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SUMMARY
This paper investigates the efficiency and properties of limit
cycle walking, running, and skipping of a planar, active,
telescopic-legged rimless wheel. First, we develop the robot
equations of motion and design an output following control
for the telescopic-legs’ action. We then numerically show
that a stable walking gait can be generated by asymmetrizing
the impact posture. Second, we numerically show that a
stable running gait can be generated by employing a simple
feedback control of the control period, and compare the
properties of the generated running gait with those of the
walking gait. Furthermore, we find out another underlying
gait called skipping that emerges as an extension of the
walking gait. Through numerical analysis, we show that the
generated skipping gaits are inherently stable and are less
efficient than the other two gaits.

KEYWORDS: Gait generation; Limit cycle walking;
Running; Skipping; Telescopic-legged rimless wheel.

1. Introduction
Legged robots based on passive dynamics are called “limit-
cycle walkers” and are believed to be the leading candidate
for achieving natural, efficient, and human-like legged
locomotion robots. Stable gaits of limit-cycle walkers are
generated as a limit cycle including a state jump caused by
the collision of the stance-leg exchange. It is well known
that limit-cycle walkers including passive-dynamic bipeds1

can easily generate stable gaits by setting suitable system
parameters and initial conditions. This is because the walking
gaits are inherently stable. The underlying self-stabilization
principle is, however, still unclear and is expected to be
mathematically proved.

Robotic dynamic running is also one of the most active
topics in the field of the limit-cycle walkers. Limit-cycle
running is necessary for expanding the potentiality of
efficient legged locomotion that adopts various unknown
environments while changing the gait patterns. Unlike the
walking gaits, however, the running gaits include flight
phases in the limit cycle, and generating stable running gaits
is thus more difficult due to the highly dynamic motion.

In human walking, the change rate of metabolic energy
cost radically changes to decrease when exceeding the
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highest walking speed; this is produced by changing the
gait from walking to running.2 It is believed that, in high-
speed locomotion, humans prefer running to walking for
energy saving. Ponies also change their gait from walking
to trotting or to galloping as the moving speed increases.
At every transition point, the change rate of metabolic cost
dramatically decreases. Our study on limit-cycle runners
is motivated by the desire to achieve more efficient and
more high-speed legged locomotion, and by the policy
that changing to running is more natural than maintaining
inefficient high-speed walking.

Robotic dynamic runners usually utilize the compliance
of the lower limb.3–5 Unlike previous studies, however,
the authors consider a robotic runner without having leg
compliance; the robot achieves active dynamic running only
by the effect of high-speed telescopic-legs’ actuation. Using
this model, we try to generate high-speed running gaits that
emerge as a natural extension of the walking gait.

Several methods for generating level gaits of limit-cycle
walkers have been proposed and have successfully been
applied.9 It has already been shown theoretically and experi-
mentally that achieving efficient level walking is not difficult
if negative actuator work can be avoided. We have also pro-
posed a novel method for generating high-speed level gaits
of limit-cycle walkers utilizing the telescopic-legs’ action.6, 7

The primary purpose of this approach is to make overcoming
the potential barrier at midstance easy by tilting the robot’s
impact posture forward. The robot lengthens the stance leg
while shortening the swing leg during the stance phase for
creating the next impact posture, and the mechanical energy
is accordingly restored. This approach is very useful for
generating high-speed level gaits of the telescopic-legged
rimless wheels as well as bipedal walkers.8 The ground
reaction force, however, often becomes negative in return for
the high-speed stance-leg extension.6 The robot would jump
or should change motion to the running gait in this case.

