ; γ, c1, c2) is equal to 1
for st < c1 andst > c2 and equal to 0 in between. Hence, the STAR model with
this particular transition function nests a three-regime SETAR model, although the
models in the outer regimes are still restricted to be the same.
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We propose an alternative way to extend the basic STAR model to allow for
more than two, genuinely different, regimes. Building upon the notation used in
(1), we suggest encapsulating two different LSTAR models as follows:

yt =
{
φ′1y(p)t [1− F1(s1t ; γ1, c1)] + φ′2y(p)t F1(s1t ; γ1, c1)

}
× [1− F2(s2t ; γ2, c2)] +

{
φ′3y(p)t [1− F1(s1t ; γ1, c1)]

+φ′4y(p)t F1(s1t ; γ1, c1)
}

F2(s2t ; γ2, c2)+ εt , (5)

where both transition functionsF1 andF2 are taken to be logistic functions as in
(2). Because both functions can vary between zero and one, (5) defines a model
with four distinct regimes, each corresponding to a particular combination of
extreme values of the transition functions. We call the model given in (5) the
MRSTAR model. The MRSTAR model considered here allows for a maximum of
four different regimes, but it will be obvious that, in the notation of (5), extension
to 2k regimes withk > 2 is straightforward, at least conceptually. A model with
three regimes can be obtained from (5) by imposing appropriate restrictions on
the parameters of the autoregressive models that prevail in the different regimes.
If in fact s1t = s2t ≡ st , i.e., a single variable governs the transitions between all
regimes, it will be intuitively clear that it is not sensible to allow for four different
regimes. For example, ifc1 < c2, F1 changes from zero to one prior toF2 for
increasing values ofst and, consequently, the product(1− F1)F2 will be equal to
zero almost everywhere, especially ifγ1 andγ2 are large. Hence, it makes sense
to exclude the model corresponding to this particular regime by imposing the
restrictionφ3 = 0. Because, in that case,F1F2 ≈ F2, the resulting model may be
rewritten as

yt = φ′1y(p)t +(φ2−φ1)
′y(p)t F1(st ; γ1, c1)+(φ4−φ2)

′y(p)t F2(st ; γ2, c2)+εt . (6)

In fact, the model as given in (6) is the form of the multiple-regime model as
discussed by Eitrheim and Ter¨asvirta (1996), although they do not restrict the
transition variabless1t ands2t to be the same [see alsoÖcal and Osborn (1997)].

Note that the MRSTAR model nests several other nonlinear time-series mod-
els. For example, an artificial neural network (ANN) model [see Kuan and White
(1994)] is obtained by imposing the restrictionsφi j = 0, i = 1, . . . ,4, j =
1, . . . , p andφ40 = φ20+ φ30− φ10. The last restriction ensures that the interac-
tion termφ∗40F1F2, whereφ∗40 = φ10− φ20− φ30+ φ40 drops out of the model,
which now can be rewritten as

yt = φ∗10+ φ∗20F1(s1t ; γ1, c1)+ φ∗30F2(s2t ; γ2, c2)+ εt , (7)

whereφ∗10 = φ1, φ∗20 = φ20− φ10, andφ∗30 = φ30− φ10.
Additionally, the MRSTAR model (5) might be extended to a “semimultivari-

ate” model by including exogenous variables as regressors or transition variables.
Granger and Ter¨asvirta (1993) discuss incorporating exogenous variablesxit in
the STAR model (1) to obtain the smooth transition regression (STR) model; see
also Teräsvirta (1998) for a more recent survey. Likewise, the MRSTAR model can
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be extended to a multiple-regime STR (MRSTR) model by definingzt = (1, z̃′t )′,
z̃t = (yt−1, . . . , yt−p, x1t , . . . , xkt)

′, and substitutingzt for y(p)t in (5), i.e.,

yt = {φ′1zt [1− F1(s1t ; γ1, c1)] + φ′2zt F1(s1t ; γ1, c1)}[1− F2(s2t ; γ2, c2)]

+{φ′3zt [1− F1(s1t ; γ1, c1)] + φ′4zt F1(s1t ; γ1, c1)}F2(s2t ; γ2, c2)+ εt , (8)

where now the vectorsφi , i = 1, . . . ,4 are of lengthm+ 1, with m = p+ k. In
particular, Lin and Ter¨asvirta (1994) argue that polynomials of time are allowed as
transition variables in STAR models; even though these are nonstationary variables,
no problems occur because the transition function is bounded between zero and
one. Lütkepohl et al. (1995) and Wolters et al. (1996) apply this idea to model
time-varying parameters in German money demand. In the MRSTR model, time
trends might be used as transition variables as well. This opens the interesting
possibility of modeling nonlinearity and time-varying parameters simultaneously.
A possible application in business-cycle research might be to examine whether or
not the properties of expansions and contractions are time-invariant. For example,
Lin and Teräsvirta (1994) demonstrate that the properties of the index of industrial
production in the Netherlands have changed after the oil crisis in 1975. Sichel
(1991) claims that expansions have become longer after World War II and have
started to exhibit duration dependence, whereas recessions have become shorter
and duration dependence has disappeared; see also Diebold and Rudebusch (1992),
Watson (1994), Romer (1994), Parker and Rothman (1996), and Cooper (1998).
An extensive discussion of this issue is beyond the scope of this paper and is left
for further research.

The MRST(A)R model also nests the class of Nested TAR (NeTAR) models
recently proposed by Astatkie et al. (1997) as an extension of conventional TAR
models to allow for multiple regimes determined by multiple sources. A NeTAR
model is obtained from (8) [or (5)] if the parametersγ1 andγ2 both tend to infinity
(or, equivalently, the logistic functions are replaced by Heaviside functions), such
that the different regimes are separated by sharply determined borders.

2.3. A Simple Example

In this section, we focus on a simple example of a four-regime MRSTAR model
to highlight some features of the model. We setp = 1, require all intercepts to be
equal to zero, and takes1t = 1yt−1 ands2t = yt−2. The resulting model then is
given by

yt = {φ1yt−1[1− F1(1yt−1; γ1, c1)] + φ2yt−1F1(1yt−1; γ1, c1)}
× [1− F2(yt−2; γ2, c2)] + {φ3yt−1[1− F1(1yt−1; γ1, c1)]

+φ4yt−1F1(1yt−1; γ1, c1)}F2(yt−2; γ2, c2)+ εt . (9)

For each combination of the transition variables(1yt−1, yt−2), the resulting model
is a weighted average of the four AR(1) models associated with the four extreme
regimes. Figure 1 shows the weights given to each of these four models in the
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(yt−1, yt−2) plane, withγ1= γ2 = 2.5 andc1= c2= 0. For(1yt−1, yt−2)= (0, 0)
or, equivalently,(yt−1, yt−2) = (0, 0), all models are given equal weight. Along
the linesyt−1 = yt−2 andyt−2 = 0, which might be interpreted as representing the
borders between the different regimes, the models receive equal weight pairwise.
For example, alongyt−2= 0, the models in the first and third regimes receive equal
weight (where the subscript of the autoregressive parameters is used to identify
the regime number); the same holds for the models in the second and fourth
regimes. Moving into a particular regime increases the weight of the corresponding
model.

