
TLP 15 (4–5): 511–525, 2015. C© Cambridge University Press 2015

doi:10.1017/S1471068415000198

511

Learning weak constraints in answer
set programming

MARK LAW, ALESSANDRA RUSSO� and KRYSIA BRODA

Department of Computing, Imperial College London, SW7 2AZ

(e-mail: {mark.law09, a.russo, k.broda}@imperial.ac.uk)

submitted 29 April 2015; revised 3 July 2015; accepted 15 July 2015

Abstract

This paper contributes to the area of inductive logic programming by presenting a new

learning framework that allows the learning of weak constraints in Answer Set Programming

(ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous

work on learning ASP programs without weak constraints, by considering a new notion

of examples as ordered pairs of partial answer sets that exemplify which answer sets of a

learned hypothesis (together with a given background knowledge) are preferred to others. In

this new learning task inductive solutions are searched within a hypothesis space of normal

rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2,

which is sound and complete with respect to our new learning framework. We investigate its

applicability to learning preferences in an interview scheduling problem and also demonstrate

that when restricted to the task of learning ASP programs without weak constraints, ILASP2

can be much more efficient than our previously proposed system.

KEYWORDS: Non-monotonic Inductive Logic Programming, Preference Learning, Answer

Set Programming

1 Introduction

Preference Learning has received much attention over the last decade from within

the machine learning community. A popular approach to preference learning is

learning to rank (Fürnkranz and Hüllermeier 2003; Geisler et al. 2001), where the

goal is to learn to rank any two objects given some examples of pairwise preferences

(indicating that one object is preferred to another). Many of these approaches use

traditional machine learning tools such as neural networks (Geisler et al. 2001).

On the other hand, the field of Inductive Logic Programming (ILP) (Muggleton

1991) has seen significant advances in recent years, not only with the development of

systems, such as (Ray et al. 2004; Kimber et al. 2009; Corapi et al. 2010; Muggleton

et al. 2012; Muggleton and Lin 2013), but also the proposals of new frameworks for

learning (Otero 2001; Sakama and Inoue 2009; Law et al. 2014). In most approaches

� This research is partially funded by the 7th Framework EU-FET project 600792 “ALLOW Ensembles”,
and the EPSRC project EP/K033522/1 “Privacy Dynamics”.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

512 M. Law et al.

to ILP, a learning task consists of a background knowledge B and sets of positive

and negative examples. The task is then to find a hypothesis that, together with

B, covers all the positive examples but none of the negative examples. While in

previous work ILP systems such as TILDE (Blockeel and De Raedt 1998) and

Aleph (Srinivasan 2001) have been applied to preference learning (Dastani et al.

2001; Horváth 2012), this has addressed learning ratings, such as good, poor and

bad, rather than rankings over the examples. Ratings are not expressive enough if we

want to find an optimal solution as we may rate many objects as good when some are

better than others. Answer Set Programming (ASP), on the other hand, allows the

expression of preferences through weak constraints. In a usual application of ASP,

one would write a logic program which has many answer sets, each corresponding

to a solution of the problem. The program can also contain weak constraints (or

optimisation statements) which impose an ordering on the answer sets. Modern

ASP solvers, such as clingo (Gebser et al. 2011), can then find the optimal answer

sets, which correspond to the optimal solutions of the problem. For instance, in a

scheduling problem, we could define an ASP program, whose answer sets correspond

to timetables, and weak constraints that represent preferences over these timetables

(see (Banbara et al. 2013) for an example application of ASP in timetabling).

In this paper, we propose a new learning framework, Learning from Ordered

Answer Sets (ILPLOAS), that allows the learning of ASP programs with weak

constraints. This framework extends the notion of learning from answer sets

proposed in (Law et al. 2014), where ASP programs without weak constraints

were learned using only positive and negative examples of partial answer sets. In

our new learning task ILPLOAS , additional examples are defined, as ordered pairs

of partial answer sets, and the language bias captures a hypothesis space of ASP

programs containing normal rules, choice rules and hard and weak constraints. A

new algorithm is presented and proved to be sound and complete with respect to

ILPLOAS .

To demonstrate the applicability of our framework, we consider, as a running

example, an interview timetabling problem and the task of learning, as weak

constraints, academics’ preferences for scheduling undergraduate interviews. An

academic might be more comfortable interviewing for one course than another,

might prefer not to have many interviews on the same day, or might hold both

of these preferences but regard the former as more important. Given ordered pairs

of partial timetables, our approach is able to learn these preferences as weak

constraints.

The paper is structured as follows. Our new learning framework, ILPLOAS is

presented in Section 3. It extends the notion of Learning from Answer Sets (Law

et al. 2014) to the new task of learning weak constraints. We discuss formal properties

of the framework such as the complexity of deciding the existence of a solution. Our

learning algorithm ILASP2 is described in Section 4, together with experimental

results based on a scheduling example (Section 5). We also show that ILASP2 can

have increased efficiency over our previous system when learning programs without

weak constraints. Discussion on related and future work concludes the paper.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

Learning weak constraints in answer set programming 513

2 Background

In this section we introduce the concepts needed in the paper. Given any atoms

h, h1, . . . , ho, b1, . . . , bn, c1, . . . , cm, h ← b1, . . . , bn, not c1, . . . , not cm is called a nor-

mal rule, with h as the head and b1, . . . , bn, not c1, . . . , not cm (collectively) as

the body (“not” represents negation as failure); a rule ← b1, . . . , bn, not c1, . . . ,

not cm is a hard constraint; a choice rule is a rule l{h1, . . . , ho}u ← b1, . . . , bn,

not c1, . . . , not cm (where l and u are integers) and its head is called an aggregate.

