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Abstract
A desirable element of cost-effectiveness analysis (CEA) modeling is a systematic way to relate un-
certainty about input parameters to uncertainty in the computational results of the CEA model. Use of
Bayesian statistical estimation and Monte Carlo simulation provides a natural way to compute a posterior
probability distribution for each CEA result. We demonstrate this approach by reanalyzing a previously
published CEA evaluating the incremental cost-effectiveness of tissue plasminogen activator compared
to streptokinase for thrombolysis in acute myocardial infarction patients using data from the GUSTO
trial and other auxiliary data sources. We illustrate Bayesian estimation for proportions, mean costs,
and mean quality-of-life weights. The computations are performed using the Bayesian analysis software
WinBUGS, distributed by the MRC Biostatistics Unit, Cambridge, England.
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A Bayesian formulation of a cost-effectiveness analysis can lead in a straightforward way
to a probability distribution expressing uncertainty about any particular numerical result of
the analysis. In this paper we discuss briefly the Bayesian conceptual formulation for a cost-
effectiveness analysis (CEA), and motivate why one might want to use such a formulation.
Next, we illustrate such a computation, using as an example thrombolytic therapy for acute
myocardial infarction with tissue plasminogen activator (t-PA) compared to streptokinase.
Finally, we summarize with thoughts about Bayesian analysis of cost-effectiveness data in
general.

THE BAYESIAN FORMULATION

An incremental CEA is a complex numerical model (14). Quantities such as the incremen-
tal cost,1C, or the incremental effectiveness,1E, of one medical intervention over its
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comparator are functions of many input parameters, as are additional functions of these two
quantities. One common such function in CEA is the incremental cost-effectiveness ratio,
ICER=1C/1E. This can be written asICER= f (θ1, θ2, . . . , θk; τ1, τ2, . . . , τm), where
theθi are stochastic parameters and theτ j are design (fixed) parameters.

Examples of the latter parameters include the screening interval or age at initial screen
(when analyzing a screening program) or the dosage of a drug (when analyzing a pharma-
cologic intervention). Theθi are parameters that include, for example, compliance proba-
bilities, test sensitivity and specificity, complication rates, survival rates or survival times,
and average quality of life of patients in various outcome groups, and average costs for
various health resources expended in the treatment. In practice these usually are estimated
from primary data, such as those collected in a prospective randomized controlled study
of the intervention, by secondary use of data from published or archived sources, or they
are estimated by experts. Most importantly, each of these inputs to the CEA model can be
considered a random variable. CEA uses the best point estimate (i.e., best single numeri-
cal value, often the mean of some appropriate sample of data) for each of these inputs to
compute the base case cost-effectiveness results. In traditional CEA, uncertainty about the
true values of the parameters is acknowledged by using sensitivity analyses to explore the
effect of variation in these estimates on the computed outputs of the CEA (6).

The Bayesian formulation is concerned with derivation of a posterior probability dis-
tribution for the vectorθ as a function of some currently observed data:

p(θ | d) = p(d | θ ) · p(θ )

p(d)
,

wherep(θ | d) is the joint density of theθi conditioned on the observed data,d. Mathemat-
ically, p(d), the marginal likelihood of the observed data, plays the role of a normalizing
constant, and modern methods for evaluating the expression ignore it. The two important
pieces of the expression are in the numerator of the right-hand side. Prior to using the data
at hand, we express our uncertainty about the true value ofθ as a probability density func-
tion, p(θ ). While p(θ ) does contain information from previously observed data and opinion
about likely values ofθ , it contains no information about the currently observed data. These
data are accounted for through the data likelihood function,p(d | θ ), which is the joint
probability density of the observed data given knowledge of the true parameter values. This
expression, known as Bayes’ theorem, converts prior opinion aboutθ into posterior opinion
(we hope with more precision than the prior) by taking into account the newly observed data.
From the resulting density,p(θ | d), we can calculatep(f(θ, τ ) | d) as an induced posterior
probability density on f(θ, τ ), the ICER. In principle, any numerical result calculated in a
CEA will have an associated probability distribution that can be expressed this way, and
later we will replace the ICER with an expression of net benefit. Uncertainty about each of
the inputs is carried through to the final expression of uncertainty about the computational
outputs. In practice, putting this formulation to work will involve many assumptions and
compromises. We will discuss some of these later.

Why do we want to derive a distribution over outputs of a cost-effectiveness analysis?
Elsewhere Claxton (4) has argued that inference about the cost-effectiveness ratio (i.e.,
deriving a probability distribution for it) is irrelevant. He notes that decisions will be made
on the mean of this distribution (the point estimate of the ratio, which can be calculated
without the full distribution), so the whole distribution is not needed. However, there remain
two uses for the distribution.

The less quantitative of these uses is merely to characterize our uncertainty about
analytic result. Consumers of CEA results worry about how “soft” the results might be,
since many quantities going into the CEA calculations are not known with certitude. The
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effect of this on the robustness of the results has been explored using deterministic sensitivity
analyses, and more recently, various forms of stochastic sensitivity analyses (for discussions
of these approaches see 1;6,248-255;15;18).

