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A STOCHASTIC DIFFERENTIAL GAME FOR
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Abstract

In this paper we study a stochastic differential game between two insurers whose surplus
processes are modelled by quadratic-linear diffusion processes. We consider an exit
probability game. One insurer controls its risk process to minimize the probability that
the surplus difference reaches a low level (indicating a disadvantaged surplus position of
the insurer) before reaching a high level, while the other insurer aims to maximize the
probability. We solve the game by finding the value function and the Nash equilibrium
strategy in explicit forms.

Keywords: Stochastic differential game; Nash equilibrium; Fleming–Bellman–Isaacs
equations; quadratic-linear diffusion process

2010 Mathematics Subject Classification: Primary 60G40
Secondary 93E20

1. Introduction

Stochastic differential games are used to model dynamic competitions or cooperations. In
[2] and [3], some noncooperative stochastic differential games were solved and explicit optimal
plays given. It is shown that values of games exist if the Isaacs’ condition holds. In [5], sup-
value and sub-value functions of a finite-horizon game were defined, which were shown to be
the unique viscosity solutions of the Bellman–Isaacs equations. In [1], games between two
investors were considered using a general payoff function. Conditions under which a game
has an achievable value were provided. In an exit probability game (and some other specific
games), the value function and resulting equilibrium portfolio strategies are found explicitly. In
[14], analytically tractable solutions of cooperative stochastic differential games with subgame
consistency were derived. In [10], a theorem giving the Hamilton–Jacobi–Bellman–Isaacs
conditions for a two-player game in a jump diffusion setting was proved. The result was then
used to study risk minimization problems. In [16], an exit probability game between two
insurers was considered for the first time with proportional reinsurance control under a linear
diffusion model, where the Nash equilibrium of the game was given in explicit form. In [13],
a nonproportional zero-sum game for insurers was studied. In [9], a proportional reinsurance
game with a win scenario of absolute dominance was considered. Parameter conditions under
which the game is solvable were given. In each solvable case, the value function and the Nash
equilibrium strategy were found explicitly.

In this paper we study a competitive game between two insurance companies. Related risk
models and game problems can be found in [1], [6], [7], [11], and [16]. For each insurance
company, the surplus process is modelled by a diffusion process with one controllable variable,
where the diffusion term is proportional to the variable (linear) and the drift term is a quadratic
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function of the variable. This quadratic-linear diffusion process has been considered in [6],
[7], [11], and others, which can be applied in a reinsurance model with a varying reinsurance
premium rate, or in a capital model with a friction factor of productivity. As in [1] and [16],
we define and consider an exit probability game. We note that the controlled risk process (in
quadratic-linear form) in this paper is different from the ones in [1] and [16], where the drift and
diffusion terms are both linear functions of the controllable variable. We first define a winning
event (for insurer two) that the difference in surplus levels (between insurer one and insurer
two) hits a given low level a before it hits a given high level b. In the game, insurer one tries to
minimize the probability of the winning event of insurer two, while insurer two tries to maximize
the probability. In other words, insurer one controls its risk to push the surplus difference to
exit the interval (a, b) through the high level b, while insurer two controls to pull the difference
to exit through a. Using a min-max criterion, a value function is defined. With appropriate
regularity, the value function can be characterized by the so-called Fleming–Bellman–Isaacs
(FBI) equations (see [13], [15], and [16]) which involve supremum and infimum operations.
Using special parameter classifications, the FBI equations are solved and a classical C2(a, b)

solution is given explicitly in each parameter case. By a verification result, the solution is
shown to be the value function. When solving the FBI equations (with supremum and infimum
operations), a saddle point is found explicitly, which yields an optimal strategy of the players,
i.e. the Nash equilibrium strategy, in a feedback form.

The rest of the paper is organized as follows. In Section 2 we introduce the mathematical
model and formulate the game problem. In Section 3 we present the FBI equations and prove
a verification theorem. We solve the FBI equations explicitly in Sections 4 and 5 via different
parameter cases. In Section 6 we give examples and discussions.

2. Quadratic-linear risk processes and game problem

In this section we formulate the game problem and define the value function. We begin
with the surplus processes Ri for company i, i = 1, 2, which are described by the following
diffusion processes:

dRi = μi(ui) dt + σi(ui) dwi,

where {wi}t≥0, i = 1, 2, are uncorrelated standard Brownian motions adapted to information
filtration {Ft }t≥0 in a probability space (�,F ,P) and the drift and diffusion terms are given
by

μi(ui) = αiu
2
i + βiui + γi, σi(ui) = σiui, (1)

which are in a quadratic-linear form (see, e.g. [6] and [7]), where ui (0 ≤ ui ≤ 1), i = 1, 2, are
levels of risk exposure and σi (> 0), i = 1, 2, are insurance volatilities that represent the risk
levels of the insurance companies. This particular form (of the linear-quadratic surplus process)
can be viewed as a result of a varying reinsurance premium. For example, suppose that without
reinsurance the surplus for company i is approximated by dRi = μi dt + σi dwi , i = 1, 2
(see, e.g. [4]). If reinsurance is bought with risk exposure level ui at a constant reinsurance
premium level λi , then the surplus is approximated by dRi = [μi − λi(1 − ui)] dt + σiui dwi
(see, e.g. [12]). However, if we suppose that the reinsurance becomes cheaper when more
reinsurance is bought; specifically, if we assume that the reinsurance has a decreasing premium
rate of the form λi[1 − ki(1 − ui)] with some constant 0 < ki < 1 (i.e. the reinsurance
premium decreases linearly when more reinsurance is bought), then the insurance surplus
becomes dRi = {μi − λi(1 − ui)[1 − ki(1 − ui)]} dt + σiui dwi , which follows the quadratic-
linear form of (1) with αi = λiki , βi = λi(1 − 2ki), and γi = μi − λi(1 − ki). We note that,
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from this reinsurance formulation, the parameters αi , i = 1, 2, are positive. We also note that,
in a model of [6] on the capital of a company (with ui representing the size of the company), the
parameter αi is assumed to be negative. The parameter is called the internal competition factor
which reflects a friction (counter-productivity) phenomenon of the company when over-hiring.
However, from the mathematical point of view in this paper, we do not need to require any
restrictions on the parameters αi , i = 1, 2 (i.e. they can be either positive or negative).

Now we suppose that the insurers earn interest at a constant rate. So for each i = 1, 2, the
surplus process is governed by the following stochastic differential equation (SDE):

dRi = [rRi + μi(ui)] dt + σi(ui) dwi,

where r is the risk-free rate.
Next we consider dynamic reinsurance control, i.e. the risk exposures ui , i = 1, 2, can

be changed over time. We denote by RUii the controlled surplus process of insurer i under a
dynamic reinsurance control policy with risk exposure process Ui := {ui(t)}t≥0. Write the
difference of the surplus processes by XU1,U2 := R

U1
1 − R

U2
2 , which is then governed by the

following SDE:

dXU1,U2
t = (rX

U1,U2
t + α1u

2
1 + β1u1 − α2u

2
2 − β2u2 + δ) dt + σ1u1 dw1 − σ2u2 dw2,

X
U1,U2
0 = x, (2)

where x is the initial surplus difference and δ = γ1 − γ2.
A reinsurance control policy with risk exposure process U := {u(t)}t≥0 is said to be

admissible if

(i) 0 ≤ u(t) ≤ 1;

(ii) u(t) ∈ Ft for all t > 0; and

(iii) u(t) is square integrable over [0, T ] for all T > 0 almost surely (
∫ T

0 u2(t) dt exists).

