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Does von Neumann Entropy Correspond
to Thermodynamic Entropy?
Eugene Y. S. Chua*y

Conventional wisdom holds that the von Neumann entropy corresponds to thermody-
namic entropy, but Meir Hemmo and Orly Shenker have recently argued against this
view by attacking von Neumann’s argument. I argue that Hemmo and Shenker’s argu-
ments fail because of several misunderstandings about statistical-mechanical and ther-
modynamic domains of applicability, about the nature of mixed states, and about the role
of approximations in physics. As a result, their arguments fail in all cases: in the single-
particle case, the finite-particles case, and the infinite-particles case.
1. Introduction. According to conventional wisdom in physics, von Neu-
mann entropy corresponds to phenomenological thermodynamic entropy.
The origin of this claim is von Neumann’s (1955) argument that his proposed
entropy corresponds to the thermodynamic entropy, which appears to be the
only explicit argument for the equivalence of the two entropies. However,
Hemmo andShenker (2006)—and earlier, Shenker (1999)—have argued that
this correspondence fails, contrary to vonNeumann. If so, this leaves conven-
tional wisdom without explicit justification.

Correspondence can be understood, at the very least, as a numerical con-
sistency check: in this context, this means that the von Neumann entropy has
to be included in calculating thermodynamic entropy to ensure consistent
accounting in contexts in which both thermodynamic and von Neumann en-
tropy are physically relevant. Successful correspondence provides strong
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evidence of equivalence. While it does not guarantee equivalence, it seems
to be at least a necessary condition for equivalence. If thermodynamic en-
tropy and von Neumann entropy correspond, then we have reason to think
that von Neumann entropy is rightfully thermodynamic in nature, since proper
accounting of thermodynamic entropy would demand von Neumann entropy.
By contrast, a failure of correspondence seems to entail that the von Neu-
mann entropy is not thermodynamical in nature, since it is irrelevant to ther-
modynamic calculations in contexts in which both entropies are physically
significant (e.g., when a system both has quantum degrees of freedom and is
sufficiently large to warrant thermodynamical considerations).

AlthoughHenderson (2003), inmy view, has successfully criticized Shen-
ker’s earlier argument, little has been done in the philosophical literature to
evaluate Hemmo and Shenker’s more recent arguments.1 This lacuna is strik-
ing because, as I mentioned, von Neumann appears to offer the only explicit
argument for correspondence for the two entropies.

My goal in this article is to fill this lacuna by providing a novel set of crit-
icisms toHemmo and Shenker. Here is the plan. I introduce key terms (sec. 2)
and then present vonNeumann’s thought experiment, which aims to establish
the correspondence between thermodynamic entropy and von Neumann en-
tropy; along theway, a novel counterpart to the usual argument for correspon-
dence is discussed (sec. 3). I then present and criticize Hemmo and Shenker’s
arguments for the single-particle case in the context of thermodynamics
(sec. 4.1) and in the context of statistical mechanics (sec. 4.2), theN-particles
case (sec. 4.3), and the infinite-particles case (sec. 4.4). I conclude that their
argument fails in all cases—in turn, we have good reasons to reject their claim
that the von Neumann entropy fails to correspond to thermodynamic entropy
and, hence, the claim that von Neumann entropy is not thermodynamic in
nature.

2. Key Terms. Let me first define the notions of thermodynamic entropy
and von Neumann entropy. Following Hemmo and Shenker (2006), I define
the change in thermodynamic entropy STD between two thermodynamic states
in an isothermal quasi-static process as follows:2
1. It is only slightly better in the physics literature: Deville and Deville’s (2013) paper
appears to be the only one to critique Hemmo and Shenker (2006). On the philosophical
side, one (very recent) exception is Prunkl (2020), although she restricts discussion to
the single-particle case and appears to conflate information entropy with thermodynamic
entropy. See secs. 4.1 and 4.2 for why this is not obviously right.

2. There is no change in temperature in an isothermal quasi-static process, which is why
T is taken to be constant. As a matter of historical note, von Neumann uses an isothermal
setup in his argument, with a box containing a quantum ideal gas coupled to a (much
larger) heat sink ensuring constant temperature over time (1955, 361–71).
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DSTD 5
1

T

ð
P dV : (1)

We will restrict our discussion to ideal gases in equilibrium (i.e., systems
where pressure P, volume V, and temperature T remain constant).

Next, the von Neumann entropy SVN, for any pure or mixed quantum sys-
tem, is defined as

SVN 5 2kTr(r log r), (2)

where k is the Boltzmann constant and Tr(�) is the trace function. Generally,
the density matrix r is such that

r 5 o
i

n51

pijwi i h wij, (3)

where w1, w2, ... wn correspond to the number of pure states in a statistical
mixture represented by r, with p1, p2, ... pn being their associated classical
probabilities (which must sum to unity). In the case in which there is only
one pure state possible for a system (e.g., when we are absolutely certain
about its quantum state), then n 5 1, with probability 1, so the appropriate
density matrix is r 5 jw i h wj. For such a system in a pure state (i.e., repre-
sented by a single-state vector in Hilbert space), SVN 5 0. For mixed states
(i.e., states that cannot be represented by a single-state vector in Hilbert
space, hence mixture of pure states or a mixed state), Tr(r log r) < 1 and
SVN > 0 in general. A mixed state is often said to represent our ignorance
about a system—this will suffice as a first approximation (more on how to
interpret this ignorance in sec. 4.2).

Prima facie, SVN and STD appear to share nothing in common, apart from
the word ‘entropy’. However, von Neumann claims that there are important
correlations between the two, which suggests a correspondence between
STD and SVN.

3. Von Neumann’s Thought Experiment. For the sake of parity, I adopt
Hemmo and Shenker’s (2006) presentation of von Neumann’s thought ex-
periment, which aims to show that changes in thermodynamic entropy can
be made consistent with the laws of thermodynamics only if we considered
the von Neumann entropy as contributing to the calculation of the thermo-
dynamic entropy.3 Figure 1 depicts the stages of the thought experiment.

We begin, in stage 1, with a box with a partition in the middle. On one
side of the partition there is a gas at volume V, constant temperature T, and
3. It is not clear to me that von Neumann’s original (1955) argument is exactly the same
as the argument Hemmo and Shenker (2006) reproduce. However, for the sake of argu-
ment, I refer to Hemmo and Shenker’s version as von Neumann’s argument in this article.
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Figure 1. Top to bottom, stages 1–7, as described by Hemmo and Shenker (2006).
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constant pressure P. Each gas particle starts off having the pure state spin-
up along the x-direction jw↑

x i, which is equivalent to a superposition of
spin-up and spin-down pure states along the z-direction, labeled jw↑

z i and
jw↓

z i respectively. According to standard quantum mechanics, the state of
each particle is thus (1=

ffiffiffi
2

p
)(jw↑

z i1jw↓
z i).