The more formal quantitative use of posterior distributions for the CEA output is in
value of information analysis. As Claxton (4) discusses, these distributions can be used
to compute the Bayes risk of associated decisions, and the decision maker can evaluate
whether collecting more information about input parameters is worthwhile in the face of
the expected gains and losses of the decisions and the costs of additional information about
the uncertain quantities in the analysis.

RELATIONSHIP BETWEEN BAYESIAN AND PROBABILISTIC
SENSITIVITY ANALYSES IN CEA

A Bayesian CEA is a form of probabilistic sensitivity analysis. To perform a probabilistic
sensitivity analysis of a CEA result, one first specifies probability distributions describing
the uncertainty about the critical numerical inputs to the model. These may be univariate
or multivariate distributions as appropriate to the problem and knowledge about the inputs.
Next, the distributions are sampled once, and the sampled parameter values are used to
compute the CEA results. Sampling and calculation are repeated hundreds or thousands of
times, and the set of computed CEA results can be used to derive an empirical distribution
for the CEA output (5). In practice, this is the process of a Bayesian analysis as well, and
the posterior distributions of the Bayesian analysis form a probabilistic sensitivity analysis.

Beyond this, a Bayesian approach to CEA might be better described in light of a
specific example. We present an example next, and return to discussion about distinguishing
characteristics of a Bayesian analysis in the context of this example.

BAYESIAN CEA OF TISSUE PLASMINOGEN ACTIVATOR VERSUS
STREPTOKINASE IN ACUTE MYOCARDIAL INFARCTION:
AN EXAMPLE

We have picked this problem solely to illustrate Bayesian CEA and not necessarily to be
informative on the substantive problem. We found the problem attractive for two reasons:
a) a non-Bayesian CEA has been published (16); and b) a Bayesian analysis has been
published examining the primary results this CEA was based on (3). We have relied on the
published reports without access to the original primary data from the trial. Our calculations
are presented for pedagogic use in presenting methods. However, we believe our results
are intriguing and may stimulate others to pursue further analyses using primary data to
confirm and extend our calculations.

Background

The early 1990s saw several trials of tissue plasminogen activator (t-PA), a newly engineered
agent, compared with an existing agent, streptokinase (SK), administered to patients expe-
riencing acute myocardial ischemia or infarction (MI) to dissolve or break clots occluding
coronary arteries. The newer agent was priced an order of magnitude more than the older
one ($2,750 versus $320 per dose) and, if t-PA were shown to reduce mortality in acute MI
compared with SK, there were considerable cost implications. Two large European trials
showed no survival advantage to t-PA and, indeed, perhaps a slight reduction in short-term
survival compared with SK (3). A later, well-conducted international trial, Global Utiliza-
tion of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries
(GUSTO), used an administration protocol differing from the earlier trials. In GUSTO, ac-
celerated administration of t-PA to 10,344 patients showed a reduction in 30-day mortality
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of 1% among patients receiving t-PA, but a 0.1% increase in strokes among the surviving
patients compared with 20,173 patients treated with SK (11). (Both arms received heparin
as well as the thrombolytic drugs being investigated.)

The CEA published from GUSTO data used the GUSTO point estimates for survival
and stroke in the two groups and concluded that the administration of t-PA versus SK resulted
in an incremental cost-effectiveness ratio of $36,402 per quality-adjusted life-year (QALY)
saved (16). A concurrent Bayesian analysis of the GUSTO result, giving full weight to the
prior trial results—a controversial decision—concluded that the trial evidence aggregated
over all trials slightly favored SK over t-PA (3).

In our example analysis, we reformulate the CEA in Mark et al. (16) as a Bayesian
CEA.

The CEA model

Our model has 12 critical parameters—theθi noted earlier. Inferences about these parameters
are summarized in the following sections. The parameters are divided into three categories:
a) proportions; b) costs; and c) quality-of-life weights. We will discuss inferences on each of
these types to obtain distributions,p(θi | d), to describe our input uncertainty about each. At
the outset we note that, without access to primary data, we will necessarily have to assume
these are independent parameters, as did the earlier published CEA.

Inferences About Proportions. There are four proportions used in the model. Two
are the proportion of patients administered accelerated t-PA who survive 30 days and the
proportion of survivors who experience a nonfatal disabling stroke during those 30 days (a
possible complication of the thrombolytic therapy). The GUSTO-derived point estimates
for these proportions are 93.7% (or 9,691/10,343), and 0.64%, or 62 of 9,691, respectively,
according to Table 1 in reference 3. Our reading of the original GUSTO report is that
these are 9,692/10,344 and 62/9,692, respectively, and we shall use these fractions for the
following analyses. Corresponding data were observed for patients in the two SK arms of
the trial. Combined across these two arms is a total of 18,700 of 20,173 patients, or 92.7%,
surviving 30 days, and 101 of 18,700= 0.54% of survivors suffering nonfatal disabling
stroke in the first 30 days.

