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SUMMARY
A non-overconstrained three-DOF parallel orientation mechanism that is kinematically equivalent to
the Agile Eye is presented in this paper. The output link (end-effector) of the mechanism is connected
to the base by one spherical joint and by another three identical legs. Each leg comprises of, in turns
from base, a revolute joint, a universal joint, and three prismatic joints. The three lower revolute
joints are active joints, while all other joints are passive ones. Based on a special configuration, some
three projective angles of the end-effector coordinates are fully decoupled with respect to the input
actuated joints, that is, by actuating any revolute joint the end-effector rotates in such a way that the
corresponding projective angle changes with the same angular displacement. The fully decoupled
motion is analyzed geometrically and proved theoretically. Besides, the inverse and direct kinematics
solutions of the mechanism are provided based on the geometric reasoning and theoretical proof.

KEYWORDS: Decoupled motion; Parallel wrist mechanism; Spherical parallel manipulator;
Spherical mechanism.

1. Introduction
Parallel orientation mechanism, also known as the spherical parallel manipulator or parallel wrist
mechanism, is a mechanism that, based on in-parallel actuations, generates purely rotational motion
with respect to the fixed coordinate over its output link. From the numerous inventions, the Agile
Eye1–3 robot is one of the most well-known parallel orientation mechanisms for its compact structure
and excellent rotational ability. The mechanism structure of Agile Eye is quite simple indeed. It is
composed by the base, the end-effector, and three legs, each having three revolute joints, which leads
to an overconstrained mechanism structure. Therefore, in order to make the mechanism mobile, all the
axes of the nine revolute joints must converge at a fixed point where the center of rotation is. Under
such a requirement, the mechanism will demand a high-standard manufacturing and assembling
precisions for making it workable.

While an overconstrained mechanism requires high-standard manufacturing and assembling
precision, a non-overconstrained counterpart has naturally found its excellence in compensating such
problems. Compared to the overconstrained mechanism, a non-overconstrained mechanism normally
requests fewer alignment requirements, which makes it more accessible in practical applications.

Kinematically non-redundant parallel orientation mechanisms are one type of non-overconstrained
mechanisms. Generally, a kinematically non-redundant parallel orientation mechanism can be
constructed in two different ways. First, an n-degree-of-freedom (DOF) parallel orientation
mechanism is made up of the base, the output link (i.e., the end-effector), and n serial chains
(or so-called the “legs” in parallel manipulators) that collaboratively connect the end-effector to
the base. Subject to the structural constraints provided by the n serial chains, the output link is
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prohibited from moving in any direction so it can only rotate about a fixed point in space. Normally,
one joint in each chain is selected to be actuated so that the n-DOF pure rotation can be controlled
by the n joints together. Based on this concept, many parallel orientation mechanisms have been
proposed and extensively studied. For example, Kong and Gosselin4,5 proposed the type synthesis
of 3-DOF spherical parallel manipulators by using screw theory. Fang and Tsai6 also addressed a
screw-theoretic-based method for the type synthesis of the 3-DOF spherical parallel manipulator with
same legs. Karouia and Hervé7 synthesized a group of 3-DOF spherical parallel mechanisms having
asymmetric structures. Hess-Coelho8 summarized a list of possible structures for parallel wrists and
suggested a qualitative procedure for evaluating the wrist mechanisms. Many other parallel orientation
mechanisms using this concept have been exhaustively studied.1,9–18 Furthermore, some special
parallel orientation mechanisms have been built by using parallelograms as the serial chains.19,20 In
general, an n legs, n-DOF parallel orientation mechanism requires the inclusion of revolute joints
whose axes intersect at a common point for making up with the spherical motion.

Oppositely, the second type requires no necessity of the revolute joints and their intersecting axes.
Instead, it includes one additional joint into the motion that could completely constrain the motion of
the output link. The added joint, normally a universal or spherical joint, articulates the output link to
the base such that the available motion space of the output link is completely defined by the joint. The
n serial chains, each containing one actuated joint, are then structured in a way that each chain will not
contribute additional motion constraints to the output link. The most well-known parallel orientation
mechanism for this type is probably the 3-DOF 3SPS/S (three spherical-prismatic-spherical-joint legs
and one additional spherical joint connecting the end-effector and the base) parallel manipulator. Some
literatures have studied this mechanism exhaustively.21–24 Some other 3-DOF parallel orientation
mechanisms using a constrained joint can be found in Hess-Coelho.8 In addition, there have been few
parallel orientation mechanisms with two DOFs synthesized by using this concept.25,26 Some special
non-redundant parallel mechanisms with decoupled rotational and translational motion were also put
forward based on using this concept (e.g., see Kuo and Dai27).

A kinematically non-redundant parallel orientation mechanism with a special decoupled kinematics
is analyzed in this paper. The proposed parallel manipulator is a variant of the Agile Eye robot but
with non-overconstrained structure. It consists of three active legs and one passive spherical joint that
connects the end-effector to the base. In each leg, a revolute joint mounted on the base is selected for
actuation. Under a specific joint configuration, the three rotational DOFs, that are described by the
projective angles of moving coordinate system on the fixed coordinate system, of the end-effector
are fully decoupled. In the following, the concepts of projective angles and decoupled motion are
reviewed first. Then, the structure and geometric arrangement of this mechanism are introduced.
The relationship between the projective angles and the rotation matrix is discussed. The inverse and
direct kinematics solutions of the mechanism are studied. And, the geometric reasoning and algebraic
verification of the inverse and direct kinematics solutions are discussed.

