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Sound propagation at small scales under
continuum and non-continuum transport

By N. G. HADJICONSTANTINOU† AND O. S IMEK
Mechanical Engineering Department, Massachusetts Institute of Technology, 77, Massachusetts Avenue,

Room 3-364, Cambridge, MA 02139, USA

(Received 19 February 2003 and in revised form 15 April 2003)

Using an observation by Lamb, namely that continuum sound wave propagation
in sufficiently narrow channels is quasi-steady and isothermal, we obtain analytical
predictions for the propagation of sound waves at small scales under non-continuum
transport. We also extend Lamb’s approach to include the effects of inertia and heat
conduction for wave propagation at larger characterisitc scales descibed by continuum
transport (no-slip and slip-flow regimes). Our theoretical predictions are compared to
molecular-based direct Monte Carlo solutions of the Boltzmann equation. Very good
agreement is found between theory and numerical solutions.

1. Introduction
In this paper we investigate wave propagation in channels with transverse

dimensions at the micrometre and submicrometre scale. Our study is motivated
by the recent interest in micro- and nano-scale fluid mechanics as well as the scientific
challenges presented by the breakdown of continuum theory at these small scales
(Ho & Tai 1998). In gas flows, the deviation from continuum behaviour is quantified
by the Knudsen number, Kn= λ/H , where λ is the molecular mean free path, and
H is a characteristic hydrodynamic lengthscale. Although non-continuum effects are
always present near the walls, when these non-continuum regions are small (Kn <∼ 0.1),
accurate macroscopic fields can still be obtained in the bulk of the flow using the
continuum description subject to slip boundary conditions (Cercignani 1988); as a
result, this regime is referred to as slip flow. For Kn >∼ 0.1, the continuum description is
known to fail (Cercignani 1988); the regime 0.1 <Kn< 10 is known as the transition
regime because it represents a transition between diffusive (continuum) transport for
Kn <∼ 0.1, and ballistic transport (free molecular flow) for Kn>∼ 10. In this paper,
we focus on two-dimensional channels, which are the predominant building blocks
in today’s microfabrication techniques, although this work can easily be extended
to ducts of arbitrary cross-sectional shape. The characteristic lengthscale H in this
context is the channel height.

In Hadjiconstantinou (2002) we have shown that Lamb’s continuum treatment of
narrow channels (Crandall 1926) can be extended to describe wave propagation in the
transition regime. Lamb’s approach can be applied to narrow systems, that is systems
for which the diffusion length based on the oscillation frequency is much larger than
the transverse dimension (δ =

√
2ν/ω/H � 1 where ν is the kinematic viscosity and ω is

the wave angular frequency), and is based on the realization that times long compared
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400 N. G. Hadjiconstantinou and O. Simek

to this system’s diffusive timescale are still very short compared to the characteristic
time of oscillation. This allows the coarse graining of the time description to the
diffusive timescale of the system; in the resulting description, the effects of inertia
and thermal conduction are negligible and the system response is quasi-static and
isothermal, that is the wave propagation characteristics of the channel are governed
by its steady-state bulk-flow response. Under these simplifications, analytical solutions
for wave propagation can be obtained without explicit knowledge of the flow field
inside the channel, which requires solution of the Boltzmann equation.

In this paper we use a kinetic formulation to derive more general expressions for
the propagation constant in all Knudsen regimes as well as kinetic criteria for the
range of applicability of each theoretical prediction. Using this formulation we show
that the long-wavelength approximation is always valid in the narrow channel regime
provided the wave frequency is small compared to the molecular collision frequency.
This generalized narrow channel theory reduces to the slip-flow description and
finally the no-slip result of Lamb as H increases. However, as H increases, the narrow
channel requirement is not satisfied at high frequencies, that is heat conduction and
fluid inertia become important. We have thus extended Lamb’s method to include the
effects of fluid inertia and heat conduction in the continuum (slip-flow and no-slip)
regime. Similarly to Lamb’s method, our approach considers steady-state responses,
and the terms ‘wave propagation’ and ‘complex propagation constant’ used in this
paper refer to the steady-state response of the system under oscillatory forcing. All
our theoretical results compare very well with direct Monte Carlo solutions of the
Boltzmann equation (Bird 1994).