Brophy and Joseph (3) note that these point estimates do not incorporate knowledge
already gained in the previous trials and demonstrate a Bayesian analysis incorporating
the earlier results with varying weights. By including the earlier results, the aggregate
estimate for 30-day survival with t-PA is lower, dropping to equal or below the SK survival
estimate. Their analysis has been criticized because the protocols for administering t-PA in
those earlier trials were different from the accelerated protocol in GUSTO.

In a Bayesian analysis, uncertainty about an unknown proportion,θ , may be conve-
niently described by a beta distribution. The beta density is a function of two parameters,a
andb, and is defined on the interval between 0 and 1:

p(θ ) = 0(a+ b)

0(a)0(b)
θa−1(1− θ )b−1,

where 0≤ θ ≤ 1, anda> 0, b> 0.
In this equation,0(·) stands for the gamma function, a particular integral used com-

monly in statistics. Rather than write this function repeatedly, we will denote the beta density
as beta(a, b). The parametersa andb can be thought of as the number of “successes” and
number of “failures” in a sequence of observed data from Bernoulli trials, with the trials
being mutually independent and the probability of success in each beingθ . The mean of
the beta distribution isa/(a+ b), and this is the usual point estimate forθ . The larger the
suma + b, the smaller the variance around this mean. Beta(1, 1) is the familiar uniform
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density on the interval [0, 1], with a mean of 0.5. Whena andb are both less than 1, the
beta density has a “U” shape. Whena andb are both larger than 1, the density has a single
peak; whena andb are very large, the beta density looks much like a normal density over a
very short interval within the [0, 1] range. All major computer spreadsheet programs have
statistical functions built in for the beta distribution. (Caution is needed to verify the form
in which the beta distribution is parameterized since some programs may use the alternate
with parametersr andm, wherer =a andm=a+ b.)

Data we would usually collect to estimate a proportion can be represented as a sequence
of logical zeroes and ones; for example, in the GUSTO data, a patient who dies in the first
30 days can be denoted by zero and a patient who survives denoted by one, with the trial
results represented by a string of 10,344 zeroes and ones for the t-PA arm. The likelihood
that any given case is a one is the unknown proportionθ . The data then are Bernoulli
observations with probabilityθ . Collectively, if we observeN cases among which there
arek ones andm zeroes, this is one observation of a binomial variable with parametersk
and N (whereN= k+m). If our uncertainty about the value ofθ before the trial results
are known is described by beta(a, b), then applying Bayes theorem will show that our
uncertainty aboutθ at the end of the trial is described by beta(a+ k, b+m), which is
termed the posterior density forθ given the observed data, and often denotedp(θ | d).
Because the prior and the posterior distributions are the same type, the beta distribution
and the Bernoulli distribution (or its alternate form, the binomial distribution) are known
asconjugatedistributions. In the language of Bayesian statistics, a beta prior, updated with
Bernoulli data, gives a beta posterior. If our best point estimate ofθ is, say, 30%, but we still
have considerable uncertainty around this point estimate, our uncertainty might be described
by a beta(3, 7) density. If we are more certain that 30% is the true value, we would use a
beta distribution with smaller variance, for example a beta(9, 21) might do (each parameter
multiplied by 3). If we are quite sure, then beta(30, 70) or beta(300, 700) or beta(3,000,
7,000) or beta(9,000, 21,000) might be the best description. Table 1 shows this succession
of beta density functions along with the lower and upper bounds for the central 95% of
each distribution (in Bayesian statistics, this is known as the 95% credible interval). Note
that updating the Beta prior is just a function of adding to the prior parameters the observed
numbers of successes and failures in the data.

Our Bayesian analysis of the four relevant proportions from the GUSTO trial will
use the beta-Bernoulli (or beta-binomial) conjugate relationship. In light of the GUSTO
data, our posterior uncertainty about the survival proportion in patients treated with SK
after the GUSTO trial can be represented as beta(a+ 18,700,b+ 1,473), where beta(a, b)
is the prior and 18,700 and 1,473 are the specific results for 30-day survival and 30-day
deaths, respectively, in the SK arms of the trial. We could assume an noninformative prior
distribution (this prior has essentially no impact on the posterior) wherea andb are very

Table 1. Beta Density Functions with Increasing Certainty About the Point Estimate of 30%

95% central interval bounds

Beta density Mean Lower Upper

Beta (0.3, 0.7) 30% 0.0008% 97.87%
Beta (3, 7) 30% 7.49% 60.01%
Beta (9, 21) 30% 15.28% 47.24%
Beta (30, 70) 30% 21.47% 39.29%
Beta (300, 700) 30% 27.20% 32.88%
Beta (3,000, 7,000) 30% 29.11% 30.90%
Beta (9,000, 21,000) 30% 29.48% 30.52%
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close to zero, so the posterior will be closely approximated by beta(18,700, 1,473) which
has a mean equal to the observed point estimate from the GUSTO trial, 18,700 of 20,173.
But the survival of patients given streptokinase in the two previous trials (as summarized by
Brophy and Joseph) was 9,467 of 10,396 and 12,325 of 13,780. If these trials are considered
to be equivalent to the GUSTO SK treatment arms, the combined result, 21,792/24,176 may
well form a prior estimate of the survival proportion for patients given SK, i.e., our prior is
beta(21,792, 2,384), with a mean of 90.1%.