We denote by 	 the set of admissible controls.
For an initial difference x in interval (a, b), where a is the lower boundary and b is the upper

boundary, we define a hitting time of the controlled surplus difference process under a paired
admissible policy (U1, U2), i.e.

τU1,U2
y = inf{t : XU1,U2

t = y} for any a ≤ y ≤ b.

Now we give the definition of a performance function under (U1, U2), i.e.

V U1,U2(x) := Px(τ
U1,U2
a < ∞, τU1,U2

a < τ
U1,U2
b ), (3)

where Px(·) = P(· | XU1,U2
0 = x). The performance function can be viewed as the probability

that insurer two wins the game, i.e. the difference of the surplus levels (between insurer one and
insurer two) reaches the low target level a (indicating a relatively high surplus level of insurer
two) at a finite time (before reaching the high target level b). Using the performance function,
we formulate a noncooperative game. In this game, insurer two controls its risk to maximize the
performance function, while insurer one tries to minimize it. Now we use a min-max criterion
to define the value function of the game. We first define sub-value and sup-value functions

V (x) := sup
U2∈	

inf
U1∈	

V U1,U2(x), V̄ (x) := inf
U1∈	

sup
U2∈	

V U1,U2(x). (4)
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Obviously, V (x) ≤ V̄ (x) for all x ∈ (a, b). In the case V (x) = V̄ (x) for all x ∈ (a, b), we
define the function as the value function, denoted by V , i.e.

V (x) = V (x) = V̄ (x).

In this paper we show that the value function always exists in explicit form, and so does the
Nash equilibrium strategy (U∗

1 , U
∗
2 ), which satisfies

V U
∗
1 ,U2(x) ≤ V U

∗
1 ,U

∗
2 (x) ≤ V U1,U

∗
2 (x) (5)

for any admissible controls U1, U2, and

V (x) = V U
∗
1 ,U

∗
2 (x) on (a, b). (6)

3. FBI equations and verification theorem

In this section we give the FBI equations that govern the value function and prove the veri-
fication theorem that a classical solution to the FBI equations satisfying appropriate boundary
conditions is the value function.

Suppose that the value function of the game exists and is a C2(a, b) function. Furthermore,
suppose that there exists an admissible Nash equilibrium or saddle point strategy (U∗

1 , U
∗
2 ),

satisfying (5) and (6), and that the strategy is a feedback strategy, determined by a pair of
risk exposure functions (u∗

1(·), u∗
2(·)) (i.e. the risk exposure levels at any time are the function

values of u∗
1(x) and u∗

2(x) at the then-current difference level x). One can show that the value
function V solves the following FBI equations (see, e.g. [13], [15], and [16]):

sup
u2∈[0,1]

Lu
∗
1(x),u2V (x) = 0, inf

u1∈[0,1]
Lu1,u

∗
2(x)V (x) = 0, (7)

where the operator L is defined by

Lu1,u2V (x) = (rx + α1u
2
1 + β1u1 − α2u

2
2 − β2u2 + δ)V ′(x)+ 1

2 (σ
2
1 u

2
1 + σ 2

2 u
2
2)V

′′(x),

and functions u∗
1(x) and u∗

2(x) satisfy

u∗
1(x) = arg inf

u1∈[0,1]
Lu1,u

∗
2(x)V (x), u∗

2(x) = arg sup
u2∈[0,1]

Lu
∗
1(x),u2V (x). (8)

That is, the pair (u∗
1(x), u

∗
2(x)) is a saddle point of Lu1,u2V (x). From (7) and (8), it holds that

Lu
∗
1(x),u

∗
2(x)V (x) = 0. (9)

We note that the FBI equations are simplified Bellman–Isaacs equations when both the value
function and the Nash equilibrium strategy exist (see [5] and [15]). In the following, we prove
the verification theorem that if a decreasing C2(a, b) solution to (7) with boundary conditions

V (a) = 1 and V (b) = 0 (10)

exists, then the value function exists and coincides with the solution.
Below we give a result that under certain admissible controls, the surplus difference process

exits the interval (a, b) almost surely.
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Lemma 1. For admissible controlsUi = {ui(t)}t≥0, i = 1, 2, satisfying σ 2
1 u

2
1(t)+ σ 2

2 u
2
2(t) >

ε, for all t > 0 and a given positive ε, it holds that Px(τ
U1,U2
a ∧ τU1,U2

b < ∞) = 1, where
a < x < b.

Proof. Write τ = τ
U1,U2
a ∧ τU1,U2

b . Applying Itô’s formula, we obtain

eKX
U1,U2
τ∧T − eKx =

∫ τ∧T

0
KeKX

U1,U2
t Mt dt + σ1K

∫ τ∧T

0
u1(t)e

KX
U1,U2
t dw1

− σ2K

∫ τ∧T

0
u2(t)e

KX
U1,U2
t dw2 for any T > 0 and any K,

where

Mt = rX
U1,U2
t + α1u1(t)

2 + β1u1(t)− α2u2(t)
2 − β2u2(t)+ δ+ 1

2K[σ 2
1 u1(t)

2 + σ 2
2 u2(t)

2].

Taking the expectation on both sides, we obtain

Ex[eKX
U1,U2
τ∧T − eKx] = Ex

[∫ τ∧T

0
KeKX

U1,U2
t Mt dt

]
. (11)

Choosing a large K (> 0) such that 1
2Kε > ε+ r|a| + |α1| + |β1| + |α2| + |β2| + |δ|, it holds

that Mt ≥ ε for 0 < t < τ . From (11), we have

eKb − eKx ≥ KEx

[
1{τ>T }

∫ T

0
eKX

U1,U2
t ε dt

]
≥ KεeKaT Px(τ > T ),

where 1 is the indicator function.
Letting T → ∞, we obtain limT→∞ Px(τ > T ) = 0. The lemma is proved. �

In the following, we prove the verification theorem.

Theorem 1. Suppose that

(i) W is a decreasing C2(a, b) solution to the FBI equations (7) subject to the boundary
conditions (10) with the saddle point (u∗

1(x), u
∗
2(x)) determined by (8);

(ii) W ′ is bounded on [a, b];
(iii) there exists ε > 0 such that u∗

2(x) > ε for x ∈ [a, b].
Then the value function V exists and it holds that W(x) = V (x) for x ∈ [a, b]. Furthermore,
the feedback control strategy (U∗

1 , U
∗
2 ) given by

U∗
1 = {u∗

1(X
U∗

1 ,U
∗
2

t )}t≥0 and U∗
2 = {u∗

2(X
U∗

1 ,U
∗
2

t )}t≥0

is the Nash equilibrium control such that V U
∗
1 ,U

∗
2 (x) = V (x), where {XU∗

1 ,U
∗
2

t }t≥0 is the surplus
difference process that solves SDE (2) under policy (U∗

1 , U
∗
2 ).
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Proof. For convenience, write hitting time τU
∗
1 ,U2 = τ

U∗
1 ,U2

a ∧ τU∗
1 ,U2

b . For any time T > 0
and admissible controls Ui = {ui(t)}t≥0, i = 1, 2, applying Itô’s formula, we obtain

