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Late Visean – early Serpukhovian conodont succession at the
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Abstract – This study reports the conodont succession across the Visean–Serpukhovian (V/S) bound-
ary interval at the Naqing section, South China. Continuous centimetre-scale sampling of the relatively
deep-water section in recent years has provided new data for a more detailed biostratigraphy of con-
odonts across the Visean–Serpukhovian boundary. Three conodont zones were described in ascending
order: the Gnathodus bilineatus, Lochriea nodosa and Lochriea ziegleri zones. The first appearance
datum (FAD) of L. ziegleri has been moved down to 60.1 m above the base of the Naqing section.
The correlation of the conodont succession across the Visean–Serpukhovian boundary in the Naqing
section with other sections in Eurasia is discussed.

Keywords: conodont succession, Visean–Serpukhovian boundary, candidate GSSP, Naqing section,
South China.

1. Introduction

Pronounced endemism, strong glacial–eustatic control
over sedimentation and consequent widespread discon-
formities hamper the selection of acceptable Global
Boundary Stratotype Sections and Points (GSSPs) for
the Carboniferous stages, including the Serpukhovian,
Moscovian, Kasimovian and Gzhelian stages. The Ser-
pukhovian Stage, proposed by Nikitin (1890), was re-
introduced into the Russian stratigraphic scheme in
1974 by the Interdepartmental Stratigraphic Commit-
tee of the USSR and has become internationally re-
cognized (Skompski et al. 1995; Gibshman, 2001).
The type Serpukhovian was deposited in the Moscow
Basin and is situated in the Zaborie quarry near the
southern margin of the town of Serpukhov, Russia. Un-
fortunately, the lower boundary of the type Serpuk-
hovian is a basin-wide unconformity that resulted from
a latest Visean regression and subaerial exposure fol-
lowed by a Serpukhovian transgression. Deposition of
the type Serpukhovian was strongly influenced by the
major glacial–eustatic changes during the late Visean
and continued through the Pennsylvanian (Richards &
Task Group, 2003). The succession constituting the
type Visean was deposited in the Namur–Dinant Basin
of Belgium, northern France and southern England.
There, the type Visean is represented by a quarry
section in Belgium and the contact with the overly-
ing Namurian succession (correlative with the Ser-
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pukhovian Stage) is a regional unconformity (Paproth
et al. 1983). The relatively deeper-water carbonate-
slope and basinal sections that may serve as po-
tential candidate sections for GSSP of the Visean–
Serpukhovian (V/S) boundary are known from the Can-
tabrian Mountains (Spain), the South Urals (Russia)
and southern Guizhou, South China (Richards & Task
Group, 2003; Wang & Qi, 2003; Nemyrovska, 2005;
Nikolaeva et al. 2005, 2009; Qi & Wang, 2005; Blanco-
Ferrera et al. 2009).

The Visean–Serpukhovian boundary has yet to be
defined by a GSSP, but the first appearance datum
(FAD) of conodont Lochriea ziegleri Nemirovskaya,
Perret-Mirouse & Meischner, 1994 in the evolu-
tionary lineage Lochriea nodosa (Bischoff, 1957) –
Lochriea ziegleri presents an excellent possibility for
boundary definition. A group of Lochriea species or-
namented by numerous nodes and/or ridges appears
at, or a short interval below, the Visean–Serpukhovian
boundary. Although a globally recognized base of the
Serpukhovian Stage is not officially ratified, the In-
ternational Subcommission on Carboniferous Strati-
graphy (SCCS) Task Group to establish a GSSP for
the V/S boundary believes the FAD of conodont
Lochriea ziegleri in the evolutionary lineage from
Lochriea nodosa to Lochriea ziegleri is most suit-
able for boundary definition. This lineage, along with
the associated faunas and strata, is being studied in
several areas; the Naqing (Nashui) section in South
China and the Verkhnyaya Kardailovka section in the
SE Urals of Russia have the best potential as GSSP
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Figure 1. Location map of the Naqing section.

candidates however, and are under intensive study
(Richards, 2010).

Carboniferous marine sediments are widely distrib-
uted and well developed in South China, where they
form continuous sequences of marine carbonates con-
taining conodonts and foraminifers. The Naqing sec-
tion (formerly called the Nashui section) in Luosu,
Luodian, Guizhou Province is the most-studied section
across the V/S boundary in South China, as discussed
by Wang & Qi (2003), Qi & Wang (2005), Wang &
Jin (2005), Qi et al. (2007, 2009, 2010a, b), Wang, Qi
& Wang (2008) and Groves (2010). The Naqing sec-
tion is located at latitude 25° 15′ 03.9′′ N and longitude
106° 29′ 06.9′′ E, exposed on the side of the Wangmo–
Luodian highway (S312) c.45 km SW of Luodian, 7 km
SW of Luosu countryside and 2 km SW of the village of
Naqing, and is easily accessible by car from the capital
of Guizhou Province Guiyang (Fig. 1). This section is a
relatively deeper-water carbonate-slope facies section
that comprises grey thin- to medium-bedded wacke-
stone and packstone beds intercalated with chert beds.
The abundant and highly diverse conodont faunas, in-
cluding 28 species or subspecies representing 6 genera
obtained from the Naqing section, provide sufficient
support for this section which is being considered as
the GSSP for the base of the global Serpukhovian Stage.
The purpose of this paper is to report recent results on
the conodont succession from the V/S boundary inter-
val of the Naqing section.