These are the two extremes for incorporating prior observed data—either use an entirely
noninformative prior so no previous data are included, or use a prior that gives all previous
data full weight. We will elect an intermediate position here, neither giving full weight nor
giving no weight to the prior trials. Because the SK arms in the earlier trials were relevant
but not entirely so, even if just from passage of time with improvement in survival, we will
keep the same mean, but widen the credible interval by cutting the sum of the parameters to
one-third of the nominal sample size, beta(7,264, 794.7). This allows the data from GUSTO
to have about 70% of the weight in determining the posterior, even though the total number
of patients in GUSTO is only about 45% of the aggregate SK patients in the other trials. By
similar reasoning, we use a prior of beta(43.7, 8,015) on the proportion of nonfatal disabling
strokes in the first 30 days among surviving patients treated with SK.

What shall we use for the prior distributions on these two proportions (30-day survival
and 30-day stroke) in the t-PA arm of GUSTO? The protocol for administration of t-PA in
GUSTO was changed from that in the earlier trials and the new accelerated protocol was
expected, based on a series of limited trials using patency of coronary arteries at angiography
as an endpoint (e.g., see reference 17), to improve patient results over the prior trials with
nonaccelerated administration of t-PA. Still, the prior trials found 30-day survival with t-PA
to be high, an aggregate result of 21,707 of 24,118, or 90.0%, almost exactly the same as
SK. The GUSTO trial was conducted to test the hypothesis that accelerated administration
of t-PA might better this percentage. We will use a prior with this mean, but much more
variance to represent our broader range of uncertainty. The beta (45, 5) has a mean of 90%,
with a 95% credible interval of (80.4%, 96.0%). The density is peaked toward the upper
end of the credible interval (the median is 90.5%), to show that the anticipated result is
in the neighborhood of 90%, but more likely over 90% than under. With this prior, the
posterior density after the GUSTO data are included is beta (45+ 9,692, 5+ 652)= beta
(9,737, 657). The mean of the posterior is 93.68%, with a 95% credible interval of (93.2%,
94.1%). Similar reasoning is applied to the proportion who have nonfatal disabling stroke
in the first 30 days. Table 2 summarizes the input distributions for the four proportions in
the CEA.

We have gone to some detail in describing the Bayesian estimation of the four propor-
tions. Bayesian analysis of data concerning proportions is well known and made easy by
the conjugacy of the beta and binomial distributions. For the two other types of inputs to

Table 2. Prior and Posterior Beta Densities Used to Describe Uncertainty About the Four
Proportions to be Used in the Cost-effectiveness Analysis

Posterior

95% credible
Estimated proportion Prior density Density Mean (%) interval

t-PA 30-day survival Beta (45, 5) Beta (9,737, 657) 93.7 93.2, 94.1
SK 30-day survival Beta (7,264, 794.7) Beta (25,964, 2,267.7) 92.0 91.6, 92.3
t-PA stroke Beta (1.7, 215.4) Beta (63.7, 9,845.4) 0.64 0.50, 0.81
SK stroke Beta (131, 21,661) Beta (232, 40,260) 0.57 0.50, 0.65

88 INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 17:1, 2001

https://doi.org/10.1017/S0266462301104083 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462301104083


Bayesian cost-effectiveness analysis

this CEA, we do not have the benefit of conjugate distributions and must use a different
method to derive posterior distributions given the data and prior uncertainties.

Inferences About Quality-of-life Weights. For cost-utility analysis time spent in
various health states is weighted by the health-related quality of life (HRQL) deemed to
characterize those health states. HRQL is indicated by a number anchored by 1.0, denoting
perfect health, and 0.0, denoting death. For purposes here, we will ignore states worse than
death and consider HRQL to be a number between 0 and 1. In this fashion it is similar to a
proportion, and in fact HRQL weights that are elicited by the method of standard gambles
or by time trade-offs are proportions. But estimates of each are collected directly and not
by observation of 0 and 1 data. In the GUSTO trial, a sample of patients in each arm were
queried at the end of the trial about their post-MI HRQL using the time tradeoff technique,
and the result was a mean weight of 0.90 in both arms (16). There are other data in the
literature directly relevant to this HRQL weight. The Beaver Dam Health Outcomes Study
(9) using time tradeoffs found an average weight of 0.73 among community-dwelling adults,
aged 45 and older, who reported they had had an MI in the past. Tsevat et al. (22) reported
a mean of 0.88 among MI survivors. We used a beta(16, 4) to represent uncertainty about
average HRQL of MI survivors in years following the MI. This is a posterior distribution
directly estimated by us to describe the disparate results in the literature since we don’t
know the data-generating process by which to model these reports. (There are other ways
to approach specifying this distribution on post-MI HRQL. For example, with access to
primary data, we might pool the data and process the data as described below for stroke
HRQL. Given the limited use of this example for pedagogic purposes, we have elected not
to go beyond the direct specification approach.) The mean of this directly specified posterior
distribution is 0.80. Its median is 0.810, and the 95% credible interval ranges from 0.604 to
0.940. This shows a considerable range of uncertainty and covers all three estimates. It does
represent a lower mean than observed just among patients in the GUSTO trial, reflecting
other data in the literature to inform this estimate. The effect of this will be to devalue
slightly the life-years saved in our calculations as compared with the GUSTO CEA.

