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FINDING DESCENDING SEQUENCES THROUGH ILL-FOUNDED
LINEAR ORDERS

JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

Abstract. In this work we investigate the Weihrauch degree of the problem Decreasing Sequence (DS)
of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the
problem Bad Sequence (BS) of finding a bad sequence through a given non-well quasi-order. We show
that DS, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather
weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of
the deterministic part of a Weihrauch degree. We then generalize DS and BS by considering Γ-presented
orders, where Γ is a Borel pointclass or Δ1

1, Σ1
1, Π1

1. We study the obtained DS-hierarchy and BS-hierarchy
of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any
finite level.

§1. Introduction. We study the difficulty of the following two (Weihrauch
equivalent) computational problems:

• Given an ill-founded countable linear order, find an infinite Decreasing
Sequence in it (DS).

• Given a countable quasi-order which is not well, find a Bad Sequence in it (BS).

Motivation for the first stems from the treatment of ordinals in reverse mathematics.
When working within models of subsystems of second order arithmetic, the notion
of well-order depends on the fixed model. This leads to the so-called pseudo-
well-orders, i.e., ill-founded linear orders s.t. no descending sequence exists within
the model itself. Such a linear order would appear to be well-founded from the
point of view of the model. As a classic example of a pseudo-well-order, consider
Kleene’s computable linear order with no hyperarithmetic descending sequence
[38, Lemma III.2.1]. Such a linear order is a well-order when seen within the
�-model HYP consisting exactly of the hyperarithmetic sets. Pseudo-well-orders
were first studied in [23] and proved to be a powerful tool in reverse mathematics,
especially when working at the level of ATR0 (see [41, Section V.4]). Our first task
can essentially be rephrased as being concerned with the difficulty of revealing a
pseudo-ordinal as not actually being an ordinal.

Our second task can be seen as a abstraction of the computational content
of theorems in well-quasi-order (wqo) theory. There are many famous theorems
asserting that wqo’s are closed under certain operations. Examples such as Kruskal’s
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tree theorem, as well as Extended Kruskal’s theorem and Higman’s theorem, have
been well-studied in proof theory via their proof-theoretic ordinals (see [39]).
However, in their usual form these results lack computational content. Indeed,
these theorems state that a certain quasi-order (Q, �Q) is a wqo. Phrasing a result
of this kind in the classical Π1

2-form would yield a statement of the type “given an
infinite sequence (qn)n∈N in Q, find a pair of indexes i < j s.t. qi �Q qj .” Such a pair
(i,j) would be a witness of the fact that the sequence (qn)n∈N is not bad. However,
while proving that (Q, �Q) is a wqo can be “hard” (in particular Extended Kruskal’s
theorem is not provable in Π1

1– CA0 [39]), producing a pair of witnesses for each
infinite sequence is a �Q-computable problem (as it can be solved by an extensive
search)!

These theorems are very extreme examples of a well-known difference between
reverse mathematics and computable analysis: quoting [19] “the computable analyst
is allowed to conduct an unbounded search for an object that is guaranteed to exist
by (nonconstructive) mathematical knowledge, whereas the reverse mathematician
has the burden of an existence proof with limited means.”

On the other hand, considering the contrapositives of the above theorems can
reveal some (otherwise hidden) computational content. For example, to show that
a given quasi-order is not a wqo it suffices to produce a bad sequence in it. Extended
Kruskal’s theorem or Higman’s theorem can be stated in the form “given a bad
sequence for the derived quasi-order, find a bad sequence for the original quasi-
order.” Our second problem trivially is an upper bound for all these statements, as
we disregard any particular reason for why the given quasi-order is not a wqo, and
just start with the promise that it is not. Our results thus lay the groundwork for a
future exploration of the computational content of individual theorems from wqo
theory.

We use the framework of Weihrauch reducibility for our investigation. This means
that we compare the problems under investigation to a scaffolding of benchmark
problems by asking whether there is an otherwise computable uniform procedure
that solves one problem while invoking a single oracle call to the other problem. We
are not constrained to particular weak systems in proving that these procedures are
actually correct, but rather use whatever proof techniques of ordinary mathematics
are suitable. In particular, we can take aspects like the ill-foundedness of the given
linear order as external promises not represented in the coding of the input. We can
use the fact freely in reasoning about the correctness of our procedure, but there is
no evidence provided as input of the procedure.

1.1. Summary of our results. There are a number of problems whose degrees are
milestones in the Weihrauch lattice and are often used as benchmarks to calibrate
the uniform strength of the multi-valued function under analysis. Some of them
roughly correspond to the so-called big five subsystems of second order arithmetic:
computable problems correspond to RCA0, C2N (closed choice on the Cantor space)
corresponds to WKL0, lim (limit in the Baire space) and its iterations correspond
to ACA0, C

NN (closed choice on the Baire space) and its variants UC
NN and TC

NN

correspond to ATR0, Π1
1-CA corresponds to Π1

1– CA0.
We show that DS does not belong to this “explored” part of the lattice. To put

it in a nutshell, our results show that it is difficult to solve DS, but that DS is
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CNN ≡W lim ∗ DS
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Figure 1. An overview of some parts of the Weihrauch lattice. The solid frame
collects the degrees belonging to the lower cone of DS, while the dashed frame
collects principles that are not Weihrauch reducible to DS. The only principle shown
which is above DS is C

NN . We do not know whether KL is reducible to DS.

rather weak in solving other problems. For example, DS has computable inputs
without any hyperarithmetic solutions. On the other hand, DS uniformly computes
only the limit computable functions. We provide a few characterizations that tell us
what the greatest Weihrauch degree with representatives of particular types below
DS is, and include some general observations on this approach. The diagram in
Figure 1 shows the relations between DS and several other Weihrauch degrees.
Dashed arrows represent Weihrauch reducibility in the direction of the arrow, solid
arrows represent strict Weihrauch reducibility. Next, we generalize our results by
exploring how different presentations of the same order can affect the uniform
strength of the same computational task (finding descending sequences in it). We
study the problems Γ-DS and Γ-BS, where the name of the input order carries
“less accessible information” on the order itself (namely a ≤L b is assumed to
be a Γ-condition relative to the name of the order). We summarize the results in
Figure 2.

1.2. Structure of the paper. After a short introduction on the preliminary notions
on represented spaces and Weihrauch reducibility (§2), we define the deterministic
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UCNN

CNN

DS ≡W BS ≡W Σ01-DS

Σ02-DS ≡W Δ02-DS ≡W Δ02-BS
Π01-DS ≡W Π01-BS

Σ02-BS

Δ11-DS

Σ11-DS

Π11-DSΣ11-BS

Π11-CA

Σ01-BS

Figure 2. Diagram presenting the relations between the various generalizations of
DS.

part of a multi-valued function and explore the algebraic properties of the operator
DetX(·) (§3). These results will be very useful in the study of the problems DS and
BS (§4) and their generalizations Γ-DS and Γ-BS (§5).

§2. Background. For an introduction to Weihrauch reducibility, we point the
reader to [10]; for represented spaces to [36]. Below we briefly introduce the
notions we will need, as well as state useful results. Those familiar with Weihrauch
reducibility should read Definition 2.2 where we define the first-order part of a
problem, recently studied by Dzhafarov et al. [17].

A represented space X is a set X together with a (possibly partial) surjection
�X :⊆ NN → X . We can transfer notions of computability from NN to X as follows.
For each x ∈X , we say that p is a (�X-)name of x if �X(p) = x. We say that x ∈X is
( �X-)computable if it has a computable (�X-)name.

We list some relevant examples. Let LO = (LO, �LO) be the represented space
of linear orders with domain contained in N, where each linear order (L, ≤L)
is represented by the characteristic function of the set {〈a,b〉 ∈ N : a ≤L b}. Let
WO = (WO,�WO) be the represented space of well-orders with domain contained
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in N, where �WO is the restriction of �LO to codes of well-orders. Similarly, let
QO = (QO, �QO) be the represented space of quasi-orders (represented via the
characteristic function of the relation). Let also Tr be the space of subtrees of N<N,
represented by characteristic functions. For every string � ∈ N<N we denote with
�[n] the prefix of length n of �.

We will formalize the problems under investigation as partial multi-valued
functions between represented spaces f :⊆ X ⇒ Y. For each x ∈ X , f(x) denotes
the set of possible outputs corresponding to the input x. The domain dom(f) is the
set of all x ∈ X such that f(x) is nonempty. We often refer to each x ∈ dom(f) as
an f-instance and each y ∈f(x) as an f-solution to x. When we define a problem, we
will often not specify its domain explicitly, in which case its domain should be taken
to be as large as possible. The codomain of f :⊆ X ⇒ Y is Y. If f :⊆ X ⇒ Y is such
that f(x) is a singleton for each x ∈ dom(f), then we say that f is single-valued.
We indicate that by writing f :⊆ X → Y. In this case we will write f(x) = y instead
of (the formally correct) f(x) = {y}. An example of a single-valued problem is the
identity function id : NN → NN.

We can define the computability or continuity of problems via realizers: we say
that a function F :⊆ NN → NN is a realizer of a problem f :⊆ X ⇒ Y if whenever p
is a name for some x ∈ dom(f), F (p) is a name for some y ∈ f(x). A problem is
computable (respectively continuous) if it has a computable (respectively continuous)
realizer.

In order to measure the relative uniform computational strength of problems,
we use Weihrauch reducibility. A problem f is Weihrauch reducible to a problem g,
written f ≤W g, if there are computable maps Φ,Ψ :⊆ NN → NN such that if p is a
name for some x ∈ dom(f), then

1. Φ(p) is a name for some y ∈ dom(g) and
2. if q is a name for some element of g(y), then Ψ(p,q) is a name for some element

of f(x).

This means that there is a procedure for solving f which is computable except for a
single invocation to an oracle for g. Equivalently, there is a computable procedure
which transforms realizers for g into realizers for f. A problem f is strongly Weihrauch
reducible to a problem g, written f ≤sW g, if there are computable maps Φ and Ψ
as above, except that Ψ is not allowed access to p in its computation.

Weihrauch reducibility and strong Weihrauch reducibility are quasi-orders, so
they define a degree structure on problems:f ≡W g iff ≤W g and g ≤W f (likewise
for ≤sW). Both the Weihrauch degrees and the strong Weihrauch degrees form
lattices (see [11, Theorems 3.9 and 3.10]). There are several natural operations on
problems which also lift to the ≡W-degrees and the ≡sW-degrees. Below we present
the operations that we need in this paper.

The parallel product f× g is defined by (f× g)(x,y) = f(x)× g(y). We call f
a cylinder if f ≡sW f× id. If f is a cylinder, then g ≤W f if and only if g ≤sW f
[6, Corollary 3.6]. This is useful for establishing nonreductions because if f is a
cylinder, then it suffices to diagonalize against all strong Weihrauch reductions from
g to f in order to show that g 
≤W f. Cylinders will also be useful when working
with compositional products (discussed below). Observe that for every problem f,
f× id is a cylinder which is Weihrauch equivalent to f.

https://doi.org/10.1017/jsl.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.15


822 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

The parallelization f̂ is defined by f̂((xn)n∈N) =
∏
n∈N
f(xn). In other words,

given a countable sequence of f -instances, f̂ asks for an f -solution for each given
f -instance.

The composition of f :⊆ Y ⇒ Z and g :⊆ X ⇒ Y is defined by dom(f ◦ g) =
{x ∈ dom(g) : g(x) ⊆ dom(f)} and (f ◦g)(x) =

⋃
y∈g(x)f(y) for x ∈ dom(f ◦g).

The composition does not respect ≤W or ≤sW. Instead, for any problems f and g
(regardless of domain and codomain), we can consider the compositional product
f ∗g, which satisfies the following property:

f ∗g ≡W max
≤W

{f1 ◦g1 : f1 ≤W f∧g1 ≤W g}.

This captures what can be achieved by first applying g, possibly followed by some
computation, and then applying f. The compositional product was first introduced
in [10], and proven to be well-defined in [13]. A useful tool is the cylindrical
decomposition lemma [13, Lemma 3.10]: for all problems f and g, if F ≡W f
and G ≡W g are both cylinders, then there is some computable map Φ such that
f ∗g ≡W F ◦Φ ◦G . For each problem f, let f[n] denote the n-fold iteration of the
compositional product of f with itself, i.e., f[1] = f, f[2] = f ∗f, and so on.

The jump of f :⊆ X ⇒ Y is the problem f′ :⊆ X′ ⇒ Y defined by f′(x) := f(x),
where X′ is the represented space (X,�X′) and �X′ takes in input a convergent
sequence (pn)n∈N in NN and returns �X(limn→∞pn). In other words, f′ is the
following task: given a sequence which converges to a name of an f -instance,
produce an f -solution to that instance. The jump respects ≤sW but does not lift
to the ≡W-degrees. We use f(n) to denote the n-th jump of a problem. If we define
lim :⊆ (NN)N →NN by lim((pn)n∈N) := limn→∞pn then it is straightforward from the
definition that f(n) ≤W f ∗ lim[n]. The converse reduction does not hold in general.
However if f is a cylinder, then for each n, f(n) is a cylinder and f(n) ≡W f ∗ lim[n]

(see [11, Proposition 6.14]). In particular, since lim is a cylinder, lim(n) ≡W lim[n+1]

for each n. We say that a problem is arithmetic if it is Weihrauch reducible to lim(n) for
some n.

