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We present a study on the interaction between wind and water waves with a
broad-band spectrum using wave-phase-resolved simulation with long-term wave
field evolution. The wind turbulence is computed using large-eddy simulation and the
wave field is simulated using a high-order spectral method. Numerical experiments
are carried out for turbulent wind blowing over a wave field initialised using the
Joint North Sea Wave Project spectrum, with various wind speeds considered. The
results show that the waves, together with the mean wind flow and large turbulent
eddies, have a significant impact on the wavenumber–frequency spectrum of the wind
turbulence. It is found that the shear stress contributed by sweep events in turbulent
wind is greatly enhanced as a result of the waves. The dependence of the wave growth
rate on the wave age is consistent with the results in the literature. The probability
density function and high-order statistics of the wave surface elevation deviate from
the Gaussian distribution, manifesting the nonlinearity of the wave field. The shape of
the change in the spectrum of wind-waves resembles that of the nonlinear wave–wave
interactions, indicating the dominant role played by the nonlinear interactions in the
evolution of the wave spectrum. The frequency downshift phenomenon is captured
in our simulations wherein the wind-forced wave field evolves for O(3000) peak
wave periods. Using the numerical result, we compute the universal constant in a
wave-growth law proposed in the literature, and substantiate the scaling of wind–wave
growth based on intrinsic wave properties.

Key words: air/sea interactions, surface gravity waves, wind–wave interactions

1. Introduction
The momentum and energy transfer between wind and ocean surface waves is an

essential component in air–sea interactions. It directly impacts the dynamics of the
lower marine atmospheric boundary layer and the upper oceans. A solid understanding
of the wind–wave interaction processes would bring benefits to society in applications,
including marine weather forecasting, coping with natural and anthropologic hazards,
energy harvest in offshore wind and wave farms, and marine ecosystem conservation,
etc.

† Email address for correspondence: shen@umn.edu
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For deep water waves, it is wind forcing, nonlinear wave interactions, and wave
breaking dissipation that dominate the dynamics of the wave field (Holthuijsen 2007).
Wave energy originates primarily from the wind blowing over the sea surface, an
energy transfer process referred to as wind input. Jeffreys (1925, 1926) first proposed
a separation sheltering mechanism to interpret the wind input to waves. He attributed
wave growth to flow separation on the leeward side of the waves. His prediction of
wave growth rate was found to be too low compared with measurements (see e.g.
Young 1999). Belcher & Hunt (1993) developed a non-separated sheltering theory, in
which the thickening of the boundary layer on the leeward side of a wave causes
a displacement of the mean flow and a pressure asymmetry in the outer region
that contributes to the wave growth. The non-separated sheltering theory agrees
much better with measurement data. Phillips (1957) proposed a theory in which he
attributed the main source of energy input to the resonance between the waves and
the wind turbulence field, whereas the resulting linear growth rate is valid at the
initial stage of wave generation. Miles (1957) used a quasi-linear theory to derive
the Rayleigh equation for this problem and analysed the wave induced pressure
perturbation using a predefined mean wind velocity profile. Miles’ theory showed
the importance of a characteristic height where the wind speed matches the phase
speed of the progressive wave. A major limitation of Miles’ theory is that the effect
of turbulence was excluded from analysis. Real winds are much more complex. For
example, their gustiness may have a significant impact on the wind–wave energy
transfer (Nikolayeva & Tsimring 1986). Through direct measurement of the airflow, a
number of experimental studies conducted in the laboratory have revealed the impact
of waves on the momentum and energy transfer between wind and waves. Typical
wind–wave conditions include strong (hurricane) winds (Donelan 2004; Troitskaya
et al. 2011b, 2012; Sergeev et al. 2017), slow to moderate wind over wind-waves and
mechanically generated swells (Veron, Saxena & Misra 2007; Buckley & Veron 2016,
2017), and steep (breaking) wave conditions (Reul, Branger & Giovanangeli 1999,
2008, Troitskaya et al. 2011a). While providing substantial insights to the canonical
problem of monochromatic waves, many of these studies did not address complex
wind–wave systems, especially when the wave field has a broad-band spectrum. One
of the main objectives of the present study is to investigate the energy transfer process
in complex wind–wave systems.

In the evolution of wave field, nonlinear resonant wave interactions, i.e., the
energy transfer among different wave components, play an important role. Resonant
interactions occur when certain conditions are satisfied in a group of wave components,
which is a quadruplet for surface waves in the deep water. Hasselmann (1962,
1963a,b) derived a kinetic equation, known as the Hasselmann equation, for the
calculation of resonant quadruplet wave interactions. The Hasselmann equation
quantifies energy transfer due to four-wave interaction in the long term, where
the non-resonant nonlinear terms vanish because of the asymptotic form of this
kinetic equation. Recently, growing computer capacity has enabled phase-resolving
simulations of broad-band waves, where the long-term characteristics of nonlinear
wave fields have been studied (e.g. Gagnaire-Renou, Benoit & Badulin 2011;
Annenkov & Shrira 2013), and the four-wave resonant interaction is found to be
crucial in the process. In the present study of wind–wave interactions, we also
perform phase-resolving simulations of broad-band waves, which is coupled with
wind turbulence simulation, and the four-wave resonant interaction is directly captured
in our simulations.

Extensive studies have been performed to develop a universal law on the evolution
of wave fields in time and space. Sverdrup & Munk (1947) proposed quantities
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necessary for the determination of such a law, including significant wave height,
significant wave period, wind speed, fetch and duration. For decades, power law has
been widely used to relate these quantities to wave growth, where the wind appears
to control the wave evolution. In attempts to determine the constants in these power
laws, studies have discovered an intrinsic feature of evolving wave fields, namely,
self-similarity (see Hasselmann et al. 1973). Badulin et al. (2005) conducted a series
of numerical experiments, using parameterised models based on field measurements,
to show that the wave spectra shapes are independent of the specific forms of wind
input and dissipation. The result led to the weakly turbulent law for wave growth in
support of the dominant role of nonlinear transfer (Badulin et al. 2007). In a later
study (Gagnaire-Renou et al. 2011), the self-similar parameter in the wave growth law
(Badulin et al. 2007) was quantified through numerical simulations for fetch-limited
cases. Recently, Zakharov et al. (2015) developed a universal law that is entirely
associated with intrinsic wave properties such as wave energy, peak wave frequency
and peak wavenumber, while the wind speed is excluded from the formula. Their
argument is also based on the dominant role of nonlinear interactions. Despite the
above efforts in understanding wave field evolution, it is unclear whether the waves
would evolve differently if the wind input were evaluated directly from first principles
rather than by using parameterised models. Among the parameterised models, there
is no consensus about which one is the best. In the operational wave model (The
WAVEWATCH IIIr Development Group 2016) for instance, there are five different
types of wind input source terms provided. In this regard, it would be desirable to
examine the nonlinear interactions in the long-term evolution of a wave field using
deterministic numerical tools where the wind turbulence is resolved.

The history of numerical study of wind–wave interaction that involves turbulence
simulation is relatively short due to the complexity of the physical processes. The
wave surface serves as an irregular bottom boundary of the wind field, which increases
the complexity of solving the turbulence motions. Moreover, wave evolution involves
nonlinear interactions that have a very large time scale, posing great challenges to
the computational cost. In early studies, the focus was placed on wind turbulence,
and only prescribed monochromatic waves were considered (Sullivan, Mcwilliams
& Moeng 2000; Kihara et al. 2007; Yang & Shen 2010). Simulations have also
been applied to both air and water to study the initial stage of wave growth (Lin
et al. 2008; Zonta, Soldati & Onorato 2015; Campbell, Hendrickson & Liu 2016),
wherein the time durations of wave evolution in these studies are limited. Some
recent studies focused on the interaction between wind and breaking waves with
simple wave configurations, including a two-dimensional (2-D) simulation of wind
over a narrow-banded breaking wave train (Iafrati, De Vita & Verzicco 2019), and
a three-dimensional simulation of wind over monochromatic breaking waves (Yang,
Deng & Shen 2018).