In this paper, we deal with the model of a telescopic-legged
rimless wheel that consists of eight identical telescopic
legs for analysis. We first describe the robot equations of
motion and outline the walking gait generation based on
asymmetrization of the impact posture. Next, we numerically
show that a stable running gait can be generated by shortening
the control period for the telescopic-legs’ action, that the
generated gait is inherently unstable, and that a feedback
control is thus necessary for stabilization. Although there are
many criteria for the evaluation of a running gait, we evaluate
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Fig. 1. Model of telescopic-legged rimless wheel.

it in terms of the walking speed and specific resistance, and
compare the efficiency with that of the walking gait. The
numerical analysis also shows that there is a gap between the
stable domain of the walking gait and that of the running
gait. We then investigate the potentiality of another type
of locomotion in the gap aiming at the skipping which is
known as a style of gait movement involving a combination
of walking and jumping. The properties and mechanisms of
skipping have been studied in various fields.10, 11 However,
there are almost no studies on skipping in the field of robotics.
We then numerically show that a stable skipping gait emerges
by shortening the control period of the telescopic-legs’
action, and compare the properties of the generated skipping
gait with those of the other two gaits. Throughout the gait
analysis, we classify the three gaits from the efficiency and
inherent stability points of view.

This paper is organized as follows. In Section 2, we
introduce the model of a planar telescopic-legged rimless
wheel and design an output following control for the
telescopic-legs’ action. Generating a level walking gait is
also described in this section. In Section 3, we numerically
show that a stable running gait can be generated by employing
a simple feedback control of the desired settling time, and
compare the properties of the generated running gait with
those of the walking gait. In Section 4, we numerically
show that an inherently stable skipping gait can be generated
without any additional control laws, and compare the
properties of the generated skipping gait with those of the
other two gaits. Section 5 concludes this paper and describes
future research directions.

2. Modeling and Control
This section describes motion equations of the robot focusing
on the phase sequence in the typical running gait because
the walking motion can be easily derived from the running
motion only by loss of the flight phase. Equations of the
skipping gait are described in Section 4. At the end of this
section, a typical walking gait is generated using the derived
equations.

2.1. Robot model and its equations of motion
This paper deals with a planar telescopic-legged rimless
wheel as shown in Fig. 1. This robot consists of eight

identical telescopic legs whose mass is m [kg], and has a
“hip” mass of mH [kg] at the central position. Every leg has
a control force for the telescopic-leg’s actuation. We assume,
however, that only two control forces: u1 of the stance-leg
and u2 of the previous one, are available, and that other six
legs are mechanically locked. Let q ∈ R

5 be the generalized
coordinate vector defined as

qT = [x z θ L1 L2]. (1)

Here, (x, z) is the tip position of the stance leg, θ rad is the
angular position of the stance leg with respect to vertical, and
L1 [m] and L2 [m] are the lengths of the stance and previous-
stance legs. We conduct precise numerical simulations by
taking the contracting motion of the previous stance-leg into
account. This robot can generate a stable and high-speed
walking gait on level ground only by extending the stance leg
during stance phases while contracting the previous stance-
leg.7 The primary purpose of this approach is to asymmetrize
the impact posture to make overcoming the potential barrier
at midstance easy. The mechanical energy is consequently
restored. This approach is also effective in the bipedal case.8

We assume the following conditions.

� The collision of the next stance-leg with the ground is
inelastic.

� The contact point of the stance leg with the ground does
not slip or bounce during stance phases.

� The control of the telescopic legs is completed before next
collisions. (Settling-time condition)

� The leg lengths except those of the stance and previous-
stance legs are maintained the shortest length, Ls [m].

2.1.1. Stance phase. The robot’s dynamic equation during
stance phases becomes

M(q)q̈ + h(q, q̇) = Su + JT λ, (2)

where λ ∈ R
2 is the Lagrange undetermined multiplier

vector, and Su ∈ R
5 is the control input vector which is

detailed as

Su =

⎡
⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎦

[
u1

u2

]
. (3)

The velocity conditions of the tip position of the stance leg
are given by ẋ = 0, ż = 0, and these are then summarized as

J q̇ = 02×1, J :=
[

1 0 0 0 0
0 1 0 0 0

]
. (4)

We can solve Eqs. (2) and (4) for λ as

λ = −( J M(q)−1 JT )−1 J M(q)−1(Su − h(q, q̇)). (5)

The first element of λ ∈ R
2 represents the horizontal ground

reaction force and the second the vertical ground reaction
force. We can detect the instant of take-off by observing the
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Fig. 2. Configuration at impact.

sign of the second element; the robot starts jumping when
the value becomes zero.