In this context, particles with quantum behavior may be taken to be ideal
gases, that is, sets of particles each of which does not interact with other par-
ticles and takes up infinitesimal space. Following von Neumann’s (1955,
361) assumptions, each gas particle is understood as a quantum particle with
a spin degree of freedom contained inside a large impenetrable box, and
each gas particle is put inside an even larger container isolated from the en-
vironment (i.e., the box we began with).4 This ensures that each spin degree
of freedom is incapable of interacting with other particles. These boxes’ sizes
also ensure that the positions of these boxes (and hence of the particles) can
be approximately classical. Since the container is much larger than each gas
particle, this ensures that the gas particles take up negligible space relative to
the massive container. Accepting these assumptions, we may then take these
quantum particles to behave like an ideal gas.5 Following Hemmo and Shen-
ker, we further assume that the position degrees of freedom of the gas parti-
cles have no interaction with the spin degrees of freedom at this point, and
“due to the large mass of the boxes, the position degrees of freedom of the
gas may be taken to be classical and represented by a quantum mechanical
mixture” (2006, 155).

Moving on, stage 2 involves a spin measurement along the Z-axis on all
the particles in the container, with a result being an equally weighted statis-
tical mixture of particles with either jw↑

z i or jw↓
z i states. As a result, the spin

state of each particle is represented instead by a density matrix rspin, such
that

rspin 5
1

2
jw↑

z i h w↑
z j 1 jw↓

z i h w↓
z jð Þ: (4)

More precisely, there should be terms for the measurement device too, when
truly considering the entire system.Matrix rspin describes only the subsystem
(i.e., the quantum ideal gas) sans measurement device (i.e., a state with the
measurement device traced out)—this is in line with von Neumann’s focus
on the entropy changes due to changes in the subsystem (1955, 358–79). I
follow Henderson (2003) and Hemmo and Shenker (2006) in talking about
4. Von Neumann’s assumptions are borrowed from Einstein (1914/1997). For more, see
Peres (2002, 271).

5. I follow everyone in this debate in assuming that the above setup is physically
possible.
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the system’s state as though I have already traced the measurement device
out whenever measurement is involved.

Stages 3 and 4 are where the particles are (reversibly) separated accord-
ing to their spin states by a semipermeable wall into two sides of the box,
each with volume V.6 As a result of this separation, we in effect double the
mixture’s volume. The gas expands to fill up volume V on each side.

Stage 5 involves an isothermal and quasi-static compression of the mix-
ture so that we return to a total volume V (effectively halving the volume on
each side of the box), while pressure on both sides becomes equal. Impor-
tantly, because of this compression, STD decreases because of the decrease in
volume.

Stage 6 brings all the particles into the pure spin state jw↑
x i quasi-statically

and without work done, while stage 7 removes the semipermeable wall, such
that the system returns to its original state.

Now consider how SVN and STD change across the various stages. Stage 7
ends with the body of gas having the same thermodynamic state (same V,
sameP, and constant T) as stage 1. Furthermore, all the thermodynamic trans-
formations performed were reversible, and removing the wall alone does no
additional work. Thus, the system at stage 1 must have the same thermody-
namic entropy as stage 7 (i.e., DSTD 5 0) since STD depends only on the ini-
tial and final state of the system. From stages 1 to 7, DSVN 5 0 too, since the
system is in the same state in both the first and seventh stages.

Since stage 6 does not involve thermodynamic transformations, there is
no change in STD. Likewise, the transformation of rspin to jw↑

x i here does
not change SVN, as the transformation can be performed unitarily. This is pos-
sible as a result of our separation of the gases to different sides of the box
according to their spin eigenstates—given this, we can perform unitary op-
erations on each side of the box (or perform the more general measurement
procedure recommended by von Neumann [1955, 365–67]), to transform
them into the same state as stage 1. Both unitary transformations and von
Neumann’s procedure do not increase SVN, and so there is no change in
SVN at stage 6 as a result.

There are no changes in STD or SVN in stages 3 and 4. While there is an
increase in the gas’s volume, as noted above, from V to 2V, and hence an ac-
companying increase in STD by n.R.log 2,7 there is also a compensating
change in the thermodynamic entropy of mixing, by 2n.R.log 2, which
exactly compensates this increase in STD (see Hemmo and Shenker 2006,
6. This semipermeable wall can be assumed to be a black box that reversibly separates
particles to different sides because of their different orthogonal/disjoint states; see von
Neumann (1955, 367–70) for discussion. I follow everyone in the debate in accepting
this assumption.

7. Here, N refers to the number of moles of gas in the system, and R is the gas constant.
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157 n. 4).8 Since the particles are in orthogonal spin states at this stage, there
are no quantum effects (e.g., ‘collapse’ effects) from simply filtering the
gases with the semipermeable walls, and hence SVN does not change either.9

However, importantly, there is a decrease in STD in stage 5, of2n.R.log 2,
because of the isothermal compression and decrease in volume. Yet, no-
where else is there any further change in STD. We have to account for why
the overall change in STD from the first to the seventh stages is 0.

As vonNeumann argues, only one possibility remains.While STD remains
constant in stage 2, notice that there was an increase in SVN, of 2N:k:2
log 2 5 (N:R)=NA:log 2 5 n:R:log 2, as a result of the spin measurement.10

This is equivalent to the change of STD in stage 5. The state of each particle
changes from a pure state (1=

ffiffiffi
2

p
)(jw↑

z i1 jw↓
z i) to a mixed state represented

by rspin, and hence SVN for the gas increases on the whole. In order to ensure
that entropic changes are consistent, von Neumann thinks that we should ac-
cept SVN’s contribution to STD in this context, where both quantum effects and
thermodynamical considerations are at play. Without accepting SVN in our
entropic accounting, we end up with a violation of thermodynamics since
we have a reversible thermodynamic cycle with nonzero change in STD, con-
tra the Second Law. In other words, we should accept that SVN corresponds to
STD.