W(X
U∗

1 ,U2

τ
U∗

1 ,U2 ∧T )−W(x) =
∫ τ

U∗
1 ,U2 ∧T

0
Lu

∗
1(X

U∗
1 ,U2

t ),u2(t)W(X
U∗

1 ,U2
t ) dt

+ σ1

∫ τ
U∗

1 ,U2 ∧T

0
W ′(XU

∗
1 ,U2

t )u∗
1(X

U∗
1 ,U2

t ) dw1

− σ2

∫ τ
U∗

1 ,U2 ∧T

0
W ′(XU

∗
1 ,U2

t )u2(t) dw2W
′(XU

∗
1 ,U2

t ) dZt

≤ σ1

∫ τ
U∗

1 ,U2 ∧T

0
W ′(XU

∗
1 ,U2

t )u∗
1(X

U∗
1 ,U2

t ) dw1

− σ2

∫ τ
U∗

1 ,U2 ∧T

0
W ′(XU

∗
1 ,U2

t )u2(t) dw2,

where the inequality is because W solves the first equation in (7). Taking the expectation on
both sides, we have

W(x) ≥ Ex[W(XU
∗
1 ,U2

τ
U∗

1 ,U2 ∧T )]
= Px(X

U∗
1 ,U2

τ
U∗

1 ,U2
= a, τU

∗
1 ,U2 < T )W(a)+ Px(X

U∗
1 ,U2

τ
U∗

1 ,U2
= b, τU

∗
1 ,U2 < T )W(b)

+ Ex[W(XU
∗
1 ,U2

T ) 1{τU∗
1 ,U2>T }]

≥ Px(X
U∗

1 ,U2

τ
U∗

1 ,U2
= a, τU

∗
1 ,U2 < T ),

where the last line is due to the boundary conditions and the fact that the function W is
nonnegative on [a, b]. Letting T → ∞, we have

W(x) ≥ Px(X
U∗

1 ,U2

τ
U∗

1 ,U2
= a, τU

∗
1 ,U2 < ∞) = Px(τ

U∗
1 ,U2

a < τ
U∗

1 ,U2
b , τ

U∗
1 ,U2

a < ∞),

which gives
W(x) ≥ V U

∗
1 ,U2(x). (12)

On the other hand, write τU1,U
∗
2 = τ

U1,U
∗
2

a ∧ τU1,U
∗
2

b , from the second equation in (7) we obtain

W(x) ≤ Ex[W(XU1,U
∗
2

τ
U1,U

∗
2 ∧T )]

= Px(X
U1,U

∗
2

τ
U1,U

∗
2

= a, τU1,U
∗
2 < T )W(a)+ Px(X

U1,U
∗
2

τ
U∗

1 ,U
∗
2

= b, τU1,U
∗
2 < T )W(b)

+ Ex[W(XU1,U
∗
2

T ) 1{τU1,U
∗
2 >T }]. (13)

From u∗
2(x) > ε on [a, b], using Lemma 1, we have limT→∞ P(τU1,U

∗
2 > T ) = 0. Passing

T → ∞ in (13) and using the boundary conditions, we have

W(x) ≤ Px(X
U1,U

∗
2

τ
U1,U

∗
2

= a, τU1,U
∗
2 < ∞) = Px(τ

U1,U
∗
2

a < τ
U1,U

∗
2

b , τ
U1,U

∗
2

a < ∞),
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wherefrom
W(x) ≤ V U1,U

∗
2 (x). (14)

Thus,
V (x) ≥ inf

U1∈	
V U1,U

∗
2 (x) ≥ W(x) ≥ sup

U2∈	
V U

∗
1 ,U2(x) ≥ V̄ (x).

From V (x) ≤ V̄ (x), we conclude that V (x) = W(x) = V̄ (x) = V (x).
Furthermore, if we replace U2 by U∗

2 in (12) and U1 by U∗
1 in (14), we then obtain

W(x) = V U
∗
1 ,U

∗
2 (x). �

Remark 1. We observe that the hitting times τU1,U2
a and τU1,U2

b under an arbitrary admissible
control (U1, U2) can be infinite with a positive probability. For example, under an admissible
control (U1, U2) with u1(t) = u2(t) ≡ 0, the process XU1,U2

t can stay at level 0 forever when
δ = 0. In Lemma 1, the condition σ 2

1 u
2
1(t)+ σ 2

2 u
2
2(t) > ε, i.e. the volatility of the controlled

process XU1,U2
t being uniformly bounded above 0 (which is called the uniform parabolicity

condition; see, e.g. [8]), guarantees that the minimum of the two hitting times is finite almost
surely.

Remark 2. In the event that the hitting times τU1,U2
a and τU1,U2

b under an admissible control
(U1, U2) are infinite, i.e. the controlled process XU1,U2

t stays in the interval (a, b) forever,
it indicates that insurer two does not win, by the definition of the performance function (3).
To prevent this event from occurring, insurer two can take a strategy with the risk exposure
level uniformly bounded above 0 (so that the uniform parabolicity condition holds). In the
verification theorem, we assume that the Nash equilibrium reinsurance strategy of insurer two
satisfies this condition in order to prove the optimality.

In the next two sections, we solve the game problem. To do that, we solve the FBI
equations (7) for an explicit solution with boundary conditions (10). By the verification theorem,
the solution coincides with the value function.

For any C2(a, b) function W , write

û1,W (x) = − β1W
′(x)

σ 2
1W

′′(x)+ 2α1W ′(x)
, û2,W (x) = β2W

′(x)
σ 2

2W
′′(x)− 2α2W ′(x)

, (15)

which satisfy

dLu1,u2W(x)

du1

∣∣∣∣
u1=û1,W (x)

= 0,
dLu1,u2W(x)

du2

∣∣∣∣
u2=û2,W (x)

= 0.

Noting that Lu1,u2W is a quadratic function of u1 and u2, the expressions in (15) are used to
determine the minimizer or the maximizer in the equations (7), and, hence, the saddle point of
Lu1,u2W .

Suppose that the value function V isC2(a, b) and solves the FBI equations (7) with V ′(x) <
0 on (a, b). In what follows, we proceed to identify V . In the following two sections, we
consider two parameter conditions:

(i) β1 > 0 and β2 > 0 (symmetric case); and

(ii) β1 < 0 and β2 > 0 (asymmetric case).

The symmetric parameter condition is more reasonable in the practical world; however, the
asymmetric parameter case is mathematically interesting. The other parameter cases can be
treated similarly and we omit them.
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4. Explicit solutions – symmetric case

In this section we solve the FBI equations (7) in order to find the value function and Nash
equilibrium strategy explicitly in a symmetric parameter case: βi > 0, i = 1, 2.

Write, for i = 1, 2,

ξi = 2αi + βi

σ 2
i

.

The parameters ξi , i = 1, 2, play a key role in classifying the solution of the FBI equations.
We consider three parameter cases in the following subsections:

(i) ξ1 + ξ2 < 0;

(ii) ξ1 + ξ2 > 0; and

(iii) ξ1 + ξ2 = 0.

4.1. The case with ξ1 + ξ2 < 0

Note that ξ2 < −ξ1 in this case. Define the following sets:

X1 =
{
x ∈ [a, b] : ξ2 <

V ′′

V ′ < −ξ1

}
,

X2 =
{
x ∈ [a, b] : V

′′

V ′ ≤ ξ2

}
, X3 =

{
x ∈ [a, b] : − ξ1 ≤ V ′′

V ′

}
.

We find these sets explicitly. To do that, we first give a simplified equation that governs the
value function on each set. We then determine the end point(s) of each set using the definition
condition(s) of the set.

On set X1, from the assumption that β1 > 0, we have V ′′/V ′ < −ξ1 < −2α1/σ
2
1 , which

implies that 1
2σ

2
1 V

′′ + α1V
′ > 0. So û1,V > 0. In addition, from V ′′/V ′ < −ξ1, we have

û1,V = − β1

σ 2
1 (V

′′/V ′)+ 2α1
< − β1

σ 2
1 (−ξ1)+ 2α1

= 1.