To illustrate the possible dynamics that can be generated by the MRSTAR model,
Figure 2 shows some time series generated by the sample model (9). Two hundred
pseudo-random numbers are drawn from the standard normal distribution to obtain
a sequence of errorsεt , while the necessary initial valuesy−1 andy0 are set equal
to zero. The thresholdsc1, c2 and the parametersγ1 andγ2 are set equal to the
values given above. In the upper panel of Figure 2, the autoregressive parameters
are set as follows;φ1 = φ2 = 0.3 andφ3 = φ4 = 0.9. Hence, the model reduces to
a basic LSTAR model (1) withyt−2 as transition variable. In all panels of Figure 2,
a realization of an AR(1) modelyt = φyt−1 + εt with autoregressive parameter
φ = 0.6, using the same errorsεt , also is plotted for comparison. Although the
time series generated by the LSTAR model has the same average autoregressive
parameter as the linear AR(1) model, the behavior is markedly different: For pos-
itive values ofyt−2, the tendency of the series to return to its attractor (which is
equal to zero) is much smaller than for negative values of the transition variable.
The middle panel of Figure 2 shows the AR(1) series together with a realization
of the MRSTAR model withφ1 = φ3 = 0.3 andφ2 = φ4 = 0.9. The resulting
model is a momentum STAR (MSTAR) model because the autoregressive param-
eters only depend on the direction in which the series is moving. In our example,
the memory of the series is longer for upward than for downward movements.
The main difference between the AR and MSTAR models occurs in the peaks, the
upward (downward) peaks being more (less) pronounced in the nonlinear model.
Finally, the lower panel of Figure 2 shows the AR(1) series together with a realiza-
tion of the MRSTAR model (9), with the autoregressive parameters taken to be the
averages of the parameters in the LSTAR and MSTAR models; that is,φ1 through
φ4 are set equal to 0.3, 0.6, 0.6, and 0.9, respectively. Obviously, the resulting time
series combines the properties of the LSTAR and MSTAR models: Persistence
is strongest for positive and increasing values, intermediate for positive and de-
creasing values and negative and increasing values, and smallest for negative and
decreasing values of the time series.

3. SPECIFICATION OF MRSTAR MODELS

We suggest a specific-to-general approach to specify MRSTAR models, that is, to
build up the number of regimes by iterating between testing for the desirability
of additional regimes and estimating multiple-regime models.5 The reason for
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FIGURE 1. Weights in MRSTAR model [weights assigned to different AR models in the
example MRSTAR model (9)].
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FIGURE 2. Realizations of sample MRSTAR model (9) withγ1 = γ2 = 2.5, c1 = c2 = 0,
εt ∼ i.i.d. N(0, 1) for different combinations of autoregressive parameters: (a)φ1 = φ2 =
0.3 andφ3 = φ4 = 0.9; (b) φ1 = φ3 = 0.3 andφ2 = φ4 = 0.9; (c) φ1 = 0.3, φ2 = 0.6,
φ3 = 0.6, andφ4 = 0.9. The solid line is a realization of an AR(1) with autoregressive
parameter 0.6, using the same errorsεt .
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preferring this approach rather than, for example, applying model selection criteria
is that the latter approach requires the estimation of all candidate models. This
may become very time-consuming if one wants to consider various choices for
the transition variabless1t ands2t and combinations thereof. In Section 3.1, we
outline the specification procedure in more detail and develop an LM-type test
statistic that can be used to test a two-regime STAR model against a multiple-
regime alternative. In Section 3.2, we investigate the small-sample properties of
the test statistic by means of simulation experiments.

3.1. A Specification Procedure for MRSTAR Models

We suggest that specification begins with specifying and estimating a basic LSTAR
model (1), using the specification procedure of Ter¨asvirta (1994) as discussed in
Section 2.2. The two-regime model then should be tested against the alternative of
a general MRSTAR as given in (5). The principle of approximating the transition
function as applied by Luukkonen et al. (1988) to develop LM-type tests against
STAR nonlinearity can be used to obtain a test against the MRSTAR alternative
(5). For this purpose, it is convenient to rewrite the model as follows:

yt = φ∗1 ′y(p)t + φ∗2 ′y(p)t F1(s1t ; γ1, c1)+ φ∗3 ′y(p)t F2(s2t ; γ2, c2)

+φ∗4 ′y(p)t F1(s1t ; γ1, c1)F2(s2t ; γ2, c2)+ εt , (10)

whereφ∗1 = φ1, φ∗2 = φ2− φ1, φ∗3 = φ3− φ1, andφ∗4 = φ1− φ2− φ3+ φ4. The
two-regime model that has been estimated is assumed to haveF1(·) as transition
function. Hence, we wish to test whether the addition of the regimes determined by
F2(·) is appropriate. Subtracting 1/2 from the logistic functionF2 does not alter the
model but it allows expression of the null hypothesis to be tested asH0 : γ2 = 0.
Because the model is not identified under the null hypothesis, a test statistic cannot
be derived directly. We proceed by replacing the transition functionF2(s2t ; γ2, c2)

in (10) with a third-order Taylor expansion6 around the pointγ2(s2t − c2) = 0.
After rearranging terms, the model becomes

yt = θ ′1y(p)t + θ ′2y(p)t F1(s1t ; γ1, c1)+ β ′1y(p)t s2t + β ′2y(p)t s2
2t + β ′3y(p)t s3

2t

+ (β ′4y(p)t s2t + β ′5y(p)t s2
2t + β ′6y(p)t s3

2t

)
F1(s1t ; γ1, c1)+ et , (11)

where the parameter vectorsβi = (β0i , β1i , . . . , βpi )
′, i = 1, . . . ,6 are defined in

terms ofφ∗i , i = 1, . . . ,4,γ2, andc2, whereas the error termet is the sum ofεt and
the approximation error that arises from replacing the transition functionF2 with
a finite-order Taylor expansion. The null hypothesis now can be reformulated as
H ∗0 : βi = 0, i = 1, . . . ,6. Note that, under the null hypothesis,θ1 = φ∗1 = φ1,
θ2 = φ∗2 = φ2 − φ1, andet = εt . It also should be remarked that ifs2t = yt−d

for certaind ≤ p or if s2t = α′ ỹ(p)t for certainα, the termsβ0i si
2t , i = 1, 2, 3

andβ0i s
i−3
2t F1(s1t ; γ1, c1), i = 4, 5, 6 in (11) are redundant and should be omitted.