The correspondence of SVN and STD in this context can be defended from
another perspective, apart from considerations about consistency from the
8. Henderson explains the mixing entropy, describing the mixing of different gases,
crisply: “After separation, each separated gas occupies the original volume V alone. To
return to themixture, each gas is compressed to a volume ciV (where c is the concentration
of the ith gas). The compression requires workW 5 2nkToici log ci to be invested, and
the entropy of the gas is reduced by DS 5 2nkoici log ci. An increase in entropy of the
same amount must then be associated with the mixing step of removing the partitions.
This is the ‘mixing entropy’” (2003, 292). Separation simply results in a decrease in en-
tropy of the same amount. TimMaudlin raised the following objection to the applicability
of the entropy ofmixing in this context when a version of the current article was presented
at a summer school. Mixing should have a thermodynamic effect only when differences
between the gases are already assumed to be thermodynamically relevant: e.g., mixing
differently colored gases should not have a thermodynamic effect unless the difference
in color is thermodynamically relevant. It is, however, not clear whether the difference
in spin is a thermodynamically relevant one and might amount to begging the question.
This is a good point, but one that I am setting aside for now, since everyone in the debate
accepts the assumption that separating the gases here decreases the entropy of mixing. As
we will see later, a more fundamental issue arises with using the entropy of mixing in the
‘single particle’ case.

9. This is argued for in von Neumann (1955, 370–76).

10. The total number of particles isN: since each particle is assumed to be noninteracting
and independent from others under the ideal gas assumption, their entropies are additive.
Avogadro’s number is NA.

86/710072 Published online by Cambridge University Press

https://doi.org/10.1086/710072


152 EUGENE Y. S. CHUA

https://doi.org/10.1086/71007
thermodynamic perspective: consistent accounting from the perspective of
quantum mechanics also demands correspondence. This is simply a change
in perspective with regard to the thought experiment, but, to my knowledge,
this argument has not been explicitly made in the literature, thus underselling
the case for correspondence in von Neumann’s thought experiment.

Instead of arguing for correspondence by considering thermodynamic con-
sistency, that is, ensuring that DSTD 5 0 throughout the cycle, we can con-
sider consistency from the quantum mechanical perspective. We started and
ended with the same spin state, and so it should be the case that DSVN 5 0
throughout the cycle. Yet, there is an inconsistency: if we only consider
the increase of SVN in stage 2 as a result of measurement, we should end in
stage 7 with an increase in SVN, notDSVN 5 0. As described, there is nowhere
else in the thought experiment where SVN changes. However, there is a de-
crease in STD in stage 5 because of the thermodynamic process of isothermal
compression, exactly balancing out the increase in SVN. Hence, we can ensure
consistency (i.e., that DSVN 5 0), only by taking SVN to correspond to STD. In
other words, just as the thermodynamic accounting of STD is consistent only if
we consider SVN, the quantum entropic accounting of SVN is also consistent
only if we consider STD. Consistency from a quantummechanical perspective
also demands correspondence between SVN and STD.

Although the debate has largely focused only on how the thought exper-
iment demonstrates one direction of correspondence, of SVN to STD as a re-
sult of thermodynamical considerations, the correspondence demonstrated
by this thought experiment in fact goes both ways. Of course, since vonNeu-
mann was focused on demonstrating the thermodynamic nature of SVN (spe-
cifically the irreversibility of measurement), rather than the quantum nature
of STD, it was natural that he chose to approach it the way he did.

4. Hemmo and Shenker’s Arguments. Hemmo and Shenker disagree
with von Neumann’s argument and criticize it by considering three cases:
the single-particle case, the finite but large N particles case, and the infinite-
particles case.

4.1. Single-Particle Case: Thermodynamics. Hemmo and Shenker first
consider von Neumann’s argument in the single-particle case (see fig. 2).
They claim that the argument does not go through here, since STD actually
remains constant, contrary to our thought experiment’s description. In other
words, using thermodynamical considerations, they find that SVN should not
be included in our accounting for STD.

Here is their argument. Consider the stages where there are entropic
changes. In stage 2 when the spin measurement was performed, SVN increases
as before, since it tracks the change of the particle’s spin state from pure to
mixed.
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Contrariwise, STD does not change in stage 5 (isothermal quasi-static com-
pression) or anywhere else (this will be important later). After stage 2, the
single particle is in either the jw↑

z i state or the jw↓
z i state. After stages 3

and 4, with the expansion and separation via a semipermeable wall, there
is a particle in one side of the box only and not the other. We make an
STD-conserving location measurement to figure out which side of the box
is empty and which side the particle is at, so as to compress the box against
the empty side.11 The compression is then performed as before. However,
Figure 2. Top to bottom, stages 1–7 for the single-particle case, as described by
Hemmo and Shenker (2006).
11. Prunkl (2020) claims that the location measurement leads to a violation of the Second
Law. If true, this makes Hemmo and Shenker’s argument even more problematic. Here,
for the sake of argument, I assume that the location measurement is unproblematic.
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this compression does not decrease STD.12 To restore the volume of the ‘gas’
to V, no work needs to be done, since we are compressing against a vacuum.
Since there is a change in SVN in this cycle, but no change in STD, the apparent
answer, in order to do our entropic accounting, is to ignore, not incorporate,
SVN into STD. Hence, SVN does not correspond to STD.

Their analysis is problematic. Although their ultimate point in this anal-
ysis—that STD fails to corresponds to SVN—still holds, it does not hold in the
way they claim. In fact, the way it fails suggests to us that we should dis-
regard the single-particle case.

For the single-particle case, they claim that “[STD] is null throughout the
experiment” (Hemmo and Shenker 2006, 162). This then allows them to
claim that thermodynamic accounting for STD is consistent only if we did
not consider SVN. This then supports their claim that SVN does not corre-
spond to STD since adding SVN into the thermodynamic accounting actually
renders the otherwise consistent calculations inconsistent.

They are right to say that the stage 5 compression (after location measure-
ment) has no thermodynamic effect because we are compressing against a
vacuum: no work needs to be done, and so DSTD 5 0 for stage 5. However,
I claim that DSTD ≠ 0 for the single-particle case overall, because DSTD ≠ 0
in stages 3 and 4 in this context.

As far as I can tell, Hemmo and Shenker did not analyze stages 3 and 4
(i.e., the isothermal expansion and separation) in terms of the single-particle
case at all. Rather, they seem to have assumed that DSTD 5 0 in these stages
as with the original case of the macroscopic gas.13 However, this assumes
that there is both a change in entropy of n.R.log 2 because of isothermal ex-
pansion and a change in the entropy of mixing of 2n.R.log 2 because of
separation, as they say so themselves for the original case: “The increase
of thermodynamic entropy due to the volume increase DS 5 (1=T ) ∫PdV
is exactly compensated by the decrease of thermodynamic mixing entropy
DS 5 owklnwk (where wk is the relative frequency of molecules of type
k) due to the separation” (Hemmo and Shenker 2006, 157 n. 4, emphasis
mine).