In the present study, we simulate the coupled wind–wave system based on a
computational framework developed by Yang & Shen (2011a,b) and Yang, Meneveau
& Shen (2013). For wind turbulence, we perform large-eddy simulation (LES) on a
curvilinear grid that dynamically fits the wave surface motions. For the wave field,
we use a high-order spectral method (Dommermuth & Yue 1987) to capture its
nonlinear evolution. The wind LES and wave simulations are dynamically coupled.
The wave field evolves for a long duration up to O(3000) peak wave periods to have
appreciable change in the wave spectrum. To our knowledge, this is the first wind
and wave coupled simulation for such a long duration with the wave phases and
turbulence eddies resolved. The analyses in this paper focus on the wave signature in
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the turbulence wind field, the energy transfer induced by the wind input and nonlinear
interactions, and the statistical behaviours of an evolving wind–wave field. Our study
aims to contribute to the fundamental understanding of the long-term wind-forced
wave field evolution, and to pave the way for future wind–wave studies from the
deterministic perspective. The remainder of this paper is organized as follows. In § 2,
we briefly introduce the wind–wave coupled solver and problem setting. In § 3, we
examine the numerical results including wind turbulence over waves, wind input to
waves, wave statistics, and features of the nonlinear wave field in long-term evolution.
Finally, conclusions are given in § 4.

2. Numerical method and problem setup
2.1. LES of wind over surface waves

The turbulent airflow is computed with LES (Yang et al. 2013), in which the air
is treated as incompressible and is driven by a mean pressure gradient caused by
the geostrophic wind forcing (Calaf, Meneveau & Meyers 2010). The stratification is
neglected. The molecular viscous effect is negligible due to the large Reynolds number
in the problem of interest. Following the convention in the literature (e.g. Sullivan
et al. 2000, 2008), the streamwise, spanwise and vertical coordinates are denoted by
(x, y, z) and equivalently (x1, x2, x3). The governing equations for the airflow are (Pope
2000)

∂ ũi

∂xi
= 0, (2.1)

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
=−

1
ρa

∂ p̃∗

∂xi
−
∂τ d

ij

∂xj
−

1
ρa

∂p∞
∂x

δi1, (2.2)

where ũi (i=1,2,3)= (ũ, ṽ, w̃) is the filtered velocity in which .̃ . . denotes the filtered
quantity at the grid scale, p̃∗ is the filtered modified pressure, τ d

ij is the trace-free part
of the subgrid-scale (SGS) stress tensor, ρa is the density of air and ∂p∞/∂x denotes
the mean streamwise pressure gradient that drives the flow. The SGS stress tensor
is calculated using the dynamic Smagorinsky model (see Germano et al. 1991; Lilly
1992).

In the simulation, the filtered Navier–Stokes equations are transformed into the
computational domain

τ = t, ξ = x, ψ = y, ζ =
z− η̃(x, y, t)
h− η̃(x, y, t)

, (2.3a−d)

where ξ , ψ , ζ and τ are the space and time coordinates in the computational domain,
and h̄ is the mean domain height with · · · denoting the averaging on the surface of
a constant ζ . The coordinate transformation is illustrated in figure 1. As shown in
figure 1(b), in the vertical direction, (u, v, p) are defined at the regular grid points,
while w is defined on a staggered grid (Yang & Shen 2011a). The only exception is
at the bottom and top boundary, where (u, v,w, p) are defined on the same grid points.
The Jacobian matrix corresponding to the transformation (2.3) is

J =



∂ξ

∂x
∂ξ

∂y
∂ξ

∂z
∂ψ

∂x
∂ψ

∂y
∂ψ

∂z
∂ζ

∂x
∂ζ

∂y
∂ζ

∂z

=


1 0 0
0 1 0

ζ − 1
h− η̃

∂η̃

∂x
ζ − 1
h− η̃

∂η̃

∂y
1

h− η̃

 . (2.4)
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z(x3)

x(x1)

y(x2)

˙(x, y, t)

Ω ¥

≈

w
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h

(a) (b)

FIGURE 1. (Colour online) Sketch of the coordinates and grid in: (a) the physical domain
and (b) the computational domain. For clarity, we only show part of the grid in each
domain and the grid sizes are exaggerated. The grid points defining (u, v, p) and w are
denoted byu and ∗, respectively.

Then the governing equations (2.1)–(2.2) become

∂ ũ
∂ξ
+ ζx

∂ ũ
∂ζ
+
∂ṽ

∂ψ
+ ζy

∂ṽ

∂ζ
+ ζz

∂w̃
∂ζ
= 0, (2.5)

∂ ũ
∂τ
+ ζt

∂ ũ
∂ζ
+ ũ

(
∂ ũ
∂ξ
+ ζx

∂ ũ
∂ζ

)
+ ṽ

(
∂ ũ
∂ψ
+ ζy

∂ ũ
∂ζ

)
+ w̃ζz

∂ ũ
∂ζ

=−
1
ρa

(
∂ p̃∗

∂ξ
+ ζx

∂ p̃∗

∂ζ

)
−
τ d

11

∂ξ
− ζx

∂τ d
11

∂ζ
−
τ d

12

ψ
− ζy

∂τ d
12

∂ζ
− ζz

∂τ d
13

∂ζ
−

1
ρa

∂p∞
∂x

, (2.6)

∂ṽ

∂τ
+ ζt

∂ṽ

∂ζ
+ ũ

(
∂ṽ

∂ξ
+ ζx

∂ṽ

∂ζ

)
+ ṽ

(
∂ṽ

∂ψ
+ ζy

∂ṽ

∂ζ

)
+ w̃ζz

∂ṽ

∂ζ

=−
1
ρa

(
∂ p̃∗

∂ψ
+ ζy

∂ p̃∗

∂ζ

)
−
τ d

21

∂ξ
− ζx

∂τ d
21

∂ζ
−
τ d

22

ψ
− ζy

∂τ d
22

∂ζ
− ζz

∂τ d
23

∂ζ
, (2.7)

∂w̃
∂τ
+ ζt

∂w̃
∂ζ
+ ũ

(
∂w̃
∂ξ
+ ζx

∂w̃
∂ζ

)
+ ṽ

(
∂w̃
∂ψ
+ ζy

∂w̃
∂ζ

)
+ w̃ζz

∂w̃
∂ζ

=−
1
ρa

(
ζz
∂ p̃∗

∂ζ

)
−
τ d

31

∂ξ
− ζx

∂τ d
31

∂ζ
−
τ d

32

ψ
− ζy

∂τ d
32

∂ζ
− ζz

∂τ d
33

∂ζ
, (2.8)

where the time derivative in the physical space is associated with that in the
transformed coordinates by

∂

∂t
=
∂

∂τ
+
ζ − 1
h̄− η̃

∂η̃

∂t
, (2.9)

and the Laplacian operator in the transformed coordinates is

∇
2
=
∂2

∂ξ 2
+

∂2

∂ψ2
+ 2ζx

∂2

∂ξ∂ζ
+ 2ζy

∂2

∂ψ∂ζ
+ (ζ 2

x + ζ
2
y + ζ

2
z )
∂2

∂ζ 2
+ (ζxx + ζyy)

∂

∂ζ
.