Assuming the errors to be normally distributed, it follows that the conditional
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log-likelihood for observationt is given by

l t = −1

2
ln 2π − 1

2
ln σ 2− e2

t

2σ 2
. (12)

Because the information matrix is block diagonal, the error varianceσ 2 can be
assumed to be fixed. The remaining partial derivatives evaluated under the null
hypothesis are given by

∂l t
∂θ1

∣∣∣∣
H0

= 1

σ 2
êt y

(p)
t , (13)

∂l t
∂θ2

∣∣∣∣
H0

= 1

σ 2
êt y

(p)
t F1(s1t ; γ̂1, ĉ1), (14)

∂l t
∂βi

∣∣∣∣
H0

= 1

σ 2
êt y

(p)
t si

2t , i = 1, 2, 3, (15)

∂l t
∂βi

∣∣∣∣
H0

= 1

σ 2
êt y

(p)
t F1(s1t ; γ̂1, ĉ1)s

i−3
2t , i = 4, 5, 6, (16)

∂l t
∂γ1

∣∣∣∣
H0

= 1

σ 2
êt θ̂
′
2y(p)t

∂F1(s1t ; γ̂1, ĉ1)

∂γ1
, (17)

∂l t
∂c1

∣∣∣∣
H0

= 1

σ 2
êt θ̂
′
2y(p)t

∂F1(s1t ; γ̂1, ĉ1)

∂c1
, (18)

where

∂F1(s1t ; γ̂1, ĉ1)

∂γ1
= {1+ exp[−γ̂1(s1t − ĉ1)]}−2 exp[−γ̂1(s1t − ĉ1)](s1t − ĉ1)

= F1(s1t ; γ̂1, ĉ1)[1− F1(s1t ; γ̂1, ĉ1)](s1t − ĉ1), (19)

∂F1(s1t ; γ̂1, ĉ1)

∂c1
= γ̂1{1+ exp[−γ̂1(s1t − ĉ1)]}−2 exp[−γ̂1(s1t − ĉ1)]

= γ̂1F1(s1t ; γ̂1, ĉ1)[1− F1(s1t ; γ̂1, ĉ1)]. (20)

The partial derivatives (19) and (20) are denoted asF̂γ1(t) andF̂c1(t), respectively;
we also use the shorthand notationF̂1(t) to denoteF1(s1t ; γ̂1, ĉ1).

The above suggests that an LM-type test statistic to testH∗0 can be computed in
a few steps as follows:

1. Estimate the two-regime LSTAR model (1) with (2) by nonlinear least squares, obtain
the residualŝet ≡ yt − φ̂1y(p)t [1 − F̂1(t)] − φ̂2y(p)t F̂1(t), and compute the sum of
squared residuals under the null hypothesis, SSR0 =

∑
ê2

t .
2. Regress the residualsêt on [y(p)t , y(p)t F̂1(t), θ̂ ′2y(p)t F̂γ1(t), θ̂

′
2y(p)t F̂ c1(t)] and the aux-

iliary regressors [y(p)t si
2t , y(p)t F̂1(t)si

2t , i = 1, 2, 3] and compute the sum of squared
residuals under the alternative, SSR1.
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3. Compute the LM-type test statistic as

LMMR = (SSR0 − SSR1)/6(p+ 1)

SSR1/[T − 6(p+ 1)− 2(p+ 1)]
, (21)

whereT denotes the sample size.

In step 2, the estimates of the autoregressive parameters in the LSTAR model are
used to obtain an estimate ofθ2, that is,θ̂2 = φ̂2− φ̂1, which is consistent under the
null hypothesis. Under the null hypothesis, the statistic LMMR is F distributed with
6(p+1) andT−6(p+1)−2(p+1) degrees of freedom. As usual, theF version of
the test statistic is preferable to theχ2 variant in small samples because its size and
power properties are better. The remarks made by Eitrheim and Ter¨asvirta (1996)
concerning potential numerical problems are relevant for our test as well. If ˆγ1 is
very large, such that the transition between the two regimes in the model under
the null hypothesis is fast, the partial derivatives of the transition functionF1 with
respect toγ1 andc1, as given in (19) and (20), approach zero functions [except
for Fc1(t) at the points1t = ĉ1]. Hence, the moment matrix of the regressors in
the auxiliary regression becomes near-singular. However, because the terms in the
auxiliary regression involving these partial derivatives are likely to be very small
for all t = 1, . . . , T , they contain very little information. It is therefore suggested
that these terms simply be omitted under such circumstances, which will not harm
the test statistic. Furthermore, the residualsêt obtained from estimating the two-
regime LSTAR model may not be exactly orthogonal to the gradient matrix [which
may also result from omitting the terms involvinĝFγ1(t) and F̂c1(t)]. Following
Eitrheim and Ter¨asvirta (1996), we suggest accounting for this by performing the
following additional step in calculating the test statistic

1′. Regresŝet on y(p)t andy(p)t F̂1(t) [andθ̂ ′2y(p)t F̂γ1(t) andθ̂ ′2y(p)t F̂ c1(t) if these terms are
not excluded], compute the residualsẽt from this regression, and the residual sum of
squares SSR0 =

∑
ẽ2

t .

The residuals̃et instead of̂et then should be used in steps (2) and (3).
The LM test presented here is in fact a generalization of the diagnostic test of

Eitrheim and Ter¨asvirta (1996) against time-varying coefficients, in whichs2t is
taken equal to time,s2t = t . Furthermore, their test for remaining nonlinearity can
be regarded as a test against the restricted version of the MRSTAR model given
in (6) with st in F1 and F2 replaced bys1t ands2t , respectively, which are not
necessarily the same. Recall, however, that such a restricted specification may be
convenient/appropriate (only) if the transition variabless1t ands2t are in fact the
same. Obviously, then, our test also can be interpreted and used as a diagnostic
tool to evaluate estimated two-regime STAR models.

If the LM-type test (21) rejects the two-regime model in favor of the four-regime
alternative, one might proceed with estimation of the alternative model by non-
linear least squares. Once the general model has been estimated, restrictions on
the autoregressive parameters to test, for example, equality of models in differ-
ent regimes can be tested using likelihood ratio tests. Diagnostic tests for serial
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correlation, constancy of parameters, and remaining nonlinearity can be developed
along the same lines as in Eitrheim and Ter¨asvirta (1996).

3.2. Small-Sample Properties of LM-Type Test for No Remaining
Nonlinearity

Before we turn to our empirical application of the MRSTAR models and the
specification procedure discussed above, we evaluate the small-sample properties
of the LM-type test (21) by means of a limited simulation experiment.