The GUSTO CEA did not directly consider the HRQL associated with disabling stroke;
a sensitivity analysis assigned this condition a weight of zero, equivalent to death. Instead, we
used data on HRQL weight assigned to disabling stroke by 1,176 people with stroke or at high
risk of stroke who were interviewed by investigators of the Stroke Patient Outcome Research
Team at Duke University (personal communication, Dr. Greg Samsa, 1998). A considerable
fraction of these people assigned a weight of zero to this condition; the remainder spread
across the continuum. Figure 1, upper panel, shows the empirical distribution of HRQL
weights. The lower panel in Figure 1 shows the estimated posterior density for the mean
HRQL weight given these data and assuming an informationless prior. The posterior density
is estimated using Markov Chain Monte Carlo computations carried out by WinBUGS
version 1.2 (distributed by The BUGS Project group, MRC Biostatistics Unit, Cambridge,
U.K.). For a brief overview of WinBUGS syntax, see Fryback DG, Stout NK, Rosenberg
MA, “An Elementary Introduction to Bayesian Computing Using WinBUGS” in this Special
Section.

Parameters for a normal distribution were fitted to the simulated posterior kernel density
using the method of moments; a normal distribution with a mean of 0.234 and a precision
(the reciprocal of the variance) of 14,550.9 was then used to represent uncertainty about
mean HRQL with disabling stroke in further computations.

Inferences About Costs. The third type of variable for the CEA computations is
mean cost. In this analysis we considered six costs: a) the pharmaceutical agent cost for
t-PA; b) the pharmaceutical agent cost for SK; c) medical costs in the first year for patients
in the t-PA treatment group; d) medical costs in the first year for patients in the SK treatment
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Figure 1. Upper panel shows the distribution of 1,176 estimates of HRQL weight elicited from
persons with major stroke or at high risk of major stroke (personal communication, Dr. Greg
Samsa, 1998). Lower panel shows estimated posterior density function for the mean HRQL
weight where the prior on HRQL was the noninformative distribution beta(10−6,10−6). This
was updated based on data in the upper panel using Markov Chain Monte Carlo simulation
(19,500 samples) in WinBUGS.

group; e) additional costs of stroke in the first year for patients who suffer disabling stroke
within the 30 days of treatment; and f) annual costs of stroke in subsequent year for patients
with stroke. Means for the first four of these costs are reported by Mark et al. (16) in the
GUSTO CEA; however, no information about variance is provided. Costs for major stroke
month by month for 36 months following an index hospitalization for stroke are reported by
Lipscomb et al., who analyzed Medicare costs for stroke (13). Subsequent to that report, the
Medicare cost data were supplemented by the same researchers with additional data about
attributable costs not covered by Medicare (data provided by personal communication,
Drs. G. Samsa and J. Lipscomb, 1998). In the GUSTO CEA, the hospitalization costs for
stroke were included in the first-year baseline costs with each treatment group. However,
the additional costs, such as those collected above the Medicare costs by the stroke PORT
researchers, were not included in the published CEA. The costs of stroke beyond year 1
were not in the published base case CEA, but were included in one sensitivity analysis. We
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Table 3. Parameters for Normal Distributions for Mean Costs Used in Our Analysis and
Sources of the Estimates

Item Mean SD (Precisiona) Source

Cost for t-PA (per patient) $2,750 95.3 (0.00011) Mean from reference 16;
precision, our estimate

Cost for SK (per patient) $320 15.1 (0.0044) Mean from reference 16;
precision, our estimate

First-year medical costs, $24,990 200 (0.000025) Mean from reference 16;
averaged across all t-PA precision, our estimate
patients (regardless
whether survived past
30 days)

First-year medical costs, $24,575 200 (0.000025) Mean from reference 16;
averaged across all SK precision, our estimate
patients (regardless
whether survived past
30 days)

Costs of disabling stroke not $16,855 151 (0.000044) Data from Samsa G,
captured in hospital costs Lipscomb J, personal
in first year communication, 1998.