(2.10)

The upper boundary of the air flow is treated as shear free, while at the bottom
boundary a wall model is used to estimate the shear stress at the wave surface (Yang,
Meneveau & Shen 2014a,b)
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τi3(x, y, t) = − ̂̃Ur(x, y, t)
[

κ

ln(d2/z0)

]2

×[̂̃ur,i(x, y, t) cos θi +
̂̃ur,3(x, y, t) sin θi], (i= 1, 2), (2.11)

where ̂̃. . . denotes quantities filtered at the test-filter scale; ̂̃Ur(x, y, t) is the magnitude
of the test-filtered air velocity in the horizontal directions relative to the ocean surface;
κ=0.41 is the von Kármán constant; ̂̃ur,i(x, y, t)= ̂̃ui(x, y,d2, t)− ̂̃us,i(x, y, t) (i=1,2,3)
are the test-filtered velocity components on the first off-surface grid point relative
to the sea-surface velocity ̂̃us,i(x, y, t); and θi are the local inclination angles of the
surface. The wall model has been applied to the study of wind over waves of short
to intermediate lengths (Sullivan et al. 2008; Liu et al. 2010; Yang et al. 2013) as
well as wind over swells (Nilsson et al. 2012; Yang et al. 2014a,b). Note that for
swell cases, there might be flow inversion very close to the wave surface (see Veron
et al. 2007; Buckley & Veron 2016, 2017) affecting the basic assumption of the
wall model and thus its accuracy. The wall model also requires the wave surface
to be well-defined with a small to intermediate steepness such that no violent wave
breaking occurs. Otherwise, the resulting wave breaking may affect the wind–wave
momentum transfer (e.g., Yang et al. 2018). In general, the logarithmic-law-based
wall-layer model is valid when the turbulent eddies are in equilibrium within the grid
(Piomelli & Balaras 2002). This assumption holds in this study because we focus on
wind-generated waves instead of swells, and wave breaking is expected to be low at
the present wind conditions.

Here we briefly outline the key steps in the numerical scheme. Derivatives are
calculated in the horizontal directions using Fourier transform, while those in the
vertical direction are calculated using second-order finite difference. The second-order
Adam–Bashforth method is used for time advancement. The advection equations
of the velocity field are first integrated in time excluding the pressure term. By
imposing the divergence-free condition, the pressure field is computed from the
Poisson equation. Due to the coordinate transformation, the operator (2.10) contains
nonlinear terms and the Poisson equation is solved in an iteration process. The
velocity field is then corrected in the second step with the integration of the pressure
term. The initial condition of the wind turbulence is generated by adding random
turbulence fluctuations to a logarithmic mean profile, and data for analysis is collected
from the fully coupled wind–wave simulation. The details of the numerical schemes
for simulating (2.1) and (2.2) with the use of (2.11) and the validations are given in
Yang & Shen (2011a,b) and Yang et al. (2013).

2.2. High-order spectral method for wave simulation
The high-order spectral (HOS) method is used to simulate the evolution of wave fields
denoted by the surface elevation at each position, η(x, y, t). In the HOS method,
the water motion is treated as a potential flow of an incompressible fluid where the
effects of viscosity, turbulence and surface tension are negligibly small. The derivation
by Zakharov (1968) shows that the nonlinear wave system is Hamiltonian and can
be uniquely determined by the surface elevation η(x, y, t) and the surface velocity
potential ΦS(x, y, t) ≡ Φ(x, y, η(x, y, t), t). The velocity potential Φ(x, y, z, t) in
the domain can be evaluated through η(x, y, t) and ΦS(x, y, t) up to an arbitrary
perturbation order-M. The governing equations are (Dommermuth & Yue 1987)
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ηt +∇xη · ∇xΦ
S
− (1+∇xη · ∇xη)

×

[
M∑

m=1

M−m∑
l=0

ηl

l!

N∑
n=1

Φm
n (t)

∂ l+1

∂zl+1
Ψn(x, z)|z=0

]
= 0, (2.12)

ΦS
t + gη+

1
2
∇xΦ

S
· ∇xΦ

S
−

1
2
(1+∇xη · ∇xη)

×

[
M∑

m=1

M−m∑
l=0

ηl

l!

N∑
n=1

Φm
n (t)

∂ l+1

∂zl+1
Ψn(x, z)|z=0

]2

=−
pa(x, t)
ρw

, (2.13)

where ∇x ≡ (∂/∂x, ∂/∂y) is the gradient operator in horizontal directions, ρw is the
density of water, pa(x, t) is the air pressure at the surface, Ψn(x, z) = exp(ikn · x +
knz) is the basis function for deep water, and Φm

n (kn, t) is the corresponding Fourier
coefficient of wavenumber kn.

Physically, equations (2.12) and (2.13) are, respectively, the kinematic and dynamic
boundary conditions at the wave surface. Given an initial field constructed from
realistic waves, these equations can be integrated numerically. The linear terms, e.g.
∇xη and ∇xΦ

S, are first calculated in the spectral space and then transformed back
to the physical space via the fast Fourier transform. The computation of the nonlinear
terms, e.g. ∇xη · ∇xΦ

S, is completed in the physical space at each grid point. The
fourth-order Runge–Kutta scheme is used for time integration, thus obtaining the
evolution of the nonlinear wave field with the wave phases resolved. The details of
the numerical schemes for simulating (2.12) and (2.13) and the validations are given
in Dommermuth & Yue (1987) and Xiao et al. (2013).

The HOS method is a useful tool for simulating wave field evolution with the
following advantages: (i) the wind input can be directly incorporated into the wave
evolution through the pressure pa(x, t) at the ocean surface; (ii) the maximum
order-M can be easily adjusted based on the wave problem; (iii) it imposes much less
restrictions upon the bandwidth of the wave spectrum compared with the nonlinear
Schrödinger equation; and (iv) it has a relatively low computational cost for high
numerical accuracy, which is a major advantage in large-scale simulations (Wu 2004).
However, the HOS method might fail when there are steep waves or wave breaking,
due to the potential flow assumption and the perturbation expansion technique.
Therefore, a numerical dissipation model is necessary to mimic the wave energy
dissipation due to wave breaking. In the present study, following Xiao et al. (2013),
we apply an adaptive filter to the surface quantities η and ΦS[

η̂f (k)

Φ̂S
f (k)

]
=

[
η̂(k)

Φ̂S(k)

]
G(k;C1,C2), (2.14)

where G(k; C1, C2) = exp[−(k/C1kp)
C2] is the filter function, C1 = 8 and C2 = 30

are constants that control the strength of the filter, and (η̂f , Φ̂
S
f ) are the filtered

quantities in the wavenumber space. The corresponding filter in the frequency domain
is G′( f ; C1, C2) = (4π2f

√
2f /g) exp[−(4π2f /C1gkp)

C2]. As shown, G and G′ are
low-pass filters that dissipate wave energy at short lengthscales and high frequencies.
In cases such as steep waves in shallow water studied by Kirby & Kaihatu (1996)
and Kaihatu et al. (2007), the frequency distribution of the filter was found to have
a controlling impact on the spectrum evolution. In the present deep water wave
simulation using the filters given above and with the wave steepness set to be small,
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the impact of dissipation on spectrum evolution is insignificant compared with wind
input and nonlinear wave interactions. Also note that while this model can ensure
the stability of wave simulation using HOS, it should not be treated as a high-order
tool for simulating steep waves. In those conditions, the separation of airflow occurs
(Reul et al. 1999, 2008; Buckley & Veron 2016, 2017), inducing a significant pressure
gradient that affects the wind input. The filter would smooth out the wave surface
before flow separation. Therefore, the filter is more appropriate to use for applications
in wave fields of small to intermediate steepness, which is the case of this study.

2.3. Simulation set-up
A typical wave field in the open ocean has wavelengths ranging from a few
centimetres to hundreds of meters. Apparently, the computational cost would become
far beyond the current computer power to fully resolve such a broad range of fluid
motions. It is crucial therefore to choose appropriate dimensions for the wind field and
wave field. Since the focus of this study is the evolution of the coupled wind–wave
system, we choose a Joint North Sea Wave Project (JONSWAP) (Hasselmann et al.
1973) spectrum at an early stage of wave growth to initialise the wave simulation

E( f )=
αpg2

(2π)4f 5
exp

[
−

5
4

(
f
fp

)−4
]
γ

exp[−( f−fp)2/2σ 2
J f 2

p ]

J , (2.15)

where E( f ) is the frequency spectrum, αp is the Phillips parameter (Phillips 1958), fp
is the peak wave frequency, γJ = 3.3 and

σJ =

{
0.07 f 6 fp,

0.09 f > fp.
(2.16)

It is generally assumed that the directional spectrum can be written as the product
of the omnidirectional spectrum and a spreading function (Longuet-Higgins 1963)

E( f , θ)= E( f )D( f , θ). (2.17)