To investigate the size of the LMMR test, a two-regime LSTAR model (1)–
(2) is used as data-generating processes (DGP), withp = 1, φ10 = φ20 = 0,
st = yt−1, γ = 2.5, c = 0, and the errorsεt standard normally distributed.
The procedure that is followed in the simulation experiments mimics the setup
of Eitrheim and Ter¨asvirta (1996). Each replication is subjected first to the LM-
type linearity test that is used in the specification procedure for STAR models of
Teräsvirta (1994), assuming that the true order of the model and the transition
variable are known. The series is retained only if the null hypothesis is rejected
at the 5% level of significance. The reason for doing this is to avoid estimating a
STAR model on series in which very little or no evidence of nonlinearity is present.
If the series is not discarded, a two-regime LSTAR model is estimated and, if the
estimation algorithm converges, the LMMR test statistic is computed as discussed
above fors2t = yt−1, yt−2, and1yt−1. In computing the test statistic, the terms
involving F̂γ1(t) andF̂c1(t) are always omitted, and the orthogonalization step (1′)
is always applied. We fix the total number of accepted replications at 1000 for all
DGP’s. We consider series ofT = 200 observations. The choice for this particular
sample size is motivated by the length of our empirical time series on U.S. GNP in
Section 4. In all experiments reported later, necessary starting values of the time
series are set equal to zero. To eliminate possible dependencies of the results on
this initialization, the first 100 observations of each series are discarded.

Table 1 shows the empirical size at 1, 5, and 10% significance levels, using the
appropriate critical values from theF-distribution. It is seen that, for all combi-
nations ofφ11 andφ21 that are considered, the empirical size of the LMMR test
statistic is below its nominal size. Especially ifs2t = yt−1, which is the transition
variable in the estimated LSTAR model, the test is very conservative. Unreported
results for the LMMR test statistic based on a first-order Taylor approximation of
the transition functionF2 and the test for no remaining nonlinearity of Eitrheim and
Teräsvirta (1996) demonstrate that these tests also suffer from the same problem.

The power properties of the LMMR statistic are investigated in two different
ways. First, we use a two-regime ESTAR model (1) with (4) as DGP, withp, φ1, φ2,
ands1t as above,γ = 10,c1 = −1, c2 = 1, andεt again standard normally distri-
buted. For replications that pass the linearity test, we erroneously fit an LSTAR
model to the series and, upon normal convergence of the estimation algorithm,
apply the LMMR test for the same choices ofs2t as above. Second, we use the
example MRSTAR model (9) as DGP, withγ1 = γ2 = 2.5 andc1 = c2 = 0.
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TABLE 1. Empirical size of LMMR test for MRSTAR nonlinearitya

Transition variables2t

yt−1 yt−2 1yt−1

φ11 φ21 0.010 0.050 0.100 0.010 0.050 0.100 0.010 0.050 0.100

−0.5 −0.9 0.006 0.027 0.053 0.008 0.029 0.064 0.005 0.027 0.049
0.0 0.006 0.032 0.059 0.004 0.044 0.101 0.004 0.019 0.053
0.4 0.001 0.018 0.051 0.008 0.038 0.084 0.008 0.034 0.081
0.9 0.007 0.024 0.037 0.012 0.044 0.082 0.007 0.038 0.086

0.5 −0.9 0.002 0.013 0.030 0.008 0.026 0.061 0.008 0.027 0.061
−0.5 0.003 0.014 0.036 0.006 0.033 0.072 0.003 0.031 0.068

0.0 0.002 0.024 0.058 0.007 0.038 0.095 0.006 0.038 0.083
0.9 0.006 0.029 0.055 0.012 0.030 0.073 0.012 0.046 0.090

aEmpirical size of the LMMR test (21) of no remaining STAR-type nonlinearity at 0.010, 0.050, and 0.100 significance
levels for series generated by the two-regime LSTAR model (1) with (2) withφ10 = φ20 = 0, γ = 2.5, c = 0, and
εt ∼ i.i.d. N(0, 1). The table is based on 1000 replications for sample sizeT = 200.

TABLE 2. Empirical power of LMMR test for MRSTAR nonlinearitya

Transition variables2t

yt−1 yt−2 1yt−1

φ11 φ21 0.010 0.050 0.100 0.010 0.050 0.100 0.010 0.050 0.100

−0.5 −0.9 0.035 0.114 0.200 0.017 0.067 0.133 0.019 0.093 0.171
0.0 0.133 0.341 0.467 0.012 0.044 0.087 0.038 0.151 0.241
0.4 0.502 0.749 0.851 0.005 0.045 0.088 0.057 0.184 0.289
0.9 0.731 0.867 0.919 0.103 0.263 0.385 0.020 0.077 0.149

0.5 −0.9 0.673 0.838 0.887 0.163 0.346 0.464 0.386 0.598 0.700
−0.5 0.654 0.859 0.926 0.020 0.078 0.133 0.200 0.428 0.567

0.0 0.133 0.307 0.430 0.009 0.038 0.097 0.034 0.116 0.202
0.9 0.025 0.095 0.176 0.012 0.052 0.099 0.009 0.050 0.083

aEmpirical power of the LMMR test (21) of no remaining STAR-type nonlinearity at 0.010, 0.050, and 0.100 signifi-
cance levels when series are generated according to the two-regime ESTAR model (1) with (4), withφ10 = φ20 = 0,
γ = 10,c1 = −1, c2 = 1, andεt ∼ i.i.d. N(0, 1), but an LSTAR model is erroneously fitted to the data. The table
is based on 1000 replications for sample sizeT = 200.

Only series for which the LM-type linearity test rejects the null hypothesis at the
5% significance level when both1yt−1 andyt−2 are used as transition variable are
retained. For these series, two different two-regime LSTAR models are estimated,
with 1yt−1 andyt−2 as transition variables, respectively.

The results for the experiments with an ESTAR model as DGP are displayed in
Table 2. It is seen that the power of the test is reasonably good, provided that the
nonlinearity is fairly strong, that is,φ11 andφ21 are not too close.