A variable in a rule R is safe if it occurs in at least one positive literal in the

body of R. A program P is assumed to be a finite set of normal rules, choice

rules, and hard constraints. The Herbrand Base of P , denoted HBP , is the set of

variable free (ground) atoms that can be formed from predicates and constants

in P . The subsets of HBP are called the (Herbrand) interpretations of P . A

ground aggregate l{h1, . . . , ho}u is satisfied by an interpretation I iff l � |I ∩ {h1,

. . . , ho}| � u.

As we restrict our programs to sets of normal rules, (hard) constraints and choice

rules, we can use the simplified definitions of the reduct for choice rules presented in

(Law et al. 2015c). Given a program P and an Herbrand interpretation I ⊆ HBP ,

the reduct P I is constructed from the grounding of P in 4 steps: firstly, remove rules

whose bodies contain the negation of an atom in I; secondly, remove all negative

literals from the remaining rules; thirdly, replace the head of any hard constraint,

or any choice rule whose head is not satisfied by I with ⊥ (where ⊥ /∈ HBP); and

finally, replace any remaining choice rule {h1, . . . , hm} ← b1, . . . , bn with the set of

rules {hi ← b1, . . . , bn | hi ∈ I ∩ {h1, . . . , hm}}. Any I ⊆ HBP is an answer set of P if

it is the minimal model of the reduct P I . Throughout the paper we denote the set

of answer sets of a program P with AS(P).

Unlike hard constraints in ASP, weak constraints do not affect what is, or is not,

an answer set of a program P . Hence the above definitions also apply to programs

with weak constraints. Weak constraints create an ordering over AS(P) specifying

which answer sets are “better” than others. The set of optimal (best) answer sets of

P is denoted as AS∗(P). A weak constraint is of the form :∼ b1, . . . , bn, not c1, . . . ,

not cm.[w@l, t1, . . . , to] where b1, . . . , bn, c1, . . . , cm are atoms, w and l are terms

specifying the weight and the level, and t1, . . . , to are terms. A weak constraint W

is safe if every variable in W occurs in at least one positive literal in the body

of W . At each priority level l, the aim is to discard any answer set which does

not minimise the sum of the weights of the ground weak constraints (with level l)

whose bodies are true. The higher levels are minimised first. Terms specify which

ground weak constraints should be considered unique. For any program P and

A ∈ AS(P), weak(P , A) is the set of tuples (w, l, t1, . . . , to) for which there is some

:∼ b1, . . . , bn, not c1, . . . , not cm.[w@l, t1, . . . , to] in the grounding of P such that A

satisfies b1, . . . , bn, not c1, . . . , not cm.

We now give the semantics for weak constraints (Calimeri et al. 2013). For each

level l, P l
A =

∑
(w,l,t1 ,...,to)∈weak(P ,A) w. For A1, A2 ∈ AS(P), A1 dominates A2 (written

A1
P A2) iff ∃l such that P l
A1

< P l
A2

and ∀m > l, Pm
A1

= Pm
A2

. An answer set A∈AS(P)

is optimal if it is not dominated by any A2∈AS(P).

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

514 M. Law et al.

Example 1

Let P be the program consisting of slot(m, 1); slot(m, 2); slot(t, 1); slot(t, 2); and

0{assign(D, S)}1← slot(D, S), which assigns 0 to 4 slots in a schedule (slot(m, 1)

represents slot 1 on Monday). Let W1, W2 and W3 be the weak constraints

:∼ assign(D, S).[1@1], :∼ assign(D, S).[1@1, D] and :∼ assign(D, S).[1@1, D, S] respec-

tively. Applying each weak constraint to P gives as its optimal answer set the one in

which no slots are assigned. The remaining answer sets are ordered in the following

way: W1 considers all schedules in which slots have been assigned to be equally

optimal, as there is only one unique set of terms t1, . . . , tn which is the empty set;

W2 minimises the number of days in which slots have been assigned, as there is one

unique set of terms per day; and finally, W3 minimises the number of assignments

made, as each combination of day and slot has a unique set of terms.

In an ILP task, the hypothesis space is often characterised by mode declara-

tions (Muggleton et al. 2012). A mode bias can be defined as a pair of sets

of mode declarations 〈Mh,Mb〉, where Mh (resp. Mb) are the head (resp. body)

declarations. Each mode declaration m ∈ Mh, or m ∈ Mb, is a literal whose

abstracted arguments are either v or c. An atom a is compatible with a mode

declaration m if replacing the instances of v in m by variables, and the instances

of c by constants yields a. The search space is defined to be the set of rules of the

form h← b1, . . . , bn, not c1, . . . , not cm where (i) h is empty, h is an atom compatible

with some m ∈ Mh, or h is an aggregate l{h1, . . . , hk}u such that 0 � l � u � k and

∀i ∈ [1, k] hi is compatible with some m ∈ Mh; (ii) ∀i ∈ [1, n], ∀j ∈ [1, m] bi and cj
are each compatible with at least one mode declaration in Mb; and finally (iii) all

variables in the rule are safe. We require the rules to be safe because ASP solvers

such as clingo (Gebser et al. 2011) have this requirement. We denote the search

space defined by a given mode bias (Mh,Mb) as SLAS (Mh,Mb).