In this study, we adopt the widely used spreading function D( f , θ)= (2/π) cos2 θ
to generate the initial wave field. The physical parameters of the wave field are
summarised in table 1. In this paper, we use the subscript ‘0’ to indicate quantities
of the initial condition unless otherwise specified. For the wave simulation using
the HOS method, we set the perturbation order to M = 3 because resonant wave
interactions (Hasselmann 1962) can be fully resolved (Tanaka 2001). Besides, previous
studies (Annenkov & Shrira 2013; Xiao et al. 2013) have suggested that higher order
wave statistics including skewness and kurtosis can be accurately captured when the
wave nonlinearity is resolved up to the third order in long-term wave evolution. This
is primarily because the dominant terms of skewness and kurtosis are determined
by the wave energy up to the sixth order in terms of wave steepness parameter
ε (Janssen 2009). Note that while in principle we could start the simulations with
other spectra or even white noise and let the physical wind-waves develop eventually,
the computational cost would be too high for the present computing power. For
convenience, phase-resolved wave field simulations, such as the ones using the HOS
method, often start with an empirical wave spectrum that is already in the similarity
form, such as the JONSWAP spectrum. The total energy of the initial spectrum is
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αp fp0 (Hz) λp0 (m) cp0 (m s−1) Tp0 (s)

1.4× 10−2 0.40 10 3.9 2.5

TABLE 1. Parameters of the initial JONSWAP wave field, where αp is the Phillips
parameter, fp0 is the peak wave frequency, λp0 is the peak wavelength, cp0 is the peak wave
speed and Tp0 is the peak wave period. The subscript ‘0’ denotes the initial condition.

Case U10 (m s−1) u∗ (m s−1) cp0/U10 cp0/u∗ Re∗ = u∗λp0/ν Ts/Tp0

WW6 6 0.22 0.66 17.8 1.5× 105 3.64× 103

WW7 7 0.26 0.56 15.2 1.7× 105 3.12× 103

WW8 8 0.30 0.49 13.3 2.0× 105 2.73× 103

WW9 9 0.33 0.44 11.8 2.2× 105 2.42× 103

TABLE 2. Parameters of the airflow above wave surface, where U10 is the wind speed
at 10 m above the mean ocean surface, u∗ is the air-side friction velocity, Re∗ is the
Reynolds number based on the wavelength and friction velocity, and Ts is the simulation
time duration. The velocity ratios cp0/U10 and cp0/u∗ are called the ‘wave age’. Here, ν
is the kinematic viscosity of air.

often deliberately controlled so that the wave steepness and magnitude are within the
applicable range. In the present study, where mild waves are of interest, the Phillips
parameter αp that is associated with the total energy is set to a relatively small value
(table 1), which is comparable to those in previous studies, e.g., αp = 0.0131 used in
Tanaka (2001).

The computational domain size of the wind field is 200 m× 100 m× 100 m with
a grid number of 256× 128× 256. The wave field has the same horizontal dimension
of 200 m × 100 m with a grid number of 512 × 256. These parameters are chosen
with deliberation. The grid resolution is chosen such that the peak wave length
contains enough grid points to resolve most of the energy-containing eddies in the
air turbulence. According to Pope (2000), the grid resolution is sufficiently high once
the bulk (∼80 %) turbulence energy is resolved everywhere except for the near-wall
region. In the following spectral analysis of the wind turbulence, this requirement
is examined in detail. In the wind simulation, we use an evenly spaced grid in all
three directions, and the grid size is 0.78 m in horizontal directions and 0.39 m in
the vertical direction. As a comparison, some previous studies on wind turbulence
over waves have used coarser grids, such as 4.8 m × 4.8 m × 1 m (Sullivan et al.
2008) and 24.5 m × 24.5 m × 7.8 m (Yang et al. 2014b). Note that the grid in
Sullivan et al. (2008) is non-uniform in the vertical direction and the grid size varies
from 1 m to 28 m. We would like to emphasise that for the wall-layer model to
be valid, the size of the first grid near the wave surface cannot be too fine because
the wall-layer model implicitly assumes a Reynolds-averaged inner layer (Piomelli &
Balaras 2002). In the wall-modelled LES, the aerodynamic roughness z0 is required
because the viscous sublayer is not resolved. Here, we choose a typical open-sea
value of 2 × 10−4 m following Sullivan et al. (2008) and Jiang et al. (2016). Since
the roughness is used as a property of the mean velocity profile, rather than the
instantaneous turbulence field, the fixed value is acceptable when the change in the
wind–wave condition is not significant. The parameters of the wind turbulence are
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FIGURE 2. (Colour online) Snapshot of the wind–wave field. Contours plotted in the
x–z and y–z planes represent the streamwise wind velocity ũ1 normalised by the friction
velocity u∗. Contours plotted in the x–y plane are the surface elevation η normalised by
the mean vertical height of the wind field H.

summarised in table 2. We choose the four wind speeds to ensure that the wave ages
fall into the representative region of wave growth in the real ocean condition while
the wave breaking effect is not significant. The total number of the grid points in our
wave simulation is eight times the grid number (256 × 64) in Chalikov, Babanin &
Sanina (2014) and Chalikov (2016), slightly smaller than the maximum grid number
(1025 × 257) in Engsig-Karup, Bingham & Lindberg (2009). The time duration of
our simulation, O(3000Tp0), is nearly ten times that in Chalikov et al. (2014) and
Chalikov (2016), and much longer than the maximum simulation time, O(50Tp0), in
Engsig-Karup et al. (2009). Besides, these studies only involve the wave simulation,
while the wind turbulence is not simulated. The present study has wind simulation
in addition to the wave simulation, which substantially increases the computational
cost. The wave parameters have also been justified by performing independent wave
simulations at different grid numbers and perturbation orders (see appendix A).

We initialise the wind field with random fluctuations superposed to a mean
logarithmic profile over a flat surface. At the same time, the wave field is initialised
using the summation of various wave components in the directional JONSWAP
spectrum as stated above, and it first evolves independent of the wind input. After a
sufficiently long period of wind and wave simulations, separately, the wind turbulence
becomes fully developed and the nonlinearity of the wave field has also been fully
developed. The wind field and the wave field are then dynamically coupled gradually
through a relaxation process, with the wind field providing air pressure to the waves
and the wave field in return providing the surface elevation and velocity as the bottom
boundary conditions to the wind field above. The data for analysis is collected after
the relaxation is completed and the coupled wind–wave field has evolved O(100Tp)

to eliminate the relaxation effect. We then continue the fully coupled wind–wave
simulations for O(3, 000Tp0) (table 2) to capture the long-term wave dynamics. For
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Case cp0/U10 cp0/u∗ κ z0 (m)

WW6 0.66 17.8 0.371 2× 10−4

WW7 0.56 15.2 0.378 2× 10−4

WW8 0.49 13.3 0.395 2× 10−4

WW9 0.44 11.8 0.418 2× 10−4

TE1 0.06 1.4 0.464 9.1× 10−6

TE2 0.06 1.6 0.414 4.1× 10−5

TE3 0.08 2.5 0.408 5.0× 10−5

TE4 0.12 3.7 0.423 1.3× 10−4

TE5 0.22 6.5 0.448 1.5× 10−4

TABLE 3. Wave age and features of the wind velocity profile. Here TE1-TE5 denote the
wind–wave cases in a tank experiment (Buckley & Veron 2016, 2017).

illustration purpose, we plot a snapshot of the streamwise velocity for the fully
coupled wind–wave field in figure 2.

3. Results

In this section, we present the results of the numerical experiment. We first analyse
the wave effect on wind turbulence by examining the mean profile, the turbulence
energy spectrum, and the contribution to the shear stress in different quadrants. Next,
we quantify the wind input to assess its role in the energy transfer process. Finally,
we investigate key statistical properties of the wave field and study the long-term
evolution of the wind-forced wave field.

3.1. Wind turbulence over waves
The marine atmospheric boundary layer is dynamically coupled with the oceans
through the waves, which have spatial variations in both the wavy surface geometry
and wave orbital velocity. As a result, the turbulent air flow over waves is more
complex than that over a flat wall. In this section, we conduct analyses on the wind
turbulence field with an emphasis on the wave effects.