2.1.2. Flight phase. During flight phases, the holonomic
constraint force becomes zero and the dynamic equation
becomes the same as Eq. (2) where λ = 02×1.

2.1.3. Collision phase. As previously mentioned, we
assumed that the control of the telescopic legs is completed
before next collision, and that the next stance-leg length is
kept Ls [m]. Figure 2 shows the configuration at impact. The
stance leg is on the ground in the walking or skipping gaits
as shown in this figure, whereas it is floating in the air in
the running gait. The inelastic collision with the ground is
modeled as

M(θ−)q̇+ = M(θ−)q̇− − J I (θ−)T λI , (6)

J I (θ−)q̇+ = 04×1. (7)

In the following, the detail of J I (θ−) ∈ R
4×5 is described.

As shown in Fig. 2, (x+, z+) is the tip position of the stance
leg just after impact and its time derivatives must be zero.
The velocity constraint conditions are then specified as

d

dt
(x− + Le sin θ− + Ls sin(α − θ−)) = 0, (8)

d

dt
(z− + Le cos θ− − Ls cos(α − θ−)) = 0, (9)

where Le [m] is the desired terminal length and Le > Ls .
These equations are arranged as

ẋ+ + Leθ̇
+

cos θ− − Lsθ̇
+

cos(α − θ−) = 0, (10)

ż+ − Leθ̇
+

sin θ− − Lsθ̇
+

sin(α − θ−) = 0. (11)

Here, note that ẋ+ �= d
dt

(x+) = 0 and ż+ �= d
dt

(z+) = 0
because (x, z) is not updated. ẋ+ in Eq. (10) and ż+ in Eq. (11)
are the tip velocities just after impact of the previous stance
leg. These are reset to zero after q̇+ is derived. We also
assume that the prismatic joints are mechanically locked at

impact, i.e.,

L̇+
1 = 0, (12)

L̇+
2 = 0. (13)

J I (θ−) is then formulated by summarizing the four
conditions in Eqs. (10)–(13) as

J I (θ−) =

⎡
⎢⎢⎢⎣

1 0 Le cos θ− − Ls cos(α − θ−) 0 0

0 1 −Le sin θ− − Ls sin(α − θ−) 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎦.

(14)

By solving Eqs. (6) and (7) for q̇+, we get

q̇+ = (I5 − M(θ−)−1 J I (θ−)T ( J I (θ−)M(θ−)−1

J I (θ−)T )−1 J I (θ−))q̇−. (15)

Here, we must replace the first and the second elements
of q̇+ with zeros because ẋ+ and ż+ are the tip velocities
of the previous stance leg and are not zeros as previously
mentioned. Accordingly, the positional vector just after
impact, q+, must be reset to

q+ =

⎡
⎢⎢⎢⎣

0
0

θ− − α

Ls

Le

⎤
⎥⎥⎥⎦ . (16)

2.2. Output following control for telescopic-leg motion
We choose L1 and L2 as the control outputs of the system.
These can be written as

y :=
[
L1

L2

]
= ST q. (17)

The second-order derivative of y with respect to time
becomes

ÿ = ST M(q)−1(Su − h(q, q̇) − JT λ), (18)

where λ is of Eq. (5) or 02×1. During stance phases, by
substituting Eq. (5) into Eq. (18) and arranging it, we obtain

ÿ = ST M(q)−1Y (q) (Su − h(q, q̇)) , (19)

Y (q) := I5 − JT ( J M(q)−1 JT )−1 J M(q)−1. (20)

Then, we can consider the following control input for
achieving y → yd(t):

u = A(q)−1(v + B(q, q̇)), (21)

v = ÿd(t) + KD( ẏd(t) − ẏ) + KP ( yd(t) − y,) (22)

where KP ∈ R
2×2 and KD ∈ R

2×2 are the PD-gain matrices
and are positive diagonal matrices. A(q) ∈ R

2×2 and
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B(q, q̇) ∈ R
2 are defined as

A(q) := ST M(q)−1Y (q)S, (23)

B(q, q̇) := ST M(q)−1Y (q)h(q, q̇). (24)

During flight phases, we can formulate the control input as
the above equations by replacing matrix Y (q) with I5.