Annual costs of disabling $20,158 186 (0.000029) Data from reference 13,
stroke (after year 1) with additional data

provided by Samsa G,
Lipscomb J, personal
communication, 1998.

aWinBUGS parameterizes the normal distribution with precision, which is the reciprocal of the variance.

included both of these costs in our analysis. The assumed parameters for cost distributions
used in our computations are given in Table 3.

If we had access to primary cost data from individual patients, how could we proceed?
Costs (treated as a positive number) are bounded below by zero, and generally skewed with
a long tail to the right. A useful distribution for describing these sorts of data is the gamma
distribution. (The lognormal distribution has similar properties and has also been used to
analyze costs in the same fashion as we use here with the gamma.) The gamma distribution is
a two-parameter distribution, gamma (a, b) with mean a/b and variance a/b2. The parameters
are real numbers that must be greater than zero. A hierarchical Bayesian analysis can use
cost data to update distributions on each of the two parameters for the gamma(a, b), which
in turn induces a posterior distribution on the mean, a/b. It is this posterior distribution
that we use in our CEA calculations. For this pedagogic analysis, we demonstrate the
hierarchical approach and assume a relatively noninformative prior distribution for each of
the parameters,a andb; thus, each of the parameters for the gamma distribution to describe
cost is treated in turn as a random variable with its own prior distribution. (It is from this
hierarchy of distributions on the parameters of distributions—the top level prior is called a
hyper prior—that hierarchical analysis gets its name.) For these hyper prior distributions, we
regularly use a gamma distribution with the WinBUGS default parameters ofa= b= 0.001,
which produces a very flat gamma density, not giving much likelihood to any particular
value of the random variable. The mean of this distribution is 1, and the variance is 1,000;
since a gamma distribution is bounded below at 0, this indicates an extremely long tail to the
right, describing very well our prior uncertainty about each of the parameters of the gamma
density for cost—they more or less can be anything greater than zero. A noninformative
prior in turn means that the inferred parameters for the gamma distribution on costs are
determined mostly from the data. We then use WinBUGS and Markov Chain Monte Carlo
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simulation to obtain estimated posterior distributions for each of the parameters,a andb,
of the gamma distribution for individual costs.

However, our interest in cost-effectiveness analysis is the resulting posterior distribution
on the mean cost, a/b (10). The posterior on this mean cost is inferred by the induced
posterior on the ratio of the two random variables that parameterize the cost distribution.
In cost-effectiveness analysis the ICER is a ratio of differences in means—differences
in mean effectiveness and differences in mean costs, not a mean of observed costs and
observed effectiveness measures—so it is the distribution on the mean costs in which we
are interested (21). This distribution is not necessarily normal in the same sense that the
sampling distribution of a sample mean is normal as a consequence of the central limit
theorem of statistics. The mean in which we are interested is not the sum of sampled
variables, but a true value for a parameter. Although there is no closed form expression for
the posterior on the mean cost, even for moderate sample sizes for observed cost data it
appears approximately normal. (Keep in mind that the distribution of costs is very skewed,
but the distribution representing uncertainty aboutmeancost may not be very skewed.)

Since mean costs are reported in the GUSTO CEA without indication of their dispersion,
we have assumed the posterior distributions of means of costs can be approximated by
normal distributions with the reported means and variances representative of typical cost
data for hospitalizations to which we have access and have experimented with Bayesian
analysis. Although the normal distributions in Table 3 might at first thought be considered
sampling distributions for sample means, the chain of reasoning leading to them was quite
different.

Inferences About Long-term Survival. Because the GUSTO trial observed only
1-year survival, longer term survival had to be estimated by Mark et al. (16) in their CEA.
They used the Duke Cardiovascular Disease Database to fit a survival function for 14-year
survival, given the patient survives the first year, and then a Gompertz function to fit the
tail survival curve reaching zero at approximately 35 years after the MI (16,1419). It is
quite possible, given access to individual survival data, to use Bayesian analysis to compute
posterior distributions for the parameters of hazard functions and thereby obtain induced
posterior distributions on survival and life expectancy (19). However, we did not have
access to primary data, so our analysis used only the point estimates of life expectancy
provided in the published article (16,1420, interpolated from Figure 1). As did Mark et al.,
we discounted the survival function at a rate of 5%. In this fashion, we computed the present
value of life-years survived past the first year to be 10.36, regardless of the arm of the trial
(i.e., the only survival difference between patients treated with t-PA and with SK occurs in
the first year).

A reviewer of this manuscript has noted we could have directly parameterized life
expectancy for our calculations, put a prior on this parameter, and carried it through the final
computations. This is indeed another way to deal with uncertainty about life expectancy. It
would be necessary to discount life expectancy for the CEA computation, but the posterior
on life expectancy would induce a posterior on discounted life expectancy. Because of
limited time to prepare this manuscript, we have elected not to propagate uncertainty about
life expectancy past the initial year in this model. The variance of our reported posterior
distribution on net benefits will underestimate the variance of this distribution had we
incorporated this added source of uncertainty.