Thus, the minimizer in u1 ∈ [0, 1] of Lu1,u2V is û1,V and it holds that

inf
u1∈[0,1]

Lu1,u2V = Lû1,V ,u2V.

On the other hand, from V ′′/V ′ > ξ2 > 2α2/σ
2
2 , we have 1

2σ
2
2 V

′′ − α2V
′ < 0. So û2,V > 0.

Also, from V ′′/V ′ > ξ2, we have

û2,V = β2

σ 2
2 (V

′′/V ′)− 2α2
<

β2

σ 2
2 ξ2 − 2α2

= 1.

We then conclude that the maximizer in u2 ∈ [0, 1] of Lu1,u2V is û2,V and it holds that

sup
u2∈[0,1]

Lu1,u2V = Lu1,û2,V V .

Hence, the pair (û1,V , û2,V ) is the saddle point of Lu1,u2V , and from (9), V solves

Lû1,V (x),û2,V (x)V (x) = 0 on X1. (16)

https://doi.org/10.1017/apr.2016.69 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.69


Quadratic-linear diffusion game 1169

Equation (16) can be simplified to

(rx + δ)V ′ − β2
1V

′2/2
σ 2

1 V
′′ + 2α1V ′ − β2

2V
′2/2

σ 2
2 V

′′ − 2α2V ′ = 0,

or

(rx + δ)

(
V ′′

V ′

)2

+ f1(x)

(
V ′′

V ′

)
− f2(x) = 0,

where

f1(x) = 2(rx + δ)(ᾱ1 − ᾱ2)− 1
2 (β1β̄1 + β2β̄2),

f2(x) = 4ᾱ1ᾱ2(rx + δ)+ ᾱ1β2β̄2 − ᾱ2β1β̄1,

and

ᾱi = αi

σ 2
i

, β̄i = βi

σ 2
i

, for i = 1, 2.

Thus, we conjecture that

V ′′

V ′ = f (x) := −
f1(x)+

√
f 2

1 (x)+ 4(rx + δ)f2(x)

2(rx + δ)
on X1. (17)

Note that

f 2
1 (x)+ 4(rx + δ)f2(x) = [2(rx + δ)(ᾱ1 + ᾱ2)− 1

2 (β1β̄1 − β2β̄2)]2 + β1β̄1β2β̄2 ≥ 0,

wherefrom the function f is well defined. From

lim
x→−δ/r f (x) = 2(ᾱ2β1β̄1 − ᾱ1β2β̄2)

β1β̄1 + β2β̄2
,

we see that f is continuous on (−∞,∞). Furthermore, we can check that f is a decreasing
function on (−∞,∞) by differentiation. Noting that ᾱ1 + ᾱ2 < 0, we have

f (x) = −ᾱ1 + ᾱ2 − |ᾱ1 + ᾱ2| = 2ᾱ2 as x → ∞,

f (x) = −ᾱ1 + ᾱ2 + |ᾱ1 + ᾱ2| = −2ᾱ1 as x → −∞.

Note that 2ᾱ2 < ξ2 < −ξ1 < −2ᾱ1. So inequality f (x) < −ξ1 gives x > x1, where

x1 = −β1(ᾱ1 + ᾱ2)+ (β1β̄1 + β2β̄2)/2

r(ξ1 + 2ᾱ2)
− δ

r
, (18)

and f (x) > ξ2 gives x < x2, where

x2 = β2(ᾱ1 + ᾱ2)+ (β1β̄1 + β2β̄2)/2

r(ξ2 + 2ᾱ1)
− δ

r
. (19)

Hence,
X1 = (x1, x2) ∩ [a, b].
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OnX2, fromV ′′/V ′ ≤ ξ2 < −ξ1 and the discussions on the setX1, we see that the minimizer
in u1 ∈ [0, 1] of Lu1,u2V is û1,V and we have infu1∈[0,1] Lu1,u2V = Lû1,V ,u2V on X2. Next,
we consider three cases in order to identify the maximizer in u2. If 2α2/σ

2
2 < V ′′/V ′ ≤ ξ2 then

1
2σ

2
2 V

′′ − α2V
′ < 0 and û2,V ≥ β2/(σ

2
2 ξ2 − 2α2) = 1; hence, the maximizer in u2 ∈ [0, 1] of

Lu1,u2V is 1. IfV ′′/V ′< 2α2/σ
2
2 then 1

2σ
2
2 V

′′−α2V
′ > 0 and û2,V < 0; hence, the maximizer

in u2 ∈ [0, 1] is also 1. If V ′′/V ′ = 2α2/σ
2
2 then 1

2σ
2
2 V

′′ − α2V
′ = 0; from −β2V

′ ≥ 0, the
maximizer in u2 ∈ [0, 1] is still 1. To summarize, it holds that supu2∈[0,1] Lu1,u2V = Lu1,1V

when V ′′/V ′ ≤ ξ2. Thus, the pair (û1,V , 1) is the saddle point of Lu1,u2V and we have

Lû1,V (x),1V (x) = 0 on X2. (20)

Equation (20) is equivalent to

(rx + δ − α2 − β2)V
′ + 1

2
σ 2

2 V
′′ − β2

1V
′2/2

σ 2
1 V

′′ + 2α1V ′ = 0,

which can be simplified to

1

2

(
V ′′

V ′

)2

+ g1(x)

(
V ′′

V ′

)
− g2(x) = 0,

where

g1(x) = rx + δ

σ 2
2

− ᾱ2 − β̄2 + ᾱ1, g2(x) = −2ᾱ1

(
rx + δ

σ 2
2

− ᾱ2 − β̄2

)
+ 1

2

β̄1β1

σ 2
2

.

Now, we conjecture that

V ′′

V ′ = g(x) := −g1(x)−
√
g2

1(x)+ 2g2(x) on X2. (21)

Note that

g2
1(x)+ 2g2(x) =

(
rx + δ

σ 2
2

− ᾱ2 − β̄2 − ᾱ1

)2

+ β̄1β1

σ 2
2

≥ 0,

and we see that the function g is well-defined. We also note that g is a decreasing function in
x ∈ (−∞,∞) and

lim
x→∞ g(x) = −∞, lim

x→−∞ g(x) = lim
x→−∞

2g2(x)

g1(x)−
√
g2

1(x)+ 2g2(x)

= −2ᾱ1.