2.3. Desired-time trajectory
Here, we define the basic parameters, terms, and their
notations used for specifying the output following control.

Definition 1 Let t [s] be the time parameter. This is reset at
every instant of the stance-leg exchange and is nonnegative.

Definition 2 Time interval T [s], which is the steady value
of the interval from the instant of one stance-leg exchange to
the next, is called the “step period.”

Definition 3 The robot starts locomotion from an initial
condition at 0 s; this is defined as the 0th collision. The next
collision for stance-leg exchange is the 1st collision, and the
motion between the 0th and 1st collisions is called the “1st
step.” The subsequent collisions and steps are contextually
counted.

Definition 4 Let Tset [s] be the desired settling time for
output following control of the two legs. We assume that
T ≥ Tset holds in a steady gait. This is called the “settling-
time condition.”

The desired-time trajectories for smooth telescopic-legs’
motion can be formulated as 5-order functions of time as
follows:

L1d(t) =
{
a5t

5 + a4t
4 + a3t

3 + a0, (0 ≤ t < Tset),
Le, (t ≥ Tset),

(25)

L2d(t) = Ls + Le − L1d(t). (26)

The boundary conditions are given by L1d(0+) = Ls ,
L̇1d(0+) = 0, L̈1d(0+) = 0, L1d(Tset) = Le, L̇1d(Tset) = 0,
and L̈1d(Tset) = 0. The coefficients a5, a4, a3 and a0 are then
determined as

a5 = 6(Le − Ls)

T 5
set

, a4 = −15(Le − Ls)

T 4
set

,

a3 = 10(Le − Ls)

T 3
set

, a0 = Ls.

2.4. Walking gait generation
Since the detailed analysis of the walking gait has already
been reported in refs. [6–8], here we’d like to simply observe
the typical motion.

Figure 3 shows the simulation results of a steady walking
gait, where Tset = 0.40 s. Here, (a) shows the lengths of the
telescopic legs, (b) the angular position, and (c) the vertical
ground reaction force. The physical and control parameters
were chosen as listed in Table I. The leg mass, m, was
chosen sufficiently smaller than the hip mass, mH , so that the
contracting motion of the previous stance leg does not affect
the motion. Figure 4 shows the stick diagram for the three

Table I. Parameter settings.

mH 10.0 kg
m 0.10 kg
a 0.30 m
Ls 1.00 m
Le 1.15 m

α π/4 rad
KD 100I2

KP 2500I2

steady steps, and we can confirm that the impact posture is
successfully tilted forward by the control. Figure 3(b) shows
that the angular position just after impact, θ+, is negative and
the potential barrier thus remains. As discussed in ref. [8],
the potential barrier is necessary for controlling the excessive
forward acceleration and functions as a brake. Figure 3(c)
shows that there exist indifferentiable points during stance
phases. This instant is equal to Tset [s], and the robot begins
to fall down as a 1-DOF rigid body.

The authors investigated the properties of the generated
walking gait and the effects of forefeet on the efficiency in
detail. Here are the main results reported in refs. [6–8].
� The gait efficiency is monotonically improved as the

impact posture is more asymmetrized.
� The problems are that the vertical ground reaction force

becomes negative or the robot begins to jump, and that the
time margin of the control period reaches the limit as the
walking speed increases.

� The geometric effect of the attached forefeet significantly
promotes asymmetrizing the impact posture, and the
efficiency of the generated walking gait is dramatically
improved. Also, the effect monotonically increases as the
foot length increases.

� A biped robot with telescopic legs can also generate high-
speed level gaits by asymmetrizing the impact posture.
Adding elastic elements to the ankle joints for the purpose
of braking is effective for increasing the time margin of
the control period. The zero moment point often reaches
to the tiptoe in return for the braking, and a tiptoe motion
(forefoot weight-bearing) would emerge.