The results for the experiments with the MRSTAR model (9) as DGP are shown
in Table 3. The results in this table show that our test compares favorably with the
test proposed by Eitrheim and Ter¨asvirta (1996). In the next section, we apply our
specification procedure to U.S. GNP.
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TABLE 3. Empirical power of LMMR test for MRSTAR nonlinearitya

Test with transitions variables2t

Transitions LMMR ET

variables1t φ1 φ2 φ3 φ4 yt−2 1yt−1 yt−2 1yt−1

1yt−1 −0.7 0.1 0.1 0.9 0.196 0.007 0.186 0.006
−0.4 0.6 0.790 0.006 0.111 0.005

0.6 −0.4 0.681 0.011 0.134 0.007
−0.3 0.3 0.3 0.9 0.608 0.004 0.594 0.002

0.0 0.6 0.773 0.007 0.630 0.006
0.6 0.0 0.517 0.008 0.524 0.010

0.1 0.5 0.5 0.9 0.966 0.000 0.975 0.001
0.3 0.7 0.982 0.006 0.985 0.003
0.7 0.3 0.947 0.002 0.964 0.000

yt−2 −0.7 0.1 0.1 0.9 0.022 0.145 0.066 0.103
−0.4 0.6 0.015 0.860 0.027 0.031

0.6 −0.4 0.019 0.714 0.034 0.057
−0.3 0.3 0.3 0.9 0.023 0.098 0.037 0.042

0.0 0.6 0.022 0.324 0.038 0.027
0.6 0.0 0.045 0.128 0.081 0.127

0.1 0.5 0.5 0.9 0.022 0.031 0.043 0.030
0.3 0.7 0.062 0.063 0.081 0.044
0.7 0.3 0.013 0.020 0.014 0.035

aEmpirical power of the LMMR test (21) and the Eitrheim-Ter¨asvirta (ET) test of no remaining STAR-type nonlinearity
at 5% significance level when series are generated according to the MRSTAR model (9) withF1 andF2 both equal
to logistic functions (2) withγ1 = γ2 = 2.5,c1 = c2 = 0, andεt ∼ i.i.d. N(0, 1). A two-regime LSTAR model with
transitions variables1t is fitted to the data, and the tests for no remaining nonlinearity are applied with transition
variabless2t in the additional transition function. The table is based on 1000 replications for sample sizeT = 200.

4. MULTIPLE REGIMES IN THE BUSINESS CYCLE?

Business-cycle asymmetry has been investigated mainly by examining U.S. output
series, such as GNP and industrial production, and U.S. (un)employment series.
We follow this practice here and explore whether multiple regimes in the business
cycle can be identified by applying MRSTAR models to U.S. real GNP.

Previous studies applying tests for asymmetry to U.S. real GNP have provided
mixed results. In particular, the evidence obtained from nonparametric procedures
has not been very compelling. For example, Falk (1986) cannot reject symmetry
when examining U.S. real GNP for steepness; see also DeLong and Summers
(1986) and Sichel (1993). Similarly, Brock and Sayers (1988) only marginally
reject linearity, whereas Sichel (1993) finds only moderate evidence for deepness.
An exception to the rule is Brunner (1992), who obtains fairly strong indications for
asymmetry in GNP, which might be associated with an increase in variance during
contractions. This is confirmed by Emery and Koenig (1992), who suggest that
the variance of leading and coincident indexes increases as contractions proceed.
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Additionally, Cooper (1998) finds very strong evidence for the existence of multiple
regimes in industrial production series using a regression-tree approach.

The application of parametric nonlinear time-series models has been more suc-
cessful. Hamilton (1989) and Durland and McCurdy (1994), for example, find that
a two-state Markov switching model for the growth rate of postwar quarterly U.S.
real GNP outperforms linear models. Boldin (1996) examines the stability of this
model and demonstrates that the model is not robust to extension of the sample
period. Tiao and Tsay (1994), Potter (1995) and Clements and Krolzig (1998) all
estimate a two-regime SETAR model consisting of AR(2) models [although Potter
(1995) adds an additional fifth lag]. The growth rate two periods lagged is used
as the transition variable, and the threshold is either fixed at zero [Potter (1995)]
or estimated to be equal to or close to zero [Tiao and Tsay (1994), Clements and
Krolzig (1998)]. Hence, a distinction is made between periods of positive and
negative growth. A common feature of all of these estimated models is that the
dynamics in contractions are very different from those during expansions. In par-
ticular, the SETAR models, which are estimated on data from 1948 until 1990, all
contain a large negative coefficient on the second lag in the contraction regime,
suggesting that U.S. GNP moves quickly out of recessions. Notably, Clements
and Krolzig (1998) find much less evidence of this property when they reestimate
their model on a recent vintage of data ranging from 1960 until 1996. Beaudry and
Koop (1993) estimate a linear AR model in which the “current depth of recession,”
which measures deviations from past highs in the level of real GNP, is added as
regressor. This variable is discussed in more detail below. As shown by Pesaran
and Potter (1997), the resulting model also can be interpreted as a SETAR model.

Whereas most attention focuses on the distinction between contractions and
expansions, some indications for the existence of multiple regimes have been
obtained as well. For example, Sichel (1994) demonstrates that growth in real
GDP is larger immediately following a business-cycle trough than during later
parts of the expansion, suggesting that the business cycle consists of three distinct
phases: contractions, high-growth recoveries, and moderate-growth expansions.
Wynne and Balke (1992) and Balke and Wynne (1996) also document this bounce-
back effect in industrial production. Furthermore, they examine the relationship
between growth during the first 12 months following a trough and the decline of
the preceding contraction and show that deep recessions generally are followed
by strong recoveries. Emery and Koenig (1992) also find that the mean growth
rate in leading and coincident indexes is larger (in absolute value) in early (late)
stages of the expansion (contraction). The three-regime Markov switching model
estimated by Boldin (1996), the floor-and-ceiling model of Pesaran and Potter
(1997), and the four-regime SETAR model of Tiao and Tsay (1994) explicitly
model the existence of a strong-recovery regime because these models include a
regime in which output is growing fast (following a recession).

Compared to the previous studies mentioned above, we use a relatively long span
of data, which ranges from 1947:I to 1995:II. The data, which are at 1987 prices,
are seasonally adjusted and are taken from the Citibase database. The growth rate
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yt is graphed in the upper panel of Figure 3. The solid circles indicate NBER-dated
peaks and troughs, which are marked with P’s and T’s, respectively, as well. The
lower graph of this figure shows the mean growth rates during contractions and
different phases of expansions. It is seen that, in the first four quarters following
a trough, growth is considerably higher than during the rest of this expansion,
confirming the observation of Sichel (1994).

Following many of the previously mentioned authors, we use an AR(2) model
as the basis for our model-building exercise. The estimated model over the period
1947:IV–1995:II is

yt = 0.430+ 0.345yt−1+ 0.095yt−2+ ε̂t ,

(0.091) (0.073) (0.073) (22)

σ̂ε = 0.917, SK= 0.01(0.48), EK = 1.40(0.00), JB = 15.58(0.00), ARCH(1) = 3.03(0.08),
ARCH(4) = 9.27(0.06), LB(8) = 5.05(0.41), LB(12) = 14.00(0.12), AIC = −0.142, BIC =
−0.091,

where standard errors are given in parentheses below the parameter estimates, ˆεt

denotes the regression residual at timet , σ̂ε is the residual standard deviation, SK
is skewness, EK is excess kurtosis, JB is the Jarque-Bera test of normality of the
residuals, ARCH is the LM test of no autoregressive conditional heteroskedasticity
(ARCH), LB is the Ljung-Box test of no autocorrelation, and AIC and BIC are the
Akaike and Schwarz information criteria, respectively. The values in parentheses
following the test statistics arep-values.