In the single-particle case, it makes sense that isothermal expansion
should still increase STD, since the single-particle ‘gas’ is expanding against
12. As an anonymous reviewer rightfully notes, the location measurement is important
for ensuring DSTD 5 0 here. Without the location measurement, we might end up com-
pressing in the wrong direction against the side with the gas, rather than the empty vac-
uum—this will have thermodynamic effects since we are doing work on the gas. How-
ever, the Hemmo and Shenker setup emphasizes the location measurement, and I will
play along for the sake of argument.

13. Prunkl (2020) appears to do the same.
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a piston and doing work. However, it does not make physical sense to speak
of the entropy of mixing here at all, since there is no separation of gases in
the single-particle case. The entropy of mixing is explicitly defined for sys-
tems where different gases are separated from/mixed with one another via
semipermeable walls, but a single particle cannot be separated from/mixed
with itself. The quote above makes this conceptual point explicit: by Hemmo
and Shenker’s own lights, the relative frequency of a single particle is sim-
ply unity (and null for particles of other types), so the entropy of mixing is
1 ln 1 5 0. There is no thermodynamic entropy of mixing in the single-
particle case.

Discounting the entropy of mixing, however, we find that DSTD 5
n:R:log 2 ≠ 0 for stages 3 and 4, and hence for the entire process, contrary
to Hemmo and Shenker’s claim. Interestingly, correspondence does fail to
obtain between STD and SVN, since DSTD 1 DSVN 5 2n:R:log 2 ≠ 0, despite
the process being reversible ex hypothesi: incorporating SVN into thermody-
namic accounting violates the Second Law.

However, on this new analysis, we gain some clarity as to why the
single-particle case is problematic. While it is true that incorporating SVN
into the thermodynamic accounting violates the Second Law, STD account-
ing by itself violates the Second Law (contrary to Hemmo and Shenker 2006).
Even without considering SVN, DSTD ≠ 0 despite the process being reversible.
Thermodynamic accounting is inconsistent here nomatter what we do, which
suggests that the reversible process they described for the single-particle case
is thermodynamically unsound: if so, any argument Hemmo and Shenker
make in this context may be disregarded.

The upshot: I agree with Hemmo and Shenker that correspondence fails
for the single-particle case, but I do not agree about why it fails. It is not
because the process they described is already thermodynamically consistent
without taking SVN into account. Rather, it is because the process is already
thermodynamically inconsistent anyway.

In recent work, John Norton argued that thermodynamically reversible
processes for single-particle systems are impossible in principle, which
might explain why the process described by Hemmo and Shenker (2006)
is thermodynamically unsound: it was not justified to assume the process
was reversible for a single-particle system. For Norton, a reversible process
is “loosely speaking, one whose driving forces are so delicately balanced
around equilibrium that only a very slight disturbance to them can lead the
process to reverse direction. Because such processes are arbitrarily close
to a perfect balance of driving forces, they proceed arbitrarily slowly while
their states remain arbitrarily close to equilibrium states” (2017, 135). Nor-
ton notes that these thermodynamic equilibrium states are balanced not be-
cause there are no fluctuations but because these fluctuations are negligible
for macroscopic systems. However, fluctuations relative to single-particle
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systems are large and generally prevent these systems from being in equilib-
rium states at any point of the process, rendering reversible processes im-
possible in the single-particle case (135). If reversible processes are impos-
sible for single-particle systems in general, then it should come as no surprise
that the particular single-particle reversible process used by Hemmo and
Shenker is likewise thermodynamically unsound, as my analysis above sug-
gests. If so, their claim that correspondence fails in this process is simply be-
side the point, since this process is not thermodynamic at all.

Since any reversible process cannot be realized for single-particle sys-
tems in general, the issue seems not to be with any particular process per
se but with the single-particle case simpliciter. To my knowledge, no one be-
fore Hemmo and Shenker (2006) discussed von Neumann’s experiment in
terms of a single particle; vonNeumann (1955), Peres (1990, 2002), Shenker
(1999), and Henderson (2003) all explicitly or implicitly assume a large
(or infinite) number of particles. This is for good reason. As Hemmo and
Shenker acknowledge, and as we have seen: “The case of a single particle
is known to be problematic as far as arguments in thermodynamics are con-
cerned” (2006, 158). Matter in phenomenological thermodynamics is as-
sumed to be continuous.14 A ‘gas’ composed of one particle can be many
things, but it is surely not continuous in any commonly accepted sense. In
other words, it is just not clear whether the domain of thermodynamics
should apply to the single-particle case at all.

AsMyrvold (2011) notes, Maxwell also made a similar claim with regard
to phenomenological thermodynamics in general; it does not and should not
hold in the single-particle case. On his view, the laws of phenomenological
thermodynamics, notably the Second Law, must be continually violated on
small scales:
14. S
terpa

2 Publ
If we restrict our attention to any one molecule of the system, we shall find
its motion changing at every encounter in a most irregular manner. . . . If we
go on to consider a finite number of molecules, even if the system to which
they belong contains an infinite number, the average properties of this
group, though subject to smaller variations than those of a single molecule,
are still every now and then deviating very considerably from the theoret-
ical mean of the whole system, because the molecules which form the
group do not submit their procedure as individuals to the laws which pre-
scribe the behaviour of the average or meanmolecule. . . . Hence the second
law of thermodynamics is continually being violated, and that to a consid-
erable extent, in any sufficiently small group of molecules belonging to a
ee Compagner (1989) for a discussion of the so-called continuum limit as a coun-
rt to the thermodynamic limit in phenomenological thermodynamics.
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real body. As the number of molecules in the group is increased, the devi-
ations from themean of the whole become smaller and less frequent. (Max-
well 1878, 280)
The Second Law, and hence phenomenological thermodynamics, should
not be expected to hold true universally in small-scale cases, especially not
in the single-particle case. Von Neumann and everyone else in the debate
should have recognized this point. Why, then, should it matter that the
thought experiment succeeds or fails in this case? Phenomenological ther-
modynamics does not apply to single-particle cases. There is thus no profit
in trying to establish correspondence between SVN and STD in this case. In-
deed, if we took seriouslyMaxwell’s claim that the Second Law fails at small
scales, a failure of thermodynamic entropic accounting might even be ex-
pected; it does not rule out the possible thermodynamic nature of SVN even
though the sum of SVN and STD might be inconsistent with the Second Law. In
short, it is not clear why the single-particle case is relevant to the discussion
at hand.