In (Law et al. 2014), we presented a new learning task, Learning from Answer Sets

(ILPLAS) which used partial interpretations as examples. A partial interpretation e is

a pair 〈einc, eexc〉 of sets of ground atoms, called inclusions and exclusions. An answer

set A is said to extend e if and only if (einc ⊆ A) ∧ (eexc ∩ A = ∅). Given partial

interpretations e1 and e2, e1 extends e2 iff einc2 ⊆ einc1 and eexc2 ⊆ eexc1 .

Definition 1

A Learning from Answer Sets task is a tuple T = 〈B, SLAS (Mh,Mb), E
+, E−〉 where

B is the background knowledge, SLAS (Mh,Mb) is the search space defined by a

bias 〈Mh,Mb〉, E+ and E− are sets of partial interpretations called the positive and

negative examples. A hypothesis H is in ILPLAS (T), the set of all inductive solutions

of T , if and only if H⊆SLAS (Mh,Mb); ∀e+∈E+ ∃A∈AS(B ∪H) such that A extends

e+; and finally, ∀e−∈E− �A∈AS(B ∪H) such that A extends e−.

The task of ILP is usually to find optimal hypotheses, where optimality is often

defined by the number of literals in a hypothesis. In ILPLAS , aggregates are converted

to disjunctions before the literals are counted, giving a higher “cost” for learning an

aggregate; for example, 1{p, q}2 is converted to (p ∧ not q) ∨ (q ∧ not p) ∨ (p ∧ q)

giving a length of 6. ILPLAS aims at learning ASP programs consisting of normal

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

Learning weak constraints in answer set programming 515

rules, choice rules and hard constraints. This paper extends this notion to a new

learning task capable of learning weak constraints.

3 Learning from ordered answer sets

To learn weak constraints we extend the notion of mode bias with two new sets of

mode declarations: Mo specifies what is allowed to appear in the body of a weak

constraint; whereas Mw specifies what is allowed to appear as a weight. A positive

integer lmax is also given to indicate the number of levels that can occur in H .

Definition 2

A mode bias with ordering is a tuple M = 〈Mh,Mb,Mo,Mw, lmax〉, where Mh and

Mb are respectively head and body declarations, Mo is a set of mode declarations

for body literals in weak constraints, Mw is a set of integers and lmax is a positive

integer. The search space SM is the set of rules R that satisfy one of the conditions:

• R ∈ SLAS (Mh,Mb).

• R is a safe weak constraint :∼ b1, . . . , bi, not bi+1, . . . , not bj.[w@l, t1, . . . , tn]

such that ∀k∈ [1, j] bk is compatible with Mo; t1, . . . , tn is the set of terms in

b1, . . . , bj; w ∈Mw , l ∈ [0, lmax).

Note that even if we were to extend the learning task in Definition 1 with this

new notion of mode bias, such a task would never have as its optimal solution

a hypothesis which contains a weak constraint. This is because a Learning from

Answer Sets task has only examples of what is, or is not, an answer set. Any solution

containing a weak constraint W will have the same answer sets without W , and

would be more optimal. We now define the notion of ordering examples.

Definition 3

An ordering example is a tuple o=〈e1, e2〉 where e1 and e2 are partial interpretations.

An ASP program P bravely respects o iff ∃A1, A2 ∈AS(P) such that A1 extends e1,

A2 extends e2 and A1
P A2. P cautiously respects o iff ∀A1, A2∈AS(P) such that A1

extends e1 and A2 extends e2, it is the case that A1
P A2.

Example 2

Consider the partial interpretations e1 = 〈{assign(m, 1), assign(m, 2)}, {assign(t, 1),
assign(t, 2)}〉 and e2 = 〈{assign(m, 1), assign(t, 1)}, ∅〉. Let o = 〈e1, e2〉 be an ordering

example and recall P and W1, . . . ,W3 from example 1. The only answer set of P

that extends e1 is m1m2 (where m1m2 denotes {assign(m, 1), assign(m, 2)}), whereas the

answer sets that extend e2 are m1t1, m1m2t1, m1m2t1t2 and m1t1t2. P ∪W1 does not

bravely or cautiously respect o as it gives to all these answer sets the same optimality;

P ∪W2 both bravely and cautiously respects o, as each pair of answer sets extending

the partial interpretations is ordered correctly (i.e. answer sets extending e1 have

slots allocated in only one day whereas all the answer sets extending e2 have slots

assigned in two days). Finally, P ∪W3 respects o bravely but not cautiously (the

pair of answer sets m1m2 and m1t1 is such that m1m2 �
P m1t1).

We can now define the notion of Learning from Ordered Answer Sets (ILPLOAS).

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

516 M. Law et al.

Definition 4

A Learning from Ordered Answer Sets task is a tuple T = 〈B, SM, E+, E−, Ob, Oc〉
where B is an ASP program, called the background knowledge, SM is the search

space defined by a mode bias with ordering M, E+ and E− are sets of partial

interpretations called, respectively, positive and negative examples, and Ob and Oc

are sets of ordering examples over E+ called brave and cautious orderings. A

hypothesis H ⊆ SM is in ILPLOAS (T), the inductive solutions of T , if and only if:

1. Let Mh and Mb be as in M and H ′ be the subset of H with no weak constraints.

H ′ ∈ ILPLAS (〈B, SLAS (Mh,Mb), E
+, E−〉)

2. ∀o ∈ Ob B ∪H bravely respects o

3. ∀o ∈ Oc B ∪H cautiously respects o

The notion of an optimal inductive solution of an ILPLOAS task is the same as

in ILPLAS , with each weak constraint W counted as the number of literals in the

body of W . Note that the orderings are only over E+ rather than orderings over

any arbitrary partial interpretations. We chose to make this restriction as we could

not see a reason why a hypothesis would need to respect orderings which are not

extended by any pair of answer sets of B ∪H . Note also that in the case where Ob

and Oc are both empty, the task reduces to an ILPLAS task.