3. Running Gait Generation

3.1. Intuitive feedback control laws for stabilization
3.1.1. Control of desired settling time. We first try to
generate a stable running gait. Since there are many control
parameters, we chose and fixed the main parameters as listed
in Table I. We then adjust the desired settling time, Tset.

As described later, it is impossible to generate a stable
running gait only by adjusting Tset because the motion is
inherently unstable. We then propose a heuristic control of
the desired settling time for stabilization. Let i ≥ 0 be the
step number, and consider the following control:

Tset[i + 1] = T ∗
set − ζ (T [i] − T ∗), (27)

where i ≥ 1, ζ > 0 is the feedback gain, and T ∗
set [s] and T ∗

[s] are the target values of Tset and T . This control is based on
the tendency that the step period increases from T ∗ if Tset >

T ∗
set and decreases from T ∗ if Tset < T ∗

set. Although Tset[i]
and T [i] do not converge to their target values, this control
is very effective for stabilization to a 1-period running gait.
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Fig. 3. Simulation results of steady walking. (a) Telescopic-leg length; (b) angular position; (c) vertical ground reaction force.

Fig. 4. Stick diagram for steady walking gait.
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Fig. 5. Convergence of gait descriptors. (a) Desired settling time; (b) Step period; (c) Moving speed.

The desired trajectories are accordingly updated as fol-
lows. Let aji (j = 0, 3, 4, 5) be the coefficient of the desired
trajectory for L1d(t) corresponding to aj in Eq. (25), and they
are recalculated at ith impact of the stance-leg exchange as

a5i = 6(Le − Ls)

Tset[i]5
, a4i = −15(Le − Ls)

Tset[i]4
,

a3i = 10(Le − Ls)

Tset[i]3
, a0i = Ls.

The desired trajectories for the ith step are accordingly
determined as follows:

L
(i)
1d(t) =

{
a5i t

5 + a4i t
4 + a3i t

3 + a0i , (0 ≤ t < Tset[i]),

Le, (t ≥ Tset[i]),

(28)

L
(i)
2d(t) = Ls + Le − L

(i)
1d(t). (29)

Figure 5 plots the evolutions of (a) the desired settling time,
(b) the step period, and (c) the running speed with respect
to the step number. Again, the basic parameters were chosen
as listed in Table I, and the parameters for adjustment of Tset

were chosen as ζ = 0.50, T ∗ = 0.320 s and T ∗
set = 0.20 s.

The initial value of Tset was also chosen as Tset[0] = 0.20 s.
From the results, we can see that, although the convergence
performance is not good, a stable gait is successfully
generated in the case with the proposed feedback control. It
should also be noted that, as described later, the running speed
is more than twice the walking speed. In the case without the
feedback control, although the motion is close to the limit
cycle, the motion slowly diverges due to the instability aspect.

Figure 6 shows the simulation results of the steady running
gait following the above simulation. Here, (a) is the lengths of
the telescopic legs, (b) the angular position of the stance leg,
and (c) the vertical reaction force. We can see that L1 (L2)
is successfully controlled from Ls (Le) to Le (Ls) during the
stance and flight phases. The angular position of the stance
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Fig. 6. Simulation results of steady running. (a) Telescopic-leg length; (b) angular position; (c) vertical ground reaction force.

leg just after impact is negative, and this implies that the
impact posture is not sufficient for overcoming the potential
barrier. This property is common to the walking and running
gaits generated by the proposed output following control.
Figure 7 plots the stick diagram of the stance and next stance
legs. We can see that the flight phases emerge and the impact
postures are more tilted forward.

3.1.2. Control of desired terminal length. The desired
terminal length of the stance leg, Le, can be considered to be
another candidate of the parameter for stabilization. There is
a tendency that the step period increases with the increase
of Le around the unstable equilibrium point. Let us then

consider the following feedback control:

Le[i + 1] = L∗
e + ζ (T [i] − T ∗), (30)

where L∗
e is the target value of Le and is constant. This control

is based on a tendency that the step period decreases from
T ∗ if Le > L∗

e and increases from T ∗ if Le < L∗
e .

