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The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier
transform method. In this work, we study the problem in which the static Robin condition
bq(0, t) + qx(0, t) = 0 is replaced with a dynamic Robin condition; b = b(t) is allowed to vary in time.
Applications include convective heating by a corrosive liquid. We present a solution representation
and justify its validity, via an extension of the Fokas transform method. We show how to reduce
the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet
boundary value. We implement the fractional Frobenius method to solve this equation and justify
that the error in the approximate solution of the original problem converges appropriately. We also
demonstrate an argument for existence and unicity of solutions to the original dynamic Robin prob-
lem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary
spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
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1 Introduction

We study initial dynamic boundary value problems (IdBVPs) for linear evolution equations in
(1 + 1) dimensions on the half-line, in which not only the boundary data, but the boundary forms
themselves, are permitted to vary in time. Specifically, we study problems of class:

[∂t + a(−i∂x)n] q(x, t) = 0 (x, t) ∈ (0, ∞) × (0, T), (1.1.PDE)

q(x, 0) = q0(x) x ∈ [0, ∞), (1.1.IC)
n−1∑
j=0

bk j(t)∂
j
xq(0, t) = hk(t), t ∈ [0, T], k ∈ {1, 2, . . . , N}, (1.1.dBC)

in which 2 � n ∈N, a ∈C with |a| = 1 and n, a, N obey the criteria:⎧⎪⎪⎪⎨⎪⎪⎪⎩
If n even then Re(a) � 0 and N = n/2.

If n odd then Re(a) = 0;

⎧⎨⎩if a = i then N = (n + 1)/2,

if a = −i then N = (n − 1)/2,

(1.2)
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the initial datum q0 has sufficient decay, and the boundary data hk , boundary coefficients bk j and
initial datum are sufficiently smooth and compatible in the sense that

n−1∑
j=0

bk j(0)q(j)
0 (0) = hk(0). (1.3)

Before studying the general theory of such IdBVP, we present the full solution for four
examples of IdBVP for typical linear evolution equations: the heat equation, linear free space
Schrödinger equation (LS) and the linearised Korteweg de Vries equation (LKdV).

Problem (Heat equation with a homogeneous dynamic Robin condition) We seek q for which[
∂t − ∂2

x

]
q(x, t) = 0 (x, t) ∈ (0, ∞) × (0, T), (1.4.PDE)

q(x, 0) = q0(x) x ∈ [0, ∞), (1.4.IC)

b(t)q(0, t) + qx(0, t) = 0, t ∈ [0, T], (1.4.dBC)

where q0 and b are sufficiently smooth and b(0)q0(0) + q′
0(0) = 0. Here, n = 2, a = 1 and N = 1.

Problem (LS with an inhomogeneous dynamic Robin condition) We seek q for which[
∂t − i∂2

x

]
q(x, t) = 0 (x, t) ∈ (0, ∞) × (0, T), (1.5.PDE)

q(x, 0) = q0(x) x ∈ [0, ∞), (1.5.IC)

b(t)q(0, t) + qx(0, t) = h(t), t ∈ [0, T], (1.5.dBC)

where q0, b, h are sufficiently smooth and b(0)q0(0) + q′
0(0) = h(0). Here n = 2, a = i and N = 1.

Problem (LKdV with one dynamic boundary condition) We seek q for which[
∂t + ∂3

x

]
q(x, t) = 0 (x, t) ∈ (0, ∞) × (0, T), (1.6.PDE)

q(x, 0) = q0(x) x ∈ [0, ∞), (1.6.IC)

b(t)q(0, t) + qxx(0, t) = 0, t ∈ [0, T], (1.6.dBC)

where q0 and b are sufficiently smooth and b(0)q0(0) + q′′
0(0) = 0. Here, n = 3, a = −i and N = 1.

Problem (LKdV with two dynamic boundary conditions) We seek q for which[
∂t − ∂3

x

]
q(x, t) = 0 (x, t) ∈ (0, ∞) × (0, T), (1.7.PDE)

q(x, 0) = q0(x) x ∈ [0, ∞), (1.7.IC)

b(t)q(0, t) + qx(0, t) = 0, t ∈ [0, T], (1.7.dBC1)

β(t)q(0, t) + qxx(0, t) = 0, t ∈ [0, T], (1.7.dBC2)

where q0, b, β are sufficiently smooth, b(0)q0(0) + q′
0(0) = 0 and β(0)q0(0) + q′′

0(0) = 0. Here
n = 3, a = i and N = 2.
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Problems such as (1.4) for the heat equation have received attention from the applied mathe-
matics, physics and engineering communities, due to their applications, including geophysics [4],
nuclear reactor design [34] and Newtonian cooling in a bath of corrosive liquid [44, 59].

In early works on these problems [35, 36, 51], the dynamic Robin boundary condition is
replaced with a Neumann boundary condition by means of a change of variables. This has the
regrettable side effect of also introducing non-linear terms to the partial differential equation. The
non-linear terms are typically assumed small, and the resulting linearisation is solved, though
quantified justification for ignoring the non-linear terms is rather complex.

One cannot reasonably expect classical spectral methods, based on separation of variables, to
be successful for such problems, because the spectrum of the spatial differential operator neces-
sarily depends on time; it is unsurprising that some kind of approximate method is usually applied
in place of a fully analytic approach. Nevertheless, a finite interval version of problem (1.4) was
famously studied by [44], where there was an attempt at separation of variables, modified by
the admission that in such a problem the eigenvalues and eigenfunctions necessarily depend on
time. Unfortunately, the procedure reduced to an infinite system of ordinary differential equa-
tions, whose simultaneous solution is not clearly attainable. Nor was the solution found for any
approximation beyond the first order.

Other proposed solution methods for problems similar to (1.4) include the Laplace trans-
form and finite difference approaches of [40, 4], reduction to an integral equation which admits
numerical analysis, as in [6], or reduction via shifting functions to a variable coefficient partial
differential equation with static boundary conditions followed by series expansion, as per [7, 41]
and many other works citing these. Related non-linear problems, whose general analytic solution
is unfeasible, are studied in [43], where Lie group techniques are used to find some classes of
invariant solutions.

We aim not only to derive a solution representation but also to verify analytically that our
claimed solution representation describes a valid solution of the original problem. The shifting
functions approach of [41] has the advantage of being fully analytic but, because the variable
coefficient partial differential equation is not in the standard Sturm Liouville form, the ‘try func-
tions’ (basis functions) used in the series expansions are not eigenfunctions of the differential
operator at any particular time, much less at all times, necessitating a complicated (x, t) depen-
dence in the solution formula. Equipped only with such a solution formula, it would be difficult
to establish well-posedness or convergence results beyond the verification of accuracy for fixed
numbers of terms typically presented in such works. Moreover, as demonstrated in [37], the
completeness of the try functions cannot be expected to generalise to odd order problems such
as (1.6) or (1.7). The latter weakness is also suffered by the approach of [44].

Attempting to solve problems such as these via a temporal Laplace transform yields expres-
sions involving root functions of the spectral variable. When the problem is of higher spatial
order and lower order terms also appear in the partial differential equation (PDE), inverses of
polynomial functions are required. This can make inversion of the Laplace transform difficult.
A temporal transform also requires assumption that the solution exists for all positive time and
a control on the solution for large time, both of which are unnatural assumptions for evolution
equations such as those we study here. Therefore, we avoid methods, such as those of [40, 4],
based on a temporal Laplace transform. The approach of [6] is to formulate a map, encoded as
an integral equation, from the dynamic boundary condition to a Dirichlet boundary value. Our
approach begins in a similar spirit: though through different means, we also derive an integral
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equation for such a Data to uNknown map (D to N map). However, taking advantage of some
analytic techniques, we are able to reexpress our integral equation in an alternative form for
simpler analysis: a variable coefficient fractional linear ordinary differential equation, which we
analyse via the fractional Frobenius method.

In this work, we present an extension to IdBVP of class (1.1) of the Fokas transform
method [21, 16, 29], also known as the unified transform method. This method began as an
inverse scattering technique suitable for solving integrable non-linear evolution equations on
domains with a boundary [19, 22]. It was soon observed that the method also provided new
results for linear evolution equations, particularly those of high spatial order with difficult bound-
ary conditions. It has been used to establish well-posedness and obtain solution representations
for IBVP with arbitrary static boundary forms on the half-line and finite interval [28, 20, 54]
and to analyse problems with conditions specified at an interface [13, 52, 53, 15, 14, 56],
multipoint conditions [26, 49], fully non-local conditions [42] and problems in two spatial dimen-
sions [20, 27]. It has also provided new insights into the spectral theory of spatial differential
operators [45, 47, 55, 30, 48, 1], including many with boundary conditions not open to study
under the Birkhoff regularity framework. The method has been extended to admit elliptic equa-
tions on non-separable domains in two or three dimensions [18, 31, 2, 23, 11, 12], where there
has been significant recent progress on numerics [8, 9, 10]. Non-linear elliptic equations have
also been studied [46, 24, 25].

We give an overview of the Fokas transform method in Section 2, both its application to half-
line IBVP for linear evolution equations with static boundary forms and the necessary extensions
for IdBVP (1.1). In an IBVP, the D to N map reduces to a linear system, solvable by Cramer’s
rule, but the corresponding reduction for IdBVP does not yield an equivalent linear system.
Instead, we derive a variable coefficient fractional linear ordinary differential equation, or system
thereof.

Fortunately for our purposes, there exists an established Frobenius method for variable coef-
ficient fractional linear ordinary differential equations. We use the approach described in [39,
Section 7.5] for equations involving (sequential) Caputo fractional derivatives; however, for sim-
plicity, we consider only ordinary points of the fractional differential equations we study. When
working with fractional derivatives, it is important to select the appropriate fractional derivative
for the task. Because our fractional derivative appears first disguised within a Fourier transform,
we could have chosen any of the various established inequivalent definitions that have similar
Fourier transforms. For reasons discussed below, we prefer the Caputo definition of the frac-
tional derivative and, where necessary, use the sequential Caputo derivative, rather then Caputo
derivatives of mixed orders.