Example 3

Consider the ILPLOAS task T with the following background knowledge:

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

slot(m, 1..3).slot(t, 1..3).slot(w, 1..3).

neq(1, 2).neq(1, 3).neq(2, 1).neq(2, 3).neq(3, 1).neq(3, 2).

neq(m, t).neq(m, w).neq(t, m).neq(t, w).neq(w, m).neq(w, t).

type(m, 1, c1).type(m, 2, c2).type(m, 3, c2).type(t, 1, c2).

type(t, 2, c2).type(t, 3, c2).type(w, 1, c2).type(w, 2, c1).type(w, 3, c2).

0{assign(X, Y)}1:-slot(X, Y).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Using the notation from example 2, let T have the positive examples e1 =

〈∅, m2m3t1t3w1w2〉, e2 = 〈m1m2, ∅〉, e3 = 〈∅, m1t2w1w2〉, e4 = 〈t1t2t3, ∅〉,
e5 = 〈m2m3t1t2t3w1w3, ∅〉; e6 = 〈m1w1w3, m2m3t1t2t3w2〉; two cautious orderings:

〈e1, e2〉 and 〈e3, e4〉; and one brave ordering: 〈e5, e6〉. Consider SM to be defined

by the mode declarations: Mh = Mb = ∅; Mo = {assign(v, v), neq(v, v), type(v, c)};
Mw = {−1, 1}; and lmax = 2. Note that as each positive example is already covered

by the background knowledge and there are no negative examples, it remains to

find a set of weak constraints which meet conditions 2 and 3 of definition 4. One

inductive solution H of T is {:∼ assign(D, S1), assign(D, S2),neq(S1, S2).[1@1, D, S1, S2]

:∼ assign(D, S),type(D, S, c1).[1@2, D, S]}; this respects the first cautious ordering ex-

ample because any timetable extending e1 has at most one c1 course whereas e2 has

at least one, so e1 is better or equal to e2 on the highest priority weak constraint;

even if they are equal, a timetable extending e1 has at most one assignment per

day and is, therefore, always better on the lower priority weak constraint. H also

respects the other cautious ordering and the timetables m2m3t1t2t3w1w3 and m1w1w3

correspond to answer sets which demostrate that the brave ordering is respected.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

Learning weak constraints in answer set programming 517

In fact, there is no shorter hypothesis which meets conditions 1 to 3 and so H

is an optimal inductive solution; moreover, the other optimal solutions are equiv-

alent hypotheses such as: {:∼ assign(D, S1),assign(D, S2), neq(S1, S2).[1@1, D, S1, S2];

:∼ assign(D, S),not type(D, S, c2).[1@2, D, S]}. These hypotheses represent the prefer-

ences described in the introduction. They express that the highest priority is to

minimise the interviews for c1, and then to minimise the slots in any one day.

We now discuss some of the formal properties of ILPLOAS . All learning tasks in

the rest of this section are assumed to be propositional (B and SM are both ground).

The proofs for Theorems 1 to 3 can be found in (Law et al. 2015b). Theorems 1

and 2 state sufficient and necessary conditions for there to exist solutions for an

ILPLOAS task with an unrestricted search space (hypotheses can be any set of normal

rules, choice rules and hard and weak constraints).

Theorem 1

Let T be the ILPLOAS task 〈B,E+, E−, Ob, Oc〉. The following conditions (in con-

junction) are sufficient for there to exist solutions of T : (i) ∀e ∈ E+, there is at least

one model of B which extends e; (ii) ∀e1 ∈ E+, �e2 ∈ (E+ ∪E−) such that e1 extends

e2; (iii) there is no cyclic chain of ordering examples (in Ob ∪Oc) 〈e1, e2〉, 〈e2, e3〉, . . . ,
〈en−1, en〉, 〈en, e1〉.

Theorem 2

Let T be the ILPLOAS task 〈B,E+, E−, Ob, Oc〉. The following conditions are

necessary for there to exist solutions of T : (i) ∀e ∈ E+, there is at least one

model of B which extends e; (ii) ∀e1 ∈ E+, �e2 ∈ E− such that e1 extends e2; (iii)

there is no cyclic chain of cautious orderings, 〈e1, e2〉, 〈e2, e3〉, . . . , 〈en−1, en〉, 〈en, e1〉.

Note that if we consider the usual setting where hypotheses come from a search

space, the conditions in theorem 2 are still necessary, but the conditions in theorem 1

are no longer sufficient as, even if the conditions hold, the search space may be too

restrictive. Theorem 3 states the complexity of deciding the existence of solutions

for both ILPLAS and ILPLOAS tasks. The interesting property here is that deciding

the existence of solutions for ILPLOAS is in the same complexity class as ILPLAS .

Theorem 3

Let T be any ILPLAS or ILPLOAS task. Deciding whether T has at least one

inductive solution is NPNP -complete.

4 Algorithm

We now describe our new algorithm, ILASP2, capable of computing inductive

solutions of any ILPLOAS task, and present its soundness and completeness results

with respect to the notion of Learning from Ordered Answer Sets task given in

Definition 4. We omit the proofs of the theorems in this paper, but they can be

found in full in (Law et al. 2015b). For details of how to download and use our

prototype implementation of the ILASP2 algorithm, see (Law et al. 2015a).