Normality of the residuals is rejected because of the considerable excess kurtosis.
Closer inspection of the residuals reveals that this may be caused by large residuals
in the first quarter of 1950 and the second quarter of 1980. These observations also
may cause the ARCH tests to reject homoskedasticity. On the other hand, the LM
test for ARCH is known to have power against alternatives other than ARCH as
well, and, hence, it also may be that the significant values of this test statistic are
caused by neglected nonlinearity.

This final conjecture is investigated further by applying the LM-type tests of
Luukkonen et al. (1988) to test for the possibility of STAR-type nonlinearity. We
only report results of their testS2, which is obtained by replacing the transition
function in (1) with a third-order Taylor approximation [similar to going from
(10) to (11)], as well as the economy-versionS3, which is obtained fromS2 by
omitting redundant terms and which therefore might have better power properties.
Apart from lagged growth rates and changes therein, we also consider a measure
of the current depth of recession (CDR) as possible transition variable, following
Beaudry and Koop (1993). We define CDRt as

CDRt = max
j≥1
{xt− j } − xt , (23)

with xt the log of U.S. real GNP. As noted above, Beaudry and Koop (1993)
include CDRt−1 as an additional regressor in an otherwise linear AR model for the

https://doi.org/10.1017/S136510059901202X Published online by Cambridge University Press

https://doi.org/10.1017/S136510059901202X


330 DICK VAN DIJK AND PHILIP HANS FRANSES

FIGURE 3. U.S. real GNP, quarterly growth rate. The upper graph shows quarterly growth
rates of U.S. real GNP, 1947:II–1995:II. Solid circles indicate NBER-dated peaks (P) and
troughs (T). The lower graph displays average growth over the business cycles.

GNP growth rateyt . They claim that their CDR measure allows examination of
the possibly different impact of positive and negative shocks. This is disputed by
Elwood (1998), who argues that CDRt only indicates (approximately) whether the
economy is in recession or expansion, but does not measure the impact of negative
shocks per se.7 Following this argument, we only consider the CDR measure as a
possible transition variable in STAR models.8 Note that our definition of the CDR
in (23) differs slightly from the original one of Beaudry and Koop (1993), which
involves the maximum of past andcurrent GNP. Hence, their CDR measure is
equal to zero if real GNP is at an all-time high, and greater than zero otherwise.
Because using such a truncated variable as the transition variable in STAR models
is not very convenient, we only consider the maximum up to timet .

General versions of the LM-type tests for STAR nonlinearity, in which the tran-
sition variable only is assumed to be a linear combination of lagged endogenous
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values but is otherwise left unspecified, reject the null hypothesis of linearity quite
convincingly; thep-values of theS2 and S3 tests are equal to 0.029 and 0.057,
respectively. However, ifst is specified in advance in order to get an impres-
sion of the most appropriate transition variable(s), the evidence for nonlinearity,
in particular from theS2 test, disappears somewhat.9 As shown in Table 4, the
p-values of the tests seem to suggest thatyt−2,1yt−1,1yt−2, CDRt−1, and CDRt−2

might be considered as transition variables.
We decide to estimate an LSTAR model with CDRt−2 as the transition variable

because thep-value of theS3 test is lowest for this variable. The parameters in
this LSTAR model are estimated as

yt = (0.160+ 0.346yt−1+ 0.282yt−2)× [1− F(CDRt−2)]

(0.138) (0.090) (0.108)

+ (0.665+ 0.308yt−1+ 0.048yt−2)× F(CDRt−2)+ εt ,

(0.163) (0.121) (0.148) (24)

F(CDRt−2) =
{
1+ exp

[−200.0(CDRt−2− 0.281)/σCDRt−2

]}−1
,

(−) (0.135) (25)

σ̂ε = 0.899, SK= −0.17(0.16), EK = 1.19(0.00), JB = 12.21(0.00), ARCH(1) = 2.74(0.09),
ARCH(4) = 7.09(0.13), LMSI(4) = 1.39(0.24), LMSI(8) = 1.48(0.17), LMC1 = 1.12(0.35),
LMC2 = 1.01(0.44), LMC3 = 0.87(0.62), AIC = −0.129, BIC= 0.008,

whereσCDRt−2 denotes the standard deviation of the transition variable CDRt−2,
LMSI(q) denotes the LM-type test forqth-order serial correlation in the residuals
and LMCi , i = 1, 2, 3 denotes LM-type tests for parameter constancy. Both sets
of diagnostic checks are developed by Eitrheim and Ter¨asvirta (1996), to whom
we refer for details.

TABLE 4. LM-type tests for STAR nonlinearity in U.S. GNP growth ratesa

Transition d

variable Test 1 2 3 4 5 6

yt−d S2 0.211 0.120 0.646 0.602 0.242 0.376
S3 0.330 0.053 0.256 0.258 0.235 0.248

1yt−d S2 0.089 0.065 0.982 0.819 0.291 0.220
S3 0.074 0.248 0.971 0.840 0.287 0.460

CDRt−d S2 0.023 0.083 0.157 0.758 0.835 0.664
S3 0.022 0.014 0.123 0.498 0.645 0.564

1CDRt−d S2 0.777 0.059 0.714 0.712 0.296 0.587
S3 0.649 0.159 0.745 0.544 0.067 0.356

a p-values for LM-type tests for smooth-transition nonlinearity in quarterly growth rate of U.S. real GNP. CDRt

measures the current depth of a recession, CDRt = maxj≥1{xt− j } − xt with xt the log of U.S. GNP.
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The exponent in the transition function is scaled by the standard deviation of
the transition variable in order to makeγ scale-free. We do not report a standard
error for γ̂ for reasons discussed in Section 2.1. The sum of the autoregressive
coefficients is considerably larger in the regime whereF(CDRt−2) is equal to
zero, which corresponds to expansions. This confirms the findings of Beaudry and
Koop (1993) and Potter (1995), among others, that contractions are less persistent
than expansions. Also note the large constant in the upper regime, which might be
taken as an additional indication of a quick recovery following contractions [cf.
Sichel (1994) and Wynne and Balke (1992)].

Apart from the diagnostic checks reported below the LSTAR model (24), we also
apply the LM-type test against the MRSTAR alternative, developed in Section 3.1,
as well as the LM-type tests of Eitrheim and Ter¨asvirta (1996) for remaining
nonlinearity. Table 5 shows thep-values of the different tests for various choices
of transition variables in the second transition function. The same table also reports
results of the same tests when the additional transition function is replaced by only
a first-order Taylor expansion, which, in theory at least, should be sufficient if only
the logistic function is considered. It can be seen from the entries in Table 5 that
there is some evidence for the necessity of considering a more elaborate nonlinear
model than the fitted standard LSTAR model, especially if the change in the growth
rate lagged one period is taken to be the transition variable in the second transition
function.