Hemmo and Shenker’s reasoning is untenable, because they fail to re-
spect the context of phenomenological thermodynamics by bringing it into
a context in which it is not expected to hold. Instead, it seems more appro-
priate that the single-particle case is precisely beyond the purview of clas-
sical thermodynamics, requiring an analogue that only corresponds to clas-
sical thermodynamics at the appropriate scales and limits. We may then take
SVN to be the analogue of STD in this case, only approximating STD as the
system in question approaches the context suitable for traditional thermody-
namic analysis. If so, we may see von Neumann as merely demonstrating
that SVN corresponds, not at all domains but in the domain where thermody-
namics is taken to hold, to STD.

4.2. Single-Particle Case Redux: Statistical Mechanics and Infor-
mation. Given the foregoing discussion, Hemmo and Shenker might in-
sist that SVN fails to correspond to STD even when taking into account a more
relevant domain for single particles—statistical mechanics. After directly
arguing that SVN does not correspond to STD (Hemmo and Shenker 2006,
162–65), they further argue that SVN does not correspond to information
entropy (more on this below) in the single-particle case. Prima facie, this
should seem irrelevant to von Neumann’s argument, which was to establish
the correspondence of the thermodynamic STD and quantum SVN: Why
should information entropy’s failure to correspond with SVN be a worry
at all?

Here is one plausible worry, on a charitable reading. If information en-
tropy corresponds to STD, and Hemmo and Shenker show that SVN fails to
correspond to information entropy, then we might conclude, indirectly, that
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SVN does not correspond to STD after all.15 This argument assumes that infor-
mation entropy does correspond to STD, an assumption Hemmo and Shenker
seem to hold as well: this is in line with the so-called subjectivist view of
statistical mechanics (notably, see Jaynes 1957). Furthermore, my above ar-
gument against the misapplication of phenomenological thermodynamics
does not seem to apply here, since this argument is being made in the con-
text of statistical mechanics and its particle picture, with no commitment to
phenomenological thermodynamics.

However, Hemmo and Shenker do not do much to motivate the linkage
between information entropy and STD; indeed, in their words, “a linkage be-
tween the Shannon information and thermodynamic entropy has not been
established” (2006, 164).Without this link, the failure of correspondence be-
tween the information entropy and SVN appears, at best, irrelevant to the cor-
respondence between STD and SVN. Nevertheless, I will take a charitable view
here and assume that there is a correspondence between information entropy
and STD, for the sake of assessing their argument. Here is a plausible (if
arguable) sketch: if one were a subjectivist like Jaynes (1957), one might
take the Gibbs entropy in statistical mechanics to be a special case of the in-
formation entropy. After all, both have the following form:

2o
i

pi ln pi, (5)

with i being the number of possible states with associated probabilities of
occurring pi and the Gibbs entropy being multiplied by an additional Boltz-
mann’s constant k.16 We know that statistical mechanics corresponds to phe-
nomenological thermodynamics at the thermodynamic limit, so we can think
of the Gibbs entropy, and hence information entropy, as corresponding to
STD. I take this to be in line with what Hemmo and Shenker have in mind:
“to the extent that the Shannon information underwrites the thermodynamic
entropy, it does so via statistical mechanics” (2006, 165). Assuming that the
above picture is plausible, a failure of correspondence between SVN and the
information entropy provides evidence against the correspondence between
SVN and STD.

Their argument comes into two parts. Ignoring STD for the time being
(which does not change throughout the cycle for the single-particle case—
see sec. 4.1), they claim that we can consider the stage 5 location measure-
ment to be a decrease in information entropy of ln 2, as a result of learning
15. Caveat: I am not committed to the information entropy’s relationship to thermody-
namics. One may, like Earman and Norton (1998, 1999), be skeptical that information
entropy is related to STD at all, in which case Hemmo and Shenker’s argument here is
simply irrelevant.

16. Using the so-called Planck units, where k 5 1, Gibbs entropy and information en-
tropy are then formally equivalent.
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information about which one of two parts of the box the particle is in. On first
glance, this seems to resolve the arithmetic inconsistency in entropic ac-
counting: ln 2 is exactly the increase in SVN as a result of the spin state chang-
ing from a pure state jw↑

x i to the mixed state rspin in stage 2. In other words,
for both the information and von Neumann entropies’ accounting to be cor-
rect (i.e., net change of zero across the cycle), we must consider SVN as
corresponding to information entropy. Now, since information entropy also
corresponds, ex hypothesi, to STD, we have an indirect argument for the cor-
respondence of SVN to STD.

However, Hemmo and Shenker claim that this argument fails for collapse
interpretations, that is, interpretations of quantum mechanics on which a
superposed quantum state ontologically collapses into a pure state upon
measurement (either precisely or approximately).17 They allow that, on no-
collapse interpretations (e.g., Bohmian or many-worlds interpretations), the
location measurement in stage 5 does not decrease SVN, since the state of the
system never changes in light of measurements, and so the above argument
goes through.

Let us see what they couldmean by this claim by following the state of the
particle through the cycle. At stage 2, everyone agrees that the state of the
system is rspin following the z-spin measurement; SVN increases by ln 2. At
this point, the particle’s position degrees of freedom remain independent
from its spin degrees of freedom, as per our ideal gas assumption, although
we might assume the particle starts out on the left half of the box, with the
mixture of position states rpos(L) with ‘L’ representing the left side. (Con-
sider fig. 1 but with only one particle.) Following the semipermeable wall’s
filtering at stages 3 and 4, the location of the particle becomes classically cor-
related with the spin. Let us say that the semipermeable wall sends jw↑

z i par-
ticles to the left, represented by rpos(L), and jw↓

z i particles to the right, rep-
resented by rpos(R). As such, the (mixed) state of the particle is now

rparticle 5
1

2
jw↑

z i h w↑
z j � rpos(L) 1 jw↓

z i h w↓
z j � rpos(R)ð Þ: (6)

For no-collapse interpretations, Hemmo and Shenker agree that the state
of the particle stays the same as above after the location measurement in
stage 5. We perform the compression in stage 5 and remove the partition
at the end of stage 6, thereby removing the classical correlations between po-
sition and spin. No further change in either information entropy or SVN oc-
curs, and hence the correspondence goes through (Hemmo and Shenker
2006, 164). The spin state remains mixed until unitarily transformed into
a pure state and completing the cycle.
17. On Ghirardi-Rimini-Weber-type approaches, though, collapse occurs with or without
measurement, but measurement increases the likelihood of collapse, roughly speaking.