2. Geological setting

Geologically, the southern part of Guizhou belongs to
the Dian–Qian–Gui Basin developed in the SW part of
the South China block. The basic tectonic framework of
the Late Palaeozoic of South China was formed during
middle–late Silurian time when most of the eastern part
of South China was folded during the Caledonian Oro-
geny. Transgression began again in the Early Devonian

and slowly progressed northwards. The rifted basins
were filled, the topography was reduced and extensive
carbonates were laid down before the Pennsylvanian
(Wang & Jin, 2000). The palaeogeographic evolution
of the Dian–Qian–Gui Basin was greatly influenced by
NE- and NW-trending faults (Wang et al. 1994) and,
as a result, isolated carbonate platforms are well de-
veloped in the basin (Fig. 2). During Mississippian
time, lithofacies changed rapidly across the region.
Generally, there are four lithofacies groups: (1) the plat-
form margin to slope marked by slump structures and
limestone conglomerate; (2) the platform margin with
high-energy grainstone and reef limestone; (3) the plat-
form interior marked by low-energy shallow-marine
carbonate rocks; and (4) shallow basins characterized
by gravity flows and deposits formed in deeper-water
environments (Wang et al. 1994). The Naqing section
belongs to the first lithofacies group. It is one of the
best exposed sections in the Guizhou area and contains
a carbonate succession that appears to be continuous
from the Mississippian to the Late Permian.

This section is represented by the platform margin
to slope facies, which are well exposed along the east
limb of the Naqing Anticline. Conodont elements are
abundant throughout the section, providing precise cor-
relation with the global chronostratigraphic scale. In-
tercalated gravity flows and coarse-grained bases of
turbidite beds throughout the section contain many fu-
sulines and non-fusuline foraminifers, which are the in-
dex fossils used for regional stratigraphic correlation.
These characteristics make the Naqing section import-
ant for stratigraphic correlation between shallow- and
deep-water facies, thereby providing an excellent ref-
erence for both regional- and global-scale correlations.

3. Sedimentological characteristics

The upper Visean to lower Serpukhovian succession
(c. 26 m thick) in the Naqing section is generally
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Figure 2. Geological map of the study area.

characterized by thin- to medium-bedded lime mud-
stone, frequently intercalated with bioclastic wacke-
stone to grainstone and chert layers. A total of 105 rock
samples were taken from the studied succession (c. 50–
71 m): 49 from the upper Visean succession; 1 from the
bed that contains the base of the Serpukhovian; and 55
from the lower Serpukhovian succession. Rock samples
were cut and polished for slab observation, and more
than 150 thin-sections were prepared for detailed pet-
rographic and microfacies analyses. Based on detailed
field investigation and measurements and observations
of polished slabs and thin-sections in the laboratory, 7
facies were divided from the studied succession includ-
ing lime mudstone facies (LM), bioclastic wackestone
facies (Wb), bioclastic packstone facies (Pb), massive
grainstone facies (Gm), crudely laminated grainstone
facies (Gcl), normal-graded grainstone facies (Gng)
and reverse-graded grainstone facies (Grg). These fa-
cies occur throughout the studied succession, both
below and above the Visean–Serpukhovian boundary
(Fig. 3).

Lime mudstone is mostly homogeneous or slightly
bioturbated (ichnofacies index 2), showing mottled tex-
ture. Burrows are either vertical, cutting through the
lamination, or horizontal. In some cases, lime mud-
stone is crudely laminated, nodular or conglomeratic.
Lime mudstone consists mainly of microcrystalline
particles to micrite and a small portion of recogniz-
able fossil fragments such as foraminifers and crin-
oid. Thin-bedded lime mudstone is sometimes inter-
calated with thin (a few millimetres to centimetres
thick) black shale and grainstone layers. Bioclastic
wacke- and packstone is mostly massive, or sometimes
horizontal- or cross-laminated, with scattered coarse
fossil fragments. Bioclastic grainstone beds are a few

centimetres up to 70 cm thick, overlying lime mudstone
beds with sharp, irregular lower boundaries. They often
show normal grading that is represented by either less or
finer grains upwards (i.e. changing from coarse grain-
stone to wackestone or fine grainstone). Grainstone is
composed of abundant fossil fragments (including ech-
inoderm, foraminifer, bryozoans, brachiopod, trilobite,
etc.) and irregular micritic lumps. In some cases, a few
intraclasts composed of either lime mudstone or grain-
stone occur in the lower part of the coarse grainstone
beds. Grainstone beds locally show load cast structures
at the base, overlying lime mudstone bed with sharp
contact. Thin beds of bioclastic wackestone to grain-
stone are partly massive, crudely laminated or cross-
laminated. Parallel-laminated grainstone is represen-
ted by alternation of dark-grey, micritic and light-grey,
sparitic laminae. Elongate fossil fragments are mostly
parallel to the lamination. Laminae show either dis-
tinct or gradational boundaries. Rare reverse grading
is represented by the wackestone or fine grainstone at
the base to the intraclasts-bearing coarse grainstone
in the upper part. Discontinuous or continuous chert
layers are often intercalated within either lime mud-
stone or grainstone beds. Fossil fragments are clearly
recognized in the chert that occurs within grainstone,
indicating that most of the chert layers were probably
precipitated during diagenesis by replacing carbonate
sediment.