ILASP2 extends the concepts of positive and violating hypotheses, first introduced

in our previous algorithm ILASP (Law et al. 2014), to cater for the new notion of

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

518 M. Law et al.

ordering examples. A hypothesis is said to be positive if it covers all positive examples

and bravely respects all the brave ordering examples. A positive hypothesis is defined

to be violating if it covers at least one negative example or if it does not respect at

least one of the cautious ordering examples. These two notions are formalised by

Definitions 5 and 6.

Definition 5

Let T = 〈B, SM , E+, E−, Ob, Oc〉 be an ILPLOAS task. Any H ⊆ SM is a positive

hypothesis iff ∀e ∈ E+ ∃A ∈ AS(B ∪ H) such that A extends e, and ∀o ∈ Ob H ∪ B

bravely respects o. The set of positive hypotheses of T is denoted P(T).

Definition 6

A positive hypothesis H is a violating hypothesis of T = 〈B, SM , E+, E−, Ob, Oc〉,
written H∈V(T), iff at least one of the following cases is true:

• ∃e−∈E− and ∃A∈AS(B ∪H) such that A extends e−. In this case we call A a

violating interpretation of T and write 〈H,A〉 ∈ VI(T).

• ∃A1, A2∈AS(B ∪H) and ∃〈e1, e2〉 ∈ Oc such that A1 extends e1, A2 extends e2

and A1 �
P A2 with respect to B ∪H . In this case, we call 〈A1, A2〉 a violating

pair of T and write 〈H, 〈A1, A2〉〉 ∈ VP(T).

Example 4

Consider an ILPLOAS task with B equal to P in Example 1 but with one additonal

fact busy(1, 1); positive examples e+
1 = 〈{assign(t, 1), assign(t, 2)}, {assign(m, 2)}〉 and

e+
2 = 〈{assign(m, 2), assign(t, 1)}, ∅〉; one negative example e−1 = 〈{assign(m, 1)}, ∅〉;

and one cautious ordering 〈e+
1 , e

+
2 〉. SM is unrestricted (hypotheses can be constructed

from any predicate that appears in B and E). Three example hypotheses are given

below. Note that when we describe answer sets we omit the facts in B.

H1 = ∅∈P(T) as e+
1 and e+

2 are covered and Ob is empty; however, H1 ∈ V(T)

for two reasons: firstly it has a violating interpretation ({assign(m, 1)}); secondly it

has a violating pair (〈{assign(t, 1), assign(t, 2)}, {assign(m, 2), assign(t, 1)}〉).
H2 = {← busy(D, S), assign(D, S)} ∈P(T). H2 has no violating interpretations, but

it has a violating pair (〈{assign(t, 1), assign(t, 2)}, {assign(m, 2), assign(t, 1)}〉).
H3 = H2∪{:∼ assign(D, S).[1@1, D]} ∈ P(T). H3 /∈ V(T), as it has no violating

interpretations and its weak constraints minimise the days assigned (so it cautiously

respects the ordering example). It is, therefore, an inductive solution of the task.

One approach to computing the inductive solutions of an ILPLOAS task would be

to extend the original ILASP method with our new notions of positive and violating

hypotheses. Given a positive integer n, ILASP worked by constructing an ASP meta

representation of an ILPLAS task T , called the task program Tn
meta, whose answer

sets could be mapped back to the positive hypotheses of T of length n. Tn
meta could

then be augmented with an extra constraint so that its answer sets corresponded

exactly to the violating hypotheses of length n. ILASP first computed the violating

hypotheses of length n, and then converted each of these to a constraint at the

meta-level (ruling out that hypothesis). When Tn
meta was then augmented with these

new constraints, its answer sets corresponded exactly to the positive hypotheses

which were not computed the first time - the inductive solutions of length n.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

Learning weak constraints in answer set programming 519

The problem is that, in general, there can be many violating hypotheses which

are shorter than the first inductive hypothesis and ILASP will compute all of them

and add them into the task program as individual constraints. This scalability issue

would be worsened if we were considering adding weak constraints to the search

space. To overcome this, ILASP2 adopts a different strategy: it eliminates classes

of hypothesis, i.e. hypotheses that are violating for the same “reason”, namely

they give rise to a particular violating interpretation or a particular violating pair of

interpretations. The idea underlying the ILASP2 algorithm is to make use of two sets

VI and VP which accumulate, respectively, violating interpretations and violating

pairs of interpretations that are constructed during the search. We start initially with

two empty sets VI and VP and continually compute the set of optimal remaining

hypotheses which do not violate any of the reasons in VI or VP . If a computed

hypothesis gives rise to a new violating interpretation then this interpretation is

added to VI , if it gives rise to a new violating pair of interpretations then this

pair is added to VP . If no optimal remaining hypotheses are violating, then these

hypotheses are the optimal inductive solutions of the task.

Definition 7

Let T be an ILPLOAS task, VI and VP (resp.) be sets of violating interpretations

and pairs of interpretations, and B be the background knowledge. Any H ∈ P(T)

is a remaining hypothesis of T with respect to VI ∪VP iff VI ∩AS(B ∪H) = ∅ and

∀〈I1, I2〉 ∈ VP if I1, I2 ∈ AS(B ∪H) then I1
B∪H I2. A remaining hypothesis H is a

remaining violating hypothesis iff ∃R such that 〈H,R〉 ∈ VI(T) ∪VP(T).

We use an ASP meta-level representation to solve our search for remaining

hypotheses. As we rule out classes of hypothesis at the same time (rather than

using one constraint per violating hypothesis), our meta-level representation is

slightly more complex than that used in the original ILASP. Due to this complexity,

we define this representation in the online appendix and give here the underlying

intuition.