86/710072 Published online by Cambridge University Press

https://doi.org/10.1086/710072


160 EUGENE Y. S. CHUA

https://doi.org/10.1086/71007
For collapse interpretations, they claim that the location measurement de-
creases SVN by ln 2, because, on collapse interpretations, the state of the par-
ticle upon the measurement, depending on which side the particle is found,
becomes

rparticle 5
jw↑

z i h w↑
z j � rpos(L)

jw↓
z i h w↓

z j � rpos(R)
:

(
(7)

The spin state of the system here effectively goes from being a mixed state
to a pure state as a result of this measurement: SVN decreases by ln 2. Sum-
ming up the entropy changes, there was a decrease of ln 2 in information en-
tropy and a net change of zero for SVN as a result of the increase in stage 2 and
the decrease in stage 5. Overall, then, the change is not zero but 2ln 2; our
accounting has gone awry, and there is a failure of correspondence between
SVN and information entropy. If this is right, SVN does not correspond to STD.

However, I think that Hemmo and Shenker are wrong to claim that SVN

decreases following the location measurement for collapse interpretations.
As Prunkl (2020, 272) notes, there is an inconsistency here. Everyone, in-
cluding Hemmo and Shenker, agrees that the spin state of the particle is
mixed—not pure—after stage 2’s spin measurement, even on collapse inter-
pretations (2006, 160). In that case, why does the particle’s spin become pure
after the location measurement?

I think this results from a confusion over the nature of mixed states. In par-
ticular, they seem to have adopted what Hughes (1992, secs. 5.4, 5.8) calls
the “ignorance interpretation” of mixed states, confusing what I call classical
and quantum ignorance. They seem to be assuming that mixed states simply
represents classical ignorance (i.e., the lack of knowledge about a particular
system): a system represented by a mixed state really is in a pure state, but we
know not which. This is why the location measurement is supposed to reveal
to us the pure state of this system (by revealing which side it is on and hence
the correlated spin state) and hence ‘wash away’ our classical ignorance of
the real state of the system. Postmeasurement, we know exactly which pure
state this system is in, unlike premeasurement; hence, SVN decreases.

However, as Hughes (1992, 144–50) argues, this interpretation of mixed
states—as representing classical ignorance about which pure state a particu-
lar system is in—cannot be the right interpretation of all mixed states. To be-
gin, amixed state can be decomposed in nonuniqueways in general. Here is a
simple example: a mixed state representing a mixture of jw↑

z i and jw↓
z i can

also represent a mixture of jw↑
x i and jw↓

x i, and so on. If we insist that a mixed
state represent our classical ignorance about the real state of a particular sys-
tem, then we end up having to say that a system’s state is really both either
jw↑

z i or jw↓
z i and either jw↑

x i or jw↓
x i. Of course, this is impossible given quan-

tum mechanics. The defender of the classical ignorance interpretation might
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insist that we simply pick one pair of possible pure states but not both at once.
In general, however, there is noway to do that nonarbitrarily given some den-
sity matrix. Furthermore, this problem only worsens when we consider that
there are usually more than just two ways to decompose a density matrix—a
principled choice based on the mixed state alone is not feasible. The mixed
state cannot be a representation of classical ignorance.

Instead, to paraphrase Hughes (1992, 144–45), mixed states should be
(minimally) interpreted as such. If we prepared in the sameway an ensemble
of systems, each described with the same mixed state (i.e., a mixture of pure
states with certain weights), then the relative frequency of any given mea-
surement outcome from the ensemble is exactly what we would get if the
ensemble were composed of various ‘subensembles’ each in one of the pure
states in the mixture, with the relative frequency of each subensemble in the
ensemble given by the corresponding weights.

In other words, the sort of quantum ignorance relevant in the right inter-
pretation of mixed states is not whether we are ignorant about the real state
of this particular system but whether we are ignorant about the measured
states of an ensemble of identically prepared systems like this one. If this
is right, quantum ignorance cannot be ‘washed away’ upon measurement of
a single system unlike the sort of ignorance Hemmo and Shenker were implic-
itly assuming, and it seems like this quantum ignorance is precisely what re-
mains after the location measurement.

This was roughly Henderson’s (2003) criticism against Shenker (1999),
which is why it is puzzling that Hemmo and Shenker (2006) commit the
same mistake:
86/7100
This preparation produces the pure states [jw↓
z i] and [jw↑

z i] with equal
probabilities. In a particular trial, the observer may take note of the mea-
surement result, and he therefore discovers that he has say a [jw↑

z i]. If he
applies a projective measurement in the ½fjw↑

z i, jw↓
z ig� basis, he could pre-

dict that he will measure [jw↑
z i]. However, this does not mean that, if some-

one handed him another state prepared in the same way, he could again
predict that the outcome of his measurement would be [jw↑

z i]. In this sense
the observer does not know the state of the system which is being pre-
pared, and it is because of this ignorance that the state is mixed. Looking
at the measurement result does not remove the fact that there is a proba-
bility distribution over the possible outcomes. (Henderson 2003, 294)
This applies to the location measurement in stage 5 too: measuring the
location of the particle in this case does not change the state of the particle
from a mixed one to a pure one even on collapse interpretations. First, it
seems quite irrelevant whether we adopt a collapse or no-collapse interpre-
tation, because the collapse mechanism applies to superposed pure states,
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not statistical mixtures. If anything, collapse had already happened in the
stage 2 measurement procedure, yet everyone including Hemmo and Shenker
(2006, 160) accept that the system is in a mixed state after stage 2 even for
collapse interpretations. More importantly, there remains a probability dis-
tribution over the states of the particle as a result of stage 2’s spin measure-
ment, even after the location measurement. Given an ensemble of particles
prepared from stages 1 to 5 in the same way, we are still not be able to pre-
dict with certainty whether an ensemble of particles would all be measured
on the left or right sides of the box (and hence all spin-up or spin-down) as a
result of the mixed state resulting from stage 2, only that half of the ensem-
bles will be on the left and the other half will be on the right. Quantum ig-
norance remains—the system remains in a mixed state even after the loca-
tion measurement, as

rparticle 5
1

2
(jw↑

z i h w↑
z j � rpos(L) 1 jw↓

z i h w↓
z j � rpos(R)): (8)

This is exactly the state of the system in no-collapse interpretations; that is,
quantum ignorance does not discern between collapse and no-collapse in-
terpretations. What has gone away is the classical ignorance that Hemmo
and Shenker (mistakenly) assumed was relevant for mixed states, ignorance
about this particular system’s state. By measuring the system’s location, we
come to learn of the correlations between location measurement and the par-
ticle’s spin. This ignorance does not change the mixed state to a pure state:
instead, this loss of classical ignorance—gain in information—is represented
as a decrease in information entropy just as before, and this information is
what we use to perform the compression in stage 5.