Next we introduce some problems which are milestones in the Weihrauch lattice.
Apart from lim and its jumps, most prominent is the family of problems of (closed )
choice CX defined below. For a represented space X, let A(X ) denote the space of
closed subsets of X. These are given by the ability to recognize membership in the
complement. We define CX :⊆A(X ) ⇒ X by CX(A) :=A. In other words, CX is the
task of producing an element of X given a way to recognize wrong answers. Define
unique choice UCX to be the restriction of CX to closed sets which are singletons. By
definition, UCX is single-valued.

Of particular interest to us are CN, C
NN , and UC

NN . We can view elements of
A(N) to be given as an enumeration of its complement. Thus, CN is the task of
finding a natural number not occurring in a given list. Given a name for a closed
set A ⊆ NN, we can compute a tree T ⊆ N<N such that the set [T ] of (infinite)
paths on T is A. Conversely, given a tree T ⊆ N<N, we can compute a name for
the closed set [T ]. Therefore we can view C

NN as the problem of computing a path
on a given ill-founded subtree of N<N. Similarly, we can view UC

NN as the problem
of computing the unique path on a given subtree of N<N. Both C

NN and UC
NN are

closed under compositional product [5, Theorem 7.3]. We have:
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Theorem 2.1 [26, Corollary 3.4]. Iff :⊆NN ⇒ X is Weihrauch reducible to UC
NN ,

then for every x ∈ dom(f), f(x) contains some y hyperarithmetical relative to x.

Another prominent problem is LPO : NN → {0,1}, defined by LPO(p) := 0 if
p = 0N and LPO(p) := 1 otherwise. Its jump LPO′ (and its iterated jumps LPO(k))

will play an important technical role. We notice that lim(n) ≡W
̂
LPO(n) (see e.g., [11,

Theorem 6.7 and Proposition 6.10]).
Next we define the represented space Γ(X) of all Γ-definable subsets of a

computable metric space X, where Γ ∈ {Σ0
k,Π

0
k,Δ

0
k,Σ

1
1,Π

1
1,Δ

1
1}. This is based on

the well-known concept of Borel codes [33]. For a more detailed development in
the context of computable analysis we refer to [20]. A more abstract and general
treatment is provided in [37]. A �Σ0

1
-name for a set B ⊆ X is a sequence of indices

of rational open balls whose union is B. A �Π0
k
-name for a set is a �Σ0

k
-name for its

complement. (Note that �Π0
1

agrees with how we represented closed sets previously.)
A �Δ0

k
-name for a set is a pair of �Σ0

k
-names, one for the set itself and one for its

complement. A �Σ0
k+1

-name for a setB ⊆X is a sequence of names for Π0
k sets whose

union is B.
A �Σ1

1
-name for a set S ⊆ X is a �Π0

1
-name for a set P ⊆ NN ×X such that

S = {x ∈ X : (∃g)((g,x) ∈ P)}. We define �Π1
1

and �Δ1
1

similarly to �Π0
k

and �Δ0
k
. If

X is N, we can think of a �Σ1
1
-name for S ⊆ N as a sequence (Tn)n∈N of subtrees of

N<N such that n ∈ S if and only if Tn is ill-founded.
In practice, we rarely construct �Γ-names explicitly. If we want to construct a �Γ-

name for a setA⊆X , we typically only check that there is a Γ-formula which defines
A. By invoking computable closure properties, one can construct a computable map
which takes a Γ-formula φ and its parameter p to a �Γ-name for the set defined by
φ. Conversely, one can construct a computable map which takes a �Γ-name p for a
set A to a Γ-formula φ with parameter p which defines A.

We define the (single-valued) functions Γ-CA :⊆ Γ(N) → 2N corresponding to
comprehension principles: given a �Γ-name p for a subset A of N, produce its
characteristic function. Notice that, for each k and each A ∈ Σ0

k+1, we can use
LPO(k) to check whether n ∈A (intuitively, for every p we can use LPO(k) to answer
a Σ0,p
k+1 question). This shows that, for each k,

lim(k) ≡W
̂
LPO(k) ≡W Σ0

k+1-CA,

somewhat implicitly written in [4]. The problem Π1
1-CA can be seen as the analogue

of Π1
1– CA0. It is Weihrauch equivalent to the parallelization of �Π1

1
, which is the

characteristic function of a Π1
1-complete set. It is convenient to think of �Π1

1
as the

function that takes in input a subtree of N<N and checks whether it is well-founded.
We can also define Γ-choice Γ-CX :⊆ Γ(X) ⇒ X by Γ-CX(A) :=A. In other words,

Γ-CX is the task of producing an element of a nonempty Γ-set A, given a �Γ-name
of A. We can define Γ-UCX :⊆ Γ(X) → X analogously. When reducing problems
to C

NN and UC
NN , the following facts are helpful: Σ1

1-C
NN ≡W C

NN and UC
NN ≡W

Σ1
1-UC

NN (see [26]).
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We define the represented spaces Γ(LO) and Γ(QO) by restricting the codomain
of �Γ to the set of subsets of N which are characteristic functions of linear orders
and quasiorders respectively. This will be used in §5.

We will often construct linear orders using the following method. For every tree
T ⊆ N<N, we define the Kleene–Brouwer order KB(T ) on T as follows: � ≤KB � if
and only if � � � or � ≤lex �. The map T �→ KB(T ) from Tr to LO is computable.
It is known that KB(T ) is a well-order if and only if T is well-founded (see e.g., [41,
Lemma V.1.3]).

Finally we present a notion recently studied by Dzhafarov et al. [17]:

Definition 2.2. Let F be the set of first-order problems, i.e., the set of problems
with codomain N. For every problem f :⊆ Y ⇒ Z, the first-order part of f is the
multi-valued function 1f :⊆ NN×Y ⇒ N defined as follows:

• instances are pairs (p,y) s.t. y ∈ dom(f) and for every z ∈ f(y) and every
name t for z, Φp(t)(0) ↓, where Φ(·) is a fixed universal Turing functional and

• a solution for (p,y) is any n s.t. there is a name t for a solution z ∈ f(y) s.t.
Φp(t)(0) ↓= n.

The motivation for this notion comes from the following fact:

Proposition 2.3 [17]. For every problem f,
1f ≡W max

≤W
{g ∈ F : g ≤W f}.

We conclude this section with the following proposition:

Proposition 2.4.
1C

NN ≡W Σ1
1-CN.

Proof. It is known that Σ1
1-CN <W

̂Σ1
1-CN <W C

NN [1, Theorem 3.34]. On the
other hand, if f :⊆ X ⇒N is s.t. f ≤W C

NN via Φ,Ψ then, for every name p of some
x ∈ dom(f), Φ(p) is the name of an ill-founded tree Tp and, for every t ∈ [Tp]
we have Ψ(t)(0) ∈ f(x). This means that we can compute a solution choosing an
element from

{n ∈ N : (∃t ∈ NN)(t ∈ [Tp]∧Ψ(t)(0) = n)},

which is a Σ1,p
1 subset of N. �

We will characterize the first-order part of DS in Theorem 4.10.

§3. The deterministic part of a problem.

Definition 3.1. Let X be a represented space and f :⊆ Y ⇒ Z be a multi-valued
function. We define DetX(f) :⊆ NN×Y → X by

DetX(f)(p,y) = x :⇐⇒ (∀z ∈ �–1
Z (f(y)))(�X(Φp(z)) = x),

where Φ(·) is a universal Turing functional. The domain of DetX(f) is maximal for
this to be well-defined. We just write Det(f) for Det

NN(f).

Notice that Det(f) is always a cylinder. This is not true for all X (if X = N then
DetX(f) always has computable solutions, and therefore id 
≤sW DetX(f)).
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Our interest in the principle DetX(f) lies in the fact that it has the maximal
Weihrauch degree of all (single-valued!) functions with codomain X that are
Weihrauch below f :

Theorem 3.2. DetX(f) ≡W max≤W{g :⊆ W → X : g ≤W f}.

Proof. Clearly, DetX(f) is itself present in the set on the right hand side. Assume
g :⊆ W → X satisfies g ≤W f with reduction witnesses Φ and Ψ. Given a name q for
an input to g, let y = �Y(Φ(q)) be the value f is called on, and let p be a name for
the function Ψ(q,·). Then DetX(f)(p,y) = g(�W(q)). �

In the same spirit, we can identify several other operators ΛY of the type ΛY(f) :=
max≤W{g ∈ Y : g ≤W f}. In particular the proof strategy used in Theorem 3.2 can
be used to prove that ΛUN and ΛVN are total, where UN is the set of first-order
problems with codomain N, and VN is the set of problems in UN which are also
single-valued. This will come into play in Theorem 4.31 and in Theorem 4.33.

Corollary 3.3. DetX(·) is an interior degree-theoretic operator on Weihrauch
degrees, i.e.,

DetX(DetX(f)) ≡W DetX(f) ≤W f;

f ≤W g⇒ DetX(f) ≤W DetX(g).

3.1. Impact of the codomain space. We make some basic observations on how the
space X impacts the degrees DetX(f) for arbitrary f. Clearly, whenever Y computably
embeds into X (i.e., there is a computable injection Y → X with computable inverse),
then DetY(f) ≤W DetX(f). In general, we obtain many different operations. To see
this, we consider the point degree spectrum of a represented space as introduced by
Kihara and Pauly [28]. The point degree spectrum of (X, �X) is the set of Medvedev
degrees of the form �–1

X (x) for x ∈ X .
The spectrum of Y is included in that of X iff Y can be decomposed into countably

many parts each of which embeds into X [28, Lemma 3.6]. If the spectrum of Y is not
included in that of X, we can consider a constant function y witnessing this. Then
DetX(y)<W DetY(y) ≡W y. We have thus seen that if DetX(f) ≡W DetY(f) for all
f, then X and Y must have the same point degree spectrum. Miller [32] has shown
that the spectrum of [0,1]� is not contained in the Turing degrees (i.e., the spectrum
of 2N), which was extended in [28] to the result that the spectrum of a computable
Polish space is contained in the Turing degrees relative to some oracle iff that space
is countably dimensional. The spectra of further spaces have been explored in [27].

We can extend the separation arguments based on the spectrum by considering
sequences rather than just constant functions.1 Whenever we have a sequence f0 :
N → X0 and a function g0 :⊆ NN → X1 with f0 ≡W g0, then there is a sequence
h : N → X1 with f0 ≡W h. A Weihrauch reduction f ≤W g for f : N → X and
g : N→ Y gives rise to a computable partial function F :⊆ YN → XN with F (g) =f.
It follows that it suffices to separate YN and XN via their spectrum to conclude that
DetX(·) and DetY(·) are distinct operators. In particular, Miller’s result implies that
there is a function with codomain R that is not equivalent to any function with
codomain NN.

1The ideas in this paragraph were pointed out to us by Mathieu Hoyrup.
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3.2. The deterministic part and the first-order part. Let us now explore the
interplay between the deterministic part and the first-order part.

Proposition 3.4.
1Det(f) ≡W DetN(f) ≤W Det(1f).

Proof. By considering what the relevant maxima in the characterizations are
taken about, it is clear that DetN(f) ≤W

1Det(f) and DetN(f) ≤W Det(1f). To
see that 1Det(f) ≤W DetN(f), we consider a function f :⊆ NN → NN and a multi-
valued function g :⊆ NN ⇒ N with g ≤W f. But this reduction actually yields some
choice function of g, showing that g ≤W DetN(f). �

Open Question 3.5. Is there some f with DetN(f)<W Det(1f)?

The question above asks whether whenever there is a countable cover making
a partial function on Baire space piecewise computable, there also is a partition
of the same or lower complexity that renders the function piecewise computable.
The complexity here is not merely the complexity of the individual pieces, but the
Weihrauch degree of the map that assigns the piece to any Baire space element.

Proposition 3.6. Det(f) ≤W D̂etN(f).

Proof. A function f :⊆ NN → NN is reducible to the parallelization of its
uncurried form F :⊆ N×NN → N where F (n,p) = f(p)(n). �

Corollary 3.7. Det(f) ≤W
1̂f.

3.3. Interaction with other operations on Weihrauch degrees. A first straight-
forward observation is that Det(f)�Det(g) ≤W Det(f�g) whenever � is a
degree-theoretic operator that preserves single-valuedness. We will look at the
interaction with the usual well-studied operations on Weihrauch degrees. Besides
those introduced in §2, we consider � and �, the join and meet in the Weihrauch
lattice, and the finite parallelization ∗ (which essentially is closure under ×). See
[11, Section 3] for definitions. The diamond operator � was introduced in [34], and
corresponds to the possibility of using the oracle an arbitrary (but finite) number of
times (essentially closure under compositional product).

It is imminent from the definition that Det(f)�Det(g) ≡W Det(f�g).
Moreover Det(f �g) ≤W Det(f) and Det(f �g) ≤W Det(g) by monotonicity,

hence Det(f �g) ≤W Det(f)�Det(g), as � is the meet on Weihrauch degrees [6,
Proposition 3.11]. To see that the inequality can be strict, let p,q ∈ 2N be a minimal
pair of Turing degrees (which we identify with the constant functions returning these
values). Then Det(p�q) ≡W id

NN <W Det(p)�Det(q) ≡W p�q.
Our principleDS (to be defined) already witnesses that the deterministic part does

not distribute over × and ∗, and does not commute with ∗, � and ̂: we will prove
that Det(DS) ≡W lim (Theorem 4.16), while LPO′ ≤W DS×DS (Theorem 4.18).
Here we also give another example with a more computability-theoretic flavor:

Example 3.8. There is a Weihrauch degree f such that:

Det(f) ≡W id<W f<W f×f ≡W f
� ≡W f̂ ≡W Det(f×f).