2. Preliminary

2.1. Projective angles
The concept of projective displacement representation27,28 is adopted in this paper. Let O(x, y, z)
and E(u, v, w) be the referencing coordinate systems fixed in space and attached on end-effector,
respectively. Accordingly, we can describe the location of end-effector by using the position vector of
the origin of coordinate system E and using some projective angles of coordinate system E to define
the angular displacements of the end-effector. Since each coordinate axis of E can be projected onto
several different planes in O, the location of the end-effector may have many different representations
when different projective angles are employed. We will indicate by the symbol uθab the projective
angle of vector u in the plane ab, which is the orientation of the projection of u in the plane
ab, i.e., uθab = atan2 (ub, ua) where atan2(c, d) is the four quadrants extension of atan(c/d). For
example, Fig. 1 gives two projective displacement representations for the end-effector. In Fig. 1(a),
the coordinate transformation between O(x, y, z) and E(u, v, w) is described by a position vector and an
angular displacement vector. The position vector, e, is measured from the origin of coordinate system
O to the origin of coordinate system E, while the angular displacement vector, [wθxz,

wθyz, θw]T, is
made of two projective angles and one spin angle, all defined by the w-axis of coordinate system E.
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Fig. 1. (Colour online) Projective-angle representation: (a) Angular displacement expressed by one axis of E;
(b) Angular displacement expressed by three axes of E.

The two projective angles, wθxz and wθyz, are measured equivalently from the z-axis to the projections
of the w-axis on the xz- and yz-planes, respectively. The spin angle, θw, is specified to define the
spin rotation of the coordinate system E about the w-axis. Alternatively, we may also formulate the
angular displacements of the moving coordinate system E through the three coordinate axes of E,
rather than through the w-axis only. For example, Fig. 1(b) uses three projective angles, uθxy , vθyz,
and wθxz, which are respectively governed by axes u, v, and w, to define the angular displacements of
E(u, v, w) with respect to O(x, y, z).

2.2. Decoupled parallel manipulators
Decoupled parallel manipulators refer to the parallel manipulator whose some or all the output
motion variables are independently controllable by actuators. The advantages of decoupled parallel
manipulators are diversified, e.g., decoupled kinematic characteristics, variable actuation strategy
for different tasks, simplified kinematic analysis, easier motion planning and control scheme,
etc. For investigating the decouplebility, Jin et al.29 classified the decoupled motion of a 6-DOF
parallel manipulator into complete coupling, group decoupling, and complete decoupling. Another
classification was reported in Legnani et al.30 in which the decoupling with respect to direct/inverse
kinematic as well as with respect to local kinetostatic behavior described by the Jacobian matrix were
discussed.

In this paper, we suggest another classification for general decoupled parallel manipulators with
mobility two to six. For a non-redundant f-DOF parallel manipulator, let e1, e2, . . . , ef be the f
independent output motion variables (e.g., displacement, velocity, or acceleration vectors) of the
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end-effector and a1, a2, . . . , af be the f independent actuators. The degree of (de)coupling can be
classified as follows:

Completely coupled. In this type, each independent actuator has contribution to every output
motion variable of the end-effector. Mathematically, this kind of relationship can be expressed as

e1, e2, . . . , ef = f (a1, a2, . . . , af ), for 1 < f ≤ 6. (1)

Partially decoupled. In this type, some motion variables of the end-effector are independent of
some actuators, i.e.,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1 = f1(a1)
e2 = f2(a2)
...
ei = fi(ai)
ei+1, ei+2, . . . , ef = fi+1(a1, a2, . . . , af )

, for

{
1 ≤ i < f ≤ 6
Ai = {

ak1, ak2, . . . , akm
|1 ≤ km < f

} . (2)

Fully decoupled. In this type, each motion variable of the end-effector is controlled by one
corresponding actuator independently, i.e.,

⎧⎪⎪⎨
⎪⎪⎩

e1 = f1(a1)
e2 = f2(a2)

, for 1 < f ≤ 6....
ef = ff (af )

(3)

Notice that, without losing generality, the output motion variables of end-effector, ef , and the input
motion variables, af , can be either a (projective) displacement, velocity, or acceleration vector.
In other words, for a fully decoupled manipulator, each actuator may be in charge of controlling
one independent displacement, velocity, or acceleration vector element of the end-effector. In what
follows, we will present a parallel manipulator that has fully decoupled projective angles, that is, each
actuator can independently control a projective angle of the end-effector’s coordinate.