The basic assumption behind our approach is that the pressure is constant across
the channel. Thus, the velocity and temperature perturbation fields are decoupled, the
former responding to the axial pressure gradient and the latter to temporal variations
of pressure. This decoupling of the effects of flow and temperature was utilized
in the past to describe wave propagation in porous media (for a critical review
see Stinson 1991); despite the relatively small pore sizes (r > 10 µm), none of the
previous work, including Stinson’s, has incorporated non-continuum phenomena. A
generalization of these top-down approaches to a method that is essentially equivalent
to the extension of Lamb’s method used here can be found in Stinson (1991). Stinson
also numerically investigates the limits at which Kirchhoff’s solution separates into a
thermal conductivity contribution and a flow resistance contribution without, however,
making a connection to Lamb’s original ideas. It is this reformulation that holds the
key to extending the theory to the transition and ballistic regimes.

2. Slip-flow theory
Solutions of the Boltzmann equation (Cercignani 1988) show that for Kn<∼ 0.1

accurate hydrodynamic fields can be obtained in the bulk of the flow (outside
the Knudsen layer) by using the continuum description subject to slip boundary
conditions. For a stationary wall, the velocity-slip boundary condition is given by

ugas |wall = α
2 − σv

σv

λ
du

dη̃

∣∣∣∣
wall

, (2.1)

where σv is the momentum accommodation coefficient (Beskok & Karniadakis 1999),
and η̃ is the coordinate normal to the wall. The temperature slip at the wall is given
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Figure 1. Channel geometry.

by a similar expression

Tgas |wall − Tw = ε
2γ

γ + 1

2 − σT

σT

λ

Pr

dT

dη̃

∣∣∣∣
wall

= ζ
2 − σT

σT

λ
dT

dη̃

∣∣∣∣
wall

, (2.2)

where Tw is the wall temperature, σT is the energy accommodation coefficient, Pr is
the gas Prandtl number and γ is the ratio of specific heats.

The coefficients α and ε introduce corrections to the original results of Maxwell
(α = ε = 1) obtained through an approximate method (Cercignani 1988). Solutions
of the linearized Boltzmann equation by Ohwada, Sone & Aoki (1989a) and Sone,
Ohwada & Aoki (1989) show that in a hard-sphere gas α ≈ ε ≈ 1.1. In what follows
we will absorb the contribution of the accommodation coefficients into α and ζ .

3. Theory for wave propagation in narrow channels
We now give an outline of Lamb’s approach to plane wave propagation in narrow

channels and ducts in the no-slip limit (Crandall 1926). The theory is based on the
long-wavelength approximation which justifies the neglect of axial derivatives in the
viscous terms and the assumption that the pressure is uniform across any section
normal to the channel axis. Quantitative criteria for the justification of the above and
further assumptions will be developed in the next sections.

We consider two-dimensional smooth long channels of length L with walls that
are a distance H � L apart (see figure 1). The gas velocity field is denoted u =
u(x, y, t) = (u(x, y, t), v(x, y, t), w(x, y, t)). Under an excitation of the form exp(iωt),
a response of the form u(x, y, t) = ũ(x, y) exp(iωt), P (x, t) = P̃ (x) exp(iωt) + P0 is
expected. The gas density and temperature will also vary according to ρ(x, y, t) =
ρ̃(x, y) exp(iωt) + ρ0 and T (x, y, t) = T̃ (x, y) exp(iωt) + T0. Here P0, ρ0 and T0 = Tw are
the average values of pressure, density and temperature, respectively.