Indeed, consider the degrees of points in the spaces R<, R> and R (see [27] for
details). Let x ∈ R be neither left-c.e. nor right-c.e.; i.e., it lacks computable names
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in both R< and R>. Then x ∈ R< and x ∈ R> have quasi-minimal degrees, that is
do not compute any non-computable elements of Cantor space. We define f : 2 →
R<+R> by f(0) = x ∈ R< and f(1) = x ∈ R>. The quasi-minimality implies that
Det(f) ≡W id. However, f ×f is equivalent to the constant function returning
x ∈ R, which is also equivalent to the constant function returning the decimal
expansion of x. Thus, f×f ≡W Det(f×f). Any of f∗, f ∗f, f� and f̂ clearly
share the same degree.

Theorem 3.9. For every represented space X and every problems f,g,

DetX(f ∗g) ≤W DetX(f)∗g.
Proof. Fix a single-valued h with codomain X and assume, without loss of

generality, that dom(h) ⊂ NN (if h is single-valued then the map p �→ h ◦ �(p) is
single-valued as well, where � is the representation map for the domain of h).
Assume also, for the sake of readability, that f and g are cylinders (if not we can just
replace f with f× id , as DetX(·) is a degree-theoretic operation).

By the cylindrical decomposition lemma, there is a computable function Φe s.t.

h ≤sW f ◦Φe ◦g.
Let Φ,Ψ be two maps witnessing this strong reduction. Define φ as the restriction
of �X ◦Ψ ◦f ◦Φe to dom(g ◦Φ ◦ h). The choice of the domain of φ guarantees
that φ is single-valued: intuitively φ witnesses the “second part” of the reduction
h ≤sW f ◦Φe ◦g, and the fact that h is single-valued implies that so isφ. In particular,
φ ≤W DetX(f) (as φ ≤W f trivially). Since h ≤W φ ∗ g we have that h ≤W DetX
(f)∗g. �

Notice that this implies the choice elimination theorem [11, Theorem 7.25], as
Det(C2N) ≡W id [6, Corollary 8.8].

Corollary 3.10. If g is single-valued with codomain NN then Det(f ∗ g) ≡W

Det(f)∗g.

Proof. This follows from Theorem 3.9, as Det(f)∗Det(g)≤W Det(f∗g) always
holds and Det(g) ≡W g as g is single-valued with codomain NN. �

Corollary 3.11. For every cylinder f and every k ∈ N

Det(f)(k) ≡W Det(f(k)).

Proof. The left-to-right reduction is straightforward as

Det(f)(k) ≤W Det(f)∗ lim[k] ≤W f ∗ lim[k] ≡W f
(k),

where the last equality follows from the fact that f is a cylinder. Since Det(f)(k) is
single-valued, this implies Det(f)(k) ≤W Det(f(k)).

The right-to-left reduction follows from Theorem 3.9 as

Det(f(k)) ≡W Det(f ∗ lim[k]) ≤W Det(f)∗ lim[k] ≡W Det(f)(k),

where the last equality follows from the fact that Det(f) is a cylinder. �
The previous corollary can be generalized in a straightforward way to any

represented space X s.t. DetX(f) is a cylinder. Notice that it is false (in general)
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if f is not a cylinder: take f = C2 and k = 1. Since C′
2 ≡W RT1

2 (see e.g., [1, Fact 2.3
and Proposition 3.4]) we have Det(C′

2) ≤W RT1
2, hence in particular lim 
≤W Det(C′

2).
On the other hand lim≤W Det(C2)′ (as Det(C2) is a cylinder).

Definition 3.12. Given some f :⊆ NN ⇒ NN let ?f :⊆ NN ⇒ NN be defined by
0� ∈?f(0�) and 0n1p ∈?f(0n1q) iff p ∈ f(q).

It is easy to see that ? defines an operation on Weihrauch degrees, and represents
the idea of being able to maybe ask a question to f – but never having to decide
to forgo this (which would be the case for 1�f). Many well-studied principles are
equivalent to their maybe-variants, this in particular holds for all pointed fractals.
We introduce the operation here to be able to express how the deterministic part
interacts with the notion of completion (·) introduced by Brattka and Gherardi
[7, 8].

Proposition 3.13. Det(f) ≡W Det(?f) ≡W?Det(f).

Proof. To show that Det(f) ≤W Det(?f), without loss of generality assume
that f :⊆ NN ⇒ NN and consider a function g :⊆ NN → NN with g ≤W f witnessed
by Φ,Ψ. Now if for some prefix w the computation of Ψ(w,·) outputs two different
things depending on the second part of the input, then in order for g to be a function,
we have the guarantee that all extensions of w in the domain of g will be mapped to
inputs in the domain of f, i.e., we are actually calling f rather than making use of f.
On the other hand, if Ψ(w,·) would output the same thing regardless of the second
argument, we can postpone actually calling f (which ?f lets us do) and go with that
output for the time being. This reasoning establishes that g ≤W?f.

To see that Det(?f)≤W?Det(f), we just inspect the technical definition of Det(·).
Finally, for ?Det(f) ≤W Det(f) we observe that ?Det(f) is single-valued with

codomain NN, thus it suffices to show ?Det(f) ≤W f. But already ?f ≤W f holds:
f accepts an input that is completely void of information. We provide this as long as
our ?f instance does not want to use f ; if it ever does, we have the relevant f -instance
which we can then feed into f. Note that we do not get a strong reduction here, in
general. �

3.4. Previous appearances in the literature. While the deterministic part as such
has not been introduced before, and in particular the observation that it is always
well-defined is new, there are several results in the literature on Weihrauch degrees
that implicitly use it. Already in the first paper introducing the modern definition
of Weihrauch reducibility [19], it was shown that Det(C2N) ≡W id. It was observed
in [29] that the argument actually even establishes that DetX(C2N) ≡W id for any
computably admissible space X.

In [26] the principle wList2N,≤� which produces an enumeration of the elements of
a countable closed subset of Cantor space was introduced, and [26, Proposition 6.14]
states that Det(wList2N,≤�) ≡W lim. The authors also proved the following result,
which will be useful in Proposition 5.18:

Theorem 3.14 [26, Theorem 8.5]. UC
NN ≡W Det(C

NN) ≡W Det(T̂C
NN).

This, in particular, shows that Det(·) is not useful to separate principles that are
between UC

NN and C
NN .
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In the context of probabilistic computation [9, 12], the fact that the upper cones
of non-trivial enumeration degrees are measure zero is equivalent to the statement
that if f :⊆ NN ⇒ NN has the property that f(p) has positive measure for every
p ∈ dom(f) and X is an effectively countably based space, then there is some g with
DetX(f) ≤W

1g.

§4. Finding descending sequences. Let us formally define the problem of finding
descending sequences in an ill-founded linear order as a multi-valued function.

Definition 4.1. Let DS :⊆ LO ⇒ NN be the multi-valued function defined as

DS(L) := {x ∈ NN : (∀i)(x(i+ 1)<L x(i))},

with dom(DS) := LO\WO.

4.1. The uniform strength of DS. We can immediately notice the following:

Proposition 4.2. DS≤W C
NN but DS 
≤W UC

NN .

Proof. To show that DS≤W C
NN it is enough to notice that being a descending

sequence in a linear order L is a Π0,L
1 property. In other words, we can obtain a

descending sequence through L by choosing a path through the tree

{� ∈ N<N : (∀i < |�| – 1)(�(i+ 1)<L �(i))}.

To show that DS 
≤W UC
NN , recall that there is a computable linear order with

no hyperarithmetic descending sequence (see e.g., [38, Lemma III.2.1]). A reduction
DS≤W UC

NN would therefore contradict Theorem 2.1. �

In particular, this shows that DS is not an arithmetic problem (i.e., DS 
≤W lim(n),
for any n).

Proposition 4.3. C
NN ≡W lim∗DS.

Proof. The reduction lim ∗DS ≤W C
NN follows from the fact that both lim and

DS are reducible to C
NN and that C

NN is closed under compositional product.
To prove the left-to-right reduction notice that, given a tree T, we can computably

build the linear order KB(T ). It is known that [T ] 
= ∅ iff KB(T ) is ill-founded (see
e.g., [41, Lemma V.1.3]). Moreover, given a infinite descending sequence (�n)n∈N in
KB(T ), the sequence (��n 0�)n∈N converges to some x ∈ [T ], and therefore the claim
follows. �

We can generalize the problem DS to the context of quasi-orders. It is easy to
see that the problem of finding descending sequences in a quasi-order is Weihrauch
equivalent to C

NN . Indeed, on the one hand, being a descending sequence in a quasi-
order P is a Π0,P

1 property. On the other hand, every tree, ordered by the prefix
relation, is a partial order where the descending sequences provide arbitrarily long
prefixes of a path.

When working with non-well quasi-orders, it is more natural to ask for bad
sequences instead.
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Definition 4.4. We define the multi-valued function BS :⊆ QO ⇒ NN as

BS(P) := {x ∈ NN : (∀i)(∀j > i)(x(i) 
�P x(j))},

where dom(BS) is the set of quasi-orders that are not well-quasi-orders.

It follows from the definition that every ill-founded linear order is a non-well
quasi-order and that every bad sequence through an ill-founded linear order is
indeed a descending sequence.

By expanding a bit on a classical argument we can prove that the two problems
are uniformly equivalent.

Proposition 4.5. DS≡W BS.

Proof. The left-to-right reduction is trivial, so we only need to show that BS≤W

DS. Let P be a non-well quasi-order. We will first compute an extension R of P s.t.
every two elements of P are R-comparable, then we will computably pick an element
from each R-equivalence class, so as to obtain a linear order.

We define R iteratively as follows: at every stage s s.t. s ∈ P, we define the R-
relation between s and t, for every t ∈ P s.t. t < s . If t |P s then we define s ≺R t.
Otherwise we define the R-relation between s and t so as to extend P.

It is easy to see that if (pi)i∈N is an ≺R-descending sequence then it is a P-bad
sequence. Indeed, for every i,j s.t. i < j, if pi �P pj then pi �R pj (as R extends P),
contradicting the fact that (pi)i∈N is an ≺R-descending sequence. Moreover R is ill-
founded: indeed every ≺P-descending sequence is also an ≺R-descending sequence.
On the other hand, every P-antichain (qi)i∈N has a subsequence (qik )k∈N that is an
≺R-descending sequence (define qik inductively by letting ik be the smallest integer
s.t. qik > qj , for every j < k).

To conclude the proof it is enough to show that we can uniformly compute a
linear order L by choosing an element from each R-equivalence class. We define L
as the restriction of R to the set

{p ∈R : (∀q < p)(p 
≡R q)}.

Clearly L is isomorphic to the quotient order induced by R on the set of R-
equivalence classes, hence it is ill-founded. Moreover, every<L-descending sequence
is an ≺R-descending sequence, and therefore DS(L) ⊂ BS(P). �

We will show that DS (and hence BS) is quite weak in terms of uniform
computational strength (a fortiori C

NN 
≤W DS). Let us first underline the following
useful proposition.

Proposition 4.6. DS is a cylinder.

Proof. Let p ∈ NN and L be an ill-founded linear order. Define

M : = {(p[n],n) : n ∈ L},
(p[n],n) ≤M (p[m],m) :⇐⇒ n ≤L m.

It is easy to see that M is computably isomorphic to L, and hence it is a valid
input for DS. In particular, letting ((p[ni ],ni))i∈N ∈ DS(M ), we have that (ni)i∈N is
a descending sequence in L and p =

⋃
i∈N
p[ni ]. �

https://doi.org/10.1017/jsl.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.15


FINDING DESCENDING SEQUENCES THROUGH ILL-FOUNDED LINEAR ORDERS 831

Definition 4.7. Let Γ– Bound :⊆ Γ(N) ⇒N be the first-order problem that takes
as input a finite Γ subset of the natural numbers and returns a bound for it. Formally

dom(Γ– Bound) := {A ∈ Γ(N) : (∀∞n)(A(n) = 0)},
Γ– Bound(A) := {n ∈ N : (∀m ≥ n)(A(m) = 0)},

where ∀∞ is a shorthand for “for all but finitely many.”

The principle Π1
1– Bound has been studied in [1] under the name Σ1

1-Ccof
N

: notice
indeed that the reduction Σ1

1-Ccof
N

≤sW Π1
1– Bound is trivial. On the other hand, given

a finite Π1
1 subset X of N we can consider the set

Y := {n ∈ N : (∃m ≥ n)(m ∈ X )}.

Clearly Y is a Π1
1 initial segment of N, and therefore N\Y is a valid input for

Σ1
1-Ccof

N
. Moreover a name for Y can be uniformly computed from a name of X and

Σ1
1-Ccof

N
(N\Y ) ⊂ Π1

1– Bound(X ). This shows that Π1
1– Bound≤sW Σ1

1-Ccof
N

and hence
the two problems are (strongly) Weihrauch equivalent.

In other words, given an instance X of Π1
1– Bound we can, without loss of

generality, assume that X is an initial segment of N.

Proposition 4.8. Π1
1– Bound<W DS.