3. Description of the Mechanism
The proposed parallel wrist mechanism is shown in Fig. 2. The end-effector is connected to the base
by one spherical joint (S-joint) and by another three in-parallel legs, respectively. The three legs
possess the same topological structure, which is composed of, as read from base to the end-effector,
a revolute joint (R-joint), a universal joint (U-joint), and three consecutive prismatic joints (P-joints).
According to the Grübler-Kutzbach criterion, the mobility of the mechanism, f, can be calculated as:

f = λ(n − j − 1) +
∑

fi = 3, (4)

where λ = 6 is the degrees of freedom of the space, n = 14 is the number of links, j = 16 is the
number of joints, and

∑
fi = 21 is the total degrees of freedom of the joints. As a result, the mobility

of the mechanism is three, and this mechanism is non-overconstrained. Besides, it can be quickly
realized that the mechanism can output a 3-DOF spherical motion at the end-effector that can rotate
about the center of the S-joint only. The mobility analysis of Eq. (4) can be verified by an analysis of
the Jacobian of the mechanisms (see appendix B.2 of Legnani et al.30).

For analyzing the kinematics of the mechanism, two Cartesian coordinate systems A(x, y, z) and
B(u, v, w) are attached to the base and end-effector, respectively. As shown in Fig. 2, in order to
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Fig. 2. (Colour online) A 3-DOF parallel orientation mechanism with fully decoupled projective angles.

simplify the analysis, we assume that the origin of the fixed coordinate A is located at the center of
the S-joint, O, and the origin of the moving coordinate B is initially coincident with O. Since the
end-effector can only rotate about the center of the S-joint, the origin of the moving coordinate will
be always pivoted at O. Furthermore, we assume that the moving coordinate is coincident with the
fixed coordinate at the initial position, i.e., the u-, v-, and w-axis are initially pointing at the x-, y-,
and z-direction, respectively.

For achieving the fully decoupled condition, the mechanism is initially configured in a way that
meets the following geometric and actuation conditions:

(1) The axes of the three R-joints are coincident with the x-, y-, and z-axis, respectively.
(2) In each leg, the axis of the R-joint passes through the center of the U-joint.
(3) In each leg, the two axes of the U-joint are perpendicular to the axis of the R-joint of this leg.
(4) In each leg, the three P-joints can be arbitrarily deposed provided that all the joint directions are

not coplanar.
(5) In each leg, the R-joint is selected as the actuated joint, whereas all the others are passive.

The above geometric arrangements are as shown in Fig. 2. Note that conditions (1) and (2) remain
during the full cycle of motion but condition (3) may be destroyed after the mechanism has an
infinitesimal displacement.

In accordance with the above geometric conditions, we further assemble the mechanism at a special
initial configuration for simplifying the analysis. Without violating condition (3), we align the two
axes of the U-joint in each leg with the two axial directions other than the R-joint’s. For example, if
the R-joint is directed at the x-axis, the two axes of the U-joint in this leg are initially aligned with the
y- and z-direction, respectively. Also, without violating condition (4), we place the three P-joints in
each leg pointing at the three axial directions of the fixed frame, respectively. Since the kinematics of
a prismatic joint is independent of the joint position, the articulation order of the three allocated joint
orientation can be freely altered. Accordingly, a feasible joint configuration is defined as illustrated
by the structural graph in Fig. 3. In this graph, the characters adjacent to the line segments represent
the type of the joints whereas the subscripts of the characters denote the orientation(s) of the joint at
the initial mechanism configuration. The corresponding mechanism is shown in Fig. 2.

https://doi.org/10.1017/S0263574713001100 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001100


894 A non-overconstrained variant of the Agile Eye

Fig. 3. Structural graph of the mechanism in Fig. 2.

It is interesting to note that, since the prismatic joints do not alter the orientation of the platform,
the proposed manipulator is kinematically equivalent to the Agile Eye.1–3 However, while Agile Eye
is an overconstrained spherical mechanism, the presented design is a non-overconstrained spatial
mechanism.

4. Decoupled Motion Analysis
Now we prepare to examine the fully decoupled kinematics of this mechanism. We will show that the
mechanism is with fully decoupled projective angles, that is, by actuating any of the lower R-joints
it makes the end-effector rotating in such a way that the corresponding projective angle changes by
the same quantity. Note that this does not mean that the angular velocity of the end-effector is equal
to the time derivative of the input joints. In fact, due to the non-integrability of the angular velocity
vector, such an integration does not produce a value that represents the angular position (e.g., see
appendix A of Legnani et al.30). Here, the decoupled motion implies that the partial derivative of each
projective angle (θ) with respect to the corresponding input joint (α) is equal to 1 and with respect to
the other joints are zeros; in other words the Jacobian is unitary as

∂
(
vθyz,

wθzx,
uθxy

)
∂

(
αx, αy, αz

) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Since the three legs have the same topology and are configured in a similar way, here we only analyze
the leg mounted at the x-axis for illustration. The analysis of the other two legs can be done by
following the same logic. First of all, Fig. 4 depicts the geometry of the leg mounted on the x-axis. In
this figure, Ax indicates the point at which the U-joint locates. E is a point on the end-effector at which
the three P-joints attached on the end-effector intersect. ax is the position vector measured from point
O to Ax , whereas vector e is the position vector measured from point O to E. d1,x, d2,x, and d3,x are
the position vectors representing the motion of the three consecutive P-joints in the leg, where d1,x is
measured from Ax to point Rx , d2,x is measured from Rx to point Bx , and d3,x is measured from E to
Bx . d3,y and d3,z denote two P-joints of the other two legs that are attached to the end-effector and are
both measured outward from E. u2,x is the unit vector of first axis of the U-joint connected with the
R-joint, whereas u3,x is the unit vector of the second axis of the U-joint connected with the first P-joint
(as read from base). �Ax is the plane parallel to yz-plane and containing point Ax . Lying on �Ax , y′
and z′ are two unit vectors passing through Ax and pointing at the y- and z-direction, respectively.
αx is the angle between z′ and u2,x , which represents the angular displacement of the actuated
joint.