The intuition of our meta encoding is that for a given task T , we construct an ASP

program Tmeta whose answer sets can be mapped back to the positive hypotheses

of T . Given an answer set A of Tmeta we write M−1
hyp(A) to denote the hypothesis

represented by A. Each positive hypothesis may be represented by many answer sets

of Tmeta but if this hypothesis gives rise to a violating interpretation, then at least

one of these answer sets will contain a special atom v i. If the hypothesis gives rise

to a violating pair of interpretations then at least one of the answer sets of Tmeta

representing the hypothesis will contain a special atom v p(t1, t2), where 〈t1, t2〉 is a

pair of identifiers corresponding to the cautious ordering example which is being

violated. There is only one priority level in Tmeta and the optimality of its answer

sets is 2 ∗ |H |+ 1 if the answer set does not contain the atom violating (violating is

defined to be true if and only if v i or at least one v p(t1, t2) is true) and 2 ∗ |H | if
it does. This means that for any hypothesis H , the answer sets corresponding to H

that do contain violating are preferred to those which do not.

We can use Tmeta to find optimal positive hypotheses of T . If these positive

solutions are violating, then the optimal answer sets will contain violating. We can

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

520 M. Law et al.

then rule these hypotheses out. We can extract violating interpretations and violating

pairs of interpretations from answer sets of Tmeta, using the functionsM−1
vi andM−1

vp

respectively. Violating interpretations and violating pairs of interpretations are both

called violating reasons. For any set of violating reasons VR = VI ∪ VP , we then

have a second meta encoding VRmeta(T) which, when added to Tmeta, rules out any

hypotheses which are violating for a reason already in VR. This means that the

answer sets of Tmeta ∪ VRmeta(T) will represent the set of remaining hypotheses of

T with respect to VR. These properties are guaranteed by Theorem 4.

Theorem 4

Given an ILPLOAS task and a set of violating reasons VR, let AS be the set of

optimal answer sets of Tmeta ∪ VRmeta(T).

• If ∃A ∈ AS such that violating∈A then the set of optimal remaining violating

hypotheses VH is non empty and is equal to the set {M−1
hyp(A) | A ∈ AS}.

• If no A ∈ AS contains violating, then the set of optimal remaining hypotheses

(none of which is violating) is equal to the set {M−1
hyp(A) | A ∈ AS}.

Algorithm 1 ILASP2

procedure ILASP2(T)

VR = []

solution = solve(Tmeta ∪ VRmeta(T))

while solution �= nil && solution.optimality%2 == 0 do

A = solution.answer set

if v i ∈ A then

VR += M−1
vi (A)

else if ∃t1, t2 such that v p(t1, t2) ∈ A then

VR += M−1
vp (A)

end if

solution = solve(Tmeta ∪ VRmeta(T))

end while

return {M−1
hyp(A) | A∈AS∗(Tmeta ∪ VRmeta(T))}

end procedure

Algorithm 1 is the pseudo code of our algorithm ILASP2. It makes use of our meta

encodings Tmeta and VRmeta(T). For any program P , solve(P) is a function which,

in the case that P is satisfiable, returns a pair consisting of an optimal answer

set together with its optimality (as there is only one priority level in our meta

encoding this is treated as an integer); if P is unsatisfiable then solve(P) returns

nil. While there are optimal remaining violating hypotheses, ILASP2 finds them

and records the appropriate violating reasons. When there are no optimal remaining

hypotheses which are violating then either the meta program will be unsatisfiable

or the optimality of the optimal answer sets will be odd (as the optimality of any

A ∈ AS(Tmeta∪VRmeta(T)) is 2∗|M−1
hyp(A)| if A contains violating and 2∗|M−1

hyp(A)|+1

if not), and so ILASP2 stops and returns the set of optimal remaining hypotheses.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

Learning weak constraints in answer set programming 521

Theorem 5 shows that ILASP2 is sound and complete with respect to the optimal

inductive solutions of an ILPLOAS task. This result relies on the termination of

ILASP2(T), which is guaranteed if B ∪ SM grounds finitely.

Theorem 5

Let T be an ILPLOAS task. If ILASP2(T) terminates, then ILASP2(T) returns the

set of optimal inductive solutions of ILPLOAS (T).

5 Experiments

Although there are benchmarks for ASP solvers (Denecker et al. 2009), there are

no benchmarks for learning ASP programs. In (Law et al. 2014) we discussed the

example of learning an ASP program with no weak constraints, representing the

rules of sudoku. Using the examples from the paper and a small search space with

only 283 rules, the original ILASP algorithm takes 486.2s to solve the task. This

is due to the scalability issues discussed in section 4 as there are 332437 violating

hypotheses found before the first inductive solution. For the same task with ILASP2,

there are only 9 violating reasons found before the first inductive solution, meaning

that ILASP2 takes only 0.69s to solve the task.

As this is the first work on learning weak constraints, there are no existing

benchmarks suitable for testing our approach of learning from ordered answer sets.

We have, therefore, further investigated the interview scheduling example discussed

throughout the paper. Our experiments, in particular, test whether ILPLOAS can

successfully learn weak constraints from examples of brave and cautious orderings.