Proof. Let X be a Π1
1 initial segment of N. By considering the Kleene-Brouwer

ordering, we can think of a name for X as a sequence (Ln)n∈N of linear orders s.t.
n ∈ X iff Ln is well-founded.

Define the linear order L :=
⋃
n{n}×Ln, ordered lexicographically. Notice that

L is ill-founded as X is not all of N. Moreover, for every <L-descending sequence
((ni,ai))i∈N, we have that n0 ∈ Π1

1– Bound(X ). Indeed, for every n ∈ X and every
a ∈ Ln, the pair (n,a) lies in the well-founded part of L.

The fact that the reduction is strict follows from the fact that every solution
to Π1

1– Bound is computable, whereas there is a computable input for DS with no
hyperarithmetic solution. �

We now show that 1DS ≡W Π1
1– Bound. Let us first prove the following lemma,

which will also be useful to prove Theorem 4.16.

Lemma 4.9. Suppose that f is a problem which is Weihrauch reducible to DS via the
computable maps Φ,Ψ. For every f-instance X, let ≤X be the linear order defined by
ΦX . We can uniformly compute a sequence (Fs)s∈N of finite<X-descending sequences
s.t. (1) for every s, ΨX⊕Fs outputs some j ∈N; (2) for cofinitely many s, Fs extends to
an infinite <X -descending sequence.

Proof. Fix an f -instance X and run ΦX for s steps. This produces a finite linear
order ≤Xs . Define

Ds := {F ⊆≤Xs : F is a<Xs -descending sequence and |F | ≥ 1 and

ΨX⊕F outputs some j ∈ N in s steps}.
Note that Ds is finite and t < s implies Dt ⊂ Ds . If Ds 
= ∅ we define Fs to be the
<N-least element of Ds such that

(∀F ∈Ds)
(
min<X (F ) ≤Xs min<X (Fs)

)
.
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This ensures that if any F ∈Ds extends to an infinite<X-descending sequence, then
so does Fs . Observe that (Fs)s is uniformly computable from X. IfDs = ∅ we define
Fs := Ft where t is the first index greater than s s.t.Dt 
= ∅. (We will show below that
such t exists, so we can computably search for it.)

Notice that for cofinitely many s,Ds 
= ∅. Indeed, let S be an infinite<X-descending
sequence (there must exist one because <X is a DS-instance). Since ΨX⊕S outputs
some f -solution j of X, there is some finite nonempty initial segment F of S and some
t ∈ N such that ΨX⊕F outputs j in t steps. Hence for all sufficiently large s, we have
that F ∈ Ds . This shows that the sequence (Fs)s∈N is well-defined. Moreover, as
already observed, for every t ≥ s , Ft extends to an infinite <X-descending sequence.

The fact that, for every s, ΨX⊕Fs outputs some j ∈ N follows from the definition
of Ds . �

In particular, if f has codomain N the above lemma implies that, for cofinitely
many s, ΨX⊕Fs outputs some f -solution for X.

Theorem 4.10.
1DS≡W Π1

1– Bound.

Proof. Iff ≤W Π1
1– Bound, thenf ≤W DS by Proposition 4.8. Since Π1

1– Bound
is first order, f ≤W

1DS.
To prove the converse reduction, suppose that f ≤W DS as witnessed by the maps

Φ and Ψ. Given an f -instance X, let (Fs)s∈N be as in Lemma 4.9. Let ≤X denote
the linear order represented by ΦX . Define the following Π1,X

1 set:

A := {s ∈ N : Fs /∈ Ext},

where Ext denotes the set of finite sequences that extend to an infinite<X-descending
sequence.

Notice that A is finite as, for cofinitely many s, Fs is extendible. In particular A
is a valid instance of Π1

1– Bound and, for every b ∈ Π1
1– Bound(A), Fb is extendible

to an infinite <X-descending sequence. By construction, ΨX⊕Fb commits to some
j ∈ N. The fact that Fb is extendible guarantees that j is a valid f -solution of X. �

Corollary 4.11. DS<W C
NN .

Proof. If C
NN ≤W DS then, by Proposition 2.4, Σ1

1-CN ≤W Π1
1– Bound. However,

this would imply that ̂Σ1
1-CN ≤W

̂Π1
1– Bound, contradicting [1, Corollary 3.23]. �

Definition 4.12. Let f :⊆ X ⇒ N be a multi-valued function. We say that f is
upwards-closed if whenever n ∈ f(x), then m ∈ f(x) for all m> n.

It is straightforward from the definition that Π1
1– Bound is upwards-closed.

Lemma 4.13. If f is upwards-closed then DetN(f) ≤W CN.

Proof. Let g be a single-valued function with codomain N and suppose that
g ≤W f as witnessed by Φ,Ψ. Given a name p for a g-instance x, we use CN to guess
some n,t such that Ψ(p,n) converges to some k in at most t steps, and such that
for no m > n it ever happens that Ψ(p,m) converges to anything but k. Since f is
upwards-closed and g is single-valued, such n,t must exist. Moreover, the associated
k is equal to g(x). �
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Proposition 4.14. DetN(Π1
1– Bound) ≡W DetN(CN) ≡W CN, and therefore

DetN(DS) ≡W CN.

Proof. Let us first notice that CN ≡W UCN [5, Proposition 6.2] and therefore
DetN(CN) ≡W CN. The fact that DetN(Π1

1– Bound) ≤W CN follows from Lemma
4.13. To prove the converse reduction it is enough to show that UCN ≤W Π1

1– Bound.
Let (ni)i∈N be an enumeration of the complement of {x} ⊂ N. Define

m(s) := min{j ∈ N : (∀i < s)(ni 
= j)},
A := {s ∈ N : (∃t > s)(m(t) 
=m(s))}.

Clearly lims→∞m(s) = x, which implies that A is finite. Since m is computable
(relative to (ni)i∈N), A is a valid input for Π1

1– Bound. Moreover, for every b ∈
Π1

1– Bound(A) we have m(b) = x.
This implies that CN ≤W DetN(DS). To conclude the proof we notice that, for

every single-valued g with codomain N we have

g ≤W DS⇒ g ≤W Π1
1– Bound⇒ g ≤W DetN(Π1

1– Bound) ≡W CN. �

Notice that Π1
1– Bound 
≤W CN: indeed ĈN ≡W lim, while UC

NN <W
̂Π1

1– Bound

(see Proposition 5.21). This implies that DetN(Π1
1– Bound) <W Π1

1– Bound. In this
regard, we observe the following:

Proposition 4.15. The Weihrauch degree of CN is the highest Weihrauch degree
containing both of the following:

1. a representative which is single-valued and has codomain N and
2. a representative which is upwards-closed.

Proof. To prove that CN satisfies point 1, consider UCN, which is Weihrauch
equivalent to CN [5, Proposition 6.2]. To prove that CN satisfies point 2, consider
the problem Σ0

1– Bound that produces a bound for a finite Σ0
1 subset of N. Clearly

Σ0
1– Bound is upwards closed. The reduction Σ0

1– Bound≤W CN follows from the fact
that, for every A ∈ dom(Σ0

1– Bound), the set

{n ∈ N : (∀m ≥ n)(m /∈ A)}

is a Π0,A
1 subset of Σ0

1– Bound(A). To prove the converse reduction, let p be a name
for some B ∈ dom(CN). Define m(s) to be the least number not enumerated in p by
stage s. Clearly lims→∞m(s) = minB . In particular this implies that there are only
finitely many stages s s.t. m(s) 
= minB . Using Σ0

1– Bound we can obtain a stage b
s.t. m(b) = minB , hence solving CN.

Finally the maximality of CN follows from Lemma 4.13: indeed suppose f : X →
N is Weihrauch equivalent to some g which is upwards-closed. By Lemma 4.13,
we have DetN(g) ≤W CN. By definition of Det(·), we have f ≤W DetN(g), hence
f ≤W CN. �

Let us now characterize the deterministic part of DS.

Theorem 4.16. Det(DS) ≡W lim.

Proof. Let us first prove that lim≤W DS. Let J be the Turing jump operator, i.e.,
J(p)(e) = 1 iff ϕpe (e) halts. It is known that J ≡sW lim (see [11, Theorem 6.7]). By
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relativizing the construction in [31, Lemma 4.2] we have that, for every p, we can
p-computably build a linear order L of type �+�∗ s.t. every descending sequence
through L computes J(p). This shows that lim≡W J≤W DS.

To prove that Det(DS) ≤W lim, suppose that f :⊆ X → NN is single-valued
and f ≤W DS as witnessed by the maps Φ, Ψ. For every n, define fn by
fn(X ) := f(X )(n). The maps Φ and Ψ witness that fn ≤W DS as well (modulo
a trivial coding). Given an f -instance X, consider the sequences (Fs,n)s∈N obtained
by applying Lemma 4.9 to each fn. Define the sequence (ps)s∈N in NN as
ps(n) := ΨX⊕Fs,n (0). Notice that, by Lemma 4.9, for every n, ΨX⊕Fs,n outputs
some number, therefore ps(n) is well-defined and is uniformly computable from X.
Moreover, since fn is single-valued and, for cofinitely many s, Fs,n is extendible, the
sequence (ΨX⊕Fs,n (0))s∈N is eventually constant and equal to fn(X ). In particular
this shows that, letting p := lims→∞ps , for each n we have p(n) = fn(X ), i.e.,
p = f(X ). �

This result shows that, despite the fact that DS can have very complicated
solutions, it is rather weak from the uniform point of view. In fact, its lower
Weihrauch cone misses many arithmetic problems. In particular we have:

Corollary 4.17. DS |W LPO′.

Proof. Since LPO is single-valued, so is LPO′. Since LPO′ 
≤W lim (see
[10, Corollary 12.3 and Theorem 12.7]), it follows from Theorem 4.16 that
LPO′ 
≤W DS. On the other hand, DS 
≤W LPO′, as LPO′ always has computable
solutions. �

Notice that Theorem 4.16 implies also that C
NN 
≤W C2N ∗DS. Indeed, on the one

hand Det(C
NN) ≡W UC

NN (Theorem 3.14), while, on the other hand, by Theorem
3.9, if f is single-valued and f ≤W C2N ∗DS then f ≤W DS (as Det(C2N) ≡W id) and
hence Det(C2N ∗DS) ≡W Det(DS) ≡W lim.

Using Corollary 4.17 we can prove that DS is not closed under (parallel) product:

Theorem 4.18. LPO′ ≤W DS× lim and therefore DS is not closed under product.

Proof. Let (pn)n∈N be a sequence in NN converging to an instance p of LPO. For
each s define

g(s) :=

{
i+ 1 if i ≤ s ∧ps(i) 
= 0∧ (∀j < i)(ps(j) = 0),
0 otherwise.

Let us define a linear order L inductively: at stage s = 0 we put 0 into L. At stage
s+ 1 we do the following:

1. if g(s) = g(s+ 1) we put 2(s+ 1) immediately below 2s ;
2. if g(s) 
= g(s+ 1) and g(s+ 1) = 0 we put 2(s+ 1) at the bottom; and
3. if g(s) 
= g(s+1) and g(s+1)> 0 we put 2(s+1) at the top and we put 2s+1

immediately above 0.

This construction produces a linear order on a computable subset of N. It is clear
that g and L are uniformly computable in (pn)n∈N. Notice that if LPO(p) = 1 then
there is an s s.t. for every t ≥ s , g(t) = g(s) (this follows by definition of limit
in the Baire space). In particular, L has order type n+�∗. On the other hand, if
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LPO(p) = 0 we distinguish three cases: if g(s) is eventually constantly 0 then L
has order type �∗. If there are infinitely many s s.t. g(s) > 0 then g is unbounded
(because for each i, lims ps(i) = p(i) = 0 so g eventually stays above i). In particular,
if there are infinitely many s and infinitely many t s.t. g(s) = 0 and g(t)> 0 then L
has order type �∗ +	 , where 	 :=�∗ +� is the order type of the integers. If instead
g(s) > 0 for all sufficiently large s, then L has order type n+ 	 . In all cases, L is
ill-founded.

We consider the input (L,(pn)n∈N) forDS× lim. Given an<L-descending sequence
(qn)n∈N, we compute a solution for LPO′((pn)n∈N) = LPO(p) as follows: if q0 is
odd or g(q0/2) = 0 then we return 0, otherwise we return p(i) where i is s.t.
g(q0/2) = i+ 1.

Notice that if LPO(p) = 1 then the �∗ part of ≤L is the final segment
of the even numbers that starts with the first index 2s s.t. for every t ≥ s ,
g(t) = i + 1 and p(i) = 1. In particular every <L-descending sequence starts
with some even q0 s.t. g(q0/2) > 0. On the other hand, if LPO(p) = 0 then,
by definition of LPO, we have that p = 0N. In this case, the above procedure
must return 0 so it produces the correct solution. This proves that LPO′ ≤W

DS× lim.
The fact that DS is not closed under product follows from the fact that lim≤W DS

(Theorem 4.16) and Corollary 4.17. �

4.2. Combinatorial principles on linear orders. We introduce the following
notation to phrase many combinatorial principles from reverse mathematics as
multi-valued functions.

Definition 4.19. Let FindCXY :⊆ LO ⇒ LO be the partial multi-valued function
defined as

FindCXY (L) := {M ∈ LO :M ⊂ L and ordtype(M ) ∈ Y},

with domain being the set of L ∈ LO s.t. ordtype(L) ∈ X and there is someM ⊂ L
s.t. ordtype(M ) ∈ Y .