Owing to the specific joint configuration, there are some geometric constraints pertinent to
these position vectors. First, due to the geometric relationship between the R-joint and the U-
joint, point Ax will be a fixed point in space and u2,x will always lie on �Ax . Since the three
consecutive P-joints are configured with an orthogonal pose, vector d1,x will be always perpendicular
to d2,x and so is d2,x to d3,x . Therefore, Rx and Bx will be the two perpendicular foots between
the three vectors. Furthermore, thanks to the predefined moving coordinate and the orthogonal
condition among all the P-joints in the mechanism, the following conditions will be satisfied at any
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Fig. 4. (Colour online) The geometry of the leg mounted on the x-axis.

Fig. 5. (Colour online) Geometrical interpretation of the input angle.

instant:

u//d3,x, (5a)

v//d3,y//d1,x, (5b)

w//d3,z//d2,x, (5c)

where u, v, and w are the unit vectors along the u-, v-, and w-axis of the moving coordinate and
symbol “//” indicates that the vectors at the two sides of the symbol are parallel. Particularly, it is
noticed that in Eq. (5b) the axial direction of the first P-joint is parallel to the v-axis. We further
inspect this geometric relationship by considering vector u2,x on plane �Ax . Referring to Fig. 4, du

1,x

is the unit vector of d1,x . Since du
1,x is always coincident with the second axis of the U-joint (i.e.,

du
1,x = −u3,x in Fig. 5), it will be always perpendicular to u2,x . Recall that u2,x always lies on �Ax .

Therefore, provided that du
1,x is not perpendicular to �Ax , the projective vector, kAx , of du

1,x on �Ax

will be always perpendicular to u2,x . Since du
1,x is parallel to the v-axis of the moving coordinate and

�Ax is parallel to the yz-plane of the fixed coordinate, it turns out that the projection of vector v on
the yz-plane will be always perpendicular to the projection of u2,x on the yz-plane. Furthermore, from
Fig. 5, we can observe that the angle between kAx and y′, vθyz, is identical to that between u2,x and
z′, i.e., αx .
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The above geometric condition shows an interesting input–output relationship between the actuated
joint and the end-effector. First, it proves that the projection of the v-axis of the moving coordinate on
the yz-plane will be always perpendicular to the unit vector of the first axis of the U-joint on the x-axis.
In other words, the projective angular displacement of the v-axis on the yz-plane will be completely
defined by the angular displacement of the R-joint at the x-axis. Furthermore, the amount of this
projective displacement (vθyz) will be equal to that of the angular displacement of the actuated joint
(αx). However, we should notice that the revolute joints of each leg form a Cardanic sequence and
so the same angular position of the end-effector may be reached by two different sets of joint angles;
in fact, the two sequences Q1 = {α, β, γ } and Q2 = {α + π, − β, γ + π} produce the same result.
Therefore, by following the same deduction above, we can find the similar input–output relationships
in the other two legs. Consequently, a fully decoupled kinematics in terms of the projective angles
can be expressed as

⎡
⎣

vθyz
wθzx
uθxy

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣αx

αy

αz

⎤
⎦ +

⎡
⎣ kx

ky

kz

⎤
⎦ π, (6)

where (vθyz,
wθzx,

uθxy) represents the projective displacements of the v-, w-, and u-axis on the yz-,
zx-, and xy-plane, (αx, αy, αz) indicates the angular displacements of the actuated joint on the x-, y-,
and z-axis, and kx, ky , and kz, are either 0 or 1 implying the two assemblies of the leg. Equation (6)
states that:

(a) the projective angles vθyz, wθzx , and uθxy are fully decoupled; and
(b) the projective angles vθyz, wθzx , and uθxy are independently determined by the input angles

αx, αy, αz, respectively.

Note that such a projective-angle-based decoupled kinematics is also valid in the Agile Eye robot.
The proof can be deducted by following the same logic above.

5. Relationship between the Projective Angles and Rotation Matrix
In this section, we will examine the relationship between the rotation matrix expressing the angular
position of the end-effector relating to the corresponding projective angles. It will show that, while
the rotation matrix is specified, there will be one unique possible configuration corresponding to the
set of projective vectors. The fact will be further used for verifying the inverse and direct kinematic
solutions of the manipulator in next sections.

Let us consider the rotation matrix, ARB , which transforms the fixed coordinate A to the moving
coordinate B by the direction cosines of the unit vectors u, v, and w; that is

ARB = [u, v, w] =
⎡
⎣ux vx wx

uy vy wy

uz vz wz

⎤
⎦ .