As a result, there is no additional decrease in SVN in stage 5 for collapse
interpretations; the entropy accounting lines up after all, as with no-collapse
interpretations. The decrease in information entropy does correspond to the
increase in SVN, and so information entropy does correspond to SVN after all.
Hemmo and Shenker’s argument does not establish the failure of correspon-
dence between SVN and STD via the failure of SVN and information entropy to
correspond.

To sum up, their arguments in the single-particle case are either ill mo-
tivated and irrelevant to von Neumann and our discussion of correspon-
dence when considered in terms of phenomenological thermodynamics or
outright fail when considered in the more relevant domain of (informational
approaches to) statistical mechanics. Either way, their argument does not
support the failure of correspondence between SVN and STD.18
18. Let me briefly note that their argument in the two-particles case fails for similar rea-
sons. On the one hand, from the perspective of phenomenological thermodynamics,
their argument is irrelevant: following Maxwell and others, two particles do not a
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4.3. Finitely Many Particles. Hemmo and Shenker’s argument in the
case of finitely many particles rests on the assumption of equidistribution;
that is, that the particles will be equally distributed across the left and right
sides of the box after separation by the semipermeable wall. Assuming
equidistribution, the increase in SVN given the spin measurement in stage 2
is N ln 2 (Hemmo and Shenker 2006, 169). Furthermore, the decrease in
thermodynamic entropy in the fourth stage is N ln 2 as well. The entropic
accounting therefore seems to work out.

However, Hemmo and Shenker press further on the ‘rough’ nature of
equidistribution when N is large but finite: they claim that the change in
SVN will only be N ln 2 when N is infinite, since equidistribution only truly
holds when N →∞. In other cases, SVN will strictly only approximate STD,
and hence SVN and STD combined will never be exactly zero. Hence, “Von
Neumann’s argument goes through as an approximation” (Hemmo and
Shenker 2006, 169). However, they claim that this state of affairs suggests,
instead, that von Neumann’s argument strictly fails: “since Von Neumann’s
argument is meant to establish a conceptual identity between the quantum
mechanical entropy and thermodynamic entropy, we think that such an im-
plication is mistaken. . . . Nomatter how largeNmay be, as long as it is finite,
the net change of entropy throughout the experiment will not be exactly
zero” (169). As I have already discussed in section 4.1, it is not clear to me
that von Neumann’s goal really was to establish strict identity (what they call
“conceptual identity”), that is, correspondence between SVN and STD in all do-
mains. Rather, it seems to be the establishing of correspondence only in do-
mains where STD is taken to hold. If so, their argument here simply misses
the point.

Furthermore, as is well known, the particle analogue of thermodynamics,
statistical mechanics, becomes equivalent to phenomenological thermody-
namics only whenN 5 ∞, that is, whenN arrives at the thermodynamic limit.
As such, to complain that SVN does notmatch up to STD outside of this domain
is to demand the unreasonable, since it is not clear that even statistical me-
chanics, the bona fide particle analogue of thermodynamics, can satisfy this
demand. Since SVN approximates STD the sameway statistical mechanical en-
tropies approximate STD (and becomes equivalent at N 5 ∞), and physicists
generally accept that statistical mechanics corresponds to thermodynamics
nevertheless, why should this approximation be particularly problematic
thermodynamic system make. On the other hand, in the domain of statistical mechanics,
the analysis in terms of information entropy is irrelevant from noninformational views of
statistical mechanics. From an informational perspective, however, their argument rests
again on the supposed difference between collapse and no-collapse interpretations of
mixed states. Since this difference is nonexistent, their argument likewise falls apart
in that case.
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for SVN? I think Hemmo and Shenker take too seriously the notion of concep-
tual identity involved in von Neumann’s thought experiment to be strict
equality, although I suspect a better way to understand von Neumann’s strat-
egy is to understand SVN as an approximation to STD that is more fundamental
than STD in small N cases but becomes part of the STD calculus in domains
where STD applies.

To have a case against SVN as a quantum analogue of STD in the case of
finitely many particles, Hemmo and Shenker must explain what exactly the
problem is with approximations in this case, if it has worked out so well for
the case of statistical mechanics and thermodynamics. If not, they might
just be “taking thermodynamics too seriously” (see Callender 2001).

One might say something stronger: unless they can justify why we can-
not use approximations at all in science, they do not have a case at all. As
they note themselves, STD is itself only on average approximately 2N ln 2
(Hemmo and Shenker 2006, 169), only being equal to 2N ln 2 when N 5
∞. So, in fact, the approximate quantity of SVN, ∼N ln 2, exactly matches the
approximate quantity of STD, ∼2N ln 2, in the case of finitely many parti-
cles. Unless there is something wrong with approximations in physics in
general, this, then, is in fact a case of SVN corresponding to STD, contrary
to their argument.

4.4. Infinitely Many Particles. Hemmo and Shenker consider vonNeu-
mann’s argument in the infinite-particles case in two different ways: one as
N →∞ and one as N 5 ∞. As they rightly point out, the two cases are very
different for calculations of physical quantities.

Consider stages 2 and 5 in this context. Hemmo and Shenker emphasize
that a spin measurement is “a physical operation which takes place in time”
(2006, 170), which constrains what is physically possible. For the case in
which N →∞, stage 2 is to be understood as a succession of physical mea-
surements in which “we measure individual quantities of each of the parti-
cles separately and only then count the relative frequencies” (170), before
coming up with a density matrix describing this state. In this case, as with
the case described in section 4.3, SVN approaches N ln 2 as N →∞. Their
complaint here consists of two premises: one, that, as with section 4.3,
SVN never reaches N ln 2 unless N 5 ∞ and, two, that since measurements
are physical measurements, we can never perform an infinite series of these
measurements, and so we can never measure infinite particles. A fortiori the
measurable SVN can never arrive at N ln 2, and so the entropic accounting is
again supposed to be inconsistent if we consider both SVN and STD.