Hence we proceed with estimating a four-regime MRSTAR model, with CDRt−2

and1yt−1 as transition variables in the two logistic functions. The estimated model
is given below:

yt = {(0.394+ 0.460yt−1+ 0.092yt−2)× [1− F(1yt−1)]

(0.195) (0.138) (0.156)

+ (−0.121+ 0.442yt−1+ 0.346yt−2)× F(1yt−1)} × [1− F(CDRt−2)]

(0.322) (0.284) (0.344)

+{(0.360− 0.530yt−1+ 0.963yt−2)× [1− F(1yt−1)]

(0.283) (0.362) (0.449)

+ (−0.019+ 0.744yt−1− 0.235yt−2)× F(1yt−1)} × F(CDRt−2)+ ε̂t ,

(0.283) (0.187) (0.215) (26)

F(1yt−1) =
{
1+ exp

[−500(1yt−1− 0.250)
/
σ1yt−1

]}−1
,

(−) (0.032) (27)

F(CDRt−2) =
{

1+ exp
[−500(CDRt−2− 0.064)/σCDRt−2

]}−1
.

(−) (0.259) (28)

σ̂ε = 0.867, SK= −0.12(0.25), EK = 0.55(0.06), JB = 2.82(0.24), ARCH(1) = 1.08(0.30),
ARCH(4) = 4.28(0.37), AIC = −0.117, BIC= 0.155.

https://doi.org/10.1017/S136510059901202X Published online by Cambridge University Press

https://doi.org/10.1017/S136510059901202X


MULTIPLE REGIMES IN THE BUSINESS CYCLE 333

TABLE 5. LM-type tests for multiple regimes in U.S. GNP growth ratesa

Transition Test

variable ET1 ET3 LMMR,1 LMMR,3

yt−1 0.35 0.26 0.27 0.53
yt−2 0.35 0.06 0.16 0.15
1yt−1 0.08 0.06 0.01 0.05
CDRt−1 0.18 0.06 0.23 0.07
CDRt−2 0.18 0.32 0.12 0.61
1CDRt−1 0.56 0.56 0.22 0.41

aThe entries in columns ET1 and ET3 are p-values for the LM-type tests of Eitrheim and Ter¨asvirta (1996) for
remaining nonlinearity, based on first- and third-order Taylor approximations of the second transition function,
respectively. The entries in columns LMMR,1 and LMMR,3 are p-values for the tests of a basic LSTAR model
against an MRSTAR alternative as developed in Section 3.1, also using first- and third-order Taylor approximations,
respectively.

The large estimates ofγ1 andγ2 in (28) and (27) imply that for bothF(1yt−1)

and F(CDRt−2) the transition from zero to one is almost instantaneous at the
estimated thresholds. The model is thus very similar to a NeTAR model. The model
distinguishes between four different regimes, depending on whether the level of
real GNP is above or below its previous high and whether growth is increasing or
decreasing, which suggests the following interpretation of the four regimes.

• 1yt−1 < 0,CDRt−2 < 0. The economy is in expansion (recall that CDRt as
defined in (23) measures the distance in the level of real GNP relative to the
previous all-time high), but growth is declining.
• 1yt−1 > 0,CDRt−2 < 0. The economy is in a strengthening expansion, as

growth is accelerating.
• 1yt−1 < 0,CDRt−2 > 0. The economy is in a worsening contraction.
• 1yt−1 > 0,CDRt−2 > 0. The economy is in a contraction, but is improving

given the positive change in growth.

The fourth regime more or less corresponds with the recovery phase identified by
Sichel (1994), in which growth is strong immediately following a trough.

Figure 4 shows the distribution of the observations across the different regimes.
When we take model (26), it is seen that the bulk of the observations is in regime 1,
followed by regime 2. The worsening-contraction regime (regime 3) contains only
19 observations, confirming that the U.S. economy tends to recover quickly from
recessions.

The various diagnostic tests for the MRSTAR model demonstrate that the residu-
als are much better behaved than the residuals from the AR(2) and LSTAR models.
For example, normality cannot be rejected anymore. On the other hand, compar-
ing the residual standard deviations suggests that the additional regimes improve
the fit of the model only slightly, whereas both information criteria clearly favor
the parsimonious AR(2) model. As an alternative way to evaluate the potential
usefulness of the elaborate MRSTAR model, we focus on the implied propagation
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FIGURE 4.U.S. real GNP growth rates: Distribution of observations on quarterly growth rates
of U.S. real GNP over the different regimes in the estimated MRSTAR model (26)–(28).

of shocks occurring in different regimes. Toward this end we compute generalized
impulse response functions (GIRF)’s discussed extensively by Koop et al. (1996).
In nonlinear models, the impact of a shockεt on yt+n depends on (i) the history
of the process up to timet , (ii) the size of the shock occurring at timet , and (iii)
the shocks occurring during intermediate time periodst + 1, . . . , t + n. The GIRF
is designed to take these factors influencing the impulse response explicitly into
account. For an arbitrary current shockεt = et and historyÄt−1 = ωt−1, where
for the MRSTAR modelωt−1 = {yt−1, yt−2,CDRt−2}, the GIRF is defined as

GIRFy(n, et , ωt−1) = E(yt+n | εt = et , Ät−1 = ωt−1)− E(yt+n | Ät−1 = ωt−1),

(29)

for n= 0, 1, 2, . . . . The GIRF is defined as the difference between the expectation
of the growth raten periods ahead,yt+n, conditional on the history and the current
shock, and the expectation ofyt+n conditional only on the past. The future is dealt
with by averaging out the effect of intermediate shocks such that the response is an
average of what might happen, given the past and present. The GIRF given in (29) is
a function ofet andωt−1 (andn, of course). Koop et al. (1996) strongly emphasize
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that, by treatinget andωt−1 as realizations of the same stochastic process that
generates realizations ofyt , the GIRF can be considered to be a realization of a
random variable defined by

GIRFy(n, εt , Ät−1) = E(yt+n | εt , Ät−1)− E(yt+n | Ät−1). (30)

Various conditional versions of the GIRF might be of interest and can be defined
by conditioning on particular subsets of the history and shocks, denotedA andB,
respectively; that is,

GIRFy(n, A, B) = E(yt+n | εt ∈ A, ωt−1 ∈ B)− E(yt+n | ωt−1 ∈ B). (31)

We use a special case of (31) to obtain an impression of the dynamics in the different
regimes of the estimated MRSTAR model by examining the GIRF for specific
shocks, conditioning on all histories in a particular regime. That is, the setA is taken
to consist of a single elementet , while the setB consists of all histories belonging to
one of the four regimes in the MRSTAR model. For the shocket we consider values
equal to±1, ± 2, and±4 times the residual standard deviation. Because analytic
expressions for the conditional expectations in (31) are not available, the GIRF’s
are estimated using the simulation procedure outlined by Koop et al. (1996). In
particular, we use all observed histories in our estimation sample 1947:IV–1995:II
and the corresponding residuals from the MRSTAR model to obtain the conditional
expectationsE(yt+n | εt = et , Ät−1 = ωt−1)andE(yt+n | Ät−1 = ωt−1) to obtain
the shock- and history-specific GIRF as given in (29). The conditional GIRF’s then
are computed by averaging across histories in a particular regime. The resulting
GIRF’s for the log level of U.S. GNP (which are obtained by taking cumulative
sums of the GIRF’s for the growth rate) are shown in Figure 5.