It is obvious that there exists a parallelism between the end-effector’s coordinate axes u, v, and w and
the axis of the second revolute joint of each leg, that is, u//d1,z, v//d1,x , w//d1,y . Let vector q collect
the joint displacement coordinates of the actuators and vector s represent the projective angles of the
moving coordinate axes on the appropriate planes, i.e.,

q =
⎡
⎣αx

αy

αz

⎤
⎦ (7)

and

s =
⎡
⎣

vθyz
wθzx
uθxy

⎤
⎦ =

⎡
⎣α′

x

α′
y

α′
z

⎤
⎦ , (8)

https://doi.org/10.1017/S0263574713001100 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001100


A non-overconstrained variant of the Agile Eye 897

where symbols α′ are synonymous with θ and are here used to emphasize the links between the
projective angles θ and the input angles α. Note that we have shown in the previous section that there
exists a decoupled relationship between vectors q and s, i.e., α′

x = αx + kxπ , α′
y = αy + kyπ , and

α′
z = αz + kzπ , kx, ky, kz, = 0 or 1.

To convert ARB to s we need to observe the projections of axis v on the yz-plane, of axis w on the
xz-plane, and of axis u on the xy-plane. So, we obtain

s =
⎡
⎣

vθyz
wθzx
uθxy

⎤
⎦ =

⎡
⎣α′

x

α′
y

α′
z

⎤
⎦ =

⎡
⎣ atan2(vz, vy)

atan2(wx, wz)
atan2(uy, ux)

⎤
⎦ . (9)

So, given the rotation matrix (i.e., the angular position of the end-effector), the projective angles are
univocally determined.

Note that each leg is an Eulerian/Cardanic sequence. So, the directions of unit vectors u, v, and w
can be expressed in the rotation matrix in function of the joint axis rotations as

ARB = [u, v, w] =
⎡
⎣ cos αz cos βz − sin βx sin αy cos βy

sin αz cos βz cos αx cos βx − sin βy

− sin βz sin αx cos βx cos αy cos βy

⎤
⎦ , (10)

where βx, βy , and βz are the rotation angle of the second joint of each leg. If vector s is known, it
means that the directions of the projections of vectors u, v, and w are known as well. In addition,
the ratios between the projection components and the signs of these projection components will be
understood. With this logic, the rotation matrix can be re-written as

ARB = [u, v, w] =
⎡
⎣ cos α′

z

√
1 − c2 −a sin α′

y

√
1 − b2

sin α′
z

√
1 − c2 cos α′

x

√
1 − a2 −b

−c sin α′
x

√
1 − a2 cos α′

y

√
1 − b2

⎤
⎦ , (11)

where

−1 ≤ a, b, c ≤ 1.

The dummy variables a, b, and c represent the direction ratios of the second angle of rotation of each
leg. The meaning of a, b, and c is better explained with the help of Fig. 5, where a represents the x
component of the vector du

1,x while the length of kAx is equal to
√

1 − a2 representing the projection
of du

1,x in the y ′z′ plane. The meaning of b and c is explained in similar way.

Now, we divide the unit vectors u, v, and w in Eq. (11) by
√

1 − c2,
√

1 − a2, and
√

1 − b2,
respectively. Note that this operation does not alter the direction ratios of vectors u, v, and w.
Accordingly, we will obtain the following three new vectors pointing at the same directions of u, v,
and w:

[u′, v′, w′] =
⎡
⎣ cos α′

z −a′ sin α′
y

sin α′
z cos α′

x −b′
−c′ sin α′

x cos α′
y

⎤
⎦ ,

with a′ = a/
√

1 − a2, b′ = b/
√

1 − b2, and c′ = c/
√

1 − c2. The values of a′, b′, and c′ can be
evaluated by imposing mutual orthogonality to u′, v′, and w′:

u′ · v′ = 0, v′ · w′ = 0, w′ · u′ = 0,

which derives the following three equality equations:

⎧⎨
⎩

a′ sin α′
y + b′ cos α′

x − cos α′
y sin α′

x = 0
b′ sin α′

z + c′ cos α′
y − cos α′

z sin α′
y = 0

c′ sin α′
x + a′ cos α′

z − cos α′
x sin α′

z = 0
. (12)
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Rearrange Eq. (12), then we have

⎡
⎣ sin α′

y cos α′
x 0

0 sin α′
z cos α′

y

cos α′
z 0 sin α′

x

⎤
⎦

⎡
⎣a′

b′
c′

⎤
⎦ =

⎡
⎣ cos α′

y sin α′
x

cos α′
z sin α′

y

cos α′
x sin α′

z

⎤
⎦ . (13)

Equation (13) forms a linear system in a′, b′, and c′ that can be solved as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a′ = cos α′
y sin α′

z − cos α′
x cos α′

z sin α′
y sin α′

x




b′ = cos α′
z sin α′

x − sin α′
y cos α′

x sin α′
z cos α′

y




c′ = cos α′
x sin α′

y − cos α′
z cos α′

y sin α′
x sin α′

z




, (14)

where 
 = cos α′
z cos α′

y cos α′
x + sin α′

z sin α′
y sin α′

x is the determinant of the coefficients matrix of
Eq. (13). Note that the condition for the existence of a unique solution (a′, b′, c′) is that 
 �= 0. After
a′, b′, and c′ are found, the values of a, b, and c can be obtained by

a = a′
√

1 + (a′)2, b = b′
√

1 + (b′)2, and c = c′
√

1 + (c′)2.