The sample (at 60.10–60.22 m) that bears the
Visean–Serpukhovian boundary at its basal part is a
slightly normal-graded bioclastic medium to fine grain-
stone, with a discontinuous chert layer (c. 5 cm thick) in
the middle part separating the lower coarser part and the
upper finer part. The grainstone is composed of abund-
ant foraminifers and crinoid stems. Well-preserved
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Figure 3. Range chart of conodonts from the V/S boundary interval in the Naqing section.
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Lochriea senckenbergica Nemirovskaya, Perret-
Mirouse & Meischner, 1994 and L. ziegleri were
dissolved out from this bed, indicating the base of
Serpukhovian. The bed was most likely deposited
from turbidity currents that transported shallow-water
foraminifers downslope. The conodont fossils were
washed into the turbidity currents and deposited to-
gether with foraminifers. Such grainstone beds may
provide a good correlation between shallow-water fo-
raminifers biostratigraphy and deep-water conodont
biostratigraphy (Wang et al. 2011), although detailed
foraminifer biostratigraphy is also needed.

The carbonates of the studied succession strad-
dling the Visean–Serpkhovian boundary lack typical
shallow-water features such as exposure structures
or wave-generated deposits and structures. The suc-
cession was overall deposited in a relatively deep-
water setting, well below fair-weather wave base or
even storm wave base. Scarce bioturbation in the lime
mudstone beds deposited from the settling of suspen-
ded sediment, is indicative of rare fauna activities,
most likely below euphotic zone (Burchette & Wright,
1992). The frequently intercalated normal-graded bio-
clastic wacke- to grainstone is representative of a tur-
bidite sequence (i.e. Bouma sequence) that depos-
ited from turbidity currents on a slope environment
(e.g. Nemyrovska et al. 2011). Parallel lamination was
formed by separation of carbonate grains in the upper-
flow transport regime of the turbidity current, whereas
cross-lamination resulted from migration of diluted
current ripples. Bioclastic wacke- and packstone was
most likely formed by distal, dilute turbidity currents.
The abundant occurrence of shallow-water foraminifer
fossils in the grainstone beds indicates that the tur-
bidity currents were derived from a nearby carbonate
platform. Turbidity currents were most likely generated
by storms that frequently swept across the shallow plat-
form, or were related to sea-level fluctuations (Wright,
1986).

Distinctive shallow-water carbonate cycles during
the Carboniferous ice age are indiscernible in the
deep-water slope settings of the studied succession.
The worldwide regression event during the Visean–
Serpkhovian boundary, reported from the shallow-
water carbonate platform (e.g. Veevers & Powell, 1987;
Wang et al. 2001), is also difficult to recognize in the
Naqing section; there is no evidence indicating an up-
wards shallowing or deepening trend across the bound-
ary. This is most likely caused by the fact that the
eustatic signature, if there was any, was most likely
obscured by many other geological factors such as si-
liciclastic input, carbonate production, water depth, to-
pographic relief and tectonic subsidence and uplift (e.g.
Miall, 2005; Chen et al. 2012).

4. Conodont fauna

A total of 175 samples, each weighing c. 3–5 kg, were
processed for conodonts from the V/S boundary in-
terval in the Naqing section; 116 samples were pro-

ductive (Figs 3–6). An estimated 11 000 mostly well-
preserved platform conodont elements, including a
large number of juveniles, were extracted. Conodont
frequency is relatively high with an average of 30 plat-
form elements per kilogram. Some samples exceed
100 platform specimens per kilogram at certain levels,
for example: LD45.40, LD47.30, LD48.00, LD52.60,
LD52.80, LD60.30, LD60.60, LD61.00, LD61.40,
LD62.30, LD62.50, LD62.85, LD63.45, LD63.70,
LD64.90, LD66.00, LD66.30, LD68.90, LD69.30 and
LD70.30. Platform elements outnumber the ramiform
elements, and 28 species or subspecies in 6 genera
were identified. Our research focused on the platform
elements; only these are classified in this paper.

A relatively abundant conodont assemblage in the
V/S boundary interval includes all known conodont
genera characteristic of the deep-water late Visean –
early Serpukhovian successions of Eurasia. Present are
the Gnathodus bilineatus and Gn. girtyi groups of spe-
cies and the genera Lochriea, Pseudognathodus and
Vogelgnathus, which are all common elsewhere. Mes-
tognathus beckmanni Bischoff, 1957 and M. bipluti
Higgins, 1961, which were interpreted to be shallower-
water species, also occur in small numbers near the
V/S boundary. It was hypothesized that these two spe-
cies were transported in from shallower-water settings
periodically.

In general, the conodont fauna at Naqing is dom-
inated by the Gnathodus bilineatus group, including
Gn. praebilineatus Belka, 1985, Gn. bilineatus remus
Meischner & Nemyrovska, 1999, Gn. bilineatus romu-
lus Meischner & Nemyrovska, 1999, Gnathodus bi-
lineatus bilineatus (Roundy, 1926) and all transitional
forms. A great number of juveniles were obtained, most
of which could not be identified at the species level.
Gnathodus bilineatus bilineatus is the most common
species of this group.