Lamb’s approach is based on the premise that when a channel is narrow, the
system response is quasi-static and isothermal. As a result, the wave propagation
characteristics are dictated by the isothermal steady-state response of the channel to
a pressure gradient, typically expressed in the following form:

ũb = − 1

R
dP̃

dx
, (3.1)

where R is usually referred to as the flow resistance and ub is the bulk velocity.
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402 N. G. Hadjiconstantinou and O. Simek

The next step to determining the wave propagation characteristics is the substitution
of the pressure gradient in terms of the fluid particle displacement ξ , where

u(x, y, t) =
∂ξ (x, y, t)

∂t
, ub(x, t) = ũb(x) exp(iωt) =

1

H

∫ H/2

−H/2

∂ξ (x, y, t)

∂t
dy =

∂ξ̄ (x, t)

∂t
,

(3.2)

This is accomplished through the continuity equation, expressed here as a kinematic
relation integrated across the channel width (Crandall 1926)

dP

dx
= −

(
∂P

∂ρ

)
av

ρ0

∂2ξ̄

∂x2
, (3.3)

where (∂P/∂ρ)av indicates that this derivative is based on average values across the
channel. We may expect, as Lamb has argued, the flow to be isothermal; this will be
formally shown in the next section where the narrow channel assumption is lifted.

The equation for the steady state response can thus be written as

iωξ̄ =
ρ0 (∂P/∂ρ)T

R
∂2ξ̄

∂x2
, (3.4)

where we have assumed isothermal conditions appropriate to Lamb’s formulation.
The complex propagation constant β (ub ∝ exp(−βx)) is thus given by

β2 ≡ (m + ik)2 =
iωR
P0

, (3.5)

where k = 2π/� is the wavenumber, � is the wavelenth and m is the attenuation
coefficient. If we substitute the Poiseuille expression R = 12µ/H 2, where µ is the gas
viscosity, we obtain the well-known result

β2 =
12iωµ

P0H 2
(3.6)

for wave propagation in narrow channels that was originally obtained by taking the
narrow-channel limit in Kirchhoff’s theory (Kirchhoff 1868).

4. Wave propagation in the presense of inertia and heat conduction
In this section we generalize Lamb’s theory to channels that do not satisfy the

narrow channel criterion, that is channels where fluid inertia and heat conduction
will play a role. This is achieved by solving the linearized momentum and energy
equations subject to the long-wavelength approximation.

4.1. The momentum equation

Starting from the linearized equation of motion

ρ0

∂u

∂t
=µ

∂2u

∂y2
− ∂P

∂x
(4.1)

we arrive at an equation for the amplitudes ũ and P̃

∂2ũ

∂y2
+ φ2 ũ =

1

µ

dP̃

dx
, (4.2)

where φ2 = −iρ0ω/µ. Our neglect of axial derivatives in the viscous terms and
assumption of constant pressure across the channel width requires |φ2| � |β2| and
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Sound propagation at small scales 403

|βH | � 1 (an extensive discussion can be found in Stinson 1991). Due to the long-
wavelength approximation we have neglected thermal creep effects which could result
from the axial temperature gradient in the gas close to the wall. A discussion of
thermal creep effects can be found in Karniadakis & Beskok (2002) and references
therein.

The solution of the momentum equation subject to a symmetry condition at the
channel centreline and the slip boundary condition (2.1) at the walls is

ũ=
1

µφ2

dP̃

dx
+

cosφy

µφ2
(
αλφ sin 1

2
φH − cos 1

2
φH

) dP̃

dx
. (4.3)

The bulk velocity is given by

ũb(x) =
1

µφ2

dP̃

dx
+

2

µφ3H

dP̃

dx

(
1

αKnφH − cot 1
2
φH

)
≡ − 1

R(Kn)

dP̃

dx
. (4.4)

Lamb’s result is recovered when φH/2 → 0 (δ → ∞); in this case the effect of inertia
becomes negligible and the bulk flow rate reduces to the slip-flow Poiseuille expression

ũb = − H 2

12µ

dP̃

dx
(1 + 6αKn), (4.5)

that is the response is quasi-static.