Computational Methods

To this point we have specified distributions on theθi input parameters. Each distribution
represents our uncertainty about a specific parameter, given what data we have access to,
or our best judgment in the absence of data. Because the data come from many sources,
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we cannot estimate the truejoint posterior distribution on theθi (the input parameters for
the analysis discussed earlier). We approximate the joint distribution under the assumption
that theθi are independent random variables, and convolute the uncertainty from each into
a single posterior distribution for each of the CEA computational results.

Ideally the independence assumption would not be needed. If data were available on
as many of theθi as possible tied together in one observational unit at the individual patient
level, then any correlational structure among theθi could be incorporated in the Bayesian
estimates of the joint distribution for the final results. In this fashion, for example, a possible
relationship between quality of life, survival time, and initial year hospital costs could be
explicitly modeled and accounted for in the final joint posterior distribution on incremental
costs and incremental QALYs. Demonstration of this type of modeling will await availability
of data of this sort.

To combine the posterior uncertainty about each of the four proportions, six costs,
and two quality-of-life weights into the calculations, we used Monte Carlo simulation with
WinBUGS version 1.2 to calculate results for our recapitulation of the GUSTO CEA. This
use of WinBUGS—as compared to its use to derive posterior distributions for some of the
individual parameters—is not uniquely Bayesian. Rather, it is being used for probabilistic
sensitivity analysis simulation (5). These WinBUGS results are reported here.

Figure 2 shows a WinBUGS doodle for convoluting two random variables into a func-
tion of their values. The node labeled “SKQalys” is a random variable that is a logical
function of four predecessor random variables and a constant. (See Fryback DG, Stout NK,
Rosenberg MA, “An Elementary Introduction to Bayesian Computing Using WinBUGS”,
in this issue, for terminology.) The predecessor variables are:

r SKsurv, the proportion of SK-treated patients who survive the first 30 days; this is represented as
a beta density, as described earlier, with parameters A2 and B2 shown as rectangles. Numerical
values for A2 and B2 were input in a data statement;

Figure 2. This partial WinBUGS doodle represents the computation to compute a distribu-
tion for QALYs experienced on average by patients treated with SK. This simulation con-
volutes distributions for the input variables into a distribution on the computed value of the
variable, SKQalys. A similar portion of the full doodle showing the antecedents of tPAQalys
has been suppressed in this figure for clarity.
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r SKstroke, the proportion of 30-day survivors among SK patients who have a nonfatal, disabling
stroke in the first 30 days; another beta density, described earlier, with parameters input as constants
A4 and B4;r QoLstroke, the mean quality-of-life weight for a year with disabling stroke; this is represented
by a normal density function, with constants mustroke and taustroke, approximating the empirical
posterior density described earlier;r QoLnostroke, the mean quality-of-life weight for patients without stroke, represented by a beta
density with parameters AQoLns and BQoLns, as discussed earlier; andr PVLY is a constant, calculated as the present value of the survivor curve past the first year, discounted
continuously at 5%.

The computation of SKQalys is:

SKQalys= PVLY(SKsurv∗(SKstroke∗QoLstrok+ (1− SKstroke)∗QoLnostroke)).

WinBUGS accomplishes this by simulated random sampling (known as Monte Carlo sim-
ulation) from the distribution of each variable on the right side of the equation, conducting
the computation with the sampled values, then accumulating a set of computed values
for SKQalys across repeated sampling in this fashion. We used 20,000 samples. Figure 3
shows the resulting posterior distribution for SKQalys. A similar distribution was obtained
for QALYs accumulated by t-PA treated patients. Finally, SKQalys was subtracted from
tPAQalys to obtain a distribution on the incremental mean QALYs for t-PA compared with
SK treatment.

With a similar process we used WinBUGS to simulate a distribution for mean incremen-
tal costs of t-PA treatment over SK treatment, using the distributions for costs discussed
earlier. Our point estimate of the incremental cost-effectiveness ratio is the mean of the
distribution for incremental costs, $3048, divided by the mean of the distribution for incre-
mental QALYs, 0.13 QALY, which gives $23,446/QALY. The most comparable figure from
the GUSTO CEA analysis is $32,678/QALY (16,1422, Table 3). Our calculation includes
added costs of stroke and a quality of life for patients with disabling stroke not included in
the published analysis.

Because the distribution of mean incremental QALYs considerably overlaps zero, a
distribution for the incremental cost-effectiveness ratio, which divides mean incremental
cost by mean incremental QALYs, is not well behaved where the denominator goes to zero.