In this case, the desired trajectories are updated at ith
impact as follows:

L
(i)
1d(t) =

{
a5i t

5 + a4i t
4 + a3i t

3 + a0i , (0 ≤ t < Tset),
Le[i], (t ≥ Tset),

(31)
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Fig. 7. Stick diagram for steady running gait.

L
(i)
2d(t) =

{
Ls + Le[i − 1] − L

(i−1)
1d (t), (0 ≤ t < Tset),

Ls, (t ≥ Tset).

(32)

Here, note that L2(0+) = Le[i − 1] and it is then smoothly
controlled to Ls . The coefficients for the 5-order time-
dependent function: a5, a4, a3, and a0, are accordingly
updated at every instant of the stance-leg exchange as
follows:

a5i = 6(Le[i] − Ls)

T 5
set

, a4i = −15(Le[i] − Ls)

T 4
set

,

a3i = 10(Le[i] − Ls)

T 3
set

, a0i = Ls.

Figure 8 plots the evolutions of (a) the desired terminal
length, (b) the step period, and (c) the running speed with
respect to the step number. Again, the basic parameters were
chosen as listed in Table I except Le. The parameters for
adjustment of Le were chosen as ζ = 0.35, Tset = 0.20 s,
T ∗ = 0.340 s, and L∗

e = 1.15 s. The initial value of Le was
also chosen as Le[0] = 1.15 s. We can see that the generated
gait converges to a stable 1-period limit cycle while updating
Le.

This approach has also been shown to be effective. In the
following, however, we’d like to use the feedback control
of Tset only for stabilization to systematically evaluate the
properties of the walking, running, and skipping gaits under
the same rolling radius.

3.2. Efficiency analysis
3.2.1. Walking speed and specific resistance. We analyze
the efficiency of the generated running gait by changing the
target step period, T ∗. In this case, the desired settling time,
Tset, cannot be systematically changed. Figure 9 plots the
moving speed as a function of Tset. Since the leg mass is
sufficiently small compared to the hip mass, the moving
speed was approximately calculated by dividing the travel
distance of the central position of the body frame, i.e., the
position of mH , by the step period. We can see that the speed
of the generated gaits is very fast and almost monotonically
increases with the increase of Tset. As seen from the enlarged
view, however, the moving speed is not uniquely determined

with respect to Tset. This suggests that two different gaits can
be generated in accordance with the system parameters.

The energy efficiency of limit-cycle runners can be
evaluated in terms of specific resistance (SR) which is defined
as

SR := p

Mgv
, (33)

where M := mH + 8m [kg] is the robot’s total mass and p

[J/s] is the average input power which is defined as

p := 1

T

∫ Tset

0+
(|L̇1u1| + |L̇2u2|) dt. (34)

Here, SR expresses the consumed energy per unit mass and
per unit length traveled, and is a dimensionless quantity. The
smaller its value, the better the energy efficiency. Note that
the real robot consumes energy not only by actuating the
telescopic legs but also by maintaining the lengths of the
other six legs during motion. We assumed that the other six
legs are mechanically locked and they do not need any energy
supply.

Figure 10 plots the moving speed versus the SR. We can see
that there are one-to-one relationships between the moving
speed and specific resistance. It should be noted that the
faster the moving speed, the better the energy efficiency.
This implies that the change in the consumed energy is much
flatter than that in the moving speed.

3.2.2. Walking versus running. Here, we compare the
properties of the generated running gait with those of the
walking gait. Figure 11 plots the moving speeds as
the functions of Tset. We also generated the walking gaits
by using the same model and parameters by changing Tset.
The result strongly supports that the running gaits achieve
much faster than the walking gaits. The moving speed in the
running gait is very sensitive to Tset, whereas there is little
change in the walking gait although the range of Tset is wide.