Several conclusions can be drawn from this figure. First, negative shocks appear
to be less persistent than positive shocks, in the sense that in three out of the
four regimes the average long-run response to negative shocks is smaller than
the long-run response to positive shocks of equal size. This corresponds with the
conclusions of Beaudry and Koop (1993) and Potter (1995), but contradicts the
findings of Pesaran and Potter (1997). Second, whereas the response to positive
shocks is quite similar in the different regimes, the response to negative shocks
differs markedly. In the strengthening-expansion regime 2, negative shocks are
magnified by a factor of 1.5 in the long run. In both the weakening-expansion
and improving-contraction regimes, the long-run impact of negative shocks is
approximately equal to the size of the shock. Finally, in the worsening-contraction
regime 3, all negative shocks appear to generate approximately the same response,
irrespective of their size. Inspection of the GIRF’s for individual histories in this
regime reveals that the long-run response to negative shocks can even be positive,
while reversals also occur, that is, the largest (absolute value) negative shock has
the largest positive response.
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FIGURE 5. Generalized impulse response functions for the log level of U.S. real GNP for
shocksεt equal to±1,±2, and±4 times the standard deviation based on the estimated
MRSTAR model (26)–(28).

5. CONCLUDING REMARKS

We have explored possibilities of extending the basic STAR model to allow for
more than two regimes. We have shown that this can be done by writing the model
such that the different models that constitute the STAR model appear explicitly.
A (specific-to-general) specification procedure was proposed and a new LM test
for nonlinearity was developed, which can be used to test for the presence of
multiple regimes. Alternatively, this test might be used as a diagnostic tool to test
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the adequacy of a fitted STAR model, complementing the tests of Eitrheim and
Teräsvirta (1996). The application of the MRSTAR model to postwar U.S. real
GNP demonstrates that a multiple-regime characterization of the business cycle
might indeed be useful.

This paper offers some possibilities for further research. First, the effect of
outliers on the detection of regimes seems to be of interest, as one does not want
to fit spuriously a model that contains additional regimes only to capture some
aberrant observations. It appears that a robust estimation method for STAR models
needs to be developed to achieve proper protection against the influence of such
anomalous observations. Alternative ways to compare different STAR models,
possibly with a different number of regimes, also might be explored. It should be
possible to use the techniques of Hess and Iwata (1997b) to examine explicitly
whether the switching-regime models are capable of replicating basic stylized facts
such as amplitude and duration of expansions and contractions. Finally, it might
be worthwhile to extend the application to U.S. real GNP to a multivariate model,
following the ideas of Koop et al. (1996), or to model nonlinearity and time-varying
parameters simultaneously. All these issues are left for further research.

NOTES

1. See also Mittnik and Niu (1994) for a comprehensive overview.
2. Chan and Tong (1986) first proposed the STAR model as a generalization of the two-regime

SETAR model, to alleviate the problem of estimating the thresholdc in the latter model. They suggested
the use of the standard normal cumulative distribution function as the transition function. The logistic
function has become the standard choice, probably because of the existence of an explicit analytical
form, which greatly facilitates estimation of the model.

3. It might be argued that it is not appropriate to choose the transition variable by comparingp-
values as suggested above, because the models with different choices forst are nonnested. An alternative
way to interpret and motivate this decision rule is the following: If the choice of the transition variable
is made endogenous, one could estimate LSTAR models (1) for various choices ofst and select the
model that minimizes the residual variance (assuming the AR-orderp is fixed). An obvious drawback
of this procedure is, of course, the necessary estimation of nonlinear LSTAR models, which may be
time-consuming. However, if the auxiliary regression model that is used in calculating the LM-type
test statistic is considered to approximate the LSTAR model to a certain degree of accuracy, estimation
of nonlinear models could be avoided by selectingst as the choice that minimizes the residual variance
of this auxiliary model. Since the LM-type test is a monotonic transformation of the residual variance,
this is equivalent to selectingst as the choice that maximizes the LM-type statistic. This is exactly what
the minimump-value rule employed here does; see also Caner and Hansen (1997).

4. To be precise, the specification procedure of Ter¨asvirta (1994) first proceeds by applying a
sequence of nested tests to decide whether a logistic- or exponential-type transition function [given
in equation (3)] is most appropriate. We omit details here because we focus on models with logistic
transition functions to introduce the multiple-regime models. Note, however, that the same principles
discussed below apply to models with different transition functions as well.

5. See Ter¨asvirta and Lin (1993) for a similar approach to determine the appropriate number of
hidden units in ANN models.

6. Because we restrict attention to logistic transition functions, a first-order Taylor expansion would
suffice. However, there might be certain alternatives against which the resulting test statistic has very
little or no power; see Luukkonen et al. (1988) for details.

7. See Hess and Iwata (1997a) for another critical assessment of the model of Beaudry and Koop
(1993).
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8. Note that CDRt resembles the growth rateyt quite closely. Given that real GNP is upward
trending, maxj≥1 xt− j will be equal toxt−1 most of the time. In that case, CDRt equals−yt . To
be more precise, it is straightforward to show that CDRt = max(CDRt−1, 0) − yt . Hence, during
expansions (i.e., when CDRt−1 > 0), CDRt andyt coincide, whereas during contractions they might
differ. The correlation between CDRt andyt equals−0.8, which confirms their similarity.

9. Jansen and Oh (1996) also report that tests for STAR-type nonlinearity do not reject the null
hypothesis of linearity. Similarly, Hansen (1996) shows that tests for threshold-type nonlinearity do
not provide very convincing evidence in favor of a threshold model.
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Neftçi, S.N. (1984) Are economic time series asymmetric over the business cycle?Journal of Political
Economy92, 307–328.
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Teräsvirta, T. (1995) Modelling nonlinearity in US gross national product 1889–1987.Empirical Eco-

nomics20, 577–598.
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