Similarly we define FindSX :⊆ LO ⇒ NN to be the partial multi-valued function
that takes as input a countable linear order L s.t. ordtype(L) ∈ X and produces a
string 〈b,x0,x1, ...〉 s.t. b ∈ {0,1} and, for all i, if b = 0 then xi <L xi+1 while if b = 1
then xi+1 <L xi .

If X or Y is not specified, we assume that it contains every countable order type.

There is an extensive literature that studies the “ascending/descending sequence
principle” (ADS) and the “chain/antichain principle” (CAC) (see e.g. [24, 25]).
These principles and, several of their variations, have been studied from the point
of view of Weihrauch reducibility in [3].

Notice that, in particular, the problem ADS (given a linear order, produce an
infinite ascending sequence or infinite descending sequence) corresponds to FindS.
Similarly the problem General-SADS (given a stable—i.e., of order type�+n,n+�∗

or �+�∗—linear order, produce an infinite ascending or descending sequence),
corresponds to FindSX , where X = {�+n,n+�∗,�+�∗}.

Proposition 4.20. LPO′ ≤W FindS{�,n+�∗}.
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Proof. Let (pi)i∈N be a sequence in NN converging to an instance p of LPO. For
every s ∈ N we define (as we did in the proof of Theorem 4.18)

g(s) :=

{
i+ 1 if i ≤ s ∧ps(i) 
= 0∧ (∀j < i)(ps(j) = 0),
0 otherwise.

Let us define a linear order ≤L on N inductively: for each stage s we define a linear
order on {0, ...,s}. At stage s = 0 there are no decisions to make. At stage s+ 1 we
do the following:

1. if 0 = g(s) = g(s+ 1) we put s+ 1 immediately above s;
2. if 0< g(s) = g(s+ 1) we put s+ 1 immediately below s; and
3. if g(s) 
= g(s+ 1) we put s+ 1 at the top.

It is clear that g and ≤L are uniformly computable in (pn)n∈N. Notice that if
LPO(p) = 1 then there is an s s.t. for every t ≥ s , g(t) = i + 1, where i is the
smallest integer s.t. p(i) = 1 (this follows by definition of limit in the Baire space).
In particular, ≤L has order type n+�∗. On the other hand, if LPO(p) = 0 then g is
either eventually constantly 0 or unbounded. In both cases the linear order ≤L has
order type �.

In other words (N, ≤L) has order type� iff LPO′((pi)i∈N) = 0. Since the output of
FindS{�,n+�∗}((N, ≤L)) comes with an indication of the order type of the solution,
this defines a reduction from LPO′ to FindS{�,n+�∗}. �

Corollary 4.21. FindS{�,n+�∗} |W DS, and hence General-SADS |W DS.

Proof. The fact that FindS{�,n+�∗} 
≤W DS follows from Proposition 4.20 and
the fact that LPO′ 
≤W DS (Corollary 4.17). Moreover, since FindS{�,n+�∗} is a
restriction of General-SADS, we have General-SADS 
≤W DS.

To show that the converse reduction cannot hold it is enough to notice that
General-SADS is an arithmetic problem, while DS 
≤W UC

NN (Proposition 4.2). �
In particular this implies that ADS, as well as the stable chain/antichain principle

SCAC, and the weakly stable chain/antichain principle WSCAC are Weihrauch
incomparable with DS (as they are all arithmetic problems, and General-SADS is
reducible to all of them, see [3]).

Proposition 4.22. FindC{�,n+�∗} ≤W DS.

Proof. Given a linear order (L, ≤L) we can computably build the linear order
Q := L+L∗. Formally we define (Q, ≤Q) as Q := {0}×L∪{1}×L and

(a,p) ≤Q (b,q) :⇐⇒ a < b∨ (a = b = 0∧p ≤L q)∨ (a = b = 1∧q ≤L p).

Notice that Q is always ill-founded, hence it is a valid input for DS. Given (qi)i∈N ∈
DS(Q), we computably build the sequence (xi)i∈N defined by xi := 
1qi where

i := (a0,a1) �→ ai .

We distinguish three cases:

1. if 
0qi = 0 for every i then (xi)i∈N is an �∗-sequence in L;
2. if 
0qi = 1 for every i then (xi)i∈N is an �-sequence in L; and
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3. if there is a k s.t. for all i < k we have 
0qi = 1 and for all j ≥ k we have

0qj = 0 then, by point 1, (xj)j≥k is an �∗-sequence in L, hence (xi)i∈N is of
type n+�∗, with n ≤ k.

In any case the sequence (xi)i∈N is a valid solution for FindC{�,n+�∗}. �
4.3. Relations with Ramsey theorems. We now explore the relations between DS

and Ramsey’s theorem for n-tuples and k colors. Let us recall the basic definitions.

Definition 4.23. For every A ⊂ N, let [A]n := {B ⊂ A : |B | = n} be the set
of subsets of A with cardinality n. A map c : [N]n → k is called a k-coloring of
[N]n, where k ≥ 2. An infinite set H s.t. c([H ]n) = {i} for some i < k is called a
homogeneous solution for c, or simply homogeneous.

The set Cn,k of k-colorings of [N]n can be seen as a represented space, where a name
for a coloring c is the string p ∈NN s.t. for each (i0, ...,in–1) ∈ [N]n, p(〈i0, ...,in–1〉) =
c(i0, ...,in–1).

We define RTnk : Cn,k⇒ 2N as the total multi-valued function that maps a coloring
c to the set of all homogeneous sets for c. Similarly we define RTn

N
:
⋃
k≥1 Cn,k ⇒ 2N

as RTn
N

(c) := RTnk(c), where k – 1 is the maximum of the range of c. Note that the
input for RTn

N
does not include information on which colors appear in the range of

the coloring.
We also define cRTnk : Cn,k ⇒ k as the multi-valued function that produces only

the color of a homogeneous solution. We define cRTn
N

analogously.

Notice that cRTnk ≡W RTnk iff n = 1. Indeed the output of cRTnk is always
computable, while for n > 1 there are computable k-colorings with no computable
homogeneous solutions. Similarly cRTn

N
≡W RTn

N
iff n= 1. Moreover the equivalence

cannot be lifted to a strong Weihrauch equivalence. Indeed RT1
k and cRT1

k are
incomparable from the point of view of strong Weihrauch reducibility. The uniform
computational content of Ramsey’s theorems is well-studied (see e.g., [1, 14, 16, 35]).

In comparing RTnk with DS, we immediately notice that RT2
2 
≤W DS. This follows

from the fact that ADS≤W RT2
2 (see e.g., [24]), while ADS 
≤W DS (see the remarks

after Corollary 4.21). Hence RTnk 
≤W DS for all n,k ≥ 2.

Proposition 4.24. RT1
N
<W Π1

1– Bound, and hence RT1
N
<W DS.

Proof. Given a coloring c : N→ k, consider the Σ0,c
2 set

X := {n ∈ N : (∃i)(∀j > i)(c(n) 
= c(j))}.
It is easy to see that X is finite, as ran(c) ⊂ k and if there is no c-homogeneous set
with color i then there are finitely many j ∈ N s.t. c(j) = i . In particular, given a
bound b for X there is a homogeneous solution with color c(b).

The separation follows from the fact that Π1
1– Bound 
≤W UC

NN (as ̂Π1
1– Bound 
≤W

UC
NN , see [1, Fact 3.25]), while RT1

N
<W UC

NN (in particular RT1
N
<W C′

N
, see

[1, Proposition 7.2 and Corollary 7.6]). The fact that RT1
N
<W DS follows from

Π1
1– Bound<W DS (Proposition 4.8). �
We now show that RT1

N
is the strongest problem among those that are reducible

to DS and whose instances always have finitely many solutions.

Definition 4.25. Let f :⊆ X ⇒ N. We say that f is pointwise finite if, for each
x ∈ dom(f), |f(x)| is finite.
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Notice that cRT1
k and cRT1

N
are pointwise finite, as for each k-coloring c we have

|cRT1
k(c)| = |cRT1

N
(c)| ≤ k.

Lemma 4.26. Let g be upwards-closed and let f be pointwise finite. If f ≤W g then
f ≤W RT1

N
.

Proof. Suppose that f ≤W g as witnessed by Φ,Ψ. Let p be the name for the
f -instance x we are given.

We define a coloring c as follows: we dove-tail all computations Ψ(p,n) for n ∈N.
Whenever some computation converges to some j ∈ N, we define c(i) := j where
i is the first element on which c is not defined yet. Since g is upwards-closed, we
know that for all but finitely many n, Ψ(p,n) has to converge to some jn ∈ f(x).
This implies that ran(c) contains only finitely many distinct elements. Moreover,
any element repeating infinitely often is a correct solution to f(x), therefore we can
find a y ∈ f(x) by applying RT1

N
to c and returning the color of the solution. �

Theorem 4.27. If f is pointwise finite then f ≤W DS iff f ≤W RT1
N

.

Proof. The right-to-left implication always holds as RT1
N
<W DS (Proposition

4.24). On the other hand, if f is pointwise finite and f ≤W DS then, by Theorem
4.10 we havef ≤W Π1

1– Bound. Since Π1
1– Bound is upwards-closed, by Lemma 4.26

we have f ≤W RT1
N

. �
By Lemma 4.26 we also have the following:

Proposition 4.28. The Weihrauch degree of RT1
N

is the highest Weihrauch degree
such that:

1. it contains a representative which is pointwise finite and
2. it is Weihrauch reducible to some problem which is upwards-closed.

Proof. Point 1 holds because cRT1
N

is pointwise finite and cRT1
N
≡W RT1

N
. Point

2 holds because RT1
N
<W Π1

1– Bound (Proposition 4.24) and Π1
1– Bound is upwards-

closed. Finally, the maximality follows from Lemma 4.26. �
Lemma 4.29. If f is upwards-closed and f ≤W RT1

N
then f ≤W CN.

Proof. Recall that RT1
N
≡W cRT1

N
and let Φ,Ψ be two computable maps

witnessing f ≤W cRT1
N

. Let p be a name for some x ∈ dom(f) and let c be the
coloring represented by Φ(p). We define the following Π0,p

1 set

A := {〈n,c0, ...,ck,s〉 : (∀i)(∃j ≤ k)(c(i) = cj) and

(∀j ≤ k)(∃i < s)(c(i) = cj) and

(∀j ≤ k)(Ψ(p,cj) ↓→ Ψ(p,cj) ≤ n)}.
Notice that, if 〈n,c0, ...,ck,s〉 ∈A then, by the first two conditions, there is a j ≤ k s.t.
cj is a valid solution for cRT1

N
(c). In particular Ψ(p,cj) ↓ and is a correct solution

for f(x) (as Φ and Ψ witness that f ≤W cRT1
N

). Since f is upwards-closed, every
number greater than Ψ(p,cj) is a valid solution. In particular, the third condition
implies that n ≥ Ψ(p,cj) and therefore n ∈ f(x). �

Notice that the previous lemma provides an alternative proof for the fact that
Π1

1– Bound 
≤W RT1
N

, as Π1
1– Bound 
≤W CN.
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If we consider only bounded pointwise finite functions, we can improve
Theorem 4.27 by replacing RT1

N
with RT1

k .

Lemma 4.30. If f has codomain k, then f ≤W RT1
N

iff f ≤W RT1
k .

Proof. The right-to-left implication is trivial, so let us prove the left-to-right one.
Since RT1

N
≤W Π1

1– Bound and Π1
1– Bound is upwards-closed, it suffices to show that

if g is upwards-closed and f ≤W g, then f ≤W RT1
k . The proof closely follows the

one of Lemma 4.26. Suppose that f ≤W g as witnessed by Φ,Ψ. Let p be the name
for the f -instance x we are given. We define a k-coloring c as follows: we dove-tail
all computations Ψ(p,n) for n ∈N. Whenever some computation converges to some
j < k, we define c(i) := j where i is the first element on which c is not defined yet.
Since g is upwards-closed, we know that for all but finitely many n, Ψ(p,n) has
to converge to some jn < k which lies in f(x). Moreover, any element repeating
infinitely often is a correct solution to f(x), therefore we can find a y ∈ f(x) by
applying RT1

k to c and returning the color of the solution. �
Theorem 4.31. If f has codomain k, then f ≤W DS iff f ≤W RT1

k .

Proof. The right-to-left implication always holds as RT1
k ≤W RT1

N
trivially and

RT1
N
<W DS (Proposition 4.24). The left-to-right implication follows from Theorem

4.27 and Lemma 4.30. �
To conclude the section we notice how we can improve the results if we restrict

our attention to single-valued functions. Define the problem limk :⊆ kN → k as the
limit in the discrete space k.

Lemma 4.32. If f has codomain k and is single-valued, thenf ≤W limk ifff≤W RT1
k .

Proof. The left-to-right implication is trivial as limk ≤W RT1
k . To prove the

converse direction recall that RT1
k ≡W cRT1

k and let the reduction f ≤W cRT1
k be

witnessed by the maps Φ,Ψ. Let p be a name for some x ∈ dom(f) and let c be
the coloring represented by Φ(p). Notice that, since f is single-valued, for every
solution j ∈ cRT1

k(c) we have Ψ(p,j) = f(x). Furthermore, since the range of c is
finite, there are only finitely many i such that c(i) is not a solution. If we then define

ni :=

{
Ψ(p,c(i)) if Ψ(p,c(i)) converges in i steps and Ψ(p,c(i))< k,
0 otherwise,

we have that the sequence (ni)i∈N ∈ kN converges to f(x). Therefore we can use
limk to obtain f(x). �

Theorem 4.33. If f has codomain k and is single-valued, then f ≤W limk iff f ≤W

DS.