Figure 3. The distribution derived from 20,000 Monte Carlo samples, as described in the
text, for QALYs estimated to accrue on average to patients treated with SK. The mean is
7.75 QALYs, and the central 95% credible interval ranges from 5.86 to 9.11 QALYs. Small
irregularities in the smoothness of the density are due to the sampling process and are
inconsequential.
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Figure 4. The distribution for net benefit of t-PA compared with streptokinase at a trade-off
rate of $50,000 per QALY, using the distributions for input parameters described in the text.
The best point estimate for the net benefit is the mean of this distribution, $3,339; the central
95% credible interval ranges from −$116,490 to $123,040. A value of $0 for this quantity
means that the incremental cost-effectiveness ratio is $50,000/QALY, and values above
$0 (positive benefit) indicate a cost/QALY ratio below (i.e., more favorable than) $50,000.
The probability the incremental net dollar benefit is above $0 is 52.5% according to this
simulated posterior density. Small irregularities arise from the sampling process and are
inconsequential.

Similarly, if the incremental QALY is positive and the incremental mean cost is negative,
computation of the ratio is meaningless since one treatment dominates the other. For these
reasons, we have avoided dealing with a posterior distribution on the ICER. Instead, we
elected to compute a posterior distribution for net benefit, converting QALYs to dollars at
a rate of $50,000 per QALY, using methods proposed by Stinnett and Mullahy (20). The
estimated distribution for net benefit at this trade-off rate is shown in Figure 4. The mean of
this distribution is $3,339, and 52.5% of it is above a net benefit value of $0. If we compute
a comparable figure from the study by Mark et al. (16) for their base case analysis, where
the average QALY gain in present value was (0.09 life years)× 0.9 (QALY per LY) =
0.081QALY at an average incremental cost of $2,845 with the present value of $2,647, the
average net benefit was (0.081 QALY)× (50,000 $/QALY) − $2,647= $1,403.

Our figures differ. We believe there are two sources for this difference. First, incorporat-
ing randomized trial data in the prior for SK but not for t-PA depressed the overall estimate
of SK effectiveness compared with t-PA. The prior trials found no difference between SK
and t-PA 30-day survival, both of which were estimated to be about 90%. The GUSTO
trial resulted in data with 93.7% for t-PA and 92.7% for SK. In Table 2 it is seen that the
differential manner in which we incorporated prior data for estimating the two proportions
accentuated the effectiveness of t-PA by depressing effectiveness of SK by partially incor-
porating the lower survival rate in earlier trials. If we re-run the analysis using beta (0,0) as
the prior for all four estimates (i.e., giving no weight to prior trial data at all and using the
GUSTO data only), the estimated mean net benefit is $258 with a somewhat larger fraction,
50.2%, of the posterior distribution below zero. This is roughly congruent with the result
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by Mark et al. (16) but still implies an ICER higher than their result. The residual difference
is due to the fact that the mean quality of life in our analysis is somewhat lower than the
0.9 assessed from the GUSTO patients alone, and the fact that we incorporate more costs
of stroke, albeit with low probability.

Of most interest is the uncertainty in the net dollar benefit estimate. Although the mean
is shifted higher using prior information less favorable to SK than in the GUSTO study,
the probability that the mean net benefit is above zero—i.e., that the ICER is less than
$50,000 per QALY—is only slightly higher than 50%. This is much more uncertain than
the traditional CEA by Mark et al. (16) connoted. This could be pursued using the same
inputs as we used. However, we believe time is better spent pursuing a full Bayesian analysis
of GUSTO from primary data than spent analyzing the final residual differences between
our pedagogic analysis and the results by Mark et al. (16).

DISCUSSION

Bayesian analyses are beginning to appear in the healthcare cost-effectiveness literature
(2;12), although the genre is still rare. The computational challenge is considerable but is
made easier with Markov Chain Monte Carlo software such as WinBUGS.

There are a number of intellectual challenges to be solved to truly make the approach
informative. First, viable models for combining data from many sources into Bayesian
posterior distributions need to be developed. A good start on this was achieved by Eddy
and colleagues a decade ago (7;8). They developed likelihood models for a variety of ex-
perimental and observational study designs, incorporating corrections for various potential
biases. Analyses of this sort will need to be pursued to estimate the parameters needed for
CEA models based on secondary analyses.

Second, analysts using Bayesian techniques need to develop CEA models from data on
costs, effect, and quality of life collected at the individual patient level in order to incorporate
the correlational structure that surely exists among them. Developing models dealing with
this structure is a definite challenge.

Third, Bayesian analysts will need to explore when and how to model prior information.
Incorporation of prior information is a source of both strength and criticism for the Bayesian
approach. It is a strength because prior data is obviously relevant and in fact should be used
to inform inferences about costs and effectiveness—witness the growing popularity of meta-
analyses. It is a source of criticism because the ultimately subjective decisions about what
goes into a prior and how much it is weighted are seen as a means of manipulating results.
The research paradigms for resolving the apparent conflict in these points of view have yet
to be developed in this application.

We believe that Bayesian analysis offers a useful approach to dealing with the uncer-
tainties in CEA modeling. We agree with Claxton (4) that conquering the computational
challenges of Bayesian analyses in CEAs allows us to go to the next step of considering the
value of additional information in policy decisions using CEA results.
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