4.2. The energy equation

The linearized energy equation reduces for this problem to

ρ0cP

∂T

∂t
− κ

∂2T

∂y2
=

∂P

∂t
, (4.6)

where κ is the gas thermal conductivity and cP is the gas specific heat at constant
pressure. Our assumption of constant pressure across the channel allows us to treat
the term on the right-hand side as a constant source term with the axial dependence
implied. Using the same nomenclature, we rewrite the above equation as

∂2T̃

∂y2
+ ψ2T̃ = ψ2 (γ − 1)

γ

T0

P0

P̃ , (4.7)

where ψ2 = −ρ0iωcP /κ = φ2 Pr. Using the temperature jump boundary conditions
(2.2), the transverse temperature distribution is given by

T̃ (x, y) =
(γ − 1)

γ
P̃

T0

P0

(
1 +

cos ψy

ζψHKn sin 1
2
ψH − cos 1

2
ψH

)
. (4.8)

The average temperature across the channel is given by

T̃ av(x) =
1

H

∫ H/2

−H/2

T̃ dy =
(γ − 1)

γ
P̃

T0

P0

(
1 +

2

ψH

1

ζψHKn − cot 1
2
ψH

)
. (4.9)

Using the equation of state of an ideal gas, and the fact that P̃ av = P̃ we can write

ρ0

P0

(
∂P

∂ρ

)
av

=
1

1 − P0

T0

(
∂T̃

∂P̃

)
av

=
1

1 − γ − 1

γ

(
1 +

2

ψH

1

ζKnψH − cot 1
2
ψH

) . (4.10)
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404 N. G. Hadjiconstantinou and O. Simek

In the absence of slip flow and for ψH/2 ∼ φH/2 → 0, ρ0/P0 (∂P/∂ρ)av → 1 (T̃ → 0),
that is the flow is isothermal as assumed by Lamb and shown by Kirchhoff’s
analysis (Rayleigh 1896). As ψH/2 ∼ φH/2 → ∞, ρ0/P0 (∂P/∂ρ)av → γ , that is the
propagation is isentropic, as expected, even though this limit is not relevant here.

4.3. The complete slip-flow solution

The complete solution can be thus written as

β2 ≡ (m + ik)2 =
iωR(Kn)

ρ0(∂P/∂ρ)av

= −
iωµφ2

(
1−γ − 1

γ

(
1+

2

ψH

1

ζKnψH − cot 1
2
ψH

))

P0

(
1 +

2

φH

1

αKnφH − cot 1
2
φH

) ,

(4.11)
which can be also written as

β2λ2 = −5iπ

2

τc

τ
φ2H 2Kn2

1 − γ − 1

γ

(
1 +

2

ψH

1

ζKnψH − cot 1
2
ψH

)

1 +
2

φH

1

αKnφH − cot 1
2
φH

, (4.12)

where τ =2π/ω is the wave period and τc = λ/c̄ is the molecular collision time. For
generality, we have used a viscosity-based mean free path definition λ=4c̄µ/(5P0).
Here c̄ =

√
8kbT /(πmm) is the average molecular speed, mm is the molecular mass,

and kb is Boltzmann’s constant. This result is valid for |βH | � 1 and |φ2| � |β2|, and
is in agreement with the full Kirchhoff solution subject to slip boundary conditions
(numerically solved) to within 0.5% for |βH | � 0.15 and |φ2| � |β2|.

For narrow channels, |φH | < 0.1, the above expression reduces to

β2λ2 =
12iωµKn2

P0(1 + 6αKn)
=

30iπKn2

1 + 6αKn

τc

τ
, (4.13)

which is the slip-flow extension of Lamb’s result (3.6). By rewriting the narrow
channel requirement, |φH | < 0.1, as τ/τc > 1280/Kn2 we find that the long-
wavelength approximation is always satisfied for narrow channels in the slip-flow
regime.

5. Extension to non-continuum regimes
The more general form of the linearized momentum and energy conservation

equations in the wave propagation context can be written as

iρ0ωũ − ∂τ̃xy

∂y
= −dP̃

dx
, iρ0cP ωT̃ +

∂q̃y

∂y
= iωP̃ , (5.1a, b)

where τ̃xy is the amplitude of the x, y-component of the stress tensor, and q̃y is the
amplitude of the y-component of the heat-flux vector. However, closures for the heat
flux vector and shear stress tensor beyond the slip-flow regime (Kn >∼ 0.1) do not
exist and thus integration of these equations is, in general, not possible. Solution
can be achieved by resorting to molecular-kinetic descriptions such as the Boltzmann
equation or molecular simulation. Here we show that we can obtain an analytical
solution by taking advantage of the physical significance of the narrow channel limit.