So, it turns out that, when the projective angles, αx , αy , and αz, are given, the rotation matrix ARB can
be determined and is unique provided that 
 �= 0. So, for a given rotation matrix, there is a unique
set of projective angles and vice versa. However, we should particularly notice that it does not imply
that the solution for the inverse kinematics problem is unique. Each projective angle can correspond
to two input angles, so there are eight possible combinations of the input angles based on a given
set of the three projective angles. On the other hand, for some values of the projective angles, the
determinant 
 is negative and in this case the determinant of the rotation matrix is also negative. This
fact corresponds to a left-handed frame, which is unacceptable. Therefore, the projective angles must
respect the condition 
 > 0.

On the other hand, we should notice that the rotation matrix will be undetermined when 
 = 0.
At this situation, the mechanism meets its singular configurations where the projective vector(s) of
the u-, v-, and/or w-axis disappear. For example, when α′

x = π
/

2 and α′
y = α′

z = 0, the determinant

 = 0. In such a case, the w-axis is being perpendicular to the zx-plane so that the axis has no
projective vector on the zx-plane.

6. Inverse Kinematics

6.1. Geometric reasoning
For the inverse kinematics problem, the orientation of the end-effector with respect to the fixed
coordinate is given and the angular displacements of the R-joints, αx, αy, αz, are to be found. Because
the end-effector can only rotate about the center of the S-joint, the orientation of the end-effector is
completely defined by its rotation matrix.

As shown in Fig. 5, we have learnt that the angular displacement, αx , is fully dependent on the
projective vector, kAx . It implies that as long as kAx is determined, the angular displacement αx can
be obtained accordingly. Therefore, from the geometrical interpretation in Fig. 5, the angle between
kAx and y′ can be calculated by the equation below provided that kAx is a non-null projective vector
of du

1,x on �Ax :

vθyz = atan2(kAx,z, kAx,y). (15)

Since kAx//du
1,x = v and kAx is on plane y ′z′, we can readily realize that kAx = [0, vy, vz]T.

Introducing kAx = [0, vy, vz]T into Eq. (15) and realizing there are two input angles corresponding
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to one projective angle, the input angle rotating about the x-axis, αx , can be obtained as

αx = atan2(vz, vy) + kπ, k = 0 or 1. (16)

Similarly, by applying this analysis procedure to the other legs, two other input angles rotating about
the y- and z-axis can be derived as

αy = atan2(wx, wz) + kπ, k = 0 or 1, (17)

and

αz = atan2(uy, ux) + kπ, k = 0 or 1. (18)

Hence, when the rotation matrix ARB is given, there are two solutions in each of Eqs. (16)–(18).
Therefore, for a given location of the end-effector, there are two corresponding input angles in
each leg. It leads that there are eight possible solutions for the inverse kinematics problem for this
mechanism.

In addition to the input angles, the joint displacements of the three P-joints in each leg are worth to
be derived. According to Fig. 4, the loop equation of the leg mounted on the x-axis can be written as

d1,x + d2,x − d3,x = e − ax. (19)

Note that ax is a given geometric parameter and e can be obtained when the rotation matrix ARB and
an arbitrary point E are defined. Furthermore, due to the geometric constraint, the following equations
hold simultaneously in any configuration:

d1,x = d1,xv, (20)

d2,x = d2,xw, (21)

d3,x = d3,xu, (22)

where d1,x, d2,x , and d3,x are the representative lengths of vectors d1,x, d2,x , and d3,x , and the unit
vectors u, v, and w have been given by the rotation matrix. Substituting Eqs. (20)–(22) into Eq. (19)
and expressing Eq. (19) in three scalar equations concludes a system of three linear equations with
three unknowns: d1, d2, and d3. Accordingly, the representative lengths of the three P-joints can be
solved.

6.2. Verification from the rotation matrix
The derivation of the inverse kinematics solution can be verified through the reasoning of the rotation
matrix.

In analogy with Eqs. (9)–(11) in Section 5, we can evaluate the input angle vector q as

q =
⎡
⎣αx

αy

αz

⎤
⎦ =

⎡
⎣ atan2(vz, vy) + kxπ

atan2(wx, wz) + kyπ

atan2(uy, ux) + kzπ

⎤
⎦ , kx, ky, kz = 0, 1,

where kx, ky , and kz indicates that for any value of sine function there are two values of cosine
function. So the vector q has totally 23 = 8 possible solutions. It therefore proves the result as derived
in Section 6.1.

6.3. Numerical example
Here, we give a numerical example for the inverse kinematics problem. Suppose that u =
[0.3015, 0.9045, − 0.3015]T, v = [−0.8165, 0.4082, 0.4082]T, and w = [0.4924, 0.1231, 0.8616]T.
Based on Eqs. (16)–(18), the inverse kinematic solutions are computed as in Table 1.
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Table I. Numerical example of inverse kinematic solutions (Unit: radians).

No. of solutions αx αy αz

1 0.7854 0.5191 1.2490
2 0.7854 0.5191 4.3906
3 0.7854 3.6607 1.2490
4 0.7854 3.6607 4.3906
5 3.9270 0.5191 1.2490
6 3.9270 0.5191 4.3906
7 3.9270 3.6607 1.2490
8 3.9270 3.6607 4.3906

Fig. 6. (Colour online) Geometry for the direct kinematics problem.