The next abundant group of conodonts comprises
Lochriea species. This group includes simple unorna-
mented Lochriea species, Lochriea commutata (Bran-
son & Mehl, 1941), L. saharae Nemyrovska, Perret-
Mirouse & Weyant, 2006 and ornamented Lochriea
species: L. mononodosa (Rhodes, Austin & Druce,
1969), L. monocostata (Pazukhin & Nemirovskaya, in
Kulagina et al. 1992), L. nodosa, L. costata (Pazukhin
& Nemirovskaya, in Kulagina et al. 1992), L. ziegleri
and L. senckenbergica. Lochriea commutata is much
more numerous than the other species of Lochriea in
the Visean, and range up to the end of the Serpukhovian.
The strongly ornamented Lochriea species make their
debut during early Serpukhovian time.

The third abundant group of conodonts contains
Pseudognathodus species, the most numerous of which
is Ps. homopunctatus (Ziegler, 1960) which appears
in almost each productive sample. Less common is
Ps. mermaidus (Austin & Husri, 1974). Ps. symmut-
atus (Rhodes, Austin & Druce, 1969) is rare. Vogel-
gnathus species are less common. This group is dom-
inated by V. campbelli (Rexroad, 1957) and V. post-
campbelli (Austin & Husri, 1974). Rather short-lived
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Figure 4. All illustrated specimens (deposited in the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences)
are from the Visean–Serpukhovian boundary interval in the Naqing section, Luodian, Guizhou, South China: (a) Vogelgnathus camp-
belli (Rexroad, 1957), lateral view, 60.3 m, Cat. no. 155754; (b) Vogelgnathus campbelli (Rexroad, 1957) transitions to Vogelgnathus
postcampbelli (Austin & Husri, 1974), lateral view, 60.3 m, Cat. no. 155755; (c) Vogelgnathus postcampbelli (Austin & Husri, 1974),
lateral view, 60.3 m, Cat. no. 155756; (d) Hindeodus scitulus (Hinde, 1900), lateral view, 52.6 m, Cat. no. 155757; (e) Hindeodus
cristulus (Youngquist & Miller, 1949), lateral view, 69.3 m, Cat. no. 155758; (f) Gnathodus joseramoni Sanz-Lopez, Blanco-Ferrera
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invasions of the Vogelgnathus-dominated faunas can be
linked to rapid rises in sea level during the periods of
maximum flooding of the late Asbian – early Serpuk-
hovian eustatic transgressive-regressive cycles (Rams-
bottom, 1973; Ross & Ross, 1988). These invasions of
Vogelgnathus linked to sea-level rise could represent
global events based on the conodont faunas from the
Cantabrian Mountains (Boogaard, 1992; Nemyrovska,
2005). Two main invasions of Vogelgnathus took place
during the time span of the V/S boundary inter-
val in the Naqing section: one during the early Gn.
bilineatus Zone (sample LD45.4) and another in the
earliest Serpukhovian (the earliest L. ziegleri Zone,
samples LD60.30, LD60.60) shortly above the FAD of
L. ziegleri. The most abundant Vogelgnathus specimens
(104 elements) are found in the sample LD60.60.

Least abundant is the Gnathodus girtyi group which,
besides Gn. girtyi girtyi Hass, 1953, includes some
transitional forms between Gn. girtyi girtyi and Gn.
girtyi simplex Dunn, 1965, Gn. girtyi meischneri
(Austin & Husri, 1974) and Gn. girtyi pyrenaeus
Nemyrovska & Perret-Mirouse in Nemyrovska, 2005
as well as some new forms.

In the Naqing section, the Gn. bilineatus lineage
starts from its ancestor Gn. praebilineatus followed by
the first representatives of the bilineatus group, Gn.
bilineatus remus and Gn. bilineatus romulus, which
gave rise to Gn. bilineatus bilineatus. Some forms in
the upper part of the section show the features of more
advanced bilineatus, but they still cannot be assigned
to Gn. bilineatus bollandensis Higgins & Bouckaert,
1968.

The Lochriea lineage, which is regarded as the
most important for the Visean–Serpukhovian bound-
ary interval, was proposed as such by a number of
conodont workers from other areas (Nemirovskaya,
Perret-Mirouse & Meischner, 1994; Skompski et al.
1995; Belka & Lehmann, 1998; Nemyrovska, 2005;
Somerville, 2008; Nigmadganov et al. 2010). The
Naqing section is one of the best sections, containing
all known species recorded in the interval of the up-
per Visean – lower Serpukhovian elsewhere. The early
Visean species L. cracoviensis Belka, 1985 was not
found in the Naqing area, as it is the only characteristic
of the lower Visean.