From ξ2 < −2ᾱ1 (which is equivalent to ξ1 + ξ2 < β̄1), inequality g(x) ≤ ξ2 gives x ≥ x2,
where x2 is defined in (19). Thus, we conclude that

X2 = [x2,∞) ∩ [a, b].
On set X3, if −ξ1 ≤ V ′′/V ′ < −2α1/σ

2
1 , we have 1

2σ
2
1 V

′′ + α1V
′ > 0 and û1,V ≥

−β1/(σ
2
1 (−ξ1) + 2α1) = 1. So the minimizer in u1 ∈ [0, 1] of Lu1,u2V is 1. If −2α1/σ

2
1 <

V ′′/V ′, we have 1
2σ

2
1 V

′′ + α1V
′ < 0 and û1,V < 0; hence, the minimizer in u1 ∈ [0, 1]

is 1. If −2α1/σ
2
1 = V ′′/V ′, we have 1

2σ
2
1 V

′′ + α1V
′ = 0 and β2V

′ < 0, so the minimizer
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in u1 ∈ [0, 1] is still 1. We conclude that infu1∈[0,1] Lu1,u2V = L1,u2V on X3. Also, from
ξ2 < −ξ1 ≤ V ′′/V ′ and the discussions on X1, we see that the maximizer in u2 ∈ [0, 1] of
Lu1,u2V is û2,V . Thus, we conclude that the pair (1, û2,V ) is the saddle point of Lu1,u2V and
it holds that

L1,û2,V V (x) = 0 on X3. (22)

The equation (22) is equivalent to

(rx + δ + α1 + β1)V
′ + 1

2
σ 2

1 V
′′ − β2

2V
′2/2

σ 2
2 V

′′ − 2α2V ′ = 0,

which simplifies to

1

2

(
V ′′

V ′

)2

+ h1(x)

(
V ′′

V ′

)
− h2(x) = 0,

where

h1(x) = rx + δ

σ 2
1

+ ᾱ1 + β̄1 − ᾱ2, h2(x) = 2ᾱ2

(
rx + δ

σ 2
1

+ ᾱ1 + β̄1

)
+ 1

2

β̄2β2

σ 2
1

.

We let
V ′′

V ′ = h(x) := −h1(x)+
√
h2

1(x)+ 2h2(x) on X3. (23)

From

h2
1(x)+ 2h2(x) =

(
rx + δ

σ 2
1

+ ᾱ1 + β̄1 + ᾱ2

)2

+ β̄2β2

σ 2
1

≥ 0,

the function h is well-defined. Note that h is a decreasing function in x ∈ (−∞,∞) and

lim
x→∞h(x) = lim

x→∞
2h2(x)

h1(x)+
√
h2

1(x)+ 2h2(x)

= 2ᾱ2, lim
x→−∞h(x) = ∞.

From 2ᾱ2 < −ξ1 (which is equivalent to ξ1 + ξ2 < β̄2), inequality h(x) ≥ −ξ1 is equivalent
to x ≤ x1, where x1 is defined in (18). So we conclude that

X3 = (−∞, x1] ∩ [a, b].

To summarize, we have

V ′′(x)
V ′(x)

= φ(x) :=

⎧⎪⎨
⎪⎩
h(x), x ∈ X3 = (−∞, x1] ∩ [a, b],
f (x), x ∈ X1 = (x1, x2) ∩ [a, b],
g(x), x ∈ X2 = [x2,∞) ∩ [a, b].

(24)

Note that f (x1) = h(x1) = −ξ1 and f (x2) = g(x2) = ξ2. So φ is a continuous function on
[a, b]. Since functions h, f , and g are decreasing in x, function φ is a decreasing function.
From (24) and the boundary conditions (10), the value function V can be determined. Hence,
we obtain the following theorem.
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Theorem 2. If ξ1 + ξ2 < 0 and βi > 0, i = 1, 2, then the value function of the game is a
decreasing C2 function given by

V (x) =
∫ b
x

exp{∫ u
a
φ(v) dv} du∫ b

a
exp{∫ u

a
φ(v) dv} du

for x ∈ [a, b], (25)

and the Nash equilibrium strategy is a feedback control associated with the risk exposure
functions given by

(u∗
1(x), u

∗
2(x))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1,

β2

σ 2
2 h(x)− 2α2

)
, x ∈ X3 = (−∞, x1] ∩ [a, b],(

− β1

σ 2
1 f (x)+ 2α1

,
β2

σ 2
2 f (x)− 2α2

)
, x ∈ X1 = (x1, x2) ∩ [a, b],(

− β1

σ 2
1 g(x)+ 2α1

, 1

)
, x ∈ X2 = [x2,∞) ∩ [a, b],

(26)

where functions φ, f , g, and h are given in (24), (17), (21), and (23), respectively, and threshold
points x1 and x2 are given in (18) and (19), respectively.

Proof. From the discussions in this subsection, we see that V defined in (25) is a C2(a, b)

function and solves the FBI equations (7) subject to the boundary conditions (10) with the saddle
point given in (26). Its derivative V ′ is continuous on [a, b] and, hence, bounded. Furthermore,
from f (x1) = h(x1) and β2/(σ

2
2 f (x2) − 2α2) = β2/(σ

2
2 ξ2 − 2α2) = 1, the risk exposure

function u∗
2 is continuous on [a, b]. So u∗

2 is uniformly bounded above 0. The results of the
theorem immediately follow from the verification theorem. �
Remark 3. In Theorem 2 for the Nash equilibrium strategy, the risk exposure function u∗

1 is a
decreasing function in surplus difference x, and u∗

2 is an increasing function. This implies that
if any insurer is into a better surplus position (e.g. insurer one holds a better surplus position
when the surplus difference x is higher), then the insurer takes a lower level of risk exposure
and buys more reinsurance.

Remark 4. In [9] and [16] under the linear model, the Nash equilibrium strategy (u∗
1, u

∗
2)occurs

on only the boundary of the control region [0, 1]×[0, 1], i.e. at a given surplus difference level, at
least one insurer must take a trivial risk exposure strategy 0 or 1. However, under the quadratic-
linear model, the Nash equilibrium strategy can occur inside the control region [0, 1] × [0, 1],
e.g. in Theorem 2, it holds that 0 < u∗

i < 1, i = 1, 2, on X1.

4.2. The case with ξ1 + ξ2 > 0

We have −ξ1 < ξ2 in this case. Define sets

X4 =
{
x ∈ [a, b] : − ξ1 <

V ′′

V ′ < ξ2

}
,

X5 =
{
x ∈ [a, b] : ξ2 ≤ V ′′

V ′

}
, X6 =

{
x ∈ [a, b] : V

′′

V ′ ≤ −ξ1

}
.

Similar to the previous subsection, now we find these sets explicitly.
On set X4, we have −ξ1 < V ′′/V ′; from the discussions on X3 in the previous subsection,

we see that the minimizer in u1 ∈ [0, 1] of Lu1,u2V is 1 and it holds that infu1∈[0,1] Lu1,u2V =
L1,u2V . On the other hand, from V ′′/V ′ < ξ2 and the discussions on X2, we see that the
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maximizer in u2 ∈ [0, 1] is 1 and conclude that supu2∈[0,1] Lu1,u2V = Lu1,1V . Hence, the pair
(1, 1) is the saddle point of Lu1,u2V . So it holds that

L1,1V (x) = 0 on X4, (27)

which gives
(rx + δ + α1 + β1 − α2 − β2)V

′ + 1
2 (σ

2
1 + σ 2

2 )V
′′ = 0.

Thus, we have

V ′′(x)
V ′(x)

= k(x) := −2(rx + δ + α1 + β1 − α2 − β2)

σ 2
1 + σ 2

2

, (28)

which is a decreasing function. So k(x) < ξ2 gives x > x3, where

x3 = β2/2 − α1 − β1

r
−

(
ᾱ2 + 1

2
β̄2

)
σ 2

1

r
− δ

r
. (29)

Also −ξ1 < k(x) gives x < x4, where

x4 = −β1/2 − α2 − β2

r
+

(
ᾱ1 + 1

2
β̄1

)
σ 2

2

r
− δ

r
. (30)

Hence,
X4 = (x3, x4) ∩ [a, b].