The narrow channel requirement is easily met for Kn>∼ 0.1 if we assume that
the neglect of inertial effects is still governed by the (continuum-based) criterion
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given above, namely δ � 1. Consider gaseous argon at atmospheric pressure as an
example: at Kn= 0.1, any frequency ω < 107 rad s−1 leads to δ � 1; at Kn= 10, δ is
much larger than 1 for any frequency ω < 1011 rad s−1 (molecular collision-rate effects
become important well before this frequency (Hadjiconstantinou & Garcia 2001)).

Thus, if we are able to provide a model for the steady-state flow resistance R =
R(Kn) defined by

ũb = − 1

R(Kn)

dP̃

dx
(5.2)

that describes the flow rate in channels for all Knudsen numbers under isothermal
conditions, we will be able to predict the characteristics of wave propagation
at arbitrary Knudsen numbers for narrow channels. It has been shown both
experimentally (Knudsen 1909) and theoretically (Cercignani 1988) that in the linear
steady-flow regime there exists such a description of isothermal pressure-driven flow.
It is usually presented (Cercignani 1988) in the form

Q̇= ubH = − 1

P0

dP

dx
H 2

√
RT0

2
Q̄, (5.3)

where Q̇ is the flow rate per unit depth, R = kb/mm is the gas constant, and Q̄= Q̄(Kn)
is a proportionality coefficient that has been accurately determined by solution of the
Boltzmann equation, and exists in tabular form (Cercignani 1988). In the transition
regime, Q̄(Kn) varies slowly about its minimum value (1.5 <Q̄(0.1 <Kn< 10) < 3)
occurring at Kn ≈ 1, which explained Knudsen’s experimental discovery (Knudsen
1909) of a minimum in the normalized (as above) flow rate. For the purposes of
comparison with our hard-sphere DSMC calculations in § 6, we will use Q̄(Kn)
as determined by solution of the linearized Boltzmann equation (Ohwada, Sone &
Aoki 1989b) for a hard-sphere gas. For real gas applications, appropriate values of
Q̄(Kn) that describe real-gas behaviour can be used. However, experiments, linearized
solutions of the Boltzmann equation, and molecular simulations have been found to
be in very good agreement (Beskok & Karniadakis 1999), even when the latter two
employ the hard-sphere model or even simpler models such as that of Maxwellian
molecules (Cercignani 1988).

By combining (3.3) and (5.2), we obtain the counterpart of equation (3.4) governing
wave propagation in narrow channels in all Kn-regimes, while from (5.3) we can
identify

R(Kn) =
P0

HQ̄
√

RT0/2
(5.4)

leading to

β2λ2 =
8i

√
πKn

Q̄

τc

τ
. (5.5)

Given the (approximate for Kn> 0.1) narrow channel requirement τ/τc > 1280/Kn2,
the above equation predicts that the long-wavelength approximation is satisfied
provided τ/τc >∼ 100 (molecular collision-frequency effects become important for
τ/τc <∼ 100). Expression (5.5) is expected to hold in all Kn-regimes for δ � 1 since both
ingredients, equations (3.3) and (5.3), are valid in all Kn-regimes. Although direct
solution of the Boltzmann equation becomes computationally expensive in the limit
Kn → 0, the transition of (5.3) into (4.5) requires

Q̄=
8

5
√

π

1 + 6αKn

6Kn
for Kn< 0.1. (5.6)
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10–2

10–3

10–2 10–1 10–0

Kn

kλ

mλ

Figure 2. Comparison between the theoretical predictions and DSMC simulations for
ω = 6×106 rad s−1. The dashed and solid lines show the prediction of (4.11) for the attenuation
coefficient and the wavenumber, respectively. The dash-dotted line shows the prediction of
(5.5). DSMC results for the wavenumber and attenuation coefficient are shown as stars and
circles, respectively. Error bars are given by the symbol size.

6. Direct simulation of wave propagation
The direct simulation Monte Carlo (DSMC) is a stochastic molecular simulation

technique for solving the Boltzmann equation. Consistency between DSMC solutions
and solutions of the Boltzmann equation in the limit of infinitesimal discretization and
large number of particles was recently shown by Wagner (1992). Alexander, Garcia &
Alder (1998) have shown that the transport coeffcients exhibit quadratic convergence
with the cell size, whereas Hadjiconstantinou (2000) and Garcia & Wagner (2000)
have shown the same behaviour for the timestep.