It has been suggested that all strongly ornamented
Lochriea are derived from L. nodosa (Nemirovskaya,
Perret-Mirouse & Meischner, 1994; Skompski et al.
1995). The vertical succession of the strongly orna-
mented Lochriea in Naqing is almost the same as
in other areas. However, in Naqing L. cruciformis
(Clarke, 1960) appears later than in the Rheinisches

Schiefergebirge and the Lublin Basin, where L. cruci-
formis appears before L. ziegleri and L. senckenbergica
(Skompski et al. 1995). Lochriea mononodosa is re-
garded as an ancestor of L. nodosa. That means that its
first appearance should be earlier than that of L. nodosa,
as it is in the Naqing section. However, in the Triollo
section (Cantabrian Mountains, Spain; Nemyrovska,
2005) and in the Baily Hill Quarry and Dear Park
sections (Ireland; Somerville & Somerville, 1999),
L. mononodosa was found above the first occurrence
of L. nodosa. The forms illustrated as L. mononodosa
from the V/S boundary beds (Skompski et al. 1995;
Skompski, 1996) show a more advanced sculpture than
those that could fit into the lineage L. commutata – L.
mononodosa – L. nodosa. These specimens have only
one large node or ridge on one side of the platform, but
this node is too big for these forms to be regarded as
ancestors of L. nodosa (Nemyrovska, 2005). The same
is found in the Naqing section. On the other hand, L.
mononodosa is rather rare everywhere so it remains
difficult to define its exact first appearance. Additional
studies are required to distinguish L. mononodosa and
L. monocostata from the transitional forms between L.
commutata and L. mononodosa and L. monocostata.
These studies are in progress.

The same problem occurs with L. cruciformis. Lo-
chriea ziegleri and L. senckenbergica are always found
in much greater numbers than L. cruciformis, which
could be why L. cruciformis is not found in the
same succession of the Lochriea species in differ-
ent areas. The Visean–Serpukhovian boundary is bet-
ter defined by L. ziegleri because it occurs every-
where and in much larger numbers (Nemyrovska,
2005). In the Naqing section, the entry of L. cru-
ciformis is 6.6 m above the FAD of L. ziegleri; the
same situation was noted in the Triollo section, Spain
(Nemyrovska, 2005) and in the Yordale beds, England
(Varker in Skompski et al. 1995). In the Rheinisches
Schiefergebirge, Germany and the Lublin Basin, Po-
land, L. cruciformis is found below L. ziegleri (Meis-
chner & Skompski in Skompski et al. 1995). In the
Dnieper–Donets Depression, Ukraine (Nemirovskaya
in Skompski et al. 1995) and in the Carranques sec-
tion, Cantabrian Mountains, Spain (Sanz-Lopez et al.
2007), L. cruciformis is recorded at the same level as
L. ziegleri.

5. Conodont biostratigraphy

Three conodont zones are distinguished in the V/S
boundary interval of the Naqing section: the Gnath-
odus bilineatus and Lochriea nodosa zones in the

& García-López, 2004, oral view, 64.9 m, Cat. no. 155759; (g) Gnathodus delicatus Branson & Mehl, 1938, oral view, 51.15 m, Cat.
no. 155760; (h) Gnathodus praebilineatus Belka, 1985, oral view, 45.4 m, Cat. no. 155761; (i) Gnathodus girtyi girtyi Hass, 1953, oral
view, 45.4 m, Cat. no. 155762; (j) Gnathodus girtyi girtyi Hass, 1953 to Gnathodus girtyi simplex Dunn, 1965, oral view, 61.5 m, Cat.
no. 155763; (k) Gnathodus bilineatus romulus Meischner & Nemyrovska, 1999, oral view, 48.0 m, Cat. no. 155764; (l) Gnathodus
bilineatus remus Meischner & Nemyrovska, 1999, oral view, 48.0 m, Cat. no. 155765; (m) Pseudognathodus homopunctatus (Ziegler,
1960), oral view, 48.0 m, Cat. no. 155766; and (n) Gnathodus bilineatus bilineatus (Roundy, 1926), oral view, 45.4 m, Cat. no. 155767.
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Figure 5. All illustrated specimens (deposited in the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences)
are from the Visean–Serpukhovian boundary interval in the Naqing section, Luodian, Guizhou, South China: (a) Gnathodus girtyi
meischneri (Austin & Husri, 1974), oral view, 45.4 m, Cat. no. 155768; (b) Gnathodus girtyi pyrenaeus Nemyrovska & Perret-Mirouse,
in Nemyrovska, 2005, oral view, 45.4 m, Cat. no. 155769; (c) Lochriea saharae Nemyrovska, Perret-Mirouse & Weyant, 2006, oral
view, 47.3 m, Cat. no. 155770; (d) Lochriea saharae Nemyrovska, Perret-Mirouse & Weyant, 2006 transitions to Lochriea commutata
(Branson & Mehl, 1941), oral view, 45.4 m, Cat. no. 155771; (e) Lochriea commutata (Branson & Mehl, 1941), oral view, 51.5 m, Cat.
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Upper Visean and the Lochriea ziegleri Zone in the
lower Serpukhovian.

5.a. Gnathodus bilineatus Zone

The lower part of the studied interval belongs to the
Gnathodus bilineatus bilineatus Zone. The charac-
teristic taxa of this zone include Gn. bilineatus bi-
lineatus (Fig. 4n), Gn. bilineatus remus (Fig. 4l) and
Gn. bilineatus romulus (Fig. 4k), which represent the
earliest subspecies of Gn. bilineatus s.l. as well as
Gn. praebilineatus (Fig. 4h), Pseudognathodus homo-
punctatus (Fig. 4m), L. saharae (Fig. 5c, d), L. com-
mutata (Fig. 5e), Gn. girtyi girtyi (Fig. 4i), Gn. girtyi
meischneri (Fig. 5a), Gn. girtyi pyrenaeus (Fig. 5b),
Vo. campbelli and Vo. postcampbelli. In the uppermost
bed of the zone, L. mononodosa and L. monocostata
appear. A large number of juveniles of Gnathodus spe-
cies were recorded in almost every sample. The upper
zonal boundary coincides with the entry of L. nodosa.
This zone covers the interval below 52 m of the section.