Recently, there has been some interest in the interaction between the Fokas transform method
and fractional derivatives. In [3], the method is extended to admit linear evolution equations of
fractional spatial order, in terms of the Riemann–Liouville fractional differential operator. The
approach and results of [3] are completely different from ours because problem (1.1) features
only spatial differential operators of integer order, while in [3] the boundary forms are static.

More cognate of the present work is [33], in which the authors express the Maxey–Riley
equation with Basset history term as a constant coefficient fractional linear ordinary differential
equation, then formulate the latter as the Dirichlet to Neumann map for the heat equation. Using
the Fokas transform method, they solve the D to N map, and thus the Maxey–Riley equation.
Their procedure, expressing a fractional linear ordinary differential equation as a D to N map, is
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the antithesis of our technique, in which we express a D to N map as a fractional differential equa-
tion. The relative value of each method depends on the difficulties of solving the problem in its
original and transformed modes. Many of the resultant IBVP in [33] are modified (oblique) Robin
problems, so they can be solved using established analytical techniques for the Fokas transform
method, although they also present a numerical method to solve the non-linear modified Robin
problems that can occur. In contrast, there is no known analytical method for solving the IdBVP
studied in the present work. Therefore, we prefer the improved efficiency that may be afforded
by an approximation method in one dimension than two; we prefer to reduce our IdBVP in space
and time first to their D to N maps and then to fractional linear ordinary differential equations in
time only.

1.1 Layout of paper

In Section 2, we give a brief overview of the Fokas transform method as applied to IBVP with
static boundary forms for evolution equations on the half-line, then describe the extension to
admit the dynamic boundary forms of present interest. This section also includes a general imple-
mentation of the parts of the Fokas transform method that remain unchanged in the new context,
summarised in Proposition 2.2. We conclude Section 2 with a lemma that will not be used until
the following stage of the method but is simple enough to prove in general.

In Section 3, we present the solution of example problem (1.4). We continue with solutions
for problems (1.5)–(1.7) in Section 4. For these sections, we eschew the general approach of
Section 2 in order to present simplified arguments appropriate for some examples. There is some
discussion of each approach and its applicability beyond the problem considered, with the fullest
discussion in Section 3.

The arguments already presented for specific examples are generalised in Section 5 to the full
class of IdBVP (1.1). We conclude with some remarks on further generalisations in Section 6.
For convenience, we also provide the brief appendical Section Appendix A on the interaction of
the Fourier transform with the Caputo fractional differential operators of interest.

2 Half-line Fokas transform method

2.1 Overview for IBVP and extensions for IdBVP

The Fokas transform method may be seen as an extension of the Fourier transform method to a
much wider class of boundary value probelms. Alternatively, it may be seen as a method for the
derivation of a Fourier transform pair tailored to a particular IBVP. Here, we outline the former
view. As described in [42], the method consists of three stages.

In stage 1, one assumes that there exists a solution of the PDE satisfying the initial condition
and derives two equations that must be satisfied by that solution: the global relation and another
equation known as the Ehrenpreis form. The global relation is a linear equation linking integral
transforms of values of the solution, and various derivatives, on the boundaries of the space time
domain. The Ehrenpreis form appears close to providing a representation of the solution, but it
depends on all of the boundary values, approximately twice as many as the maximum number
that could be explicitly specified by boundary conditions in a well-posed problem. The first stage
of the method does not depend on the boundary conditions in any way, so it is not sensitive to
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whether we study an IBVP or IdBVP. We implement stage 1 of the Fokas transform method for
evolution equations on the half-line in Section 2.2.

In stage 2 of the Fokas transform method, one continues under the assumptions of stage 1, but
assumes further that q satisfies the boundary conditions, and derives a Data to uNknown map
(D to N map), so that all boundary values can be represented in terms of only the boundary and
initial data of the problem. The main tool in this construction is the global relation, but it also
requires some asymptotic and Jordan’s lemma arguments to show that certain terms, which are
not specified in terms of the data, do not contribute to the solution representation. An attractive
feature of the Fokas transform method for static IBVP is that the D to N map may be formu-
lated entirely in spectral space, and as a linear system of dimension no greater than the spatial
order of the PDE. Unfortunately, the argument is complicated by dynamic boundary forms. For
problem (1.1), it is no longer possible to express the D to N map as a linear system, nor even to
solve it entirely in spectral space. However, by applying a Fourier transform to the global rela-
tion, we are able to reduce the D to N map to a variable coefficient sequential Caputo fractional
linear ordinary differential equation, or a system of such equations. In Sections 3–5, we describe
this reformulation of the D to N map and, where the established general theory of such objects
permits, solve the resultant equations. Substituting the solution into the Ehrenpreis form yields
an effective representation of the solution to the IdBVP. Because we solve the fractional differ-
ential equation using an iterative method, this statement requires some justification. We provide
the full argument in Theorem 3.1 for IdBVP (1.4), Theorem 4.1 for IdBVP (1.5), Theorem 4.2
for IdBVP (1.6), Theorem 4.4 for IdBVP (1.7) and Theorem 5.2 for the general IdBVP (1.1).

In stages 1 and 2, we work under the assumption of existence of a solution and, eventually,
obtain an explicit formula for that solution. Therefore, we also prove unicity of this solution,
under the assumption of its existence. Stage 3 of the Fokas transform method justifies that exis-
tence assumption. Typically, for a static IBVP, one treats the solution representation obtained
in stage 2 as an ansatz of irrelevant providence and shows directly that a function defined by
that formula satisfies the original IBVP. The existence result then bootstraps the whole argu-
ment. In the present work, for efficiency of presentation, we separate the arguments of stage 3
into two parts. The proofs that the PDE and initial condition hold are presented in general in
Proposition 2.2. Satisfaction of the dynamic boundary conditions is established in Theorems 3.4
for IdBVP (1.4) and 5.3 for the general IdBVP (1.1).

2.2 Stage 1

Let the Schwartz space S[0, ∞) be the space of half-line restrictions of smooth functions decay-
ing rapidly along with all their derivatives. Consider how the differential operator (−i d/dx)n :
S[0, ∞) → S[0, ∞) interacts with the half-line complex Fourier transform:

φ̂(λ) =
∫ ∞

0
e−iλxφ(x) dx.

Integration by parts n times yields

(−i d
dx

)n
φ

∧

(λ) = λnφ̂(λ) − (−i)n
n−1∑
j=0

(iλ)n−1−jφ(j)(0). (2.1)
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Suppose that q : [0, ∞) × [0, T] satisfies

∀ t ∈ [0, T], q(·, t) ∈ S[0, ∞), (2.2a)

∀ x ∈ [0, ∞), j ∈ {0, 1, . . . , n − 1}, ∂ j
xq(x, ·) ∈ AC[0, T], (2.2b)

in which AC[0, T] represents the space of functions absolutely continuous on the closed real
interval [0, T]. We apply the half-line complex Fourier transform to equation (1.1.PDE) for a
temporal ordinary differential equation in q̂(λ; ·). Solving the differential equation with initial
condition of the half-line complex Fourier transform of equation (1.1.IC), we obtain the global
relation:

q̂0(λ) − eaλntq̂(λ; t) =
n−1∑
j=0

cj(λ) fj(λ; t), (2.3)

valid for all t ∈ [0, T] and all λ ∈ clos(C−), where

cj(λ) = −aλn

(iλ)j+1
, (2.4)

fj(λ; t) =
∫ t

0
eaλns∂ j

xq(0, s) ds. (2.5)

Rearranging and applying an inverse Fourier transform to global relation (2.3), we obtain
solution representation:

2πq(x, t) =
∫ ∞

−∞
eiλx−aλntq̂0(λ) dλ −

∫ ∞

−∞
eiλx−aλnt

n−1∑
j=0

cj(λ)fj(λ; t) dλ. (2.6)

For any R � 0, we define the sectorial domains:

DR = {λ ∈C
+ : |λ| > R and Re(aλn) < 0}, (2.7)

ER =C
+ \ clos(DR). (2.8)

Suppose that ∂ j
xq(0, s) and its (temporal) derivative are both L1 functions on [0, T]. Integrating

by parts, and applying the Riemann–Lebesgue lemma in the second statement,∣∣∣e−aλntcj(λ)fj(λ)
∣∣∣= ∣∣∣∣cj(λ)

aλn

∣∣∣∣× ∣∣∣∣∂ j
xq(0, t) − e−aλnt∂ j

xq(0, 0)

− e−aλnt
∫ t

0
eaλns d

ds

[
∂ j

xq(0, s)
]

ds

∣∣∣∣
=O (|λ|−(j+1)

)
,

uniformly in t and arg(λ), as λ → ∞ within clos(ER). Therefore, by Jordan’s lemma, for all x > 0
and all R � 0, ∫

∂ER

eiλx−aλntcj(λ)fj(λ; t) dλ = 0. (2.9)
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A very similar argument (see the proof of Proposition 2.2((2)) for the argument), but this time
analysing limits within clos(DR), yields that, for any τ ∈ [t, T],∫

∂DR

eiλx−aλntcj(λ)
[
fj(λ; τ ) − fj(λ; t)

]
dλ = 0. (2.10)

Applying equations (2.9) and (2.10) to equation (2.6), we find that, for all x > 0 and all t ∈ [0, T],

2πq(x, t) =
∫ ∞

−∞
eiλx−aλntq̂0(λ) dλ −

∫
∂DR

eiλx−aλnt
n−1∑
j=0

cj(λ)fj(λ; τ ) dλ, (2.11)

in which the constants R � 0 and τ ∈ [t, T] are arbitrary. Equation (2.11) is often called the
Ehrenpreis form.

2.3 Validity of the solution representation

Notation 2.1 The maps ∂ j
xq(0, ·) �→ fj(·; t) are instances of the transform:

F[φ](λ; t) =
∫ t

0
eaλnsφ(s) ds, (2.12)

in which φ = ∂ j
xq(0, ·). We introduce this F notation because transform (2.12) will be applied to

a more general class of functions than just the boundary values.

We have shown that, under the assumption that there exists a function q satisfying equa-
tions (1.1.PDE)–(1.1.IC), it must be that q satisfies equation (2.11). The following theorem
establishes the reverse of this statement: if equation (2.11) is taken as the definition of a function
q, then q also satisfies equations (1.1.PDE)–(1.1.IC). This is part of stage 3 of the Fokas trans-
form method. Because we have not yet implemented the D to N map, nor considered the dynamic
boundary condition (1.1.dBC) at all, we are not yet ready to complete all of stage 3. Nevertheless,
because this part of the argument is relatively unchanged from the method for static IBVP, we
present it early.