3.1.1. Velocity profile and correlation with waves
The wind velocity profile over waves can be quantified by the von Kármán constant

κ and the aerodynamic surface roughness z0 in the logarithmic region. In table 3, we
list our result and that of the recent tank experiments by Buckley & Veron (2016,
2017), in which the wind velocity field near the wave surface is measured at a high
resolution. For our simulation result, the mean velocity is calculated by taking the
time-averaging of the streamwise velocity. The experimental result is estimated using
the data extracted from the figures in Buckley & Veron (2017). While a logarithmic
region is found in each velocity profile in our simulation cases, and the experimental
cases (Buckley & Veron 2016, 2017) and the ranges of parameters are consistent,
the values of κ and z0 vary with different wind–wave conditions, indicating the wave
effect on wind turbulence. The wave effect can also be revealed by the correlation
between the turbulence velocity and surface elevation as shown in figure 3. We also
plot in the inset of figure 3 the correlation coefficient: Corr(u, η) = uη/(uu · ηη)1/2,
which decreases monotonically with the height. The results shown here are calculated
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FIGURE 3. (Colour online) Vertical distribution of the normalised correlation between the
wind turbulence velocity and surface wave elevation. The inset is the vertical distribution
of the correlation coefficient. Also plotted are two trend lines decreasing exponentially
with height, denoted by black solid lines. Here, kp and kp0 are the average peak
wavenumber in the corresponding time duration and the peak wavenumber of the initial
spectrum, respectively.

using data near the end of the simulation. The magnitude of uη, a measure of
the wave-coherent motion in the wind turbulence, decreases exponentially with
height ∼ exp(−kpz). The other trend line ∼ exp(−kp0z), which uses the initial peak
wavenumber kp0, has appreciable deviation. This result indicates that the wind and
wave fields are coupled.

3.1.2. Spectral analysis
We examine the properties of the wind turbulence from the perspective of

space–time correlations. Instead of calculating the correlation functions directly,
we compute the full wavenumber–frequency spectrum of the streamwise velocity
of the turbulence field because it provides a more intuitive approach to investigate
turbulence motions of different scales (Pope 2000). The spectrum is calculated at
different vertical heights above the mean wave surface, using numerical data collected
at a sampling time interval comparable to the time scale of the smallest resolved
eddies in the present simulation. For demonstration purposes, we integrate the full
spectrum F11(k, ω; z) along the spanwise wavenumber k2 to obtain the projected
spectrum F11(k1, ω; z) on the k1–ω plane

F11(k1, ω; z)=
∫

F11(k, ω; z) dk2. (3.1)

where ω is the angular frequency.
For comparison, we also calculate the wavenumber–frequency spectrum of

turbulence over a flat wall using the model proposed by Wilczek & Narita (2012),
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which is written as

F11(k, ω; z)= F11(k; z)[2π〈(V · k)2〉]−1/2 exp
[
−
(ω− k ·U)2

〈(V · k)2〉

]
, (3.2)

where U=U(z) is the mean velocity at the corresponding height, 〈·〉 is the averaging
operator on a horizontal plane, and V is the velocity of large random eddies with
a Gaussian distribution. The wavenumber spectrum F11(k; z) is calculated using 2-D
Fourier transform at each height, while the random eddy effect yields (V · k)2 ≈
〈ũ′ũ′〉k2

1 + 〈ṽ
′ṽ′〉k2

2 (Wilczek & Narita 2012).
The numerical results of the wavenumber–frequency spectrum of wind turbulence

over waves (3.1) and the model results of turbulence over a flat wall (3.2) are plotted
in figure 4. Because the calculation of the spectrum requires data with high resolution
in time, we continue the simulation for a period of 33.4Tp0 and output data at a
sampling rate of approximately 0.087Tp0. As shown, our simulation results capture
the Doppler shift by the mean velocity and demonstrate the Doppler broadening due
to turbulence eddies, consistent with the model for turbulence over a flat wall. The
frozen turbulence hypothesis (Taylor 1938) only predicts the Doppler shift effect, and
neglects the correlations induced by the turbulence eddies. He, Jin & Yang (2017)
pointed out that the inclusion of the random eddy effect in Wilczek & Narita (2012)’s
model can be seen as a theoretical validation of the elliptic model (He & Zhang 2006)
of spatial–temporal correlation functions. It should be noted that in our results shown
in figure 4(a,c,e,g,i), the energy at very small wavenumbers (k< 0.067∼ 0.080kp,0) is
distributed over a relatively wide region along the frequency axis, which is not seen in
the model results of (3.2). Such a discrepancy is caused by the limitation in the time
duration of the numerical data and the computational domain size. For wavenumbers
higher than this range, the limitation associated with the domain size does not affect
the accuracy of energy spectra. The agreement between our numerical result and the
random sweeping model can be seen as evidence that the small scale turbulence is
adequately resolved.

The wave signature in the wind turbulence is distinct in our numerical results,
as indicated by the dispersion relation of water waves in figure 4(c,e,g,i). This
phenomenon can be qualitatively explained as follows. At the wave surface, where
physically there is the no-slip boundary condition for the airflow, the velocity of
air equals that of the water, namely the wave orbital velocity. The contours of the
wavenumber–frequency spectrum of wind turbulence at the wave surface should
then fall precisely along the wave dispersion relation, while the Doppler effect of
the mean wind and the effect of large eddies do not exist at the surface. As the
vertical height increases, the wave effect decreases, and the mean flow, along with
the large eddies, becomes the dominant effect in the turbulence spectrum. Eventually,
the wave effect vanishes above a certain height, and our result in figure 4(a) shows
that this height is of O(1/kp), consistent with the concept of wave boundary layer
(Sullivan & McWilliams 2010). For monochromatic waves, the wave effect can be
evaluated by extracting the wave-coherent turbulence from the full turbulence via
triple decomposition (Buckley & Veron 2016, 2017). By performing integration on
F11 in different regions of figure 4(i), we estimate that approximately 90 % of the
total energy is contained by turbulent motions of length scales greater than 9.2 m.
Therefore, our grid size satisfies the requirement of resolving the bulk turbulent
energy. Meanwhile, it is sufficiently high to capture the wave signature on turbulence
as shown in figure 4. The presence of the wave signature shows that the dynamic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

44
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.444


404 X. Hao and L. Shen

0 2 4 6 8

5

0

-5
0 2 4 6 8

log(F11(k1, ø; z)/Fm)

5

0

-5

øz
/U

(z
)

4

-4
0 1 2 3 4

4

2

0

-2

-4
0 1 2 3 4

øz
/U

(z
) 2

0

-2

2

0

-20 0.5 1.0 1.5 2.0 2.5 3.0 3.5

2

0

-20 0.5 1.0 1.5 2.0 2.5 3.0 3.5

øz
/U

(z
)

0 0.5 1.0 1.5 2.0 2.5

1

0

-1
0 0.5 1.0 1.5 2.0 2.5

1

0

-1

øz
/U

(z
)

øz
/U

(z
)

1.0

0.5

0

0.5 0 0.5 1.0 1.5
k1z

1.0

0.5

0

0.5 0 0.5 1.0 1.5
k1z

-8.8 -6.6 -4.4 -2.2 0
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) ( j)

FIGURE 4. (Colour online) Contours of the wavenumber–frequency spectrum for the
streamwise velocity F11, normalised by its maximum value Fm. From (a) to ( j), the height
z/λp0= {0.98, 0.51, 0.35, 0.20, 0.12}. (a,c,e,g,i) Simulation results of wind turbulence over
waves; (b,d,f,h,j): prediction of the random-sweeping model for turbulence over a flat wall.
In (a,c,e,g,i), the Doppler shift ω= k1U(z) is denoted by – – –, and the dispersion relation
for deep water wave ω=

√
gk1 is denoted by — · —. Case WW6 is presented here.

coupling between the wind turbulence and wave field involves complex nonlinear
processes, which cannot be captured by existing empirical parameterised models. The
quantitative analysis of the wave effect on the wind wavenumber–frequency spectrum
is beyond the scope of this study and will be investigated in the future.
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FIGURE 5. (Colour online) Joint probability distribution function (j.p.d.f.) of the
normalised velocity fluctuations at the height of (a) z/h̄ = 0.014 (z/λp,0 = 0.14) and
(b) z/h̄ = 0.1 (z/λp,0 = 1.0). The white dashed line denotes the constant hole size
H = |u′w′|/|û′w′| = 3. The result of case WW6 is shown.