5.b. Lochriea nodosa Zone

The lower boundary of this zone is defined by the first
appearance of L. nodosa; its upper boundary coincides
with the entry of L. ziegleri. This zone includes the in-
terval between 52 m and 60.1 m in the Naqing section.
The entry of L. nodosa can be traced all over Eurasia
and is an important stage in the evolution of Lochriea
species. The most characteristic species of this zone are
Lochriea nodosa (Figs 5j, 6a, e), L. mononodosa (Fig.
5f), L. monocostata, L. costata, L. aff. multinodosa
(Wirth, 1967), L. commutata, Gnathodus bilineatus bi-
lineatus and Pseudognathodus homopunctatus. Gnath-
odus girtyi girtyi, Gn. girtyi meischneri, Gn. girtyi
pyrenaeus, Mestognathus beckmanni and Vogelgnathus
campbelli are less common, but still present. The first
appearance of L. costata is in the lower beds of this
zone. With the exception of L. nodosa and L. costata,
all other species extend from the zone below (Gnatho-
dus bilineatus Zone).

5.c. Lochriea ziegleri Zone

The lower boundary of this zone is defined by the
first appearance of L. ziegleri, which is now re-
garded as the best marker for the V/S boundary.
This zone spans the interval from 60.1 m upwards in
the Naqing section. The following species are char-
acteristic of this zone: Lochriea ziegleri (Fig. 5l–n),
L. senckenbergica (Fig. 6f, g), L. nodosa (Figs 5k,

6b), L. costata (Fig. 5h), L. monocostata (Fig. 5g),
L. mononodosa, L. commutata, Gnathodus bilineatus
bilineatus, Mestognathus beckmanni (Fig. 6i), Mes-
tognathus bipluti (Fig. 6j), Vogelgnathus campbelli
(Fig. 4a, b), V. postcampbelli (Fig. 4c) and Pseudo-
gnathodus homopunctatus. As well as the zonal spe-
cies, L. senckenbergica and Mestognathus bipluti made
their debut in this zone.

6. Correlation

The majority of conodont species from the Naqing sec-
tion occur in other areas of Eurasia and North Amer-
ica. In Eurasia, correlations among a number of sec-
tions represented by relatively deep-water facies with
Naqing are rather straightforward (S. I. Park, unpub.
Ph.D. thesis, Philips University of Marburg, 1983;
Nemirovskaya, Perret-Mirouse & Meischner, 1994;
Skompski et al. 1995; Nemyrovska, 2005; Belka &
Lehmann, 1998; Sanz-Lopez et al. 2007; Somerville,
2008; Nigmadganov et al. 2010; Pazukhin et al. 2010).
Even in shallower-water sections there are a large num-
ber of species in common (Groessens, 1975; Higgins,
1975; Nemirovskaya, 1985; Varker & Sevastopulo,
1985; Skompski et al. 1995; Kabanov et al. 2013).
However, Late Mississippian conodont faunas of North
America differ greatly; they are mostly represented by
shallow-water taxa and ornamented Lochriea species
are almost absent (Lane & Straka, 1974). Recently a
couple of specimens assigned to early L. ziegleri were
found in North America from the Barnett Formation,
central Texas.

Preliminary correlations of conodont zones in the
V/S boundary interval of the Naqing section with those
in other areas are listed in Table 1. Abundant and
taxonomically diverse conodont faunas in the Naqing
section enable the correlation of the Tatangian (up-
per Visean) and lower Duwuan (lower Serpukhovian)
(Zhang, 2000) to the coeval deposits of other areas. Two
levels are most reliable for correlation by conodonts
within the studied interval: the entry of Gn. bilineatus
s.l. at the base of the Tatangian and the first occurrence
of strongly ornamented Lochriea, particularly L. zieg-
leri, at the base of the Duwuan in South China (Y. P. Qi,
unpubl. Ph.D. thesis, Graduate University of Chinese
Academy of Sciences, 2008). The first level is outwith
the scope of the present paper but the second level is
discussed below.

The Gnathodus bilineatus Zone can be correlated
to the middle part of the Genicera (or Alba) Forma-
tion (G. bilineatus Zone) in the Cantabrian Mountains
(Sanz-Lopez, Blanko-Ferrera & García-López, 2004;