Proposition 2.2 Suppose that q0 ∈ S[0, ∞) and, for each j ∈ {0, 1, . . . , n − 1}, the function φj ∈
C∞[0, T]. Suppose further that these functions satisfy the compatibility conditions:

q(j)
0 (0) = φj(0), j ∈ {0, 1, . . . , n − 1}.

Let � = [0, ∞) × [0, T], and define q : � →C by

q(x, t) = 1

2π

∫ ∞

−∞
eiλx−aλntq̂0(λ) dλ − 1

2π

∫
∂DR

eiλx−aλnt
n−1∑
j=0

cj(λ)F[φj](λ; τ ) dλ, (2.13)

in which the integrals should be understood as the joint principal value:

lim
M→∞

[∫ M

−M
. . . dλ +

∫
∂DR

χB(0,M)(λ) . . . dλ,

]
for χB(0,M) the indicator function of the ball centred at 0 with radius M. Then

https://doi.org/10.1017/S0956792521000103 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000103


Dynamic BC half-line 513

(1) In equation (2.13), both integrands may be multiplied by any polynomial in λ of degree no
greater than n − 1, and the resulting integral converges uniformly on �. If the polynomial
is of degree n, then the resulting integral converges pointwise on � and locally uniformly
in the interior of �.

(2) In equation (2.13), R � 0 and τ ∈ [t, T] may be freely chosen without affecting the definition
of q.

(3) q satisfies partial differential equation (1.1.PDE).
(4) q satisfies initial condition (1.1.IC).

Remark 2.3 This proof has appeared before (see, e.g., [21]), so we do not give the full argument
here. Much less regularity and compatibility of the data is necessary [5], but the smoothness
simplifies the argument.

Sketch proof of Proposition 2.2(1) We study expressions of the form:

q(x, t) = 1

2π

∫ ∞

−∞
eiλx−aλntλrq̂0(λ) dλ −

∫
∂DR

eiλx−aλntλr
n−1∑
j=0

cj(λ)F[φj](λ; τ ) dλ, (2.14)

for r ∈ {0, 1, . . . , n}. Changing variables λ = eiθ n
√−iρ, λn = iρ/a for appropriate choices of θ on

each connected component of ∂DR, the latter integral lies on the real line, except near 0, where
it is deformed slightly into the upper half plane. From here, the inner integrals q̂0 and F[φj] may
be integrated by parts an appropriate number of times to cancel the λr blow up; the resulting
boundary terms cancel by the compatibility conditions. If r < n, a Dirichlet test justifies uniform
convergence. If r = n then, the compatibility conditions exhausted, one appeals to the uniform
convergence theorem of [57].

Remark 2.4 It is a corollary of Proposition 2.2((1)) that q achieves its t → 0+ initial time limit
and q and its first n − 1 spatial partial derivatives achieve their x → 0+ boundary values.

Proof of Proposition 2.2(2) Considering each φj as a compactly supported absolutely integrable
function on the real line, its full line Fourier transform is an entire function. But F[φj](λ) is
nothing more than a composition of a power function with the Fourier transform. Hence, each
integrand in equation (2.13) is entire. Therefore, the latter integral may be deformed over any
finite region without affecting its value; the solution representation is independent of R.

Integrating by parts, and applying the Riemann–Lebesgue lemma in the second statement,∣∣∣e−aλntcj(λ)
(
F[φj](λ; τ ) − F[φj](λ; t)

)∣∣∣
=

∣∣∣∣cj(λ)

aλn

∣∣∣∣× ∣∣∣∣eaλn(τ−t)φj(τ ) − φj(t) − e−aλnt

∫ τ

t
eaλnsφ′

j(s) ds

∣∣∣∣
=O (|λ|−(j+1)

)
,

uniformly in t and arg(λ), as λ → ∞ within clos(DR). Therefore, by Jordan’s lemma, for all x > 0
and all R � 0, ∫

∂DR

eiλx−aλntcj(λ)
(
F[φj](λ; τ ) − F[φj](λ; t)

)
dλ = 0.

Freedom of τ ∈ [t, T] follows.
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Proof of Proposition 2.2(3) By Proposition 2.2((1)), the relevant partial derivatives exist and
are given by differentiating under the integrals. The partial differential equation (1.1.PDE)
follows immediately from the simple (x, t) dependence of the integrands.

Proof of Proposition 2.2(4) By Proposition 2.2((2)), we may select R = 0 and τ = 0. The latter
integral evaluates to 0. Initial condition (1.1.IC) now follows by the usual Fourier inversion
theorem.

The following proposition, proved in [32], gives a characterisation of the kinds of sets
of functions φj that can be chosen to ensure that the boundary values of q are exactly the
appropriate φj.

Proposition 2.5 Suppose all criteria of proposition (2.2) and that, for each t ∈ [0, T], there exists
some function γ ∈ L1[0, ∞) for which

q̂0(λ) − eaλntγ̂ (λ) =
n−1∑
j=0

cj(λ)F[φj](λ). (2.15)

Then ∂ j
xq(0, t) = φj(t).

2.4 A useful application of Jordan’s lemma

The following lemma is very similar to one of the main tools in stage 2 of the Fokas transform
method for IBVP with static boundary forms. Its application, as presented in Sections 3–5, for
IdBVP is a little different, which permits a slight simplification from the usual form of the lemma.
In either case, it is used to remove terms involving Fourier transforms of q(·; T) from various
equations.

Lemma 2.6 Suppose φ and its derivative are L1 integrable functions on [0, ∞). If 2 � n ∈N,
T > t, and −(2n−1)π

2n � θ � −π
2n , then∫ ∞

−∞
eiρ(T−t)φ̂

(
eiθ n

√−iρ
)

dρ = 0.

Proof Because n
√· is the principle branch of the nth root, the function n

√−iρ has a branch
cut only for ρ ∈ −i[0, ∞) and is analytic elsewhere. Suppose 0 � arg(ρ) � π . Then −π

2n �
arg( n

√−iρ) � π
2n , so −π � arg

(
eiθ n

√−iρ
)
� 0. Therefore, the inner integral:

φ̂
(

eiθ n
√−iρ

)
=

∫ ∞

0
e−ieiθ n√−iρxφ(x) dx

is continuous and analytic on the closed upper half plane, except at 0 where it has a continuous
branch point. Moreover, integration by parts and the Riemann–Lebesgue lemma imply that, as
ρ → ∞ from within clos(C+), ∣∣∣φ̂ (

eiθ n
√−iρ

)∣∣∣=O (|ρ|−1/n
)

,

uniformly in arg(ρ). The result follows by Jordan’s lemma.
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FIGURE 1. The map ρ �→ λ = −i
√−iρ is biholomorphic on the unshaded region. The function defining

the map has a branch cut along the negative imaginary half-axis.

3 Example: Heat equation

For IdBVP (1.4), the global relation (2.3) at final time T simplifies to

q̂0(λ) − eλ2T q̂(λ; T) = iλf0(λ; T) + f1(λ; T), (3.1)

and Ehrenpreis form (2.11) becomes

2πq(x, t) =
∫ ∞

−∞
eiλx−λ2tq̂0(λ) dλ −

∫
∂DR

eiλx−λ2t [iλf0(λ; τ ) + f1(λ; τ )] dλ. (3.2)

Applying transform (2.12) to dynamic boundary condition (1.4.dBC), we obtain, for all t ∈ [0, T]
and all λ ∈C,

f1(λ; t) = −F[b(·)q(0, ·)](λ; t), (3.3)

so we can rewrite the solution representation as:

2πq(x, t) =
∫ ∞

−∞
eiλx−λ2tq̂0(λ) dλ −

∫
∂DR

eiλx−λ2tF[(iλ − b(·))q(0, ·)](λ; T) dλ. (3.4)

Equation (3.3) also allows us to simplify the global relation (3.1) to

q̂0(λ) − eλ2T q̂(λ; T) = F[(iλ − b(·))q(0, ·)](λ; T), (3.5)

valid for all λ ∈ clos(C−).
Denoting by

√· the principle branch of the square root function, we make the change of
variables λ = −i

√−iρ, λ2 = iρ, as depicted in Figure 1, in equation (3.5) to obtain

q̂0

(
−i

√−iρ
)

− eiρT q̂
(
−i

√−iρ; T
)

= F
[(√−iρ − b(·)

)
q(0, ·)

] (
−i

√−iρ; T
)

=
∫ T

0
eiρs

(√−iρ − b(s)
)

q(0, s) ds, (3.6)

valid for all ρ ∈C, with a cut along −i[0, ∞), and a square root branch point at 0. Note that
the right of this equation is a temporal Fourier transform (under Definition A.2) of the function(√−iρ − b(·)) q(0, ·) supported on [0, T].
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The multiplier
√−iρ of a Fourier transform type integral, appearing on the right of equa-

tion (3.6), is redolent of the formula for Fourier transforms of derivatives, except that this appears
to represent a half-derivative. Indeed, by Proposition A.4,

q̂0

(
−i

√−iρ
)

− eiρT q̂
(
−i

√−iρ; T
)

=
∫ T

0
eiρs

[(
CD1/2

0 +q(0, ·)
)

(s) − b(s)q(0, s)
]

ds + 1√−iρ

(
q(0, 0) − q(0, T)eiρT

)
, (3.7)

for CD1/2
0 + the Caputo half-derivative operator of Definition A.1. Let R be the contour following

the real line in the increasing sense, except perturbed away from 0 into C
+ along a circular arc

of radius R. Then, multiplying by e−iρt and integrating each side of equation (3.7) in ρ along
R, it is immediate from Jordan’s lemma that the final term on the right side evaluates to 0.
Taking the limit as R → 0, and applying the Fourier inversion theorem for the Fourier transform
of Definition A.2, we obtain(

CD1/2
0 +y

)
(t) − b(t)y(t)

= 1

2π

∫ ∞

−∞
e−iρt

[
q̂0

(
−i

√−iρ
)

+ q0(0)√−iρ
− eiρT q̂

(
−i

√−iρ; T
)]

dρ, (3.8)

where y(t) = q(0, t). By Lemma 2.6 with θ = −π/2, equation (3.8) simplifies to(
CD1/2

0 +y
)

(t) − b(t)y(t) = 1

2π

∫ ∞

−∞
e−iρt

[
q̂0

(
−i

√−iρ
)

+ q0(0)√−iρ

]
dρ =: g(t), (3.9)

in which the new datum g has been defined as this unusual double Fourier transform of the initial
datum.