7. Direct Kinematics
For the direct kinematics problem, the angular displacements of the R-joints are given and the location
of the end-effector with respect to the fixed frame is to be found. Since the end-effector only possesses
a 3-DOF rotational motion centered at the S-joint, the direct kinematics problem is reduced to the
solving of the rotation matrix, ARB .

7.1. Algebraic solution
The algebraic solution of the rotation matrix can be figured out based on the special geometrical
relationship in the mechanism. Referring to Fig. 4, we know that based on the defined coordinate
systems d1,x is always parallel to the v-axis of the moving frame. Also, subject to the structural
constraint of the U-joint, d1,x is always perpendicular to u2,x . Considering the above two geometric
constraints together, we can readily realize that all possible solutions of d1,x will form a set of vectors
lying on the plane that passes through Ax and is normal to u2,x . For illustrating this geometry, Fig. 6
is depicted. In this figure, plane �Dx is defined by its normal vector u2,x and point Ax , and du

1,x ,
which is to be found, should locate on �Dx .

Therefore, when the actuated joint angle, αx , is given, the vector u2,x can be derived as

u2,x = [0, − sin αx, cos αx]T. (23)

Furthermore, because kAx is a vector lying on �Ax and is perpendicular to u2,x, it can be expressed as

kAx = [0, λa cos αx, λa sin αx]T, (24)
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where ‖λa‖ is the length of the vector. Since kAx is the projective vector of du
1,x on plane �Ax , du

1,x

can be written as

du
1,x = [a, λa cos αx, λa sin αx]T. (25)

Note that, as introduced in Eq. (11), variable a is related to the second angle of rotation of the leg.
Besides, because du

1,x is a unit vector, Eq. (25) should follow the identity equation of λ2
a + a2 = 1.

Similarly, we can carry out the above analysis in the other two legs and obtain two equations in
terms of du

1,y and du
1,z (which express the vectors of the first P-joint in the legs mounted on the y-

and z-axis, respectively) and two associated identity equations. Therefore, having known the fact of
(u, v, w) = (du

1,z, du
1,x, du

1,y), we obtain

u = [λc cos αz, λc sin αz, c]T, (26)

v = [a, λa cos αx, λa sin αx]T, (27)

w = [λb sin αy, b,λb cos αy]T, (28)

subject to the three identity equations given below:

λ2
a + a2 − 1 = 0, (29)

λ2
b + b2 − 1 = 0, (30)

λ2
c + c2 − 1 = 0. (31)

Furthermore, since u, v, and w are three orthogonal vectors, the orthogonal conditions u · v = u · w =
v · w = 0 should be satisfied. Accordingly, based on Eqs. (26)–(28), the following three equations
are obtained:

e11aλc + e12λaλc + e13cλa = 0, (32)

e21λbλc + e22bλc + e23cλb = 0, (33)

e31aλb + e32bλa + e33λaλb = 0, (34)

where eij , i, j = 1 to 3, are the coefficients given by αx, αy , and αz. Equations (29) through (34) form
a system of six second-degree polynomials in six unknowns: a, b, c, λa , λb, and λc. When the six
unknowns are solved, the elements in the rotation matrix can be computed through Eqs. (26)–(28).
Although the fundamental algebra theorem indicates that this system has at most 26 = 64 solutions,
a 3-homogeneous formulation1 of the system shows that the maximum number of solutions of the
homogeneous system can be reduced to 16. However, among these 16 solutions, eight ones will
correspond to the trivial solutions:

λa = λb = λc = 0, a = ±1, b = ±1, c = ±1. (35)

The above solutions correspond to the singular configurations of the manipulator that we will further
discuss in Section 7.3. On the other hand, since half of the 16 solutions are conflicting the right-hand
rule between u, v, and w, we can conclude that the direct kinematics problem of this mechanism has
at most eight possible solutions, four of which can be practically utilized.

7.2. Geometric reasoning
The algebraic solution of the direct kinematics for this mechanism can be realized by a geometrical
reasoning. In Fig. 4, we showed that the v-axis of the moving coordinate must be parallel to d1,x . In
Fig. 6, we learnt that d1,x must lie on a plane whose normal vector u2,x is defined by the input angle
αx . With these two geometric constraints, we can understand that the v-axis must lie on a plane, say

1 Based on partitioning the six variables into three groups, (a, λa), (b, λb), and (c, λc), the 3-homogeneous
Bezout number can be derived as 16.
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Fig. 7. (Colour online) Geometrical reasoning for the direct kinematics problem.

�v , which should pass through origin O and should be perpendicular to u2,x . In the same logic, the
u- and w-axis must respectively lie on another two planes, say �w and �u, that are determined by
origin O and by u2,y and u2,z (the two vectors defined by αy and αz), respectively. Accordingly, the
direct kinematics problem of this mechanism is mapped onto a geometric problem, that is: Given
three planes (�u, �v, and �w) with common intersection point O, identify three vectors, one from
each plane (say u on �u, v on �v , and w on �w), such that

(1) each identified vector lies on a line that passes through point O;
(2) all identified vectors are perpendicular to each other; and
(3) all identified vectors obey the right-hand rule together (i.e., u × v = w).