no. 155772; (f) Lochriea mononodosa (Rhodes, Austin & Druce, 1969), oral view, 59.15 m, Cat. no. 155773; (g) Lochriea monocostata
(Pazukhin & Nemirovskaya, 1992 in Kulagina et al. 1992), oral view, 65.3 m, Cat. no. 155774; (h) Lochriea costata (Pazukhin &
Nemirovskaya, 1992 in Kulagina et al. 1992), oral view, 60.3 m, Cat. no. 155775; (i) Lochriea aff. multinodosa (Wirth, 1967), oral view,
63.7 m, Cat. no. 155776; (j) Lochriea nodosa (Bischoff, 1957), oral view, 54.85 m, Cat. no. 155777; (k) Lochriea nodosa (Bischoff,
1957) transitions to Lochriea ziegleri Nemirovskaya, Perret-Mirouse & Meischner, 1994, oral view, 62.6 m, Cat. no. 155778; and (l–n)
Lochriea ziegleri Nemirovskaya, Perret-Mirouse & Meischner, 1994, Cat. nos 155779–155781, oral views: (l) 60.9 m; (m) 62.5 m;
and (n) 68.9 m.
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Figure 6. All illustrated specimens (deposited in the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences)
are from the Visean–Serpukhovian boundary interval in the Naqing section, Luodian, Guizhou, South China: (a) Lochriea nodosa
(Bischoff, 1957) transitions to Lochriea ziegleri Nemirovskaya, Perret-Mirouse & Meischner, 1994, oral views, 52.6 m, Cat. no.
155782; (b) Lochriea ziegleri Nemirovskaya, Perret-Mirouse & Meischner, 1994 transitions to Lochriea cruciformis (Clarke, 1960),
oral views, 70.3 m, Cat. no. 155783; (c, d) Lochriea cruciformis (Clarke, 1960), oral views: (c) 66.7 m, Cat. no. 155784 and (d)
68.5 m, Cat. no. 155785; (e) Lochriea nodosa (Bischoff, 1957) transitions to Lochriea senckenbergica Nemirovskaya, Perret-Mirouse
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Nemyrovska, 2005), to the uppermost part of the lower
Visean – lower part of the upper Visean of the Rhein-
isches Schiefergebirge (Meischner & Nemyrovska,
1999), to the late Asbian and early Brigantian of
western Europe (England, Ireland and Belgium; Hig-
gins, 1975, 1985; Somerville, 2008), to the Alexinian
and Mikhailovian horizons (characterized by the G.
bilineatus bilineatus Zone) of the Russian Platform
(Barskov et al. 1984; Makhlina et al. 1993) and to
the Gn. bilineatus bilineatus and L. mononodosa Zone
of South Urals (Pazukhin et al. 2010). The Gn. bilin-
eatus bilineatus Zone can be compared to the Alexinian
and lower Mikhailovian horizons of the Moscow Basin
(Alekseev et al. 2004) and it can be correlated to
the lower Talassian of the Paltau section, Uzbekistan
(Nigmadganov et al. 2010), to the Donetzian and
Mezhevskian of the Donets Basin (O. M. Lipnyagov,
unpub. Candidate Dissertation in Geology and Miner-
alogy, Kiev, 1979) and to the lower Chesterian (char-
acterized by the G. bilineatus Zone) of North America
(Lane & Straka, 1974; Lane, Sandberg & Ziegler, 1980;
Krumhardt, Harris & Watts, 1996; Lane & Brenckle,
2001).

The Lochriea nodosa Zone, the latest Visean zone, is
widely recognized in Eurasia both in shallow and deep-
water biofacies (Skompski et al. 1995; Nemyrovska,
2005; Pazukhin et al. 2010). This zone at Naqing can
be correlated with the same zone in the upper beds
of the Alba (equivalent to the Genicera) Formation of
the Cantabrian Mountains (Adrichem-Boogaert, 1967;
Menéndez-Alvaréz, 1978; Higgins & Wagner-Gentis,
1982; S. I. Park, unpub. Ph.D. thesis, Philips Uni-
versity of Marburg, 1983; Belka & Lehmann, 1998;
Sanz-Lopez, Blanko-Ferrera & García-López, 2004;
Nemyrovska, 2005) and in the uppermost Visean, the
upper Mikhailovian and Venevian horizons of the Mo-
scow Basins (Alekseev et al. 2004), to the upper part
of the Mezhevskian Horizon of the Donets Basin and
Dnieper–Donets Depression (O. M. Lipnyagov, unpub.
Candidate Dissertation in Geology and Mineralogy,
Kiev, 1979; Nemirovskaya, 1983, 1985) and Middle
Tienshan (Nigmadganov et al. 2010), L. nodosa Zone
of Germany (Meischner, 1970) and Ireland (Somerville
& Somerville, 1999) and can be roughly correlated
with the upper part of the Gnathodus bilineatus Zone
in North America (Lane & Straka, 1974; Lane &
Brenckle, 2001). This zone is also recognized in the
uppermost Visean of the Pyrénées (Boersma, 1973;
Buchroithner, 1979; Perret, 1993; Sanz-López, 2002),
in Belgium (Groessens, 1975) and Poland (Skompski,
1996).

The Lochriea ziegleri Zone is the earliest Serpuk-
hovian conodont zone, and is easily distinguished in
Eurasia as the zonal index is strongly ornamented and

easy to identify. Its lower boundary represents the most
reliable correlative level in Eurasia and coincides with
the V/S boundary. This zone in the Naqing section can
be directly correlated with the same zone in the Can-
tabrian Mountains of Northern Spain (Nemyrovska,
2005), the L. cruciformis Zone of Northern Spain
(Sanz-Lopez et al. 2007), the L. ziegleri Zone in
Moscow Basin and the South Urals of Russia (Alekseev
et al. 2004; Pazukhin et al. 2010), the Donets Basin of
Ukraine (Skompski et al. 1995; Nemyrovska, 1999),
Germany, England, the French Pyrénées and Poland,
(Nemirovskaya, Perret-Mirouse & Meischner, 1994;
Skompski et al. 1995) and Uzbekistan (Nigmadganov
et al. 2010). It can also be roughly correlated with
the uppermost part of the G. bilineatus Zone and
the lower part of the Cavusgnathus naviculus (Hinde,
1900) Zone in North America (Lane & Straka, 1974;
Lane & Brenckle, 2001). Moreover, because specimens
of L. ziegleri were identified from the Barnett Forma-
tion, central Texas, the correlation between Eurasia and
North America might be easier than before. However,
other strongly ornamented Lochriea such as L. senck-
enbergica and L. cruciformis have not yet been found
in North America.