Equation (3.9) is an inhomogeneous variable coefficient Caputo fractional linear ordinary dif-
ferential equation. The theory of such equations is presented in [39, Section 7.5] and [58]. We
proceed under the assumption that both data g and b are 1

2 analytic about the 1
2 ordinary point 0

with radius R, so that

b(t) =
∞∑

u=0

Butu/2, g(t) =
∞∑

u=0

Gutu/2. (3.10)

In practice, these coefficients may be calculated by successive application of the Caputo frac-
tional derivative operator [58]. The existence of a solution y, 1

2 analytic at 0 with radius R, is
guaranteed by [39, Theorem 7.16]. So we seek a series solution of the form:

q(0, t) = y(t) =
∞∑

u=0

Yutu/2. (3.11a)

By [39, Remark 7.2],

(
CD1/2

0 +y
)

(t) =
∞∑

u=1

Yu
(u/2 + 1)

((u − 1)/2 + 1)
t(u−1)/2.
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Substituting into equation (3.9), we obtain the recurrence relation:

Yu+1 = ((u + 2)/2)

((u + 3)/2)

(
Gu +

u∑
v=0

YvBu−v

)
, (3.11b)

and Y0 = q0(0) because limt→0 q(0, t) = q0(0).
The following theorem establishes that equations (3.4) and (3.11) provide a valid solution to

IdBVP (1.4), and the solution representation obtained is effective.

Theorem 3.1 Suppose that q0 ∈ S[0, ∞). Suppose further that b and g, the latter given by the
definition on the right of equations (3.9), are 1

2 analytic functions at 0, with 1
2 power series given

by equations (3.10), with radii of convergence both strictly greater than T. For U ∈N, let

yU (t) =
U∑

u=0

Yutu/2,

in which Y0 = q0(0) and, for all integer u � 0, Yu+1 is given by relation (3.11b). For U ∈N and
(x, t) ∈ [0, ∞) × [0, T], let

qU (x, t) = 1

2π

∫ ∞

−∞
eiλx−λ2tq̂0(λ) dλ − 1

2π

∫
∂DR

eiλx−λ2tF[(iλ − b(·))yU (·)](λ; T) dλ.

Then

(1) For each U ∈N, the formula defining qU (x, t) is given by integrals that converge uniformly
in (x, t) ∈ [0, ∞) × [0, T]; differentiating under the integral yields a formula for ∂xqU (x, t),
also in terms of integrals uniformly convergent in (x, t) ∈ [0, ∞) × [0, T].

(2) For all U ∈N, qU satisfies equation (1.4.PDE).
(3) For all U ∈N, qU satisfies equation (1.4.IC).
(4) If q is a solution of IdBVP (1.4), then q is unique among functions satisfying (2.2) and the

criteria of this theorem, and, uniformly in (x, t) ∈ [0, ∞) × [0, T],

lim
U→∞ qU (x, t) = q(x, t).

Proof The first three statements follow immediately from proposition 2.2 for this particular
IdBVP.

As argued above, if q solves IdBVP (1.4), then q(0, t) is a solution of equation (3.9) with initial
condition q(0, 0) = q0(0). By [39, Theorem 7.16], this problem has a unique 1

2 analytic solution.
This justifies the claimed unicity of q, but also it must be that

q(0, t) = yU (t) + RU (t), where RU (t) =
∞∑

u=U+1

Yutu/2;

because RU corresponds to the remainder of the 1
2 power series for the same 1

2 analytic function
y, we refer to RU as the U tail corresponding to partial sum yU . Moreover, because (RU )U∈N is
the sequence of tails of a 1

2 power series with radius of convergence strictly greater than T , RU (t)
converges to 0 uniformly in t ∈ [0, T].
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The linear dependence of qU on yU , and the fact that q(0, ·) must be the exact solution of
equation (3.9), imply that qU (x, t) = q(x, t) − EU (x, t) in which

2πEU (x, t) =
∫

∂DR

eiλx−λ2t
∫ T

0
eλ2s(iλ − b(s))RU (s) ds dλ.

Therefore, the desired result is equivalent to EU (x, t) → 0 as U → ∞, uniformly in (x, t) ∈
[0, ∞) × [0, T].

We make the change of variables λ = i
√−iρ, λ2 = iρ to find

2πEU (x, t) =
∫ ∞

−∞
e−√−iρx−iρt

∫ T

0
eiρsRU (s) ds dρ, (3.12)

where we applied Proposition A.3 to obtain the simple formula:

RU (t) = −1

2

(
RU (t) +

(
I1/2
0 + (bRU )

)
(t)

)
, (3.13)

in which I1/2
0 + is the Riemann–Liouville half-integral operator of Definition A.1. Multiplying

RU by another 1
2 analytic function b yields another function converging uniformly in t ∈ [0, T],

and [17, Theorem 2.7] guarantees that the uniformity is preserved when a Riemann–Liouville
fractional integral operator is applied. Hence, RU (t) → 0 as U → ∞, uniformly in t ∈ [0, T].

In the case x = 0, the Fourier inversion theorem simplifies equation (3.12) to EU (0, t) =RU (t),
so EU (0, t) → 0 as U → ∞, uniformly in t ∈ [0, T].

Now consider an arbitrary fixed x > 0. By equation (3.12),

EU (x, t) = (�(·; x) ∗RU )(t),

in which ∗ represents convolution and the integral in definition:

�(t; x) =
∫ ∞

−∞
e−iρte−√−iρx dρ,

is guaranteed to converge by the fact Re(−√−iρx) → −∞ as ρ → ±∞. Moreover,

‖�(·; x)‖1 � 2T

∫ ∞

0
e−√

ρ/2x dρ = 8T

x2
.

Therefore,

|EU (x, t)|� 8T

x2
‖RU‖∞ .

For any fixed x0 > 0, the right side converges to 0 as U → ∞, uniformly in (x, t) ∈ [x0, ∞) ×
[0, T].

Applying Proposition 2.2((1)) with q0 = 0, φ0 = RU and φ1 = −bRU , compatible because
RU (0) = 0, the integral on the right of equation (3.12) has x derivative given by differentiation
under the integral, and this holds even at x = 0. Therefore,

∂xEU (0, t) =
∫ ∞

−∞
−√−iρe−iρt

∫ T

0
eiρsRU (s) ds dρ = −

(
CD1/2

0 +RU

)
(t),

in which the boundary terms vanish by Jordan’s lemma and because RU (0) = 0. For U > 1,
RU is differentiable, with derivative also the tail of a 1

2 power series with the same radius
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of convergence, so R′
U (t) → 0 uniformly in t ∈ [0, T], and, using again [17, theorem 2.7], so

does
(

CD1/2
0 +RU

)
(t). In particular, this means that EU (x, t) is equicontinuous in t ∈ [0, T] and

U ∈N at x = 0. Finally, we conclude that EU (x, t) → 0 as U → ∞, uniformly in (x, t) ∈ [0, ∞)
× [0, T].

Remark 3.2 Although we assumed strong regularity of q0, this is not strictly necessary.
However, the requirement of 1

2 analyticity on b, g suggests diminishing returns in reducing the
regularity of q0. There already exists a theory for the Frobenius method at 1

2 singular points [39],
but its application in this setting is left for future work.

Remark 3.3 The uniform convergence of qU (x, t) → q(x, t) in Theorem 3.1 is at the same rate as
the fractional power series tail RU converges to 0, as is most clearly demonstrated in the above
proof at x = 0, but is also evident at x0 > 0. Indeed, even convergence pointwise in x is only as
fast as the fractional power series converges.

This completes stage 2 of the Fokas transform method for IdBVP (1.4). However, Theorem 3.1
relied upon the assumption that there exists a solution of IdBVP (1.4), which has yet to be jus-
tified. The following theorem shows that the function qU , as constructed in Theorem 3.1, does
indeed converge to a solution of IdBVP (1.4). Therefore, such a solution must exist and stage 3
of the Fokas transform method is complete.

Theorem 3.4 There exists a solution to IdBVP (1.4). Moreover, supposing all criteria of
Theorem 3.1 except existence of a solution for IdBVP (1.4), then, uniformly in t ∈ [0, T],

lim
U→∞ (b(t)qU (0, t) + ∂xqU (0, t)) = 0,

so that, in the limit U → 0, dynamic boundary condition (1.4.dBC) is recovered.

Proof Let y be the solution of fractional differential equation (3.9), whose unicity is guaranteed
by [39, Theorem 7.16]. Then,

y(t) = yU (t) + RU (t),

for RU the U tail of the fractional power series for y. We define

q(x, t) = 1

2π

∫ ∞

−∞
eiλx−λ2tq̂0(λ) dλ − 1

2π

∫
∂DR

eiλx−λ2tF[(iλ − b(·))y(·)](λ; T) dλ.

Thus, q is defined by equation (2.13) in which φ0(t) = y(t) and φ1(t) = −b(t)y(t). Because y
satisfies equation (3.9), there is, for each t ∈ [0, T], some function γ (x, t) for which

q̂0(λ) − eλ2tγ̂ (λ; t) = F[(iλ − b(·))y(·)](λ; t) = iλF[φ0] + F[φ1](λ; t).

Therefore, by Proposition 2.5,

b(t)q(0, t) + qx(0, t) = b(t)φ0(t) + φ1(t) = b(t)y(t) − b(t)y(t) = 0,

so q satisfies dynamic boundary condition (1.4.dBC).
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By construction, q depends upon y in exactly the same way qU depends upon yU , and that
dependence is linear. Therefore, qU (x, t) = q(x, t) − EU (x, t), in which

2πEU (x, t) =
∫

∂DR

eiλx−λ2t
∫ T

0
eλ2s (iλ − b(s)) RU (s) ds dλ.