On X5, from ξ2 ≤ V ′′/V ′ and the discussions on X1 in the previous subsection, we have
1
2σ

2
2 V

′′ − α2V
′ < 0 and û2,V ≤ β2/(σ

2
2 ξ2 − 2α2) = 1. Thus, the maximizer in u2 ∈ [0, 1] of

Lu1,u2V is û2,V and it holds that supu2∈[0,1] Lu1,u2V = Lu1,û2,V V . Furthermore, from −ξ1 <

ξ2 ≤ V ′′/V ′ and the discussions on X3 in the previous subsection, we see that the minimizer in
u1 ∈ [0, 1] is 1 and it holds that infu1∈[0,1] Lu1,u2V = L1,u2V . So we conclude that (1, û2,V )

is the saddle point of Lu1,u2V and V solves L1,û2,V V = 0 on X5. We then conjecture that

V ′′(x)
V ′(x)

= h(x) on X5,

where h is given in (23). Note that inequality ξ2 ≤ h(x) gives x ≤ x3. So we come to

X5 = (−∞, x3] ∩ [a, b],
where x3 is given in (29).

On X6, from V ′′/V ′ ≤ −ξ1 and the discussions on X1 in the previous subsection, we see
that the minimizer in u1 ∈ [0, 1] is û1,V and it holds that infu1∈[0,1] Lu1,u2V = Lû1,V ,u2V .
Furthermore, from V ′′/V ′ ≤ −ξ1 < ξ2 and the discussions on X2 in the previous subsection,
we see that the maximizer in u2 ∈ [0, 1] is 1 and it holds that supu2∈[0,1] Lu1,u2V = Lu1,1V .
So we conclude that (û1,V , 1) is the saddle point ofLu1,u2V and V solvesLû1,V ,1V = 0 on X6.
Hence, we conjecture that

V ′′(x)
V ′(x)

= g(x) on X6,

where g is given in (21). Also inequality g(x) ≤ −ξ1 gives x ≥ x4. So it holds that

X6 = [x4,∞) ∩ [a, b],
where x4 is given in (30).
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Summarizing the discussions, we conjecture that

V ′′(x)
V ′(x)

= ϕ(x) :=

⎧⎪⎨
⎪⎩
h(x), x ∈ X5 = (−∞, x3] ∩ [a, b],
k(x), x ∈ X4 = (x3, x4) ∩ [a, b],
g(x), x ∈ X6 = [x4,∞) ∩ [a, b],

(31)

where functions h, k, and g are given in (23), (28), and (21). Noting that k(x3) = h(x3) = ξ2
and k(x4) = g(x4) = −ξ1, we see that ϕ is a continuous function on [a, b]. Since h, k, and g
are decreasing functions, so is ϕ.

Theorem 3. If ξ1 + ξ2 > 0 and βi > 0, i = 1, 2, then the value function of the game is a
decreasing C2 function given by

V (x) =
∫ b
x

exp{∫ u
a
ϕ(v) dv} du∫ b

a
exp{∫ u

a
ϕ(v) dv} du

for x ∈ [a, b],

and the Nash equilibrium strategy is a feedback control associated with the risk exposure
functions given by

(u∗
1(x), u

∗
2(x)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1,

β2

σ 2
2 h(x)− 2α2

)
, x ∈ X5 = (−∞, x3] ∩ [a, b],

(1, 1), x ∈ X4 = (x3, x4) ∩ [a, b],(
β2

σ 1
2 g(x)+ 2α1

, 1

)
, x ∈ X6 = [x4,∞) ∩ [a, b],

where functions ϕ, g, and h are given in (31), (21), and (23), respectively, and threshold
points x3 and x4 are given in (29) and (30), respectively.

4.3. The case with ξ1 + ξ2 = 0

In this case, we observe that

−ξ1 = ξ2 = f (x1) = f (x2) = h(x1) = h(x3) = k(x3) = k(x4) = g(x4) = g(x2),

and it holds that x1 = x2 = x3 = x4. So for the Nash equilibrium strategy, the two insurers
now share a common threshold point. We then let

V ′′(x)
V ′(x)

= ψ(x) :=
{
h(x), x ∈ (−∞, x1] ∩ [a, b],
g(x), x ∈ (x1,∞) ∩ [a, b], (32)

and obtain the following theorem.

Theorem 4. If ξ1 + ξ2 = 0 and βi > 0, i = 1, 2, then the value function of the game is a
decreasing C2 function given by

V (x) =
∫ b
x

exp{∫ u
a
ψ(v) dv} du∫ b

a
exp{∫ u

a
ψ(v) dv} du

for x ∈ [a, b],
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and the Nash equilibrium strategy is a feedback control associated with the risk exposure
functions given by

(u∗
1(x), u

∗
2(x)) =

⎧⎪⎪⎨
⎪⎪⎩

(
1,

β2

σ 2
2 h(x)− 2α2

)
, x ∈ (−∞, x1] ∩ [a, b],(

− β1

σ 2
1 g(x)+ 2α1

, 1

)
, x ∈ (x1,∞) ∩ [a, b],

where the functions ψ , g, and h are given in (32), (21), and (23), respectively, and x1 is given
in (18).

5. Explicit solutions – asymmetric case

In this section we solve the game under an asymmetric parameter case: β1 < 0 and β2 > 0.
Define

θ1 = 2(α1 + β1)

σ 2
1

.

The parameters θ1 and ξ2 play a key role in classifying the solutions. We consider three
cases:

(i) θ1 + ξ2 < 0;

(ii) θ1 + ξ2 > 0; and

(iii) θ1 + ξ2 = 0.

5.1. The case with θ1 + ξ2 < 0

In this case, we have ξ2 < −θ1. Define the following sets:

Y1 =
{
x ∈ [a, b] : ξ2 <

V ′′

V ′ < −θ1

}
,

Y2 =
{
x ∈ [a, b] : V

′′

V ′ ≤ ξ2

}
, Y3 =

{
x ∈ [a, b] : − θ1 ≤ V ′′

V ′

}
.

Now we identify these sets.
On set Y1, from β1 < 0, we have −2α1/σ

2
1 < −θ1. If V ′′/V ′ < −2α1/σ

2
1 then 1

2σ
2
1 V

′′ +
α1V

′ > 0 and û1,V < 0; hence, the minimizer in u1 ∈ [0, 1] of Lu1,u2V is 0. If −2α1/σ
2
1 <

V ′′/V ′ ≤ −θ1 then 1
2σ

2
1 V

′′ + α1V
′ < 0 and

û1,V = − β1

σ 2
1 (V

′′/V ′)+ 2α1
≥ − β1

σ 2
1 (−θ1)+ 2α1

= 1

2
.

So the minimizer in u1 ∈ [0, 1] of Lu1,u2V is also 0. If V ′′/V ′ = −2α1/σ
2
1 then 1

2σ
2
1 V

′′ +
α1V

′ = 0; from β1V
′ > 0, the minimizer in u1 ∈ [0, 1] is still 0. Hence, we see that the

minimizer in u1 ∈ [0, 1] of Lu1,u2V is 0 and it holds that

inf
u1∈[0,1]

Lu1,u2V = L0,u2V on Y1.

On the other hand, from V ′′/V ′ > ξ2 and the discussions on X1 in the previous section, we
see that the maximizer in u2 ∈ [0, 1] of Lu1,u2V is û2,V and it holds that

sup
u2∈[0,1]

Lu1,u2V = Lu1,û2,V V on Y1.
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Hence, the pair (0, û2,V ) is the saddle point of Lu1,u2V . Thus, V solves

L0,û2,V (x)V (x) = 0 on Y1. (33)

Then (33) is equivalent to

(rx + δ)V ′ − β2
2V

′2/2
σ 2

2 V
′′ − 2α2V ′ = 0,

or
V ′′

V ′ = m(x) := β2β̄2

2(rx + δ)
+ 2ᾱ2 on Y1. (34)

Note that m is a decreasing continuous function on (−δ/r,∞). Also, note that the range of
function m is (2ᾱ2,∞) on (−δ/r,∞), and 2ᾱ2 < ξ2 < −θ1. So m(x) < −θ1 gives x > x5,
where

x5 = − β2β̄2

2r(θ1 + 2ᾱ2)
− δ

r
. (35)

Also m(x) > ξ2 gives x < x6, where

x6 = β2

2r
− δ

r
. (36)

Hence, we conclude that
Y1 = (x5, x6) ∩ [a, b].