Figure 12 shows the comparison of the SR. In virtual
gravity approaches, the minimum SR yields tan φ [-], where
φ rad is the virtual slope. As one of the authors showed
in ref. [12], a compass-like biped robot with semicircular
feet achieves highly efficient limit-cycle walking with an
SR of 0.01 [-] where φ = 0.01 rad. Compared with this, we
must conclude that the generated walking gaits are highly
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Fig. 8. Convergence of gait descriptors. (a) Desired terminal length; (b) step period; (c) moving speed.

inefficient. In addition, the SR in the running gait is very
sensitive to Tset, whereas there is little change in the walking
gait. It should be noted that the energy efficiency in the
running gait can be improved much better than that in the
walking gait by suitably choosing Tset.

Note that there is a gap between the running domain
and the walking one. There is a potentiality, however, that
different gaits would emerge in the blank area by modifying
the condition for detection of collision in the numerical
simulator. Let us investigate this in the next section.

4. Skipping Gait Generation

4.1. Assumptions
This section investigates the potentiality and properties of
limit-cycle skipping by using the same robot model and
control law.

Skipping gaits involve another collision of the stance leg
with the ground at the middle of the stance phase, which
is then divided into the following five phases, as shown in
Fig. 13.

(1) Stance phase I
The robot equations of motion during this phase are the
same as those of the walking gait: Eqs. (2) and (4).

(2) Flight phase
As described in Section 2.1.2, the robot begins to flight
when the vertical ground reaction force achieves zero
from positive. The robot equation of motion during this
phase is the same as Eq. (2), where λ = 02×1.

(3) Collision phase I
The first collision of the stance leg with the ground
occurs when z = 0. The conditions for the velocity
constraint at this phase are given by ẋ+ = 0 and ż+ = 0.
We should note, however, that the stance leg will begin
to shrink due to the impact force if this collision occurs
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in the middle of the output following control. We then
derive the inelastic collision models depending on the
settling-time condition.
The inelastic collision in this case is modeled as

M(qs)q̇
+
s = M(qs)q̇

−
s − JT

s λs, (35)

where J s is the Jacobian matrix derived depending on
the settling-time condition. The size of J s is not unique.
Let Ts [s] be the time of this collision. We assume that
the telescopic legs are mechanically locked in the case
of Ts ≥ Tset, i.e., the settling-time condition is met. The

conditions of L̇+
1 = 0 and L̇+

2 = 0 are then added, and
J s in Eq. (35) becomes

J s =

⎡
⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎦ , (36)

which should satisfy

J s q̇+
s = 04×1. (37)
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Fig. 13. Phase sequence in skipping gait.
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Fig. 15. Stick diagram for steady skipping gait.
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Fig. 16. Simulation results of skipping. (a) Telescopic-leg length; (b) magnified view of (a); (c) vertical ground reaction force.

Whereas in the case of Ts < Tset, we assume that the
telescopic legs keep driving and are not mechanically
locked. J s in Eq. (35) then becomes

J s =
[

1 0 0 0 0
0 1 0 0 0

]
, (38)

which should satisfy

J s q̇+
s = 02×1. (39)

By the effect of the output following control, however,
the lengths of the telescopic legs are controlled to Le

and Ls again for a short time.

(4) Stance phase II
All equations are the same as those of stance phase I.

(5) Collision phase II (Stance-leg exchange)
The second collision occurs when the next stance leg
hits the ground. All equations for the inelastic collision
model are the same as those of the walking gait in
Section 2.1.3: Eqs. (6) and (7).

4.2. Typical gait
We first try to generate a stable skipping gait. Unlike running,
a skipping gait emerges only by conducting the output
following control with a suitable settling of Tset. Figure 14
shows the simulation results of the steady skipping gait
where Tset = 0.25 s. Here, (a) represents the lengths of the
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telescopic-legs, (b) the angular position, and (c) the vertical
ground reaction force. Figure 15 shows the stick diagram
for the three steady steps. Again, the physical parameters
were chosen as the same as those in the previous sections. In
this case, the first collision of the stance leg with the ground
(collision phase I) occurs more than 0.20 s after the stance-
leg exchange (collision phase II). Therefore, the telescopic
legs are mechanically locked and the robot lands on the
ground as a 1-DOF rigid body. We can see that a skipping
gait is successfully generated in accordance with the phase
sequence of Fig. 13.