Note that the above three conditions should be satisfied simultaneously. Apparently, this geometric
problem is basically the searching of three, one from each plane, intersecting orthogonal lines. When
the lines are found, each line will correspond two solutions for u, v, or w (i.e., two vectors pointing
at opposite directions in the same line). Figure 7 demonstrates such a line-searching problem. As
shown, in a general, non-singular geometry, we can find that there are at most one unique line on each
plane, which are lines Lu on �u, Lv on �v , and Lw on �w. Line (Lu, Lv, Lw) forms one orthogonal
set of lines, each corresponding to one solution space for accommodating the three vectors, u, v, and
w. Therefore, there will be C2

1C
2
1C

2
1 = 8 possible combinations for (u, v, w). However, only four of

these eight are feasible due to the right-hand rule between u, v, and w. This geometric validation
proves the algebra solution as we derived above.

7.3. Verification from the rotation matrix
The reasoning of the direct kinematics described in Section 7.1 leads to the rotation matrix representing
the angular position of the end-effector to be determined when the input angles αx, αy , and αz are
known.

ARB = [u, v, w] =
⎡
⎣λc cos αz −a λb sin αy

λc sin αz λa cos αx −b

−c λa sin αx λb cos αy

⎤
⎦ (36)

The matrix in Eq. (36) may be compared to those described in Section 5, notably to Eq. (10) and (11),
from which we notice

a = sin βx, λa = cos βx, for λa > 0 and λa = √
1 − a2;

b = sin βy, λb = cos βy, for λb > 0 and λb = √
1 − b2;

c = sin βz, λc = cos βz, for λc > 0 and λc = √
1 − c2.

(37)

In particular it was proved that the matrix in Eq. (11) brought a unique solution for a, b, and c. Now
the matrix in Eq. (36) may be considered a generalization of Eq. (11) where λa, λb, and λc may
have positive or negative sign giving a total of eight possible combinations of sign and so the unique
solutions of Eq. (11) generate eight solutions for Eq. (36). Moreover, it is evident that eight further
solutions correspond to Eq. (35) obtaining a total of 16 different solutions. However half of these
solutions correspond to left-handed frame and so cannot be accepted.
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As a total we have eight acceptable solutions, four of which, regardless of the values of the input
angles, are:

ARB = R1 =
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ , (38a)

ARB = R2 =
⎡
⎣0 −1 0

0 0 −1
1 0 0

⎤
⎦ , (38b)

ARB = R3 =
⎡
⎣0 1 0

0 0 −1
−1 0 0

⎤
⎦ , (38c)

ARB = R4 =
⎡
⎣0 −1 0

0 0 1
−1 0 0

⎤
⎦ , (38d)

while the other four solutions (Ri, i = 5 to 8) depend on the input angles.
Once one rotation matrix ARB = R5 associated to one set of input angles is found, the other three

solutions (R6, R7, R8) are immediately found as

ARB = R5 = [ us vs ws ], (39a)

R6 = [ us −vs −ws ], (39b)

R7 = [−us vs −ws ], (39c)

R8 = [−us −vs ws ]. (39d)

So, given one set of input angles, we have eight possible rotation matrices corresponding to eight
angular positions of the end-effector. However, it is important to notice that the four solutions of
Eq. (38) correspond to singular orientations of the end-effector. In fact, for these angular positions,
any values of the input angles is possible because the first and third joint axes of each leg are aligned
and the projective angles are no more defined in that the unit vectors u, v, and w are orthogonal to
the plane onto which the vectors must be projected. The four feasible solutions (solutions 5–8 in
Eq. (39)) correspond to the four sets of projective angles:

S5 =
⎡
⎣α′

1x

α′
1y

α′
1z

⎤
⎦ =

⎡
⎣αx

αy

αz

⎤
⎦ , (40a)

S6 =
⎡
⎣α′

2x

α′
2y

α′
2z

⎤
⎦ =

⎡
⎣αx

αy + π

αz + π

⎤
⎦ , (40b)

S7 =
⎡
⎣α′

3x

α′
3y

α′
3z

⎤
⎦ =

⎡
⎣αx + π

αy

αz + π

⎤
⎦ , (40c)

S8 =
⎡
⎣α′

4x

α′
4y

α′
4z

⎤
⎦ =

⎡
⎣αx + π

αy + π

αz

⎤
⎦ . (40d)
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8. Conclusions
A fully decoupled 3-DOF parallel orientation mechanism has been introduced in this paper. The
proposed mechanism is non-overconstrained variant of Agile Eye, and it possesses a special decoupled
relationship between the projective angles of the moving frames and the input angles of the actuators at
any instant. For studying this mechanism, the geometry of the mechanism was analyzed, and its fully
decoupled kinematics was proven. Such a decoupled kinematics was also verified from the derivation
of rotation matrix by using the projective angles. In addition, the inverse and direct kinematics
problems of the mechanism were studied. It was found that there are at most eight possible solutions
for the inverse kinematics problem and at most eight possible solutions for the direct kinematics
problems, four of which correspond to singular positions of the end-effector and the other four can be
practically utilized. The geometric reasoning for the position kinematics was carried out for validating
the algebraic solutions. As a result, the proposed mechanism suggests a new mechanism topology for
the orientation devices that require reduced alignment demands when in manufacturing.
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