On Y2, fromV ′′/V ′ ≤ ξ2 < −θ1 and the discussions on the set Y1, we see that the minimizer in
u1 ∈ [0, 1] of Lu1,u2V is 0 and it holds that infu1∈[0,1] Lu1,u2V = L0,u2V . From V ′′/V ′ ≤ ξ2
and the discussions on X2 in the previous section, we see that the maximizer in u2 is 1 and it
holds that supu2∈[0,1] Lu1,u2V = Lu1,1V . Thus, the pair (0, 1) is the saddle point of Lu1,u2V

and we have
L0,1V (x) = 0 on Y2. (37)

Then (37) is equivalent to

(rx + δ − α2 − β2)V
′ + 1

2σ
2
2 V

′′ = 0,

which gives
V ′′

V ′ = n(x) := −2(rx + δ − α2 − β2)

σ 2
2

on Y2. (38)

Note that n(x) ≤ ξ2 gives x ≥ x6, where x6 is given in (36). Thus, we conclude that

Y2 = [x6,∞) ∩ [a, b].
On set Y3, from −2α1/σ

2
1 < −θ1 ≤ V ′′/V ′, we have 1

2σ
2
1 V

′′ + α1V
′ < 0 and

û1,V = − β1

σ 2
1 (V

′′/V ′)+ 2α1
≤ − β1

σ 2
1 (−θ1)+ 2α1

= 1

2
.

So the minimizer in u1 ∈ [0, 1] of Lu1,u2V is 1 and we conclude that infu1∈[0,1] Lu1,u2V =
L1,u2V on Y3. Also, from ξ2 < −θ1 ≤ V ′′/V ′ and the discussions on X1 in the previous
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section, we see that the maximizer in u2 ∈ [0, 1] of Lu1,u2V is û2,V . Thus, we conclude that
the pair (1, û2,V ) is the saddle point of Lu1,u2V and V solves L1,û2,V V (x) = 0, i.e. (22) on Y3.
So

V ′′

V ′ = h(x) on Y3,

where h is given in (23). The inequality h(x) ≥ −θ1 is equivalent to x ≤ x5, where x5 is
defined in (35). Then we conclude that

Y3 = (−∞, x5] ∩ [a, b].
To summarize this subsection, we have

V ′′(x)
V ′(x)

= ζ(x) :=

⎧⎪⎨
⎪⎩
h(x), x ∈ Y3 = (−∞, x5] ∩ [a, b],
m(x), x ∈ Y1 = (x5, x6) ∩ [a, b],
n(x), x ∈ Y2 = [x6,∞) ∩ [a, b],

(39)

where n, m, and h are given in (38), (34), and (23). Note that h(x5) = m(x5) = −θ1 and
m(x6) = n(x6) = ξ2. So ζ is a continuous function on [a, b]. Obviously, ζ is a decreasing
function.

Theorem 5. If θ1 + ξ2 < 0, β1 < 0, and β2 > 0, then the value function of the game is a
decreasing C2 function given by

V (x) =
∫ b
x

exp{∫ u
a
ζ(v) dv} du∫ b

a
exp{∫ u

a
ζ(v) dv} du

for x ∈ [a, b],

and the Nash equilibrium strategy is a feedback control associated with the risk exposure
functions given by

(u∗
1(x), u

∗
2(x)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1,

β2

σ 2
2 h(x)− 2α2

)
, x ∈ Y3 = (−∞, x5] ∩ [a, b],(

0,
β2

σ 2
2m(x)− 2α2

)
, x ∈ Y1 = (x5, x6) ∩ [a, b],

(0, 1), x ∈ Y2 = [x6,∞) ∩ [a, b],
where functions ζ , h, and m are given in (39), (23), and (34), respectively, and threshold
points x5 and x6 are given in (35) and (36), respectively.

Remark 5. The Nash equilibrium strategy for insurer one in Theorem 5 shows a bang-bang
behaviour in that it takes only the extreme values 0 (full reinsurance) and 1 (no reinsurance).

5.2. The case with θ1 + ξ2 > 0

It holds that −θ1 < ξ2 in this case. Define the following sets:

Y4 =
{
x ∈ [a, b] : − θ1 <

V ′′

V ′ < ξ2

}
,

Y5 =
{
x ∈ [a, b] : ξ2 ≤ V ′′

V ′

}
, Y6 =

{
x ∈ [a, b] : V

′′

V ′ ≤ −θ1

}
.

We find these sets as follows.
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On set Y4, from −θ1 < V ′′/V ′ and the discussions on Y3 in the previous subsection, the
minimizer in u1 ∈ [0, 1] of Lu1,u2V is 1 and it holds that infu1∈[0,1] Lu1,u2V = L1,u2V . From
V ′′/V ′ < ξ2 and the discussions on Y2, the maximizer in u2 ∈ [0, 1] is 1 and

sup
u2∈[0,1]

Lu1,u2V = Lu1,1V.

So the pair (1, 1) is the saddle point of Lu1,u2V . Also V solves L1,1V (x) = 0, i.e. (27) on Y4.
Thus,

V ′′(x)
V ′(x)

= k(x),

where k is given in (28). Since inequality k(x) < ξ2 gives x > x3, where x3 is given in (29),
and −θ1 < k(x) gives x < x7, where

x7 = σ 2
2 θ1

2r
+ α2 + β2

r
− δ

r
, (40)

so we obtain
Y4 = (x3, x7) ∩ [a, b].

On Y5, from ξ2 ≤ V ′′/V ′ and the discussions on X1 in the previous section, the maximizer
in u2 ∈ [0, 1] of Lu1,u2V is û2,V and it holds that supu2∈[0,1] Lu1,u2V = Lu1,û2,V V . From
−θ1 < ξ2 ≤ V ′′/V ′ and the discussions on Y3 in the previous subsection, we see the minimizer
in u1 ∈ [0, 1] is 1 and it holds that infu1∈[0,1] Lu1,u2V = L1,u2V . So we conclude that (1, û2,V )

is the saddle point of Lu1,u2V and V solves L1,û2,V V = 0, i.e. (22) on Y5. Thus,

V ′′(x)
V ′(x)

= h(x) on Y5,

where h is given in (23). Note that inequality ξ2 ≤ h(x) gives x ≤ x3, where x3 is given in
(29). Thus,

Y5 = (−∞, x3] ∩ [a, b].
On Y6, from V ′′/V ′ ≤ −θ1 and the discussions on Y1 in the previous subsection, the

minimizer in u1 ∈ [0, 1] is 0 and it holds that infu1∈[0,1] Lu1,u2V = L0,u2V . From V ′′/V ′ ≤
−θ1 < ξ2 and the discussions on X2 in the previous section, the maximizer in u2 ∈ [0, 1] is 1
and it holds that supu2∈[0,1] Lu1,u2V = Lu1,1V . So we conclude that (0, 1) is the saddle point
of Lu1,u2V and V solves L0,1V = 0, i.e. (37) on Y6. Then it holds that