However, it is clear that their argument is moot given an understanding
of the sort of thermodynamics we are interested in (see sec. 4.3). While it
is true that SVN will never reach N ln 2, recall that STD (or, more likely, one
of its statistical mechanical analogues, given the domain of finitely many
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particles merely approaching ∞ rather than N 5 ∞) will likewise never
reach N ln 2. In other words, it does not matter that we can never perform
an infinite series of these measurements and, hence, never come to know
of SVN at the thermodynamic limit, since we can likewise never have a ther-
modynamic entropy equivalent toN ln 2 unless we are at the thermodynamic
limit. The two entropies, then, in fact correspond in this case.

What of the second case? Here, Hemmo and Shenker concede that “arith-
metically VonNeumann’s argument goes through at the infinite limit” (2006,
172), which makes sense because, as I have insisted so far, von Neumann’s
strategy was never to demonstrate the strict identity of SVN and STD, that is,
the correspondence of SVN and STD in all domains. Instead, it was to show that
SVN corresponds to STD only in the domain where phenomenological thermo-
dynamics hold, in all other cases merely approximating STD in large N cases
or replacing it altogether (in, e.g., single-particle cases). I maintain that
Hemmo and Shenker’s main mistake was to confuse the domain where phe-
nomenological thermodynamics hold with domains where they do not hold.

Hemmo and Shenker complain that “real physical systems are finite. This
means that Von Neumann’s argument does not establish a conceptual iden-
tity between theVonNeumann entropy and thermodynamic entropy of phys-
ical systems. Identities of physical properties mean that the two quantities
refer to the same magnitude in the world” (2006, 172). In line with what I
have said in section 4.1, it seems that there was no physically meaningful
theoretical term in phenomenological thermodynamics that could refer to
some quantity in the single-particle case, which was why von Neumann
needed to come up with a new measure of entropy to begin with. Further-
more, extending a concept to a new domain does not require strict identity,
as we have seen and understood for a long time in the case of statistical me-
chanics and phenomenological thermodynamics.

As Peres summarizes: “There should be no doubt that von Neumann’s
entropy. . . is equivalent to the entropy of classical thermodynamics. (This
statement must be understood with the same vague meaning as when we say
that the quantum notions of energy, momentum, angular momentum, etc.,
are equivalent to the classical notions bearing the same names)” (2002,
174). ‘Equivalence’ here should not be understood in terms of strict (or con-
ceptual) identity, that is, correspondence at all domains. Rather, we should
understand equivalence loosely as correspondence in the suitable domains
of application and successful extension of old concepts in these domains to
new domains. As Peres noted above, ‘equivalence’ should be understood in
the context of discovery, where one is trying to develop new concepts that
are analogous to old ones in different domains. For von Neumann, we have
a theory (phenomenological thermodynamics) that is well understood but
also another theory (quantum mechanics) that we want to understand in
light of the former theory. Finding correspondence provides us with ways
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to extend concepts from the original theory to the new theory: for example,
with SVN we may now define ‘something like’ STD, whereas before there was
no way to talk about these cases. The same goes for statistical mechanics:
by finding a correspondence between, for example, temperature and mean
kinetic energy in the thermodynamic limit, we can extend the notion of
‘something like’ temperature beyond its original domain into systems with
small numbers of particles, whereas before there was, again, no way to talk
about these cases.

I see nothing wrong in these cases in the context of discovery. We should
give up a strong and untenable notion of conceptual identity in this context.
If so, Hemmo and Shenker’s objection loses much bite.

They further claim that “the fact that the behavior of the two quantities
coincides approximately for a very large number of particles is not enough,
because in any ensemble of finite gases there are systems in which the iden-
tity will not be true. This means that in a real experiment the Von Neumann
entropy is not identical with the thermodynamic entropy” (Hemmo and
Shenker 2006, 172). This again reveals a confusion between phenomenolog-
ical and statistical thermodynamics. If they want to talk about particles at all,
it seems they must adopt some form of statistical mechanical picture with
microscopic variables, given phenomenological thermodynamics’ emphasis
on purely macroscopic variables like volume or temperature. Yet, if so, they
must recognize that thermodynamic entropy STD is in general not strictly
identical to statistical mechanical entropy, for example, the Gibbs entropy
or information entropy (briefly discussed in sec. 4.2) either. Their complaint
about approximate coincidences not being enough for (the relevant sort of)
equivalence thus weakens significantly, especially since they must assume
some such equivalence (which cannot be strict identity) to even talk about
particles within the context of phenomenological thermodynamics to begin
with. Furthermore, statistical mechanics is evidently empirically successful
in explaining and predicting traditionally thermodynamic phenomena de-
spite this ‘nonequivalence’—it is not clear why this ‘nonequivalence’ should
matter if, for all practical purposes, statistical mechanics is the conceptual
successor of thermodynamics. Of course, if they could come up with a prin-
cipled reason why approximations should not be allowed period, while ac-
counting for statistical mechanics’ empirical success in accounting for ther-
modynamic behavior, then this could change. As of now, I see no such
argument forthcoming.

5. Conclusion and Some Open Questions. I hope to have shown that
Hemmo and Shenker’s (2006) argument against the correspondence of SVN
and STD—to my knowledge the only one in the philosophical literature—fails
to hold in all three cases considered (secs. 4.1–4.4), as a result of their mis-
understanding about domains where phenomenological thermodynamics
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should hold and domains where it should not. This is compounded with mis-
understandings about the role of approximations and the relevant interpreta-
tion of density matrices and ignorance in quantummechanics. I conclude that
their argument fails on the whole; the correspondence holds for now.

Of course, even if Hemmo and Shenker’s claims were debunked, this
does not yet amount to a positive argument for the equivalence between
von Neumann entropy and thermodynamic entropy. Even assuming corre-
spondence, correspondence does not entail equivalence. However, the for-
mer does provide good prima facie reasons to believe the latter, especially
given the novel take on correspondence I provided in the end of section 3:
we can accept the correspondence because of thermodynamic consider-
ations about the Second Law and STD accounting but also because of quan-
tum mechanical considerations about SVN accounting. The correspondence
supports a ‘two-way street’—equivalence—between STD and SVN.

While I hope to have conclusively refuted Hemmo and Shenker’s argu-
ment, this is but the beginning of further inquiry into questions arising from
this supposed correspondence. Amid the tangle of entropies, there remains
much more housekeeping to be done for philosophers of physics.
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