The appearance of conodont species Lochriea zie-
gleri within the lineage Lochriea nodosa – L. zieg-
leri is being discussed as the most promising marker
for the Visean–Serpukhovian boundary by the ma-
jority of conodontologists. Some conodont workers
prefer to use another ornamented species of Lochriea –
L. cruciformis (see the correlation described in
Table 1).

7. Conclusion

Both L. ziegleri and L. cruciformis fall close to the
Visean–Serpukhovian boundary (Skompski et al. 1995;
Nikolaeva et al. 2002, 2009; Nemyrovska, 2005; Qi &
Wang, 2005) in contrast to L. ziegleri, which is much
more widespread around Eurasia. The abundance of
conodonts discovered in the Naqing section has con-
firmed the potential of L. ziegleri as the best marker for
the definition of the Visean–Serpukhovian boundary.

In the Naqing section the first Lochriea ziegleri and
L. senckenbergica occur in the same sample, but the lin-
eage of Lochriea nodosa – L. ziegleri with many trans-
itions between seems to be quite reliable (taxonomic
studies are in progress). The L. costata – L. cruciformis
lineage cannot yet be demonstrated by data from the
Naqing section (even with very close sampling), as
insufficient specimens were obtained. The first appear-
ance of Lochriea aff. multinodosa, another strongly or-
namented species, is close to the base of the Lochriea
nodosa Zone in the Naqing section.

& Meischner, 1994, oral view, 52.6 m, Cat. no. 155786; (f, g) Lochriea senckenbergica Nemirovskaya, Perret-Mirouse & Meischner,
1994, oral views: (f) 64.8 m, Cat. No. 155787 and (g) 62.3 m, Cat. no. 155788; (h) Mestognathus beckmanni Bischoff, 1957, lateral
view, 51.24 m, Cat. no. 155789; (i) Mestognathus beckmanni Bischoff, 1957, transitions to Mestognathus bipluti Higgins, 1961, lateral
view, 61.0 m, Cat. no. 155790; and (j) Mestognathus bipluti Higgins, 1961, lateral view, 68.9 m, Cat. no. 155791.
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Table 1. Preliminary correlations of conodont zones in the V/S boundary interval of the Naqing section with those in other areas.
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China
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Mountains NW
Spain (Palencia,
Triollo section)

Cantabrian
Mountains NW

Spain Leon, Esla
area

Cantabrian
Mountains NW
Spain (Asturias,

Carranques
section)

Rheinischews
Schiefergebirge,
Schaelk quarry,

Germany

Middle
Tien-shan

Uzbekistan Urals Russia
Moscow Basin

Russia
Ljublin Basin

Poland
Dnieper-Donts Depression,

Donets Basin

(this
paper)

(Nemyrovska,
2005)

(Belka &
Lehmann,

1998)
(Sanz-Lopez
et al., 2007)

(Meischner, in
Skompski

et al., 1995)
(Nigmadganov

et al., 2010)
(Pazukhin

et al., 2010)

(Alekseev
et al., 2004;

Kabanov
et al., 2013)

(Skompski,
1996)

(O. M. Lipnyagov, unpub.
Candidate Dissertation in

Geology and Mineralogy, Kiev,
1979; Nemirovskaya, 1983)

L. ziegleri L. ziegleri L. cruciformis L. ziegleri L. ziegleri L. cruciformis L. ziegleri L. ziegleri L. cruciformis L. ziegleri

L. nodosa L. nodosa L. nodosa L. nodosa L. nodosa L. nodosa L. nodosa L. commutata-Gn.
bil. bil.L. nodosa

L. mononodosa

Gn. bil. bil. Gn. bil. bil. Gn. bil. bil. Gn. bil. bil. Gn. bil. bil. Gn. bil. bil.

Figure 7. (Colour online) Visean and Serpukhovian boundary level in the Naqing section.

The lineage of Lochriea nodosa – L. ziegleri or
L. senckenbergica therefore has the greatest potential to
be used for defining the Visean–Serpukhovian bound-
ary. In addition, The entry of strongly ornamented
L. ziegleri is widespread in Eurasia as well as in North
America. Furthermore, this species could be easily re-
cognized and more numerous than any other strongly
ornamented Lochriea species. The FAD of Lochriea
ziegleri is therefore the best marker for the base of the
Serpukhovian or Duwuan of China.

The previously reported FAD of L. ziegleri in the
Naqing section has been found lower at 60.6 m (Y. P.
Qi, unpub. Ph.D. thesis, Graduate University of Chinese
Academy of Sciences, 2008; Qi et al. 2009), down to
60.38 m (Qi et al. 2010b) and now down to 60.1 m
(Qi et al. 2010a) (Fig. 7) above the base of the section,
according to continuous centimetre-scale sampling in
May 2008 and October and November 2009.
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