V ′′(x)
V ′(x)

= n(x) on Y6,

where n is given in (38). Inequality n(x) ≤ −θ1 gives x ≥ x7, where x7 is given in (40). Thus,

Y6 = [x7,∞) ∩ [a, b].
So we have

V ′′(x)
V ′(x)

= ϑ(x) :=

⎧⎪⎨
⎪⎩
h(x), x ∈ Y5 = (−∞, x3] ∩ [a, b],
k(x), x ∈ Y4 = (x3, x7) ∩ [a, b],
m(x), x ∈ Y6 = [x7,∞) ∩ [a, b],

(41)

where functions h, k, and n are given in (23), (28), and (38). Noting that k(x3) = h(x3) = ξ2
and k(x7) = n(x7) = −θ1, we see that ϑ is a continuous and decreasing function on [a, b].

https://doi.org/10.1017/apr.2016.69 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.69


Quadratic-linear diffusion game 1179

Theorem 6. If θ1 + ξ2 > 0, β1 < 0, and β2 > 0, then the value function of the game is a
decreasing C2 function given by

V (x) =
∫ b
x

exp{∫ u
a
ϑ(v) dv} du∫ b

a
exp{∫ u

a
ϑ(v) dv} du

for x ∈ [a, b],

and the Nash equilibrium strategy is a feedback control associated with the risk exposure
functions given by

(u∗
1(x), u

∗
2(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1,

β2

σ 2
2 h(x)− 2α2

)
, x ∈ Y5 = (−∞, x3] ∩ [a, b],

(1, 1), x ∈ Y4 = (x3, x7) ∩ [a, b],
(0, 1), x ∈ Y6 = [x7,∞) ∩ [a, b],

where functions ϑ and h are given in (41) and (23), and threshold points x3 and x7 are given
in (29) and (40), respectively.

5.3. The case with ξ1 + ξ2 = 0

In this case, we observe that

−θ1 = ξ2 = n(x7) = k(x7) = k(x3) = h(x3) = h(x5) = m(x5) = m(x6) = n(x6),

and it holds that x3 = x5 = x6 = x7. So the two insurers share a common threshold point. We
then let

V ′′(x)
V ′(x)

= η(x) :=
{
h(x), x ∈ (−∞, x3] ∩ [a, b],
n(x), x ∈ (x3,∞) ∩ [a, b], (42)

where functions h and n are given in (23) and (38), and obtain the following theorem.

Theorem 7. If θ1 + ξ2 = 0, β1 < 0, and β2 > 0, then the value function of the game is a
decreasing C2 function given by

V (x) =
∫ b
x

exp{∫ u
a
η(v) dv} du∫ b

a
exp{∫ u

a
η(v) dv} du

for x ∈ [a, b],

and the Nash equilibrium strategy is a feedback control associated with the risk exposure
functions given by

(u∗
1(x), u

∗
2(x)) =

⎧⎨
⎩

(
1,

β2

σ 2
2 h(x)− 2α2

)
, x ∈ (−∞, x3] ∩ [a, b],

(0, 1), x ∈ (x3,∞) ∩ [a, b],
where the functions η and h are given in (42) and (23), and x3 is given in (29).

6. Examples and discussions

In this section we give three numerical examples and some discussions. We also present
concluding remarks.
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Figure 1: The case with ξ1 + ξ2 < 0, β1 > 0, and β2 > 0 in Theorem 2.

Figure 2: The case with ξ1 + ξ2 > 0, β1 > 0, and β2 > 0 in Theorem 3.

Example 1. In this example, we set the parameters as follows: a = −10, b = 5, r = 0.1, α1 =
1.5, α2 = −2.5, β1 = 2.5, β2 = 1.5, δ = 0.1, σ1 = 2, and σ2 = 1.5. So ξ1 + ξ2 = −0.1806,
x1 = −7.5984, and x2 = −3.1983. The value function and the Nash equilibrium strategy given
in Figure 1 are calculated using the results in Theorem 2. We see that the parameter settings
in this example seem to be more advantageous for insurer one. The value function in Figure 1
reflects this observation. In fact, one can see that the value function, i.e. the probability for
insurer two to win under the Nash equilibrium strategy, is low on a large sub-interval of (a, b).

Example 2. In this example, we set the parameters as follows: a = −30, b = 40, r = 0.1,
α1 = 0.3, α2 = 0.5, β1 = 0.5, β2 = 0.7, δ = −0.2, σ1 = 2, and σ2 = 3. So ξ1 + ξ2 = 0.4639,
x3 = −6.2778, and x4 = 23.8750. The value function and the Nash equilibrium strategy
are given in Figure 2 and they are calculated using Theorem 3. The parameter settings in
this example seem to be fairly even for each insurer. The value function exhibits a somewhat
symmetric pattern in the interval (a, b). The value function has one reflection point at x0 =
(α2 +β2 −α1 −β1 − δ)/r = 6. The function is concave below the reflection point and convex
above it.

Example 3. In this example, we set the parameters as follows: a = −5, b = 10, r = 0.1,
α1 = 1.5, α2 = −2.5, β1 = −2.5, β2 = 1.5, δ = 0.1, σ1 = 2, and σ2 = 1.5. So
θ1 + ξ2 = −2.0556, x5 = 0.8367, and x6 = 6.5. The value function and the Nash equilibrium
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Figure 3: The case with θ1 + ξ2 < 0, β1 < 0, and β2 > 0 in Theorem 5.

strategy are given in Figure 3 which are calculated using Theorem 5. The risk exposure function
of insurer one has a jump at x5. The value function has one reflection point at

x0 = −β2β̄2

4rᾱ2
− δ

r
= 1.25.

From the explicit results, we observe that for each insurer the Nash equilibrium strategy has
a unique reinsurance threshold point (provided that the threshold is within the target levels a
and b). The threshold point separates the interval (a, b) into a no-reinsurance region and a
reinsurance region. For example, in the symmetric parameter case with ξ1 + ξ2 < 0, insurer
one has a unique threshold at x1. That is, when the surplus difference is below this level, the risk
exposure is equal to 1 and no reinsurance is bought; and when the surplus difference is above
the level, the risk exposure level is less than 1 and some reinsurance is bought. We also observe
that the Nash equilibrium strategy for each insurer is monotone in the surplus difference. The
value function has at most one reflection point (where concavity changes), and the function
can be convex (see Figure 1), concave or S-shaped (see Figures 2 and 3) on the interval (a, b).
Another interesting observation is that in the asymmetric parameter case (β1 < 0 and β2 > 0),
the Nash equilibrium strategy for insurer one shows a bang-bang property, i.e. the risk exposure
function takes only the values 0 and 1, while the risk exposure function of insurer two is always
continuous; and in the symmetric parameter case (β1 > 0 and β2 > 0), all risk exposure
functions are continuous.

In this paper we focused on two parameter cases – a symmetric case and an asymmetric case.
Using parameter classifications (depending on the signs of β1, β2, ξ1 + ξ2, and θ1 + ξ2), the
game is solved with explicit solutions given in each case. We note that under other parameter
cases, e.g. β1 < 0 and β2 < 0, the Nash equilibrium strategy for insurer two may take the
value 0 on some interval and a modified verification theorem is needed. However, the main
methodology in this paper is still applicable for these parameter cases and we omit them. We
also note that the two insurance surplus processes are uncorrelated in our model. In the model
with correlation, the game problem becomes more difficult. In some parameter cases the game
may not be solvable and the value function may not exist. We leave these problems for future
research.
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