3.1.3. Quadrant analysis
In this section, we conduct quadrant analysis on the wind turbulence field and

explore how waves affect the key turbulence events. First proposed by Wallace,
Eckelmann & Brodkey (1972), the quadrant analysis divides the turbulent velocity
fluctuations u′ and w′ into four parts, each denoting a certain category of turbulence
events: Q1(u′ > 0, w′ > 0), outward interaction; Q2(u′ < 0, w′ > 0), ejection;
Q3(u′ < 0, w′ < 0), inward interaction; Q4(u′ > 0, w′ < 0), sweep. As an example, we
plot the joint probability distribution function of the normalised velocity fluctuations
of case WW6 in figure 5. The difference between the quadrant distributions at two
different heights is apparent: close to the wave surface (figure 5a), the quadrant
distribution is dominated by the Q4 sweep events, whereas far from the wave surface
(figure 5b), both Q2 and Q4 become significant.

To quantify the contributions to the shear stress from different events, we use the
method proposed by Lu & Willmarth (1973). Given a positive constant H, we can
calculate the conditional statistics Si,H = û′w′i,H/|û′w′|, (i= 1, 2, 3, 4), for all velocity
fluctuations satisfying |u′w′|/|û′w′|>H in four quadrants. Hereafter, the operator ·̂ · ·i,H
is the conditional version of the Reynolds averaging operator ·̂ · ·, and the Reynolds
stress û′w′ is calculated at different heights. Our definition of Si,H is the same as the
one proposed by Raupach (1981), which differs slightly from the original one in Lu
& Willmarth (1973) by a factor of the correlation coefficient. The stress fraction Si,H

measures the momentum flux contributed by events stronger than the threshold H in
the ith quadrant. For each constant value of H, the curve H = |u′w′|/|û′w′| (see the
red dashed lines in figure 5) divides each quadrant into two regions: the ‘hole’ with
weak events and the outer region with strong events. The value of H is therefore a
measure of the ‘hole’ size. When H = 0, all the events are taken into consideration,
and thus we have

∑4
i=1 Si,H=0 = 1.

Figure 6 shows the result of the present study compared with the experimental
result in a turbulent boundary layer over a smooth surface (Raupach 1981). For
clarity, we present the results of case WW6 and WW9 considering that those of case
WW7 and WW8 are not qualitatively different. Our results at z/h̄= 0.1 (z/λp,0= 1.0)
collapse to the smooth surface result (Raupach 1981) in all four quadrants. At such
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FIGURE 6. (Colour online) Magnitude of the stress fraction Si,H (i = 1, 2, 3, 4) as a
function of the hole size H. The results in Raupach (1981) for a turbulent flow over a
smooth surface are denoted byu, z/h̄= 0.06 andq, z/h̄= 0.19.

height, the wave effect becomes negligibly small and the turbulence barely ‘feels’ its
impact. This is in sharp contrast to the near-surface region, where the contributions
of various events deviate from the smooth surface result. The near-surface results
in case WW6 and WW9 are nearly identical except for some deviations in the
contribution of the inward interaction (Q3). The contribution from ejection (Q2)
remains largely unchanged compared with the smooth surface result, whereas the
contributions of outward interaction (Q1) and sweep (Q4) events to the shear stress are
greatly enhanced. When H = 0, for instance, the contributions of sweep and outward
interaction events have increased from 60 % to 80 %, and 17 % to 27 %, respectively.
Recognizing the challenges in distinguishing the broad-band-wave effect on wind
turbulence, we further calculate the quadrant ratio Qr=−(Q2+Q4)/(Q1+Q3) in the
same way as in Sullivan et al. (2008). Here, Qr characterizes the ratio of downward
momentum flux to upward flux. The value of Qr is evaluated at z/λp,0 = 0.18 above
the mean surface. For waves along the wind, Qr obtained from experiments decreases
with the wave age, which is expected because the momentum transfer from wind to
waves in the downward direction is smaller for longer and faster waves. We find that
the quadrant ratio in our simulations is close to the range obtained from experiments
(Smedman et al. 1999; Edson et al. 2007; Buckley & Veron 2016) for the similar
wave age. Note that the instantaneous wave ages in all cases slowly increase with
time as the coupled system evolves towards the wind–wave equilibrium state, which
is associated with the frequency downshift phenomenon discussed in detail in § 3.3.2.
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3.2. Wind input to waves
In this section, we investigate the wind input to quantify the net energy transfer from
the wind to the waves. We consider the wave growth rate for a wave component
defined as (see Donelan 1999; Li, Xu & Taylor 2000)

β =
2

λ(ak)2

∫ λ
0

p
ρau2
∗

∂η

∂x
dx, (3.3)

where p denotes the pressure at the wave surface, and ak is the wave steepness. Here,
we have assumed that the wind input is primarily caused by the pressure (normal
stress) as it can be shown that the work done by tangential stress is negligibly
small (appendix D). For the broad-band wave field, we use the technique proposed
by Liu et al. (2010) to evaluate β with the pressure and wave fields decomposed
in the Fourier space. Suppose one component of the surface elevation is η(x, t) =
aη cos(kx−ωt+ θη) and the surface pressure is p(x, t)= ap cos(kx−ωt+ θp), where aη
and ap denote the amplitudes in the Fourier space, and θη and θp the corresponding
phases. The wave growth rate is then obtained as β = ap sin(θp − θη)/aηρau2

∗
. Note

that the magnitude and the phase of the pressure play a decisive role, and their values
can only be determined from the wind turbulence simulation.

The wind input can also be quantified by the temporal growth rate (Donelan &
Pierson 1987)

γ = Sλ/2

(
Uλ/2

c
− 1
) ∣∣∣∣Uλ/2c

− 1
∣∣∣∣ , (3.4)

where Sλ/2 is the coefficient originated from the flow-separation-induced sheltering
mechanism proposed by Jeffreys (1925, 1926), and Uλ/2 is the mean wind velocity
at the reference height z= λ/2. Note that the theory of Jeffreys has been known to
be inapplicable for wave growth unless the wave breaks (Banner & Melville 1976).
While there is no rigorous criterion for choosing the reference height, λ/2 (or λ) has
been found effective for reducing scattering (Donelan & Pierson 1987; Donelan 1999;
Donelan et al. 2006; Yang & Shen 2010).