For the purpose of presentation, we assume our hypothesis space, SM , to be defined

by the mode declarations: Mh = Mb = ∅; Mo = {assign(v, v), neq(v, v), type(v, c)};
Mw = {−1, 1}; and finally, lmax = 2. We place several restrictions on the search space

in order to remove equivalent rules. The size of SM is 184 (our hypotheses can be

any subset of these 184 rules, so even considering only hypotheses with up to 3 rules

this gives over a million different hypotheses). The learning task uses background

knowledge B from Example 3. As SM only contains weak constraints, for any

H ⊆ SM , AS(B ∪ H) = AS(B). The learning tasks described in these experiments

therefore correspond to learning to rank the answer sets of B.

For each experiment we randomly selected 100 hypotheses, each with between

1 to 3 weak constraints from SM , omitting hypotheses that ranked all answer sets

equally. The only atoms that vary in B are the assign’s. As there are 9 different

slots, there are 29 answer sets of B (and many more partial interpretations which are

extended by these answer sets). We say an example partial interpretation is full if it

specifies the truth value of all 9 assign atoms, otherwise we describe the fullness as

the percentage of the 9 atoms which are specified. In both experiments (for each of

the 100 target hypotheses HT), we generated ordered pairs of partial interpretations

o = 〈e1, e2〉 such that o was bravely respected. If o was also cautiously respected,

then it was given as a cautious example (otherwise it was used as a brave example).

In our first experiment we investigated the effect of varying the number of examples,

and in the second we investigated the effects of varying the fullness of the examples.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

522 M. Law et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 a
cc

ur
ac

y

Number of examples

(a)

Hypothesis predictive accuracy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 a
cc

ur
ac

y

Fullness of examples (%)

(b)

Hypothesis predictive accuracy

5 orderings
10 orderings
20 orderings

Fig. 1. Accuracy with varying (a) numbers of examples; (b) fullness of examples.

In both experiments, we tested our approach 20 times for each target hypothesis

HT . Each time, we used ILASP2 to learn a hypothesis HL which covered all

examples. We then calculated the accuracy of HL in predicting the pairwise ordering

of answer sets in B (for each pair of answer sets A1, A2 ∈ AS(B) we tested whether

HT and HL agreed on the preference between them).

In our first experiment we investigated the effect of varying the number of

examples from 0 to 20. The examples were of random fullness, each with between

5 to 9 assign atoms specified. Figure 1(a) shows the average predictive accuracy.

Each point on the graph corresponds to 2000 learning tasks (100 target hypotheses

with 20 different sets of examples). The error bars on the graph show the standard

error. The results show that our method achieves 90% accuracy for this experiment

with around 10 or more random examples.

For our second experiment we again tested our approach on 100 randomly

generated hypotheses with 20 different sets of randomly generated examples. This

time, however, we have kept the number of examples fixed at 5, 10 and 20 and

varied the fullness of the examples. Results are shown in Figure 1(b). The graph

shows that examples are only useful if they are more than 50% full. One interesting

point to note is that the peak performance is with examples of around 90% fullness.

This is because cautious ordering examples are actually more useful if they are less

full (as there are more pairs which extend them); however, orderings are less likely

to be cautiously respected when they are less full.

In our final experiment, we investigated the scalability of ILASP2 by increasing

both the number of days in our timetable and the number of examples. Figure 2

shows the average running time for ILASP2 with 3, 4 and 5 day timetables (each with

3 slots) with up to 120 ordering examples. The learning tasks are targeted at learning

the hypothesis from Example 3. We randomly generated ordering examples, as in the

previous experiments with the slight difference that the fullness of the examples was

unrestricted. As the hypothesis in these experiments does not use negative weights

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

Learning weak constraints in answer set programming 523

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120

R
un

ni
ng

 ti
m

e
(s

)

Number of examples

3 day timetables

|SM| = 184
|SM| = 92

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120

R
un

ni
ng

 ti
m

e
(s

)

Number of examples

4 day timetables

|SM| = 184
|SM| = 92

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120

R
un

ni
ng

 ti
m

e
(s

)

Number of examples

5 day timetables

|SM| = 184
|SM| = 92

Fig. 2. Average running time of ILASP2 with varying numbers of examples.

in either of the weak constraints, we also tested the average running time with a

search space containing only positive weights. This means that SM contained 92

weak constraints rather than the original 184. These experiments show that the time

taken to solve an ILASP2 task is dependent not only on the number of examples,

but also on the size of the domain and the size of SM .

6 Related work

In (Law et al. 2014) we showed that any of the learning tasks in (Corapi et al.

2012; Ray 2009; Sakama and Inoue 2009; Otero 2001) could be expressed by

ILPLAS and computed by ILASP. As any ILPLAS task can be (trivially) mapped

into an ILPLOAS (i.e. Ob = ∅ and Oc = ∅), ILPLOAS inherits this property. None

of the previous learning tasks (including ILPLAS), however, can construct examples

which incentivise the learning of a hypothesis containing a weak constraint. This is

because they can only give examples of what should (or shouldn’t) be an answer

set of B ∪H . In addition, ILPLOAS inherits the capability of ILPLAS of supporting

predicate invention, allowing new concepts to be invented whilst learning.

The ILASP2 algorithm is an extension of the original ILASP algorithm in (Law

et al. 2014). It extends the concepts of positive and violating hypothesis to cover

learning weak constraints (which was not possible in ILASP). For the simpler

ILPLAS tasks, ILASP2 is more efficient than ILASP. As discussed in section 4, the

original ILASP algorithm has some scalability issues when there is a large number

of violating hypotheses. We have shown in section 5 that by eliminating violating

reasons rather than single violating hypotheses, ILASP2 can be much more efficient.

Also related to our work are existing approaches for learning to rank. These use

non logic-based machine learning techniques (e.g. neural networks (Geisler et al.