So it is equivalent for us to prove that, uniformly in t ∈ [0, T],

lim
U→∞ EU (t) = 0,

in which EU (t) = 2π [b(t)EU (0, t) + ∂xEU (0, t)].
Making the change of variables λ = i

√−iρ, λ2 = iρ,

EU (t) = −1

2

∫ ∞

−∞
e−iρt b(t) − √−iρ√−iρ

∫ T

0
eiρs

(
b(s) −√−iρ

)
RU (s) ds dρ.

Multiplying out the parentheses to obtain four terms, each expressed as its own double integral,
we notice that each term is a pseudodifferential operator applied to RU . Two are trivial to evaluate
and turn out to be the same; the other two represent a Riemann–Liouville 1

2 integral and a Caputo
1
2 derivative of the remainder function RU , so

|EU (t)|� 1

2

(
2 |b(t)| × |RU (t)| + |b(t)| ×

∣∣∣(I1/2
0 + (RU b)

)
(t)

∣∣∣+ ∣∣∣(I1/2
0 + R′

U

)
(t)

∣∣∣) .

Because T is strictly less than the radius of convergence of the 1
2 power series, RU (t) → 0 as

U → ∞, uniformly in t ∈ [0, T], and so does RU (t)b(t), the product of RU with another 1
2 analytic

function. Similarly, R′
U also converges to 0 uniformly on [0, T]. Therefore, by [17, Theorem 2.7],

so do their Riemann–Liouville 1
2 integrals. As b is 1

2 analytic, it is certainly bounded on [0, T].
Therefore, uniformly in t ∈ [0, T], limU→∞ EU (t) = 0.

3.1 Caputo versus Riemann–Liouville fractional derivatives

One may ask why we choose the Caputo fractional derivative, rather than the Riemann–Liouville
fractional derivative, in the argument between equations (3.6) and (3.7). Indeed, with a trivial
adaptation of the proof we give, one may easily prove a version of Proposition A.4 for Riemann–
Liouville fractional derivatives with the same

√−iρ multiplying the Fourier transform:(F RLDα
0 +y

)
(ρ) = (−iρ)α (Fy) (ρ) − (

Iα
0 +y

)
(0) + (

Iα
0 +y

)
(T)eiρT .

Therefore, by inserting the above boundary terms instead, we could obtain a version of equa-
tion (3.7) with the Riemann–Liouville fractional derivative instead of the Caputo fractional
derivative. However, the lack of decay of the Riemann–Liouville boundary terms would preclude
their subsequent elimination via Jordan’s lemma. Therefore, the Caputo fractional derivative is
the better choice.

Remark 3.5 Note that the boundary terms on the right of equation (3.7) are related to the two
terms on the left of that equation. Indeed, integrating by parts in each of the Fourier transforms
on the left, one obtains leading order terms which exactly cancel with the terms on the right. This
cancellation is also unique to the Caputo fractional derivative.
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4 Further examples

4.1 Linear Schrödinger with inhomogeneous dynamic boundary condition

In IdBVP (1.5), the global relation (2.3) at final time is

q̂0(λ) − eiλ2T q̂(λ; T) = i (iλf0(λ; T) + f1(λ; T)) .

Applying transform (2.12) to dynamic boundary condition (1.5.dBC), the global relation
simplifies further to

q̂0(λ) − eiλ2T q̂(λ; T) = iF [(iλ − b(·)) q(0, ·)] (λ; T) + iF[h](λ; t).

We make the change of variables λ = −√
i
√−iρ, λ2 = ρ and find that

1√
i
q̂0

(
−√

i
√−iρ

)
− 1√

i
eiρT q̂

(
−√

i
√−iρ; T

)
=

∫ T

0
eiρs

(√−iρ − √
ib(s)

)
q(0, s) ds + √

iF[h]
(
−√

i
√−iρ; T

)
.

We use Proposition A.4 to substitute∫ T

0
eiρs

√−iρq(0, s) ds

for the Fourier transform of a Caputo fractional derivative, with associated boundary terms. Just
as in Section 3, we multiply both sides of the above equation by e−iρt and integrate along contour
R in ρ, where R is the real line perturbed into C

+ along a semicircular arc centred at 0. Jordan’s
lemma removes the q̂(·, T) and q(0, T) terms. A limit as R → 0 and an application of the Fourier
inversion theorem for the Fourier transform of Definition A.2 yields(

CD1/2
0 +y

)
(t) − √

ib(t)y(t)

= −√
i

2π

∫ ∞

−∞
e−iρt

[
iq̂0

(
−√

i
√−iρ

)
+ q0(0)√

i
√−iρ

+ F[h]
(
−√

i
√−iρ; T

)]
dρ

=:
√

ig(t), (4.1)

where y = q(0, ·). Note that, because h and q0 are data of the IdBVP, we have once again reduced
the D to N map to an inhomogeneous variable coefficient Caputo fractional linear ordinary
differential equation.

Theorem 4.1 Suppose that q0 ∈ S[0, ∞). Suppose further that b and g, the latter given by the
definition on the right of equation (4.1), are 1

2 analytic functions at 0, with 1
2 power series:

b(t) =
∞∑

u=0

Butu/2, g(t) =
∞∑

u=0

Gutu/2, (4.2)

with radii of convergence both strictly greater than T. For U ∈N, let

yU (t) =
U∑

u=0

Yutu/2,
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in which Y0 = q0(0) and, for all integer u � 0, Yu+1 is given by:

Yu+1 = √
i
((u + 2)/2)

((u + 3)/2)

(
Gu +

u∑
v=0

YvBu−v

)
. (4.3)

For U ∈N and (x, t) ∈ [0, ∞) × [0, T], let

qU (x, t) = 1

2π

∫ ∞

−∞
eiλx−iλ2tq̂0(λ) dλ − i

2π

∫
∂DR

eiλx−iλ2tF[(iλ − b(·))yU (·) + h(·)](λ; T) dλ.

Then

(1) For each U ∈N, the formula defining qU (x, t) is given by integrals that converge uniformly
in (x, t) ∈ [0, ∞) × [0, T]; differentiating under the integral yields a formula for ∂xqU (x, t),
also in terms of integrals uniformly convergent in (x, t) ∈ [0, ∞) × [0, T].

(2) For all U ∈N, qU satisfies equation (1.5.PDE).
(3) For all U ∈N, qU satisfies equation (1.5.IC).
(4) If q is a solution of IdBVP (1.5), then q is unique among functions satisfying (2.2) and the

criteria of this theorem, and, uniformly in t ∈ [0, T] and pointwise in x ∈ [0, ∞),

lim
U→∞ qU (x, t) = q(x, t).

(5) IdBVP (1.5) has a solution q given by:

q(x, t) = 1

2π

∫ ∞

−∞
eiλx−iλ2tq̂0(λ) dλ

− i

2π

∫
∂DR

eiλx−iλ2tF[(iλ − b(·))y(·) + h(·)](λ; T) dλ.

in which y is the solution of equation (4.1). Dynamic boundary condition (1.5.dBC) is
satisfied in the limit U → ∞, uniformly in t ∈ [0, T].

Proof The proof may be adapted from the proof of Theorem 3.1 with reference to the derivation
in Section 4.1.

Alternatively, we proceed as follows. The first three claims are Proposition 2.2. The existence
and unicity of a solution for Caputo fractional differential equation (4.1) are established in [39,
Theorem 7.16]. The fourth claim is now a corollary of Theorem 5.2. The fifth claim follows from
Theorem 5.3.

4.2 LKdV with one dynamic boundary condition

IdBVP (1.6) has global relation (2.3):

q̂0(λ) − e−iλ3T q̂(λ; T) = λ2f0(λ; T) − iλf1(λ; T) − f2(λ; T). (4.4)

Upon application of transform (2.12) to dynamic boundary condition (1.6.dBC), the global
relation simplifies to

q̂0(λ) − e−iλ3T q̂(λ; T) = F
[(

λ2 + b(·)) q(0, ·)] (λ; T) − iλf1(λ; T). (4.5)
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Even after this reduction, global relation (4.5) is an integral equation relating two unknown
quantities: q(0, ·) and qx(0, ·). Observe that this integral equation holds for all λ ∈ clos C− and,
when applying the inverse Fourier transform, we require validity on only a single complex con-
tour. We will find two contours on which to pose an inverse Fourier transform, thereby obtaining
a system of two fractional linear ordinary differential equations in the two unknowns. Recalling
that it will be crucial to establish that any terms involving q̂(λ; T) evaluate to zero after an
appropriate inverse Fourier transform has been applied, we investigate the domain of validity
of Lemma 2.6.

We seek two maps satisfying λ = eiθ 3
√−iρ and λ3 = −ρ for which ei3θ = −i = e−iπ/2 and

−5π/6 � θ �−π/6. A simple calculation reveals that the only valid choices are θ1 = −π/6 and
θ2 = −5π/6. Applying those maps, we find

q̂0

(
eiθk 3

√−iρ
)

− eiρT q̂
(

eiθk 3
√−iρ; T

)
= F

[(
ei2θk

(
3
√−iρ

)2 + b(·)
)

q(0, ·)
] (

eiθk 3
√−iρ; T

)
− ieiθk 3

√−iρf1
(

eiθk 3
√−iρ; T

)
. (4.6)

We use Proposition A.4 to substitute two of these terms for Caputo fractional derivatives,
obtaining

q̂0

(
eiθk 3

√−iρ
)

− eiρT q̂
(

eiθk 3
√−iρ; T

)
= ei2θk

(
F CD2/3

0 +y
)

(ρ) + ei2θk

(
y(0) − y(T)eiρT

3
√−iρ

)
+ (F[by]) (ρ)

− ieiθk

(
F CD1/3

0 +z
)

(ρ) − ieiθk

(
z(0) − z(T)eiρT(

3
√−iρ

)2

)
, (4.7)

in which y = q(0, ·) and z = qx(0, ·). As in the previous examples, we multiply by the Fourier
kernel e−iρt, integrate along R and take the limit as R → 0. The Fourier inversion theorem and
Lemma 2.6 provides a system of two equations, one for each k ∈ {1, 2},

ei2θk

(
CD2/3

0 +y
)

(t) + b(t)y(t) − ieiθk

(
CD1/3

0 +z
)

(t)

= 1

2π

∫ ∞

−∞
e−iρt

[
q̂0

(
eiθk 3

√−iρ
)

− ei2θk q0(0)
3
√−iρ

+ ieiθk q′
0(0)(

3
√−iρ

)2

]
dρ. (4.8)

We eliminate
(

CD1/3
0 +z

)
from the system to obtain(

CD2/3
0 +y

)
(t) + b(t)y(t)

= 1

2
√

3π

∫ ∞

−∞
e−iρt

[
e−iθ1 q̂0

(
eiθ1 3

√−iρ
)

− e−iθ2 q̂0

(
eiθ2 3

√−iρ
)

−
√

3q0(0)
3
√−iρ

]
dρ

=: g(t). (4.9)
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Solution representation (2.11) for this IdBVP is

2πq(x, t) =
∫ ∞

−∞
eiλx+iλ3tq̂0(λ) dλ −

∫
∂DR

eiλx+iλ3t
[
λ2f0(λ; t) − iλf1(λ; t) − f2(λ; t)

]
dλ, (4.10)

and f0 and f2 are readily calculated from q(0, ·) and qxx(0, ·), respectively, the latter of which can
be determined from dynamic boundary condition (1.6.dBC). It remains to find a valid expression
for f1 that may be substituted into equation (4.10). There are two methods one may follow.