Proof. The left-to-right implication follows from the fact that lim <W DS
(Theorem 4.16), while the other direction follows from Theorem 4.31 and
Lemma 4.32. �

§5. Presentation of orders. In this section we study how the presentation of a
linear/quasi order can influence the uniform computational strength of the problems
DS and BS.
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Definition 5.1. For every Γ ∈ {Σ0
k,Π

0
k,Δ

0
k,Σ

1
1,Π

1
1,Δ

1
1} we define the problem

Γ-DS :⊆ Γ(LO)⇒NN as Γ-DS(L) :=DS(L). Similarly we define Γ-BS :⊆ Γ(QO)⇒
NN as Γ-BS(P) := BS(P).

Despite the fact that DS≡W BS (Proposition 4.5), it is not the case that Γ-DS≡W

Γ-BS in general. In particular, we will show that Σ0
k-BS 
≤W Σ0

k-DS (Theorem 5.14)
and Σ1

1-BS 
≤W Σ1
1-DS (Corollary 5.24).

Furthermore, we strengthen Corollary 4.11 by showing that Σ1
1-DS <W C

NN

(Theorem 5.22). In other words, even if we are allowed to feed DS a code for
a Σ1

1 linear ordering, we still cannot compute C
NN . On the other hand, we already

showed that if we are allowed to perform a relatively small amount of post-processing
(namely lim) on the output of DS, then we can compute C

NN (Proposition 4.3). In
particular, the use of lim absorbs any difference in uniform strength between DS and
Σ1

1-DS and collapses the whole hierarchy (up to Σ1
1-DS) to C

NN .
Many of our separations are derived by analyzing the first-order part of the

problems in question, or more generally by characterizing the problems satisfying
certain properties (such as single-valuedness or having restricted codomain) which
lie below the problems in question. On the contrary, we prove Theorem 5.22 using
very different techniques due to Anglès d’Auriac and Kihara [2].

Before beginning our analysis, we record some preliminary observations. Note
that DS = Δ0

1-DS and BS = Δ0
1-BS. It is straightforward to see that, for every Γ,

Γ-DS≤W Γ-BS. Moreover, for every Γ,Γ′ s.t. Γ(X )⊂Γ′(X ) we have Γ-DS≤W Γ′-DS
and Γ-BS≤W Γ′-BS.

Notice also that the set of bad sequences through a Δ1
1-quasi-order is Δ1

1, hence
it is straightforward to see that Δ1

1-BS ≤W Σ1
1-C

NN ≡W C
NN . This shows also that

Γ-BS≤W C
NN for every arithmetic Γ.

Proposition 5.2. For every Γ ∈ {Σ0
k,Π

0
k,Δ

0
k,Σ

1
1,Π

1
1,Δ

1
1} the problems Γ-DS and

Γ-BS are cylinders.

Proof. The proof is a straightforward generalization of the proof of Proposi-
tion 4.6. �

Theorem 5.3. For every k ∈ N and every Γ ∈ {Σ,Π,Δ}
Γ0
k+1-DS≡W Γ0

1-DS∗ lim[k] ≡W Γ0
1-DS(k),

Γ0
k+1-BS≡W Γ0

1-BS∗ lim[k] ≡W Γ0
1-BS(k).

Proof. Fix k and Γ as above. The reduction Γ0
k+1-DS≤W Γ0

1-DS∗ lim[k] follows
from the fact that

lim[k] ≡W Σ0
k-CA≡W Π0

k-CA≡W Δ0
k+1-CA,

hence we can use lim[k] to compute a Γ0
1-name for the input linear order, and then

apply Γ0
1-DS to get a descending sequence.

Let us now prove the converse reduction. Since both lim[k] and Γ0
1-DS are cylinders,

by the cylindrical decomposition there is an e s.t.

Γ0
1-DS∗ lim[k] ≡W Γ0

1-DS◦Φe ◦ lim[k].

Given any p ∈ dom(Γ0
1-DS◦Φe ◦ lim[k]), the string q := Φe(lim

[k](p)) is a Γ0
1-name

for a linear order Lp. Since q is Δ0,p
k+1, the condition a ≤Lp b is Γ0,p

k+1 for every a,b.
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This shows that, given an input p we can uniformly compute a Γ0
k+1-name for the

linear order Lp, and hence use Γ0
k+1-DS to compute an <Lp -descending sequence.

The equivalence Γ0
1-DS∗ lim[k] ≡W Γ0

1-DS(k) follows from the fact that Γ0
1-DS is a

cylinder.
The same reasoning works, mutatis mutandis, to show that

Γ0
k+1-BS≡W Γ0

1-BS∗ lim[k] ≡W Γ0
1-BS(k). �

Using this theorem, the relativized version of Proposition 4.5 can be proved
explicitly as follows:

Corollary 5.4. For every k ≥ 1, Δ0
k-DS≡W Δ0

k-BS.

Proof. Using Proposition 4.5 and Theorem 5.3 we immediately have

Δ0
k+1-BS≡W BS∗ lim[k] ≡W DS∗ lim[k] ≡W Δ0

k+1-DS,

as DS = Δ0
1-DS and BS = Δ0

1-BS. �
This implies also that, for every k, Σ0

k-BS≤W Δ0
k+1-DS and Π0

k-BS≤W Δ0
k+1-DS.

5.1. Γ0
k- DS and Γ0

k- BS. We will now show that the hierarchy of Γ- DS problems
does not collapse at any finite level. First we study the hierarchy of Δ0

k-DS problems
by characterizing their first-order parts (Theorem 5.5). Then we prove the analogues
of Theorem 4.31 and Theorem 4.33 for Δ0

k-DS (Proposition 5.8).
For any sequence of problemsfs :⊆Xs⇒Ys , s ∈N, the countable coproduct of the

sequence is the problem
⊔
s∈N
fs :⊆

⊔
s Xi ⇒

⊔
s Yi defined by

(⊔
s∈N
fs

)
(s,x) :=

{s}×fs(x). The problem
⊔
s∈N
fs allows us access to exactly one fs of our choice.

Theorem 5.5. For every k ≥ 1,

1Δ0
k-DS≡W

(⊔
s∈N

Δ0
k-Cs

)
∗Π1

1– Bound.

We split the proof into two lemmas.

Lemma 5.6. For every k ≥ 1, if f :⊆ X ⇒ N and f ≤W Δ0
k-DS then

f ≤W

(⊔
s∈N

Δ0
k-Cs

)
∗Π1

1– Bound.

Proof. Fix Turing functionals Φ and Ψ which witness that f ≤W Δ0
k-DS. Given

an f -instance with name x, Φx is a Δ0,x
k -code for the linear order ≤x . Consider the

Σ0,x
k set

D := {F ∈ N : F codes a non-empty finite<x-descending sequence and

Ψx⊕F outputs some j ∈ N}.
We can uniformly express D as the increasing union over s ∈ N of finite sets

Ds ⊆ {0, ...,s}, which are uniformly Π0,x
k–1.

We now define the set

A := {s ∈ N : (∀F ∈Ds)(F /∈ Extx)},
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where Extx is the set of finite sequences that extend to an infinite <x-descending
sequence. It is easy to see that A is Π1,x

1 , as being extendible in a Δ0
k-linear order is

a Σ1
1 property.

We show that A is finite. Since ≤x is a Δ0
k-DS-instance, we can fix an infinite

<x-descending sequence S. By definition of Weihrauch reducibility, Ψx⊕S outputs
some f -solution j ∈N. By the continuity of Ψ, there is some finite non-empty initial
segment F of S such that Ψx⊕F outputs j. Hence for all sufficiently large s, we have
F ∈Ds .

This shows that we can apply Π1
1– Bound to A to obtain some b ∈N which bounds

A. Note that Db must be nonempty. We now define the following non-empty subset
of Db :

B :=
{
F ∈Db : (∀G ∈Db)

(
min
<x

(G) ≤x min
<x

(F )
)}
.

Notice that all the quantifications are bounded. In particular, B is a (non-empty)
Δ0,x
k subset of Db because Db is Π0,x

k–1 and ≤x is Δ0,x
k . Notice also that the definition

of B ensures that each of its elements is extendible (as we know that there is some
extendible element inDb). In particular, this shows that, for everyF ∈B , it is enough
to run Ψx⊕F to compute an f -solution for the original instance. We can find such

F ∈ B by applying
(⊔

s Δ0
k-Cs

)
(b,B). �

Notice that (
⊔
s Δ0

1-Cs) is computable, hence in case k = 1 we obtain
Proposition 4.5.

Lemma 5.7. For every k ≥ 1,(⊔
s∈N

Δ0
k-Cs

)
∗Π1

1– Bound≤W Δ0
k-DS.

Proof. Using the cylindrical decomposition we can write(⊔
s∈N

Δ0
k-Cs

)
∗Π1

1– Bound≡W

((⊔
s∈N

Δ0
k-Cs

)
× id

)
◦Φe ◦ (Π1

1– Bound× id)

for some computable map Φe . Let Φ1,Φ2 be computable maps s.t. Φe(p) =
〈Φ1(p),Φ2(p)〉. Then we have((⊔

s∈N

Δ0
k-Cs

)
× id

)
◦Φe ◦ (Π1

1– Bound× id)(〈p1,p2〉)

=

〈(⊔
s∈N

Δ0
k-Cs

)
Φ1(Π1

1– Bound(p1),p2),Φ2(Π1
1– Bound(p1),p2)

〉
.

Given an instance 〈p1,p2〉 of the above composition, we can think of p1 as coding an
input A to Π1

1– Bound via a tree T s.t. for each i, i ∈A iff the subtree Ti := {� ∈ T :
�(0) = i}of T is well-founded. For any b ∈Π1

1– Bound(p1), Φ1(b,p2) must be a name
for an instance of

⊔
s∈N

Δ0
k-Cs . Then 
1Φ1(b,p2) is a number s and 
2Φ1(b,p2) is a

Δ0
k-name for a non-empty subsetAs of {0, ...,s – 1}, where 
i(〈p1,p2〉) = pi denotes
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the projection on the i-th component. Regardless of whether b ∈ Π1
1– Bound(p1),

we will interpret 
1Φ1(b,p2) and 
2Φ1(b,p2) as above.
We define a Δ0,〈p1,p2〉

k linear order as follows. First define

L := {(�,n) : � ∈ p1 and


1Φ1(�(0),p2) outputs a number in less than |�| steps and

n lies in the set named by 
2Φ1(�(0),p2)}.

We order the elements of L by

(�,n) ≤L (�,m) :⇐⇒ � <KB �∨ (� = �∧n ≤m).

It is easy to see that (L, ≤L) is Δ0,〈p1,p2〉
k . Notice that it is a linear order, as the

pairs are ordered lexicographically where the first components are ordered according
to the Kleene–Brouwer order on N<N and the second components are ordered
according to the order on N.

Let (qi)i∈N be an<L-descending sequence, with qi = (�i,ni). Notice that for each
i there is a j > i s.t. �j <KB �i . Indeed, if there is an i s.t. for all j > i we have �j = �i
then, by definition of ≤L, the sequence (nj)j>i would be a descending sequence in
the natural numbers, which is impossible.

This implies that there is a subsequence (qik )k∈N s.t. (�ik )k∈N is a <KB-
descending sequence. In particular, this implies that T�0(0) is ill-founded, i.e.,
�0(0) ∈ Π1

1– Bound(p1). Moreover, by definition of L, this implies that n0 lies in
the set named by 
2Φ1(�0(0),p2).

In other words, given an<L-descending sequence (qi)i∈N we have that (
1q0)(0)∈
Π1

1– Bound(p1) and 
2q0 ∈
(⊔

s∈N
Δ0
k-C)s

)
Φ1(Π1

1– Bound(p1),p2). From this we

can compute Φ2(
1q0,p2) as well. This establishes the desired reduction. �

This completes the proof of Theorem 5.5.
With a small modification of the argument in the proof of Lemma 5.6 we can

prove the following:

Proposition 5.8. Fix k ≥ 1. For every f :⊆ X ⇒ N,

f ≤W Δ0
k-DS ⇐⇒ f ≤W Π1

1– Bound× lim[k–1].

If, in particular, f has codomain N for some N ≥ 1 then

f ≤W Δ0
k-DS ⇐⇒ f ≤W RT1

N ∗ lim[k–1].

If, additionally, f is single-valued, then

f ≤W Δ0
k-DS ⇐⇒ f ≤W limN ∗ lim[k–1].