We plot the wave growth rate β as a function of the wave age c/u∗ for all four
simulation cases in figure 7. The data points correspond to the wave modes in the
range of kp/2< k< 2kp, where wind turbulence and wave motions are best resolved.
The values presented here as well as in figure 8 are the time-averaged result over
100Tp0 using the raw data at the end of the simulation in each case (see table 2).
As shown, most data points fall into the range proposed by Plant (1982), which is
based on experimental data assuming ‘the air–water interface to be well defined’.
In other words, the energy dissipation caused by wave breaking was negligibly
small for the compiled data (Plant 1982), which has the same assumption as in the
setup of our numerical experiments. For measurements completed in wave tanks
(Mastenbroek et al. 1996; Grare et al. 2013), due to the restriction on the tank size,
the wavelengths are small and so are the wave ages. In our four simulation cases
of WW6–WW9, as U10 increases from 6 m s−1 to 9 m s−1, the data sets move to
the left as the wave age decreases. In each case, the wave growth rates induced by
wind input vary among different wave components, where fast (respectively, slow)
waves have smaller (respectively, larger) growth rates. The dependence of β on c/u∗
is similar to previous numerical results (Li et al. 2000; Sullivan et al. 2000; Kihara
et al. 2007; Liu et al. 2010; Yang & Shen 2010). For those results obtained with
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FIGURE 7. (Colour online) Wave growth rate β as a function of wave age c/u∗.
Measurement data are plotted for comparison: p, Mastenbroek et al. (1996); u, Grare
et al. (2013). Also plotted are numerical data for comparison: C, DNS, Sullivan et al.
(2000); D, RANS (Reynolds-averaged Navier–Stokes), Li et al. (2000); B, DNS, Kihara
et al. (2007);6, DNS, Yang & Shen (2010);@, LES, Liu et al. (2010). The horizontal
solid lines are the upper (β = 48) and lower limit (β = 16) of the empirical formula by
Plant (1982). The growth rate values predicted from Miles (1993) theory are denoted by
– – –. Present simulation results are denoted by: ⊗, case WW6; ×, case WW7; ⊕, case
WW8; +, case WW9.
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©
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FIGURE 8. (Colour online) Temporal growth rate γ as a function of (Uλ/2/c− 1)|Uλ/2/c−
1|. Present simulation results are denoted by: ⊗, case WW6; ×, case WW7; ⊕, case
WW8; +, case WW9. Also plotted are:s, measurement data, Donelan (1999);@, DNS of
monochromatic waves, Yang & Shen (2010). The parameterisations are denoted by lines:
——, γ = 0.17(Uλ/2/c − 1)|Uλ/2/c − 1|, Donelan et al. (2006); – – –, γ = 0.28(Uλ/2/c −
1)|Uλ/2/c− 1|, Donelan (1999).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

44
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.444


Numerical study of wind–wave coupling 409

-4 -2 0 2 4

100

10-1

10-2

10-3

10-4

10-5
-1 0 1

0.40

0.35

0.30

0.25

0.20

˙/¯˙2˘1/2

p.
d.

f.

FIGURE 9. (Colour online) Probability density function (p.d.f.) of the normalised surface
elevation η/η̄2

1/2
. The embedded figure is a zoom-in view of the peak region. The present

result is denoted by u. Also plotted are: the standard Gaussian distribution (——), the
second-order approximation by Tayfun (1980) and Socquet-Juglard et al. (2005) (· · · · · ·),
and the Gram–Charlier series (– – –). The result is shown for case WW6.

direct numerical simulations (DNS), β tends to be underestimated because of the low
Reynolds numbers in DNS (Sullivan et al. 2000; Yang & Shen 2010). In the present
LES results, the Reynolds number is realistically large.

Figure 8 shows the variation of the temporal growth rate γ = β(u∗/c)2 with
the inverse wave age function (Uλ/2/c − 1)|Uλ/2/c − 1|. The present result directly
calculated from the surface pressure of the turbulent flow is compared with the
parameterisations in terms of Uλ/2. It should be noted that, due to the LES used
in the present study, we are able to simulate wind–wave interaction at a much
larger scale than the previous DNS study of Yang & Shen (2010). Consistent with
the previous DNS results for monochromatic waves, the present LES results for
broad-band wave fields support the parameterisations proposed by Donelan (1999)
and Donelan et al. (2006).

3.3. Wind-forced wave field
3.3.1. Wave statistics

We first present the statistical properties of the wind-waves, including the probability
density function of the surface elevation and other key wave statistics such as
skewness and kurtosis. The p.d.f. of the normalised surface elevation, η/η̄2

1/2
, is

shown in figure 9. Also shown is the standard Gaussian distribution, a second-order
approximation (Tayfun 1980; Socquet-Juglard et al. 2005), and the Gram–Charlier
(GC) series, which utilizes the third- and fourth-order statistics to approximate the
statistical distribution (see appendix B). The features of the wave statistics are similar
for the cases WW6–WW9 in the present study, and we choose case WW6 as an
example to present these features in this section. Under linear approximation, the p.d.f.
of surface elevation is Gaussian, while our result exhibits a deviation from Gaussian
in that the distribution function is tilted, consistent with field measurements (see
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e.g. Ochi & Wang 1984). This feature of p.d.f. corresponds to a positive skewness,
and is caused by the shape of nonlinear waves with flatter troughs and sharper
crests (Holthuijsen 2007). Our numerical result agrees better with the second-order
approximation and the GC series than with the Gaussian distribution, likely due to
the higher-order nonlinearity (Agafontsev & Zakharov 2015). The greatest deviation
from the Gaussian distribution occurs at large absolute values of surface elevations
that indicate extreme waves associated with strong nonlinearity, similar to laboratory
measurement (Onorato et al. 2009). Note that in experiments, it is challenging to
obtain a large data set of instantaneous surface elevations with the environment
unchanged, and the p.d.f. is usually calculated from the temporal record of wave
surface assuming that ensemble averages are identical to time averages. In this study,
we compute the p.d.f. of surface elevation using the instantaneous data following
Tanaka (2001) so that the number of independent observations of the surface elevation
is much larger than what is required for an accurate estimate (Tayfun & Fedele 2007).
In this regard, the p.d.f. obtained from our numerical result is useful as a measurement
of the statistical behaviour of the irregular wave field.

Skewness and kurtosis are important statistics associated with the physical features
of a nonlinear wave field. Specifically, the skewness indicates the deviation of the
wave profile from a sinusoidal shape as mentioned above, while the wave kurtosis may
suggest the occurrence of extreme waves (Onorato et al. 2009; Xiao et al. 2013). We
calculate the skewness C3 and the kurtosis C4 from the instantaneous surface elevation
as

C3 =
η3

(η2)3/2
, (3.5)

C4 =
η4

(η2)2
. (3.6)

In nonlinear wave fields, bound waves occur in the form of harmonics, which result
in a change in skewness and kurtosis. For narrow-band wave fields, the second-order
nonlinear effect of bound waves has been investigated (Longuet-Higgins 1963) and the
statistics are found to be

C3L = 3kpη21/2
, (3.7)

C4L = 3+ 24k2
pη

2. (3.8)

Additionally, the wave statistics may be influenced by resonant interactions (Janssen
2009; Annenkov & Shrira 2013). Taking into consideration this dynamic effect,
Annenkov & Shrira (2014) computed the skewness and kurtosis for a wide range of
JONSWAP spectrum parameters and directional spreadings. Their result is written in
the form of the following empirical formula,

C3A = (0.0897+ 0.02γ −0.5
J )εc, (3.9)

C4A = 12.6γ −0.328
J ε2

c + 3, (3.10)

where εc is a characteristic wave steepness.
The evolution of the skewness and kurtosis is plotted in figure 10. There is a clear

difference between our result and the statistics of a standard Gaussian distribution,
which has C3 = 0 and C4 = 3 (for more details see appendix B), largely due to the
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FIGURE 10. Evolution of the skewness (u) and kurtosis (q) of the wave field. The result
is shown for case WW6.

C3+ C3m C3L C3A C3X,+ C3X,m C3T

0.12 0.25 0.17 0.012 — — 0.20
C4+ C4m C4L C4A C4X,+ C4X,m C4T

3.04 3.75 3.08 3.12 3.01–3.20 3.02–3.55 3.10

TABLE 4. Skewness and kurtosis estimated from different approaches. Subscript + and m,
respectively, denote the time-averages and the maxima of our results (case WW6). Other
subscripts are: L, (3.7) and (3.8), theoretical prediction of Longuet-Higgins (1963); A, (3.9)
and (3.10), empirical equations of Annenkov & Shrira (2014); X, numerical result of Xiao
et al. (2013); T , numerical result of Tanaka (2001).

wave nonlinearity. This phenomenon is consistent with the result obtained by Tanaka
(2001), who monitored both quantities in simulations of relatively short duration, such
as 25TP and 100TP. The values of skewness and kurtosis are summarised in table 4,
where CiL and CiA (i= 3, 4) are computed using the corresponding parameters of our
case set-up. The time-averages (denoted by subscript ‘+’) are an average measure of
the non-Gaussianity of the irregular wave field, while the maximum values (denoted
by subscript ‘m’) can serve as an indicator of extreme wave events (Xiao et al. 2013).
Again, we present here the result in case WW6 because the skewness and kurtosis
of the wave fields share similar behaviours among the different cases WW6–WW9
and their dependence on the wind speed is less significant. The discrepancy among
different results in table 4 is primarily due to the different wave properties, including
the frequency bandwidth, directional spreading, wave nonlinearity, etc. The frequency
bandwidth can affect the probability of extreme wave occurrence, causing an increase
in the maximum values of the kurtosis (Xiao et al. 2013). The directional spreading
can also change the value of the high-order statistics (Onorato et al. 2009; Toffoli
et al. 2009; Annenkov & Shrira 2014). The wave nonlinearity has the most prominent
impact on the values of the skewness and kurtosis because it is the decisive factor for
the deviation from Gaussianity.
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3.3.2. Wave evolution
One of the main goals of the present study is to investigate how wave fields would

evolve from the deterministic perspective, where both the wind input and nonlinear
wave interaction are resolved from first principles. In this section, we focus on the
long-term evolution of the wave field, including the frequency downshift phenomenon
and wave-based scaling law.