The first approach is to rearrange one of the equations (4.8) to(
CD1/3

0 +z
)

(t) = ie−iθk

2π

∫ ∞

−∞
e−iρtq̂0

(
eiθk 3

√−iρ
)

dρ − ieiθk

(
CD2/3

0 +y
)

(t) + b(t)y(t), (4.11)

in which y is now known. Applying the left-sided Riemann–Liouville 1/3 fractional integral
operator, we obtain an expression for z = qx(0, ·), and thereby an expression for f1.

The alternative approach, inspired by the Fokas transform method for IBVP, is to return to the
original global relation (4.4), apply one of the maps λ �→ e±2iπ/3λ and solve for f1 directly. The
resulting expression depends on q̂(·; T), but a Jordan’s lemma argument may be used to show
that the integral about ∂DR of the term involving q̂(·; T) evaluates to 0. This is a purely algebraic
method for obtaining f1, without going via qx(0, ·), thereby avoiding any more fractional
integrals.

Note that both of these methods have some redundancy; one may choose either k ∈ {1, 2} in the
former, and either of maps λ �→ e±2iπ/3λ in the latter. The second method provides an alternative
view of this redundancy. Indeed, suppose one did not take advantage of the dynamic boundary
condition (1.6.dBC) to find qxx(0, ·), and so had yet to calculate f2. One may use both the maps
λ �→ e±2iπ/3λ in the second approach and solve the resulting system for both f1 and f2. The same
Jordan’s lemma type arguments would then establish that all terms featuring q̂(·; T) evaluate to 0.

Theorem 4.2 Suppose that q0 ∈ S[0, ∞). Suppose further that b and g, the latter given by the
definition on the right of equation (4.9), are 2

3 analytic functions at 0, with 2
3 power series:

b(t) =
∞∑

u=0

But2u/3, g(t) =
∞∑

u=0

Gut2u/3, (4.12)

with radii of convergence both strictly greater than T. For U ∈N, let

yU (t) =
U∑

u=0

Yut2u/3,

in which Y0 = q0(0) and, for all integer u � 0, Yu+1 is given by:

Yu+1 = ((2u + 3)/3)

((2u + 5)/3)

(
Gu −

u∑
v=0

YvBu−v

)
. (4.13)

For U ∈N and (x, t) ∈ [0, ∞) × [0, T], let α = e2π i/3 and

qU (x, t) = 1

2π

∫ ∞

−∞
eiλx+iλ3tq̂0(λ) dλ

− 1

2π

∫
∂DR

eiλx+iλ3t
(
(1 − α)F[(λ2 − α2b(·))yU (·)](λ; T) + α2q̂0(αλ)

)
dλ.
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Then

(1) For each U ∈N, the formula defining qU (x, t) is given by integrals that converge uniformly
in (x, t) ∈ [0, ∞) × [0, T]; differentiating under the integral yields a formula for ∂xqU (x, t),
also in terms of integrals uniformly convergent in (x, t) ∈ [0, ∞) × [0, T].

(2) For all U ∈N, qU satisfies equation (1.6.PDE).
(3) For all U ∈N, qU satisfies equation (1.6.IC).
(4) If q is a solution of IdBVP (1.6), then q is unique among functions satisfying (2.2) and the

criteria of this theorem, and, uniformly in (x, t) ∈ [0, ∞) × [0, T],

lim
U→∞ qU (x, t) = q(x, t).

(5) IdBVP (1.6) has a solution q given by:

q(x, t) = 1

2π

∫ ∞

−∞
eiλx+iλ3tq̂0(λ) dλ

− 1

2π

∫
∂DR

eiλx+iλ3t
(
(1 − α)F[(λ2 − α2b(·))y(·)](λ; T) + α2q̂0(αλ)

)
dλ.

in which y is the solution of equation (4.9). Dynamic boundary condition (1.6.dBC) is
satisfied in the limit U → ∞, uniformly in t ∈ [0, T].

Proof The proof may be adapted from the proof of Theorem 3.1 with reference to the derivation
in Section 4.2.

Alternatively, the first three results are Proposition 2.2, equation (4.9) has a unique solution
by [39, Theorem 7.16], so the fourth result follows by an application of Theorem 5.2. The fifth
result is Theorem 5.3.

4.3 LKdV with two dynamic boundary conditions

The global relation (2.3) in IdBVP (1.7) is

q̂0(λ) − eiλ3T q̂(λ; T) = −λ2f0(λ; T) + iλf1(λ; T) + f2(λ; T).

Applying transform (2.12) to dynamic boundary conditions (1.7.dBC1) and (1.7.dBC2), the
global relation simplifies to

q̂0(λ) − eiλ3T q̂(λ; T) = F
[(−λ2 − iλb(·) − β(·)) q(0, ·)] (λ; T). (4.14)

In order to apply Lemma 2.6, we seek a single map λ = eiθ 3
√−iρ, λ3 = ρ so that ei3θ = i =

eiπ/2 and −5π/6 � θ �−π/6. Proceeding with the only valid choice, θ = −π/2, and applying
Proposition A.4 three times, we find
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q̂0

(
−i 3

√−iρ
)

− eiρT q̂
(
−i 3

√−iρ; T
)

= F

[((
3
√−iρ

)2 − 3
√−iρb(·) − β(·)

)
y(·)

] (
−i 3

√−iρ; T
)

= − (F[βy]) (ρ) −
(
F CD1/3

0 +[by]
)

(ρ) − b(0)y(0) − b(T)y(T)eiρT(
3
√−iρ

)2

+
(
F CD1/3 2

0 + y
)

(ρ) +
(

CD1/3
0 +y

)
(0) −

(
CD1/3

0 +y
)

(T)eiρT(
3
√−iρ

)2
+ y(0) − y(T)eiρT

3
√−iρ

, (4.15)

in which y = q(0, ·). By Definition A.1,
(

CD1/3
0 +y

)
(0) = 0. The inverse Fourier transform and

Lemma 2.6 yields a sequential inhomogeneous variable coefficient Caputo fractional linear
ordinary differential equation:(

CD1/3 2
0 + y

)
(t) −

(
CD1/3

0 +by
)

(t) − β(t)y(t)

= 1

2π

∫ ∞

−∞
e−iρt

[
q̂0

(
−i 3

√−iρ
)

− q0(0)
(

3
√−iρ − b(0)

)(
3
√−iρ

)2

]
dρ =: g(t). (4.16)

Remark 4.3 In the derivation of equation (4.15), we opted to use the sequential Caputo frac-

tional derivative
(

CD1/3 2
0 + y

)
, but we could have used the 2/3 Caputo fractional derivative(

CD2/3
0 +y

)
in its stead. Indeed, the latter may appear preferable, as it would generate fewer

boundary terms. Unfortunately, to the best of the authors’ knowledge, there is no existence or
uniqueness theorem for Caputo fractional linear ordinary differential equations with variable
coefficients and non-sequential fractional derivatives of mixed orders. Therefore, we elect to
employ sequential Caputo fractional derivatives.

Theorem 4.4 Suppose that q0 ∈ S[0, ∞). Suppose further that b and g, the latter given by the
definition on the right of equation (4.16), are 1

3 analytic functions at 0, with 1
3 power series:

b(t) =
∞∑

u=0

Butu/3, β(t) =
∞∑

u=0

Butu/3, g(t) =
∞∑

u=0

Gutu/3, (4.17)

with radii of convergence all strictly greater than T. For U ∈N, let

yU (t) =
U∑

u=0

Yutu/3,

in which Y0 = q0(0), Y1 = 0 and, for all integer u � 0, Yu+2 is given by:

Yu+2 = ((u + 4)/3)

((u + 5)/3)

u+1∑
v=0

YvBu−v + ((u + 3)/3)

((u + 5)/3)

(
Gu +

u∑
v=0

YvBu−v

)
. (4.18)
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For U ∈N and (x, t) ∈ [0, ∞) × [0, T], let

qU (x, t) = 1

2π

∫ ∞

−∞
eiλx−iλ3tq̂0(λ) dλ

− 1

2π

∫
∂DR

eiλx−iλ3tF[(−λ2 − iλb(·) − β(·))yU (·)](λ; T) dλ.

Then

(1) For each U ∈N, the formula defining qU (x, t) is given by integrals that converge uniformly
in (x, t) ∈ [0, ∞) × [0, T]; differentiating under the integral yields formulae for ∂xqU (x, t)
and ∂xxqU (x, t), also in terms of integrals uniformly convergent in (x, t) ∈ [0, ∞) × [0, T].

(2) For all U ∈N, qU satisfies equation (1.7.PDE).
(3) For all U ∈N, qU satisfies equation (1.7.IC).
(4) If q is a solution of IdBVP (1.7), then q is unique among functions satisfying (2.2) and the

criteria of this theorem, and, uniformly in t ∈ [0, T] and pointwise in x ∈ [0, ∞),

lim
U→∞ qU (x, t) = q(x, t).