Proof. The right-to-left implication follows from Proposition 4.8 and
Theorem 5.3:

Π1
1– Bound× lim[k–1] ≤W Π1

1– Bound∗ lim[k–1]

≤W DS∗ lim[k–1] ≡W Δ0
k-DS.
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To prove the left-to-right implication, fix a pair of Turing functionals Φ and Ψ
witnessing the reduction f ≤W Δ0

k-DS. Fix an f -instance with name x and let ≤x be
the Δ0,x

k linear order defined by Φx .
Define D, Ds and A as in the proof of Lemma 5.6. In that proof, we applied

Π1
1– Bound to A to obtain b ∈ N. Then we restricted our attention to B ⊆Db . Here

we will still apply Π1
1– Bound to A, but we will concurrently consider a subset Bs of

each Ds . For each s, define

Bs :=
{
F ∈Ds : (∀G ∈Ds)

(
min
<x

(G) ≤x min
<x

(F )
)}
,

Fs := minBs,

where Fs is intended to be the empty sequence if Bs (and hence Ds) is empty.
Notice that Bs ⊂ {0, ...,s – 1} is Δ0

k (as each Ds is Π0
k–1) and therefore Fs is Δ0

k .
Since lim[k–1] ≡W Δ0

k-CA, it can determine which Bs is nonempty, and compute Fs if
Bs is nonempty. Therefore the sequence (Fs)s∈N can be computed using lim[k–1]. For
every b ∈ Π1

1– Bound(A) we have that Fb is extendible to an infinite <x-descending
sequence and that Ψx⊕Fs converges to some f -solution j (see also the proof of
Lemma 5.6).

Assume now that f has codomain N for some N ≥ 1. We can modify the above
argument as follows: after computing the sequence (Fs)s∈N, we consider the RT1

N -
instance c defined as

c(s) :=

{
0 if Fs = 〈〉,
Ψx⊕Fs (0) otherwise.

Since Fs is nonempty and extendible for cofinitely many s, if c(s) = i for infinitely
many s (i.e., c has an RT1

N -solution of color i), then there is an extendible Fs s.t.
Ψx⊕Fs (0) = i , hence i is an f -solution.

If, additionally, f is single-valued, then there is only one possible i s.t. c has a
homogeneous solution with color i. This shows that the sequence (c(s))s∈N has a
limit, and therefore it suffices to use limN to get the solution.

The fact that RT1
N ∗ lim[k–1] and limN ∗ lim[k–1] are reducible to Δ0

k-DS follows
from the fact that the compositional product is a degree theoretic operation, as
RT1
N ≤W DS (Theorem 4.31), limN ≤W DS (Theorem 4.16), and Δ0

k-DS ≡W DS ∗
lim[k–1] (Theorem 5.3). �

Notice that Π1
1– Bound× lim[k–1] is not a first-order problem, so the first statement

in Proposition 5.8 is not an alternative characterization of 1Δ0
k-DS. It can be

rephrased as

1Δ0
k-DS≡W

1(Π1
1– Bound× lim[k–1]).

This concludes our discussion of the first-order problems that are Weihrauch
reducible to Δ0

k-DS. As for the deterministic part of Δ0
k-DS:

Corollary 5.9. For every k ≥ 1, Det(Δ0
k-DS) ≡W lim[k].

Proof. This follows from Det(DS) ≡W lim (Theorem 4.16) and the fact that, for
cylinders, the jump commutes with the deterministic part (Corollary 3.11). �
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Theorem 5.10. For every k ≥ 1,

Δ0
k-DS<W Δ0

k+1-DS.

In particular this shows that the Γ-DS-hierarchy does not collapse at any finite level.

Proof. This follows directly from Proposition 5.8 or, alternatively, from
Corollary 5.9. Indeed it suffices to notice that, for every k ≥ 1, LPO(k) ≤W lim[k+1]

but LPO(k) 
≤W lim[k], as LPO(k) is the characteristic function of a Σ0
k+1-complete set

while lim[k] is Σ0
k+1-measurable. �

Theorem 5.11. For every k ≥ 1, Δ0
k+1-DS≡W Π0

k-DS.

Proof. The right-to-left reduction is trivial. To prove the left-to-right one it
suffices to show that Δ0

1-DS′ ≡W Π0
1-DS and the proof will follow from Theorem 5.3

as

Δ0
k+1-DS≡W Δ0

1-DS′ ∗ lim[k–1] ≡W Π0
1-DS∗ lim[k–1] ≡W Π0

k-DS.

Let p = (pn)n∈N be a sequence in NN converging to the characteristic function of
an ill-founded linear order L. In the following it is convenient to consider also
the sequence q = (qn)n∈N, where qn(i) := pn(〈i,i〉). Clearly q converges to the
characteristic function of dom(L) and is uniformly computable from p.

For sake of readability, define the formula

ϕ((xn)n∈N,�) := (∀i < |�|)(x�(i)(i) 
= x�(i)+1(i)∧ (∀j > �(i))(xj(i) = xj+1(i))).

Intuitivelyϕ says that, for each i < |�|, �(i) codes the positions in which the sequence
(xn)n∈N changes for the last time in the i-th row. Let us also write x� := |�| – 1. We
define

M := {(�,�) ∈ N<N×N<N : ϕ(q,�)∧
q�(x� )+1(x�) = 1∧
ϕ(p,�)∧|�| = 〈x�,x�〉+ 1}.

Notice that the first two conditions imply that x� ∈ L. Intuitively x� is the ≤N-
largest element that is witnessed by � to enter in L. The last line says that � is exactly
as long as needed to witness all the relations between the elements of L that are
≤N x� .

We order the set M as follows:

(�0,�0) ≤M (�1,�1) :⇐⇒ x�0 ≤L x�1 .

Notice that M is a Π0,p
1 linear order as M is Π0,p

1 and the order ≤M is p-computable:
indeed, given two pairs (�0,�0),(�1,�1) ∈M , we can use the longer string between
�0 and �1 to p-compute whether x�0 ≤L x�1 . Notice also that, for each l, there is
exactly one string � of length l witnessing ϕ(q,�) (by minimality). The third line in
the definition of M implies that if � satisfies the first two conditions then there is a
unique � s.t. (�,�) ∈M . The linearity of M follows by the linearity of L.

To conclude the proof it is enough to notice that if ((�i,�i))i∈N is an <M -
descending sequence then (x�i )i∈N is an <L-descending sequence. �
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The following is essentially a classical result (see e.g., [15, Theorem 2.4]). The
proof is simple enough that we can briefly sketch it.

Theorem 5.12. For every k ≥ 1, Σ0
k-DS≡W Δ0

k-DS.

Proof. Given a Σ0
k linear order L, we can uniformly consider a sequence ((Ls,

≤s))s∈N of Δ0
k linear orders approximating L. We then define

M := {(q,s) : q ∈ Ls and (∀t < s)(q /∈ Lt)},
(p,s) ≤M (q,t) :⇐⇒ p ≤L q.

Notice that (p,s) ≤M (q,t) can be written also as p = q∨ (∀i)(q 
≤i p), hence M is
Δ0,L
k . Moreover, since for every q ∈ L there is a unique s s.t. (q,s) ∈M , it is easy to

see that M is computably isomorphic to L. In particular, given an <M -descending
sequence we can obtain an <L-descending sequence by projection. �

Corollary 5.13. For every k ≥ 1, we have

Π0
k-DS≡W Π0

k-BS≡W Δ0
k+1-BS≡W Δ0

k+1-DS≡W Σ0
k+1-DS.

Proof. It is straightforward to see that Π0
k-DS ≤W Π0

k-BS ≤W Δ0
k+1-BS. By

Corollary 5.4, Δ0
k+1-BS ≡W Δ0

k+1-DS. It follows from Theorem 5.11 that the first
four problems are equivalent. Finally, Δ0

k+1-DS≡W Σ0
k+1-DS by Theorem 5.12. �

Theorem 5.14. For every k ≥ 1, LPO(k) ≤W Σ0
k-BS and therefore Σ0

k-BS 
≤W

Σ0
k-DS.

Proof. The second statement follows from the first because LPO(k) 
≤W Δ0
k-DS

(proof of Theorem 5.10) and Δ0
k-DS≡W Σ0

k-DS (Theorem 5.12).
To prove the first statement, it is enough to show that LPO′ ≤W Σ0

1-BS, and the
claim will follow by Theorem 5.3 as

LPO(k) ≤W LPO′ ∗ lim[k–1] ≤W Σ0
1-BS∗ lim[k–1] ≡W Σ0

k-BS.

Let (ps)s∈N be a sequence in NN converging to an instance p of LPO. For every
s ∈ N we define (as we did in the proofs of Theorem 4.18 and Proposition 4.20)

g(s) :=

{
i+ 1 if i ≤ s ∧ps(i) 
= 0∧ (∀j < i)(ps(j) = 0),
0 otherwise.

Let us define a quasi-order Q inductively: at stage s = 0 we add 〈g(0),0〉. At stage
s+ 1 we do the following:

1. if g(s) = g(s+ 1) we put 〈g(s),s+ 1〉 immediately below 〈g(s),s〉 and
2. if g(s) 
= g(s + 1) we put 〈g(s + 1),s + 1〉 at the top and we put 〈– 1,s + 1〉 at

the bottom. Moreover we collapse to a single equivalence class all the elements
〈g,t〉 with t ≤ s and g 
=– 1.

This construction produces a quasi-order (Q, �Q) which is computable in (ps)s∈N.
Notice that if there is an s s.t. for every t ≥ s , g(t) = g(s) (in particular, this

is the case if LPO(p) = 1) then the equivalence classes of �Q form a linear order
of type n+�∗ and every �Q-bad sequence is a descending sequence of the form
(〈g(s),sn〉)n∈N for some strictly increasing sequence (sn)n∈N. On the other hand, if
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the sequence (g(s))s∈N does not stabilize then the equivalence classes of �Q are
linearly ordered as �∗, where all the elements 〈g,s〉 with g 
=– 1 are equivalent and
lie in the top equivalence class. This shows that the construction produces a non-well
quasi-order.

For every �Q-bad sequence (〈gn,sn〉)n∈N produced by Σ0
1-BS(Q), we compute the

solution for LPO′((ps)s∈N) = LPO(p) by returning 0 if g1 ≤ 0 and 1 otherwise. We
consider two cases. If the sequence (g(s))s∈N stabilizes, then the sequence (gn)n∈N

is constant. Furthermore, its value is 0 if LPO(p) = 0, otherwise its value is positive.
On the other hand, if the sequence (g(s))s∈N does not stabilize, then LPO(p) = 0.
Furthermore, for every n > 0, we have gn =– 1 ≤ 0. (The first element 〈g0,s0〉 may
lie in the top equivalence class, in which case g0 may be positive. Hence we check g1

instead of g0). �

5.2. Γ1
1- DS and Γ1

1- BS. We now turn our attention to the analytic classes. Notice
first of all that being a descending sequence through a Σ1

1 linear order is a Σ1
1-

property, hence Σ1
1-DS≤W Σ1

1-C
NN ≡W C

NN . We will show that Σ1
1-DS is the strongest

DS-principle that is still reducible to C
NN (Theorem 5.25).

Proposition 5.15. Δ1
1-DS≡W DS∗UC

NN and Δ1
1-BS≡W BS∗UC

NN .

Proof. We will only prove the first statement. The proof of the second statement
is similar.

To prove the left-to-right reduction, given a Δ1
1 name for L we use Δ1

1-CA (which
is known to be equivalent to UC

NN , see [26, Theorem 3.11]) to compute a Δ0
1 name

for L. We can then apply DS to find a descending sequence through L.
To prove the converse reduction, using the cylindrical decomposition we can write

DS∗UC
NN ≡W DS◦Φe ◦UCNN

for some computable function Φe . In particular, given T ⊂ N<N with a unique
path x, Φe(x) is the characteristic function of a linear order L. Notice that x is
Δ1,T

1 -computable. Indeed,

x(n) = k ⇐⇒ (∃� ∈ T )(� ∈ Ext∧�(n) = k)

⇐⇒ (∀� ∈ T )(� ∈ Ext → �(n) = k),

where Ext is the set of finite strings that extend to a path through T (� ∈ Ext is a
Σ1,T

1 property). We can therefore obtain a Δ1,T
1 name for L as

a ≤L b ⇐⇒ Φe(x)(〈a,b〉) = 1,

and hence we use Δ1
1-DS to find a descending sequence through L. �

In particular, this implies that Δ1
1 is the first level at which we can compute UC

NN .
Indeed, for every k, we showed in the proof of Theorem 5.10 that LPO(k) 
≤W Δ0

k-DS,
while lim[k] ≤W UC

NN (see [5, Section 6]).
By adapting the proof of Corollary 5.4, we can relativize Proposition 4.5 and

obtain the following:

Corollary 5.16. Δ1
1-DS≡W Δ1

1-BS.
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Similarly, the proofs of Theorem 5.5 and of Proposition 5.8 lead to the following
equivalences:

Theorem 5.17.

1Δ1
1-DS≡W

1(Π1
1– Bound×UC

NN) ≡W

(⊔
s∈N

Δ1
1-Cs

)
∗Π1

1– Bound.

The deterministic part of Δ1
1-DS and Σ1

1-DS can be easily characterized using
Proposition 5.15, as the following proposition shows.

Proposition 5.18. UC
NN ≡W Det(Δ1

1-DS) ≡W Det(Σ1
1-DS).

Proof. The reductions UC
NN ≤W Det(Δ1

1-DS) ≤W Det(Σ1
1-DS) are straightfor-

ward from UC
NN ≤W Δ1

1-DS (Proposition 5.15), Δ1
1-DS ≤W Σ1

1-DS (trivial) and the
fact that UC

NN is single-valued. To prove that Det(Σ1
1-DS) ≤W UC

NN it is enough
to notice that Σ1

1-DS ≤W C
NN , and therefore Det(Σ1

1-DS) ≤W Det(C
NN) ≡W UC

NN

(Theorem 3.14). �
In particular, the deterministic part does not help us separate Δ1

1-DS and Σ1
1-DS.