Figure 16 shows the simulation results of the steady
skipping gait where Tset = 0.31 s. Here, (a) represents the
lengths of the telescopic legs, (b) the magnified view of L1

in (a), and (c) the vertical ground reaction force. In this case,
the first collision of the stance leg occurs in the middle of
the output following control, i.e. Ts < Tset, and the telescopic
legs are thus unlocked at the instant. From (b), we can see
that the stance leg immediately begins to start shrinking just
after impact but it returns to Le = 1.15 m before the next
impact. Although we omit the details, the previous stance leg
also a bit overshoots the nominal length, Ls = 1.0 m, due to
the effect of the impact force but it returns to Ls soon. (c)
also shows that the time change of vertical ground reaction
force is similar to that of Fig. 14 (c) but it is affected by the
control force of the stance leg, u1, for pushing back just after
the first collision.

4.3. Efficiency analysis
We evaluate the gait efficiency in terms of the walking speed
and SR. Figure 17 plots the moving speeds of the three dif-
ferent gaits as functions of Tset. We can see that the skipping
gaits emerge as an extension of the walking gaits, and that the
moving speed monotonically decreases with the decrease of
Tset. In addition, the skipping gaits unlocked at the collision
phase I emerge near the boundary with the walking gait.

Figure 18 plots the SR of the three different gaits as
functions of Tset. We can see that the SR in the walking
and skipping gaits monotonically increases with the decrease
of Tset and worsens more rapidly after the gait transition.
From the magnified view, we can also see that the increasing
tendency of the SR with respect to the decrease of Tset in the
unlocked case is more rapid than that in the locked case. This
is caused by the additional control force needed for extending
the stance leg after shrinking due to the first collision.

We must conclude that the efficiency of the skipping gaits
is the worst. Homogeneity of the walking and skipping gaits,
however, creates an understanding that the stable domain of
limit-cycle walking is dramatically extended by considering
the condition of limit-cycle skipping.

Note that the range of Tset (stable domain) of the skipping
gait overlaps with that of the running gait. Note also that, as
previously described, the stable running gaits could not be
generated without the feedback control of Tset. These imply
that the running gait is different in properties from the other
two gaits. Two factors make the difference. One is the initial
angular velocity. A skipping gait can also be generated with
the feedback control of Tset if the robot starts from a slower
angular velocity. If we set the initial angular velocity to a
sufficiently fast one, the gait converges to a stable running
gait of the same Tset. The other is the inherent stability.
Limit cycle gaits that are inherently stable naturally emerge
under the suitable parameter settings, whereas those that are
inherently unstable need specialized control techniques for
stabilization. If the three different gaits can be dealt with
from a unified standpoint, the design of a controller for
adaptation to diverse situations would be formulated. More
investigations are necessary.

5. Conclusion and Future Work
In this paper, we investigated the properties of the walking,
running, and skipping gaits of the telescopic-legged rimless
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Fig. 18. Specific resistances as function of Tset.

wheel. It was shown that the proposed method based on
robot’s forward-tilting impact posture can also be used for
generating the other two gaits only by adjustment of the
desired settling time. Through the detailed gait analysis,
we have learned two important features. One is that the
generated walking and skipping gaits are inherently stable
but the running gait is unstable only with the output following
control. The other is that, by considering skipping, the stable
domain of the walking gait is dramatically extended but the
gait efficiency grows worse in terms of the moving speed and
SR.

It would be expected that more various and adaptive gaits
are generated by applying a unified controller taking the
three gaits’ properties into account. For this achievement, it
is necessary to deeply understand the difference in stability
between the running gait and the other two gaits. Improved
design of limit-cycle runners is also left as an important
subject to be investigated. There is a probability of making
the running gait inherently stable and more energy-efficient
by appropriately modifying the robot’s body shape and
mechanisms. Incorporating springs is a solution candidate
for improving the energy-efficiency. Equivalent control laws
using passive compliance mechanisms and the effect on the
gait properties should also be investigated in the future.
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