(5) IdBVP (1.7) has a solution q given by:

q(x, t) = 1

2π

∫ ∞

−∞
eiλx−iλ3tq̂0(λ) dλ

− 1

2π

∫
∂DR

eiλx−iλ3tF[(−λ2 − iλb(·) − β(·))y(·)](λ; T) dλ.

in which y is the solution of (4.16). Dynamic boundary conditions (1.7.dBC1)
and (1.7.dBC2) are satisfied in the limit U → ∞, uniformly in t ∈ [0, T].

Proof The proof may be adapted from the proof of Theorem 3.1 with reference to Section 4.3.
Alternatively, note that the first three statements are Proposition 2.2. As a lemma for the fourth

statement, we claim that equation (4.16) has a unique solution. Indeed, although it is usually dif-
ficult to formulate a product rule for Caputo fractional derivatives, the 1

3 analyticity assumption
together with Mertens’s theorem simplifies the reduction of equation (4.16) to one that may be
considered under the framework of [39, Theorem 7.18]. Therefore, the fourth statement follows
by an application of Theorem 5.2. The fifth statement follows from Theorem 5.3.

5 General D to N map and convergence

Lemma 5.1 Suppose that n, a, and N satisfy criterion (1.2). There are exactly n − N values of
θ for which both

einθ = −1/a, (5.1)

−(2n − 1)π/2n � θ �−π/2n (5.2)

hold.

Proof We separate the argument into each of the three cases permissible under criteria (1.2).
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FIGURE 2. The maps ρ �→ λ = eiθk n
√−iρ in which n = 6 and a = eiπ/6 so that θ4 = −5π/36, θ5 = −17π/36,

and θ6 = −29π/36. The nth root is biholomorphic between the unshaded regions of the first two diagrams
and the function defining the map has a branch cut along the negative imaginary half-axis.

Suppose n is odd and a = −i, so that n − N = (n + 1)/2 and criterion (5.1) is equivalent to
einθ = e−iπ/2. There are n − N integers r for which 0 � r � n − N − 1. For such integers, 1 �
4r + 1 � 2n − 1. If, for such r, θ = −π (4r + 1)/2n, then θ satisfies both criteria (5.1) and (5.2).
Increasing θ by any non-integer multiple of 4π/2n would result in the failure of criterion (5.1).
Choosing any integer r for which 0 � r � n − N − 1 is false would falsify criterion (5.2).

Suppose instead that n is odd but a = i, in which case n − N = (n − 1)/2 and criterion (5.1)
becomes einθ = eiπ/2. There are n − N integers r for which 1 � r � n − N , hence,

1 < 3 � 4r − 1 � 2n − 3 < 2n − 1.

Setting θ = −π (4r − 1)/2n for each of those n − N choices of r, we obtain n − N values of
θ satisfying both criteria. Other integers r violate criterion (5.2) and non-integer r violate
criterion (5.1).

If n is even then n − N = n/2 and there must exist some φ ∈ [−π/2, π/2] for which a = eiφ .
Defining φ′ = 2(π + φ)/π , we see that φ′ ∈ [1, 3] and criterion (5.1) reduces to einθ = e−iφ′π/2.
There are n − N integers r such that 0 � r � n − N − 1. For each of those integers r,

1 � 0 + φ′ � 4r + φ′ � 2n − 4 + φ′ � 2n − 1.

For each of the n − N such r, the choice θ = −π (4r + φ′)/2n satisfies both criteria. Shifting such
θ by a non-integer multiple of 4rπ/2n violates criterion (5.1), and any other integer choice for r
fails criterion (5.2).

Lemma 5.1 guarantees the existence of n − N maps λ = eiθ n
√−iρ, λn = iρ/a for which cri-

teria (5.1) and (5.2) both hold, as depicted in Figure 2. We index θ = θk by k ∈ {N + 1, N +
2, . . . , n}. In the global relation (2.3), we apply each of those n − N maps to obtain

q̂0

(
eiθk n

√−iρ
)

− eiρT q̂
(

eiθk n
√−iρ; T

)
=

n−1∑
j=0

cj

(
eiθk n

√−iρ
)

fj
(

eiθk n
√−iρ; T

)
(5.3)
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Applying the inverse Fourier transform to equation (5.3), and using Proposition A.4 and
Lemma 2.6, we obtain, for k ∈ {N + 1, N + 2, . . . , n},

n−1∑
j=0

cj

(
eiθk

) (
CD1/n (n−1−j)

0 + [∂ j
xq](0, ·)

)
(t)

= 1

2π

∫ ∞

−∞
e−iρt

⎡⎣q̂0

(
eiθk n

√−iρ
)

−
n−2∑
j=0

cj

(
eiθk

)
q(j)

0 (0)(
n
√−iρ

)j+1

⎤⎦ dρ. (5.4)

Combined with the dynamic boundary conditions (1.1.dBC), this provides a system of n inhomo-
geneous variable coefficient sequential Caputo fractional linear ordinary differential equations in
the n functions ∂ j

xq(0, ·). We proceed under the assumption that the system has a unique solution.

Theorem 5.2 Suppose that system (5.4), together with the dynamic boundary condi-
tions (1.1.dBC) and compatibility conditions (1.3), has a unique solution; for the avoidance
of confusion, we denote this solution by yj in place of ∂ j

xq(0, ·). Suppose further that each yj is a
1
n analytic function at 0 with partial sums yj U and radius of convergence strictly greater than T.
For U ∈N and (x, t) ∈ [0, ∞) × [0, T], let

qU (x, t) = 1

2π

∫ ∞

−∞
eiλx−aλntq̂0(λ) dλ − 1

2π

∫
∂DR

eiλx−aλnt
n−1∑
j=0

cj(λ)F[yj U ](λ; T) dλ.

Suppose that q is a solution of IdBVP (1.1). Then, q is the unique solution of IdBVP (1.1) among
functions satisfying (2.2) and the criteria of this theorem, and qU (x, t) → q(x, t) as U → ∞,
uniformly in t ∈ [0, T] and pointwise in x ∈ [0, ∞). If also n is even and Re(a) > 0, or n is odd
and a = −i, then, uniformly in (x, t) ∈ [0, ∞) × [0, T],

lim
U→∞ qU (x, t) = q(x, t).

Proof By the above argument, if q is a solution of problem (1.1), then its boundary values
satisfy the same system as yj. By hypothesis, this system has a unique solution, so q must also be
unique.

Let Rj U be the tails of the fractional power series, so that yj = yj U − Rj U . Then Rj U (t) →
0 uniformly in t ∈ [0, T] and, by linearity, the uniform limit we aim to prove is equivalent to
EU (x, t) → 0 uniformly in (x, t) ∈ [0, ∞) × [0, T], for

2πEU (x, t) =
∫

∂DR

eiλx−aλnt
n−1∑
j=0

cj(λ)F[Rj U ](λ; T) dλ.

It follows from its definition that DR is the disjoint union of the N sectorial connected
components:

DR =
N⋃

k=1

{
λ ∈C : |λ| > R

and 1
n

(
π
2 (4k − 3) − arg(a)

)
< arg(λ) < 1

n

(
π
2 (4k − 1) − arg(a)

) }
. (5.5)
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In the integral over the kth connected component of ∂DR, we apply the map λ = eiθk n
√−iρ,

λn = iρ/a for θk = 1
n (π (2k − 1) − arg(a)) to obtain

2πEU (x, t) = − i

∫ ∞

−∞

(
n
√−iρ

)−(n−1) N∑
k=1

eiθk eieiθk n√−iρx−iρt
n−1∑
j=0

cj

(
eiθk n

√−iρ
)∫ T

0
eiρsRj U (s) ds dρ

= −
∫ ∞

−∞

N∑
k=1

eieiθk n√−iρx−iρt
n−1∑
j=0

1(
ieiθk n

√−iρ
)j

∫ T

0
eiρsRj U (s) ds dρ

=
∫ ∞

−∞
e−iρt

N∑
k=1

eieiθk n√−iρx
∫ T

0
eiρsRk U (s) ds dρ,

in which

Rk U (t) = −
n−1∑
j=0

(
ieiθk

)−j
(

I j/n
0 +Rj U

)
(t). (5.6)

Each of the Riemann–Liouville fractional integrals of Rj U on the right of equation (5.6) is the
tail of a 1

n power series with the same radius of convergence strictly greater than T . Hence, for
each k ∈ {1, 2, . . . , N}, Rk U (t) → 0 as U → ∞, uniformly in t ∈ [0, T].

At x = 0, the usual Fourier inversion theorem yields EU (0, t) =∑N
k=1 Rk U (t), so EU (0, t) → 0

as U → ∞, uniformly in t ∈ [0, T].
For any fixed x,

EU (x, t) =
N∑

k=1

(�k(·; x) ∗Rk U ) (t),

for

�k(t; x) =
∫ ∞

−∞
e−iρteieiθk n√−iρx dρ.

For any x, eieiθk n√−iρx is a continuous and bounded function of ρ. Therefore, it is a tempered
distribution, and �k is also a tempered distribution. So EU (x, t) is (a sum of) convolutions of
tempered distributions with functions converging, uniformly in t ∈ [0, T], along with all their
derivatives, to 0. Therefore, for each x � 0, EU (x, t) → 0 as U → ∞ uniformly in t ∈ [0, T]. This
completes the proof of the first convergence claim.

The stronger assumption on a ensures that, for all non-zero ρ, Re(ieiθk n
√−iρ) < 0 and, in

the limit ρ → ±∞, Re(ieiθk n
√−iρ) → −∞. Therefore, the integral defining �k converges as a

Lebesgue integral and need not be interpreted in a distributional sense. By equation (5.5),

0 < m := min
{

arg
(

ieiθk n
√∓i

)
: k ∈ {1, 2, . . . , N}

}
.