Instead, we separate them by considering their first-order parts. We characterized
1Δ1

1-DS in Theorem 5.17. Notice that our proof (see the proof of Proposition 5.8)
cannot be extended to establish the same result for Σ1

1-DS, because the definition of
the corresponding (Fs)s∈N would not be Σ1

1.

Proposition 5.19.
̂Σ1

1-CN ≤W Σ1
1-DS.

Proof. Let (Ai)i∈N be a sequence of non-empty Σ1
1 subsets of N. We define

L := {(n,�) ∈ N×N<N : |�| = n∧ (∀i < n)(�(i) ∈ Ai)},
(n,�) ≤L (m,�) ⇐⇒ n > m∨ (n =m∧� ≤lex �).

It is easy to see that L is a Σ1
1 linear order (the linearity follows from the linearity of

≤ and of ≤lex).
Let ((ni,�i))i∈N be an <L-descending sequence. Notice that, since each Ai ⊂ N,

for each n the set {� ∈ N<N : (n,�) ∈ L} is ≤lex-well-founded. Therefore there must
be a subsequence ((nik,�ik ))k∈N s.t. the sequence (nik )k∈N is strictly increasing.

This implies that, for each n, there is some m s.t. |�m| ≥ n. In particular, by
definition of L, (∀i < n)(�m(i) ∈ Ai) and the claim follows. �

Proposition 5.19 implies that Σ1
1-CN ≤W

1Σ1
1-DS. This, together with 1C

NN ≡W

Σ1
1-CN (Proposition 2.4) and the observation that Σ1

1-DS≤W C
NN , immediately yields

the following:

Corollary 5.20.
1C

NN ≡W
1Σ1

1-DS≡W Σ1
1-CN.

As a consequence, C
NN and Σ1

1-DS cannot be separated by means of their first-
order part. But Δ1

1-DS and Σ1
1-DS can, albeit somewhat indirectly:

Proposition 5.21. Δ1
1-DS<W Σ1

1-DS.

Proof. Notice first of all thatUC
NN ≤W

̂Π1
1– Bound. Indeed, given a treeT ⊂N<N

with a unique path, we can consider the following sequence of Π1,T
1 sets:

An := {k ∈ N : (∀� ∈ T )((∃x ∈ [T ])(� � x) → �(n) ≤ k)}.
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Clearly each An is bounded by x(n), where x is the unique path through T. Given

f ∈ ̂Π1
1– Bound((An)n∈N), consider the space X := {� ∈ N<N : (∀i < |�|)(�(i) ≤

f(i))} and define Tf := T ∩X . Notice that [Tf ] = [T ]. In particular, since [X ] is
f -computably compact, we can uniformly (in f ) compute the unique path through
[Tf ] (see [11, Theorem 7.23 and Corollary 7.26]).

If ̂Σ1
1-CN ≤W Δ1

1-DS then, by Theorem 5.17, Σ1
1-CN ≤W UC

NN ×Π1
1– Bound and

therefore

̂Σ1
1-CN ≤W

̂(UC
NN ×Π1

1– Bound) ≡W
̂Π1

1– Bound,

contradicting ̂Σ1
1-CN 
≤W

̂Π1
1– Bound [2, Corollary 3.23]. �

To separate Σ1
1-DS from C

NN we generalize a technique based on inseparable Π1
1

sets, first used in [2] to separate ̂Σ1
1-CN from C

NN . Consider the problem ATR2 :
LO × 2N ⇒ {0,1} ×NN defined in [21, Definition 8.2]. It can be seen as a two-
sided version of ATR: it takes in input a pair (L,A) and produces a pair (i,Y ) s.t.
either i = 0 and Y is a <L-infinite descending sequence or i = 1 and Y is a jump
(pseudo)hierarchy starting from A. Jun Le Goh proved thatUC

NN <W ATR2 <W C
NN

[21, Corollaries 8.5 and 8.7].
Before proving the next theorem, we introduce the following notion of reducibility:

for every A,B ⊂ NN, we say that A is Muchnik reducible to B, and write A≤w B if,
for every b ∈ B there is a Turing functional Φe s.t. Φe(b) ∈A. Muchnik reducibility
is the non-uniform version of Medvedev reducibility. For an extended presentation
on these notions of reducibility see e.g., [40].

Theorem 5.22. ATR2 |W Σ1
1-DS, and therefore Σ1

1-DS<W C
NN .

Proof. The fact that Σ1
1-DS 
≤W ATR2 follows from the fact that C

NN ≡W lim ∗
Σ1

1-DS while lim∗ATR2 <W C
NN [21, Corollary 8.5].

Let us now prove that ATR2 
≤W Σ1
1-DS. Assume toward a contradiction that there

is a reduction witnessed by the maps Φ,Ψ. Let (Le)e∈N be an enumeration of the
computable linear orders. Define the sets

Se := Σ1
1-DS(Φ(Le)),

DSe := {(xn)n ∈ NN : (xn)n is an <Le -descending sequence},
JHe := {(yn)n ∈ NN : (yn)n is a jump hierarchy on Le}.

Notice that, for each e, Se is Σ1
1 (being a descending sequence through a Σ1

1 linear
order is a Σ1

1 condition) while DSe and JHe are arithmetic.
Define now the sets

B := {e ∈ N :DSe 
≤w Se},
C := {e ∈ N : JHe 
≤w Se},

where ≤w represents Muchnik reducibility. In particular, if X is (hyper)arithmetic
and Y is Σ1

1 then X 
≤w Y is a Σ1
1 condition, and therefore B,C ∈ Σ1

1(N).
We now claim that B ∩C = ∅. Indeed, assume by contradiction that this is not

the case and let e ∈ B ∩C . By definition of B and C this means that there are two

https://doi.org/10.1017/jsl.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.15


850 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

descending sequences (qn)n∈N and (pn)n∈N in Φ(Le) s.t. (qn)n∈N does not compute
any <Le -descending sequence and (pn)n∈N does not compute any jump hierarchy
on Le .

In particular, if we run the backward functional Ψ on (qn)n∈N and (pn)n∈N then,
by continuity, there is an n s.t. Ψ((qi)i<n) commits to producing a jump hierarchy
on Le and Ψ((pi)i<n) commits to producing an <Le -descending sequence. Without
loss of generality, assume that qn ≤Φ(Le ) pn (in the opposite case we just swap the
roles of (qn)n∈N and (pn)n∈N) and consider the sequence

r := 〈p0, ...,pn,qn+1,qn+2, ...〉.
Notice that Ψ(r) must produce an <Le -descending sequence, contradicting the fact
that (qn)n∈N does not compute any <Le -descending sequence.

Let wfLO be the set of indexes for the computable well-orderings and let hds be the
set of indexes for computable linear orderings with a hyperarithmetic descending
sequence. Notice that wfLO ⊂B , because for each e in wfLO,DSe = ∅ 
≤w A for every
non-empty set A. Likewise, hds ⊂ C , as any ill-founded linear order which has a
hyperarithmetic descending sequence cannot support a jump hierarchy (see2 [18,
Theorem 4]).

Since B,C are disjoint and Σ1
1, by Σ1

1-separation there must be a Δ1
1 set separating

them. Such a set would separate wfLO and hds as well. This contradicts the fact that
every Σ1

1 set which separates wfLO and hds must be Σ1
1-complete [22]. �

Finally we turn our attention to Σ1
1-BS and Π1

1-DS. We show below that these
problems are much stronger in uniform computational strength than the problems
considered so far. Indeed all the Γ-DS problems, where Γ = Σ1

1 or below, are s.t.

Γ-DS<W C
NN ≡W lim∗Γ-DS.

In other words, Γ-DS is arithmetically Weihrauch equivalent to C
NN , which is

prominent among the problems that are considered to be “ATR0 analogues in
the Weihrauch lattice” [26].

On the other hand, a natural analogue of Π1
1– CA0 in the Weihrauch lattice is

Π1
1-CA, which can be phrased as “given a sequence (Tn)n∈N of trees in N<N, produce
x ∈ 2N s.t., for every n, x(n) = 1 iff [Tn] = ∅.”

We can notice that, using [30, Theorem 6.5], Π1
1-CA is equivalent to the problem

of finding the leftmost path through an ill-founded tree. Using this fact we show
that Σ1

1-BS and Π1
1-DS are in the realm of Π1

1– CA0.

Theorem 5.23. Π1
1-CA≤W Σ1

1-BS.

Proof. Let T ⊂ N<N be an ill-founded tree. For each � ∈ T , let T� := {� ∈ T :
� � � ∨� � �}. We define a quasi-order on the extendible strings in T :

Q := {� ∈ T : [T� ] 
= ∅},
� �Q � :⇐⇒ (∃� ∈Q)(� <lex �)∨ � � �.

2Friedman’s result assumes that the linear order is adequate. We do not need this assumption because
we choose to define jump hierarchies in a way such that each column (whether limit or successor)
uniformly computes earlier columns, such as in [21, Definition 3.1]. This allows us to run Friedman’s
proof without assuming adequacy.
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It is easy to see that (Q, �Q) is Σ1,T
1 . Moreover, all the � which are not prefixes

of the leftmost path collapse in a bottom equivalence class. This shows that the
equivalence classes of Q are linearly ordered as 1 +�∗. To conclude the proof it is
enough to notice that any <Q-descending sequence gives longer and longer prefixes
of the leftmost path, hence it computes Π1

1-CA. �

Corollary 5.24. Σ1
1-DS<W Σ1

1-BS.

Proof. We have Σ1
1-DS≤W C

NN <W Π1
1-CA≤W Σ1

1-BS. �

Theorem 5.25. Π1
1-CA≤W Π1

1-DS.

Proof. Let T ⊂ N<N be an ill-founded tree. For each � ∈ T , let T� := {� ∈ T :
� � � ∨� � �}. We define a linear order

L := {� ∈ T : (∀� ≤lex �)([T�] = ∅∨ � � �)},
≤L :=≤KB(T ) .

Clearly (L, ≤L) is a Π1,T
1 linear order. Notice that if � ∈L and [T� ] 
= ∅ then � must

be a prefix of the leftmost path. Moreover if � is strictly lexicographically above the
leftmost path then � /∈L. In other words, L is the subset of T that is lexicographically
below the leftmost path.

Moreover, every string that is not a prefix of the leftmost path lies in the well-
founded part of L (by definition of KB). In particular every<L-descending sequence
computes arbitrarily long prefixes of the leftmost path. �

§6. Conclusions. In this paper we explored the uniform computational content of
the problemDS, and showed how it lies “on the side” w.r.t. the part of the Weihrauch
lattice explored so far. We now draw the attention to some of the questions that did
not receive an answer.

The problem KL is the multi-valued function corresponding to König’s lemma,
and it can be phrased as “find a path through an infinite finitely-branching tree.” It
is known that KL≡W C′

2N
≡W R̂T1

2.

Open Question 6.1. KL≤W DS?

We know that, if such a reduction exists, it must be strict (as KL is an arithmetic
problem). On the other hand, none of the characterizations we used in §4 to describe
the lower cone of DS can be used to prove a separation.

In §3.4 we introduced the problem wList2N,≤� . Similarly to DS, this problem
does not fit well within the effective Baire hierarchy: Det(wList2N,≤�) ≡W lim, but

wList[3]
2N,≤� ≡W UC

NN [26, Proposition 6.14 and Corollary 6.16], hence in particular
wList2N,≤� is not arithmetic.

Open Question 6.2. wList2N,≤� ≤W DS?

Our results imply that DS 
≤W wList2N,≤� (as DS ∗DS ≡W C
NN), and hence a

reduction would be strict.
In the context of Γ-DS, there are a few problems that resisted full characterization.

In particular:
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Open Question 6.3. Δ0
2-DS≤W Σ0

1-BS?

We expect that an answer to this question will yield a solution for every k (by
relativization).

We notice that, in the statements involving Γ-BS we proved slightly more than
what claimed: indeed, in all the reductions, the quasi-order built is a linear quasi-
order, i.e., a quasi-order whose equivalence classes are linearly ordered. Notice that
every bad sequence through a non-well linear quasi-order is actually a descending
sequence. If we introduce the problem Γ-DSLQO by restricting Γ-BS to linear quasi-
orders, our results imply that

Δ0
k-DS<W Σ0

k+1-DSLQO ≤W Σ0
k+1-BS.

A natural question is therefore

Open Question 6.4. Σ0
k+1-BS≤W Σ0

k+1-DSLQO?

A negative answer would imply that the possibility of having infinite antichains
provides extra uniform strength.

A very important structure that is left out of the picture is the one of partial
orders. In the same spirit of the paper we can consider the problems Γ-DSPO and
Γ-BSPO. The former is readily seen to be equivalent to C

NN (see also the comment
before Definition 4.4). Our results implicitly characterize Γ-BSPO for Γ ∈ {Δ0

k,Π
0
k}

(by transitivity, as Γ-DS≤W Γ-BSPO ≤W Γ-BS).

Open Question 6.5. What is the relation between Σ0
1-BSPO and the problems

DS≡W Σ0
1-DS, Σ0

1-DSLQO and Σ0
1-BS?

Answering these questions would yield very interesting insights on how the
possibility of equivalent non-equal elements can enhance the uniform computational
strength.
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