2001)). Our approach shares the same advantages as any ILP approach versus

a non logic-based machine learning technique: learned hypotheses are structured,

human readable and can express relational concepts such as minimising the instances

of particular combinations of predicates. Existing background knowledge can be

taken into account to capture predefining concepts and the search can be steered

towards particular types of hypotheses using a language bias. Furthermore, ILASP2

is also capable of learning preferences with weights and priorities, meaning that

more structured and complex preferences can be learned.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

524 M. Law et al.

An example of the use of an ILP system for learning constraints has been recently

presented in (Lallouet et al. 2010) where timetabling constraints are learned from

positive and negative examples. In this case the learned rules are hard constraints

(e.g., enforcing that a teacher is not in two places at once). Examples of this kind

are already computable by ILPLAS , and so are also computable by ILPLOAS .

7 Conclusion and future work

We have presented a new framework for ILP, Learning from Ordered Answer Sets,

which extends previous ILP systems in that it is able to learn weak constraints and

can be used to perform preference learning. The framework can represent partial

examples under a brave and a cautious semantics. We have also put forward a

new algorithm, ILASP2, that can solve any ILPLOAS task for optimal solutions.

This algorithm extends previous work for solving the simpler task ILPLAS and

resolves some of the scalability issues associated with the previous algorithm. Some

scalability issues remain, especially when there is a particularly large hypothesis

space and future work will focus on overcoming these. Current work also addresses

extending the ILASP algorithm to support noisy examples.

References

Banbara, M., Soh, T., Tamura, N., Inoue, K. and Schaub, T. 2013. Answer set

programming as a modeling language for course timetabling. Theory and Practice of Logic

Programming 13, 4-5, 783–798.

Blockeel, H. and De Raedt, L. 1998. Top-down induction of first-order logical decision

trees. Artificial intelligence 101, 1, 285–297.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,

Leone, N., Ricca, F. and Schaub, T. 2013. ASP-Core-2 input language format.

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf.

Corapi, D., Russo, A. and Lupu, E. 2010. Inductive logic programming as abductive search.

In ICLP (Technical Communications). 54–63.

Corapi, D., Russo, A. and Lupu, E. 2012. Inductive logic programming in answer set

programming. In Inductive Logic Programming. Springer, 91–97.

Dastani, M., Jacobs, N., Jonker, C. M. and Treur, J. 2001. Modeling user preferences and

mediating agents in electronic commerce. In Agent Mediated Electronic Commerce. Springer,

163–193.

Denecker, M., Vennekens, J., Bond, S., Gebser, M. and Truszczyński, M. 2009. The second

answer set programming competition. In Logic Programming and Nonmonotonic Reasoning.

Springer, 637–654.

Fürnkranz, J. and Hüllermeier, E. 2003. Pairwise preference learning and ranking. In

Machine Learning: ECML 2003. Springer, 145–156.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Schneider,

M. 2011. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2,

107–124.

Geisler, B., Ha, V. and Haddawy, P. 2001. Modeling user preferences via theory refinement.

In Proceedings of the 6th international conference on Intelligent user interfaces. ACM, 87–90.

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

Learning weak constraints in answer set programming 525

Horváth, T. 2012. A model of user preference learning for content-based recommender

systems. Computing and informatics 28, 4, 453–481.

Kimber, T., Broda, K. and Russo, A. 2009. Induction on failure: learning connected horn

theories. In Logic Programming and Nonmonotonic Reasoning. Springer, 169–181.

Lallouet, A., Lopez, M., Martin, L. and Vrain, C. 2010. On learning constraint problems.

In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on.

Vol. 1. IEEE, 45–52.

Law, M., Russo, A. and Broda, K. 2014. Inductive learning of answer set programs. In

Logics in Artificial Intelligence (JELIA 2014). Springer.

Law, M., Russo, A. and Broda, K. 2015a. The ILASP system for learning answer set

programs. https://www.doc.ic.ac.uk/∼ml1909/ILASP.
Law, M., Russo, A. and Broda, K. 2015b. Proof of the soundness and completeness of

ILASP2. https://www.doc.ic.ac.uk/∼ml1909/Proofs for ILASP2.pdf.

Law, M., Russo, A. and Broda, K. 2015c. Simplified reduct for choice rules in ASP. Tech.

Rep. DTR2015-2, Imperial College of Science, Technology and Medicine, Department of

Computing.

Muggleton, S. 1991. Inductive logic programming. New generation computing 8, 4, 295–318.

Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K. and Srinivasan,

A. 2012. ILP turns 20. Machine Learning 86, 1, 3–23.

Muggleton, S. and Lin, D. 2013. Meta-interpretive learning of higher-order dyadic

datalog: Predicate invention revisited. In Proceedings of the Twenty-Third international

joint conference on Artificial Intelligence. AAAI Press, 1551–1557.

Otero, R. P. 2001. Induction of stable models. In Inductive Logic Programming. Springer,

193–205.

Ray, O. 2009. Nonmonotonic abductive inductive learning. Journal of Applied Logic 7, 3,

329–340.

Ray, O., Broda, K. and Russo, A. 2004. A hybrid abductive inductive proof procedure. Logic

Journal of IGPL 12, 5, 371–397.

Sakama, C. and Inoue, K. 2009. Brave induction: a logical framework for learning from

incomplete information. Machine Learning 76, 1, 3–35.

Srinivasan, A. 2001. The aleph manual. Machine Learning at the Computing Laboratory,

Oxford University .

https://doi.org/10.1017/S1471068415000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000198