We use this to bound

‖�k(·; x)‖1 �
2Tn!
(mx)n

.
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It follows that

|EU (x, t)|� 2Tn!
(mx)n

N∑
k=1

‖Rk U‖∞

If x0 > 0 is fixed, then the right converges, uniformly in (x, t) ∈ [x0, ∞) × [0, T], to 0 as U → ∞.
By Proposition 2.2((1)), with q0 = 0 and φj = Rj U , the x derivative of EU is given by

differentiating under the integral, so

2π∂xEU (0, t) =
∫ ∞

−∞
n
√−iρe−iρt

N∑
k=1

ieiθk

∫ T

0
eiρsRk U (s) ds dρ

=
N∑

k=1

ieiθk

(
CD1/n

0 +Rk U

)
(t).

The latter converges as U → ∞ uniformly in t ∈ [0, T], so EU (x, t) is equicontinuous in (t, U) ∈
[0, T] ×N at x = 0. Hence, EU → 0 as U → ∞ uniformly in (x, t) ∈ [0, ∞) × [0, T].

Theorem 5.3 Suppose that {(yj U )U∈N : j ∈ {0, 1 . . . , n − 1}} is the set of partial sums whose
limits are the 1

n power series {yj : j ∈ {0, 1 . . . , n − 1}} which satisfy simultaneously the system
of sequential Caputo fractional differential equations (5.4) and the dynamic boundary condi-
tions (1.1.dBC). Supposing that such a solution set exists, there exists a solution to IdBVP (1.1).
Moreover, for each k ∈ {1, 2, . . . , N}, uniformly in t ∈ [0, T],

lim
U→∞

⎛⎝n−1∑
j=0

bk j(t)yj U (t)

⎞⎠= hk(t),

so that, in the limit U → 0, dynamic boundary conditions (1.1.dBC) are recovered.

Proof Because the solution set {yj : j ∈ {0, 1 . . . , n − 1}} satisfy equations (5.4), we can apply
the derivation of the fractional differential equations in reverse to justify the existence of a
function γ whose Fourier transform satisfies

q̂0(λ) − eaλntγ̂ (λ) =
n−1∑
j=0

cj(λ)F[yj](λ).

Now Proposition 2.5 implies that, if we define q by:

q(x, t) = 1

2π

∫ ∞

−∞
eiλx−aλntq̂0(λ) dλ − 1

2π

∫
∂DR

eiλx−aλnt
n−1∑
j=0

cj(λ)F[yj](λ) dλ,

then ∂ j
xq(0, t) = yj(t). But the solution set also satisfies the dynamic boundary conditions, so also

must q.
By construction, q differs from qU only by EU , in which

2πEU (x, t) =
∫

∂DR

eiλx−aλnt
∫ T

0
eaλns

n−1∑
j=0

cj(λ)Rj U ds dλ,
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and Rj U is the U tail of yj:

yj = yj U + Rj U .

So it is equivalent to prove that, for each k ∈ {1, 2, . . . , N} and uniformly in t ∈ [0, T], Ek U (t) → 0
as U → ∞, where

Ek U (t) =
∫

∂DR

e−aλnt
n−1∑
r=0

(iλ)rbk r(t)
∫ T

0
eaλns

n−1∑
j=0

cj(λ)Rj U ds dλ.

The proof now proceeds along the lines of the proof of Theorem 3.4, modified slightly as was
the proof of Theorem 5.2 from the proof of Theorem 3.1.

6 Conclusion

We have studied half-line IdBVPs of class (1.1), with arbitrary spatial order and arbitrary lin-
ear boundary conditions. We have detailed a method for obtaining any existing solution of such
a problem, via contour integrals of fractional power series, and justified that the error inherent
in approximating the power series by their partial sum decays uniformly. We also gave a crite-
rion for establishing existence. For each of the specific example problems (1.4)–(1.7), we have
provided a recurrence relation for the coefficients in the fractional power series, thus explicitly
solving each IdBVP.

Remark 6.1 There are certainly situations in which it is not possible to solve the system given
by equations (1.1.dBC) and (5.4). An example that may occur even for static boundary con-
ditions is failure of linear independence of the (dynamic) boundary conditions. Even beyond
such algebraic considerations, the authors are not aware of a higher order systems fractional
Frobenius theory for sequential Caputo fractional derivatives in the vein of [39, Section 7.5],
even at ordinary points.

Classification of systems of dynamic boundary conditions yielding well-posed problems, com-
parable to [54], along with the underlying sequential Caputo fractional Frobenius systems
theory, is left for future work. There is a subtle question to investigate here: can an IdBVP
be well posed even if at some instant t ∈ [0, T] the dynamic boundary conditions are not linearly
independent?

Remark 6.2 The present work generalises the Fokas transform method to IdBVP on the half-
line. The Fokas transform method has been successfully applied to static IBVP on the finite
interval [28, 54], and also to interface [13, 53, 52, 15, 14, 56], multipoint [26, 49] and non-
local BVP [42], so one might expect that the present results could be generalised to study also
IdBVP on such spatial domains. Unfortunately, this will be a more complicated task than was
the generalisation from half-line to finite interval IBVP. Indeed, a dynamic boundary condition
for an equation on the finite interval does not reduce the global relation to a fractional ordinary
differential equation, but to a rather more complicated pseudodifferential equation.

Remark 6.3 Spatially lower order terms are absent from (1.1.PDE). It may be possible to extend
the arguments and results of this work to accommodate such equations. Although the Ehrenpreis
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form usually associated with such problems does not immediately evoke Fourier transforms of
fractional differential operators, under the change of variables in [14, 56], it may be possible to
recover fractional differential equations.

Remark 6.4 The classical Fourier b transform method (see, e.g., [50, Section 5.1.4]) is a synthe-
sis of the spatial Fourier transform with the method of images, tailored to static Robin problems.
It can be used to solve problem (1.4) provided b is constant. Indeed, for Fc and Fs the usual
Fourier cosine and sine transforms, the Fourier b transform is defined as:

F̃[φ](λ) = iλFc[φ](λ) − ibFs[φ](λ)

2(b + iλ)

and has an inversion formula valid wherever the Fourier sine and cosine inversion formulae are
valid. This transform has the property that F̃[−φ′′](λ) = λ2F̃[φ](λ) for all functions φ for which
φ, φ′, φ′′ ∈ L1[0, ∞) and bφ(0) + φ′(0) = 0. Therefore, applying this transform to (1.4.PDE), one
obtains

F̃[∂tq(·, t)](λ) + λ2F̃[q(·, t)](λ) = 0.

Under a mild regularity assumption, it is possible to interchange the spatial Fourier b trans-
form with the temporal partial derivative to obtain a temporal ordinary differential equation
for F̃[q(·, t)](λ) valid for all λ. Hence, one proceeds in the usual fashion to solve that differen-
tial equation and apply the inverse transform to yield a solution of the original problem. The
step that fails for time-dependent b is the interchange of transform and derivative. Although the
transform is always in the spatial variable, if b is time-dependent, then the kernel of the trans-
form is time-dependent, so F̃[∂tq(·, t)](λ) = ∂tF̃[q(·, t)](λ), and the argument cannot proceed in
the usual way.

The Fokas transform method is often seen as a tool for deriving the precise spatial transform
pair tailored to solving a particular IBVP: the transform pair for which any function in the
kernel of the boundary form will yield no boundary term in the relevant transform of derivative
formula. Therefore, it would be interesting to attempt to save the Fourier b transform argument,
perhaps using some kind of integrating factor, to find whether it can yield a similar solution
representation to that presented above.

Remark 6.5 From a spectral theoretic viewpoint, the Fokas transform method employs the
transform pair that diagonalises the ordinary differential operator that describes the spatial
part of an IBVP [55, 48]. It would be interesting to understand how this spectral perspective
applies to IdBVP in which the spatial ordinary differential operator is time-dependent, albeit
formally independent of time. The results for IBVP extend to finite interval problems [30, 1], so
this may also be an avenue for exploring an extension of the Fokas transform method for IdBVP
to finite interval IdBVP.
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Appendix A Fourier transforms of Caputo fractional derivatives

We recall the definitions and theorems associated with Caputo fractional derivatives and their
Fourier transforms.

Definition A.1 For α ∈ (0, 1], the (left-sided half-axis) Riemann–Liouville fractional integral
operator Iα

0 + is defined by: (
Iα
0 +y

)
(x) := 1

(α)

∫ x

0

y(t)

(x − t)1−α
dt.

wherever the integral converges. For α ∈ (0, 1), the (left-sided half-axis) Caputo fractional
derivative operator

(
CDα

0 +y
)

is defined by:(
CDα

0 +y
)

(x) =
(

I1−α
0 +

d

dx
y

)
(x),

wherever it converges. For non-negative integers n, the nth sequential (left-sided half-axis)
Caputo fractional derivative operator

(
CDα n

0 +y
)

is defined inductively by CDα 1
0 + = CDα

0 + and,
for n � 2, CDα n

0 + = CDα
0 +

CDα n−1
0 + . For notational convenience, we define CDα 0

0 + as the identity
operator.

Definition A.2 We define the Fourier transform (Fy) of any y ∈ L1[0, T] by:

(Fy) (λ) =
∫ T

0
eiλty(t) dt,

for all λ ∈C.
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Note that, for this Fourier transform, if y is an absolutely continuous function on [0, T], then
integration by parts yields that(Fy′) (λ) = (−iλ) (Fy) (λ) − y(0) + y(T)eiλT , (A.1)

for all λ ∈C.

Proposition A.3 Suppose that α ∈ (0, 1) and y ∈ L1[0, T]. Then, for all λ ∈C,(FIα
0 +y

)
(λ) = (−iλ)−α (Fy) (λ). (A.2)

Proof We denote also by y its zero extension to R. For such a function y, the Fourier trans-
form of definition (A.2) coincides with the full line Fourier transform. Moreover, on the relevant
domain t ∈ [0, T], the left-sided ‘half-axis’ fractional integral of y defined in Definition A.1 coin-
cides with the left-sided ‘full axis’ fractional integral of y in which the integral begins at −∞
instead of 0. Therefore, this result is a corollary of [38, Theorem 7.1].

Proposition A.4 If y is absolutely continuous on [0, T], and zero elsewhere, then(F CDα
0 +y

)
(λ) = (−iλ)α (Fy) (λ) − (−iλ)−(1−α)

(
y(0) − y(T)eiλT

)
. (A.3)

Proof The proof is immediate from Definition A.1, Proposition A.3 and equation (A.1).
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