For brevity we will not present a description of the DSMC algorithm. Excellent
descriptions can be found in the literature (Bird 1994); comparisons of DSMC
simulation results with solutions of the linearized Boltzmann equation and
experimental results for diverse non-equilibrium phenomena spanning the whole
Kn-range can also be found in Bird (1994).

Wave propagation simulations are possible by using standard DSMC techniques
(Bird 1994) augmented by a special sampling algorithm that accounts for the transient
nature of the phenomenon (Hadjiconstantinou & Garcia 2001). More details on the
implementation can be found in Hadjiconstantinou (2002).

The computational cost of DSMC simulations is proportional to the total time
simulated and as a result it is inversely proportional to the wave frequency. In order
to minimize the computational cost of our molecular simulations, our comparisons
were performed at relatively high frequencies, while care was taken to ensure that
nonlinear effects, molecular collision frequency effects and homogeneous absorption
effects were negligible (Hadjiconstantinou 2002). At high frequencies inertia and heat
conduction become important while |βH | in some cases exceeds 0.1. Comparison at
high frequencies thus has the advantage of providing a more stringent test of the
theory presented above.
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10–1

10–2

10–3

10–0 10–1

kλ

10–1

10–2

10–3

10–0 10–1

mλ

δ

Figure 3. Comparison between the theoretical prediction of (5.5) and DSMC simulations for
ω = 18.5 × 106 rad s−1. Error bars are given by the symbol size.

Figure 2 shows a comparison between the theoretical results and DSMC simulations
for different Knudsen numbers at a fixed frequency ω = 6 × 106 rad s−1. It shows that
the theory remains reasonably accurate even when |βH | exceeds 0.1; also the slip-flow
approximation remains reasonably accurate beyond Kn ≈ 0.1.

Figure 3 shows the results of simulations at a fixed frequency ω = 18.5×106 rad s−1

for a variety of channel heights. The solid lines represent the predictions of (5.5). The
narrow channel theory appears to be valid for δ > 1 (rather than δ � 1) despite the
continuum origin of this criterion.

7. Concluding remarks
The agreement between the theoretical results and simulations is very good,

suggesting that the theory developed remains robust and reasonably accurate
even beyond its expected limits of applicability. The theoretical results remain
accurate for |βH | ∼ O(0.1). The continuum-based criterion δ � 1 appears to provide
a conservative estimate of the effects of inertia for Kn> 0.1. The slip-flow results
continue to be relatively accurate beyond Kn= 0.1 in agreement with previous studies
(Hadjiconstantinou & Simek 2002).

The flow resistance in the early transition regime can be calculated from a Poiseuille
model subject to second-order slip-flow boundary conditions such as the ones
proposed in Beskok & Karniadakis (1999) and Hadjiconstantinou (2003). However,
their use is currently limited to isothermal flows due to the lack of a reliable second-
order temperature jump model. When such a model is developed, second-order slip
models will enable the use of the continuum theory of § 4 well beyond Kn= 0.1 and
thus lift the isothermal restriction associated with the narrow channel theory of § 5.

Although in this work we used the dilute hard-sphere gas model to verify our
predictions, we expect the results to approximate real gas behaviour well. The
slip-flow-based theory incorporates all the physics required to capture polyatomic gas
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behaviour, whereas the narrow channel approach only requires the pressure-driven
flow characteristics to be known; the latter are captured fairly accurately by the dilute
monoatomic gas model (Beskok & Karniadakis 1999). Wave propagation under low-
pressure conditions (where slip and non-continuum effects manifest themselves at
larger scales) is also captured by the developments presented above; in fact under
these conditions, the narrow channel requirement (τ/τc > 1280/Kn2) is satisfied at
even higher frequencies (for the same channel height) because the gas viscosity is not
a function of pressure.

The authors are indebted to Husain Al-Mohssen for help with the computations
and Professor Triantafyllos Akylas for helpful comments and suggestions.
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