In statistical phase-averaging models, the wave evolution is described by the wave
energy balance equation (Komen et al. 1994)

∂E
∂t
+Cg · ∇xE= Stot, (3.11)

where Cg is the group velocity, and Stot = Snl + Sin + Sdis is the sum of source
terms representing different physical processes, including nonlinear wave interaction
Snl, wind input Sin, and dissipation Sdis. The wave energy balance equation can be
written in the wavenumber (kx, ky) space or the directional frequency ( f , θ) space
(see appendix C). While both forms have been used in the literature, the directional
form of wave spectrum is used almost exclusively in experiments and the output of
the aforementioned operational wave models. Therefore, our numerical results in this
section are calculated in the directional frequency space and then presented in the
form of an omnidirectional spectrum.

For the dynamically coupled wind–wave field, separating the nonlinear interactions
from wind input and dissipation in the data analysis is difficult (Plant 1982). We plot
the rate of change of the omnidirectional spectrum 1E/1t in figure 11. Interestingly,
the shapes of 1E/1t at different time instants are similar, with a shift in frequency,
to that of the Snl calculated with the initial decoupled wind–wave field using the WRT
method (Webb 1978; Tracy & Resio 1982). The downshift of the peaks of 1E/1t can
be seen as an indication of the frequency downshift of the wave spectrum. Even in the
absence of wind forcing, we would expect the frequency downshift to be present as a
consequence of the four-wave interaction except that the overall wave energy growth
rate can be different. Note that the frequency downshift may also occur in a narrow-
banded wave field accompanied by wave breaking (Tulin & Waseda 1999). Because
of the turbulence generated in wave breaking, in those cases the wave turbulence
framework that is based on weak nonlinearity is not valid any more.

We next examine the evolution of the wind-forced wave field through analysis of
the wave spectrum. Acknowledging that the nonlinear interactions are dominant locally
in the spectral space allows one to further simplify the spectral evolution equation as
(Badulin et al. 2005, 2007)

dE
dt
≈ Snl. (3.12)

Meanwhile, because the nonlinear interaction process conserves the total energy, its
corresponding term vanishes in the integral form of (3.11)∫

dE
dt

dk=
∫
(Sin + Sdis) dk. (3.13)

In figure 12, we provide the numerical evidence of self-similarity by showing
the frequency downshift phenomenon is consistent with field measurements (e.g.
Hasselmann et al. 1973). The peak wave frequency sees a downshift due to the
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FIGURE 11. (Colour online) Normalised rate of change of the omnidirectional energy
density function (——) at different time instants. Also plotted is the normalised Snl (– – –)
calculated for the initial wave spectrum using the Webb–Resio–Tracy (WRT) method.
Here, Ėm is the maximum value of Snl. The result is shown for case WW6.

nonlinear interactions, whereas the total wave energy increases as a result of wind
input. The frequency downshift is essentially the inverse cascade of wave energy
because the wave field has not reached a stationary state, whereas for the classic
stationary solution of the kinetic equation (Hasselmann 1962, 1963a,b), the energy flux
to low frequencies is zero (Kats & Kontorovich 1973, 1974; Zakharov & Zaslavskii
1982). Figure 12 shows that over the duration of evolution in our simulations, and
for the different wind speeds considered, the shape change in the wave spectrum is
largely consistent for all the simulation cases.

According to Zakharov et al. (2015), the evolution of the wind-forced wave field
can be summarised in a concise form

µ4ν = α3
0, (3.14)

where µ = E1/2ω2
p/g is a measure of the wave steepness, ν = ωpt (respectively, ν =

2|kp|x) is the dimensionless duration (respectively, fetch) for duration-limited growth
(respectively, fetch-limited growth), and α0 is a universal constant. Here, we use the
simulation time to approximate the time duration of wave evolution. In the spirit of
converting the time derivative to the space derivative (see Zakharov et al. 2015), the
fetch can be estimated using

x= x0 +

∫ t

0
Ccharac dt, (3.15)
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FIGURE 12. (Colour online) Evolution of the normalised omnidirectional frequency
spectrum E( f )/E0, where E0=E( fp0) is the peak wave energy density of the initial wave
field. (a–d) correspond to cases WW6–WW9, respectively. Arrows indicate the direction
of time increase. The evolution period is from t = 1039Tp0 (denoted by ——) to t =
2424Tp0 (denoted by — · · —) and the interval between each two consecutive curves
is approximately 277Tp0.

where x0 is the fetch of the initial JONSWAP spectrum and Ccharac=
∫

CgE dk/
∫

E dk
is a characteristic wave speed. Note that the choice of Ccharac is not unique. For
instance, one can also choose the peak wave group velocity Ccharac = Cg. These
two definitions are essentially the same when the bandwidth of the wave field is
small because the weight function E/

∫
E dk approximates a δ function. For the

broad-band wave field in our study, there is a 10 % difference between these two
definitions. To determine the dependence of α0 on fetch and duration, we calculate
α0 using the numerical data and plot in figure 13 its values as the wave field
evolves. The data points are calculated from the instantaneous results of the raw
data in the entire simulation period (see table 2). As shown, while the values are
less than α0 ≈ 0.7 proposed by Zakharov et al. (2015), the simulation data show
much less scattering than the experimental data, and remain almost constant. Our
simulation result can be seen as a numerical support to the Zakharov law in the
wind–wave region considered. We would like to point out that several factors may
contribute to the difference in the value of α0. The wave growth here is essentially
duration-limited rather than fetch-limited. Besides, the choice of the reference fetch
in (3.15) can affect α0. Another possible explanation for the deviation is that the
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FIGURE 13. (Colour online) Universal constant α0 as a function of the normalised
peak wave frequency σ = ωpU10/g. The present simulation results are denoted by: ⊗,
case WW6; ×, case WW7; ⊕, case WW8; +, case WW9. Data compiled by Zakharov
et al. (2015) are superposed for comparison, including the duration-limited data of:
p, DeLeonibus & Simpson (1972); s, Liu (1985); r, Hwang & Wang (2004), and
fetch-limited data of:@, Burling (1959);6, Donelan (1979);E, García-Nava et al. (2009);
A, Romero & Melville (2010). The solid line corresponds to the theoretical value proposed
by Zakharov et al. (2015).

wave field is not fully self-similar. The same issue may occur when the universal law
is validated against laboratory observations (e.g. Toba 1972) where the wave ages are
too small. As discussed by Zakharov et al. (2015), this error may be eliminated by
using experimental data obtained from large water tanks at large fetch (e.g. Caulliez
2013), where the self-similarity of waves has been established.

4. Summary and remarks

In this study, we have used a coupled wind LES and wave HOS computational
approaches to study the energy transfer processes in an interacting wave system. The
features of the numerical experiments include representative wave ages, broad-band
wave field, and long-term wave evolution up to O(3,000Tp0). The LES and HOS
capture a wide range of motions that constitute the most energetic part of wind
turbulence and nonlinear waves.

Here, we briefly summarise our main findings. We have calculated the full
wavenumber–frequency spectrum of the streamwise wind velocity, which is found
to manifest a combined effect of mean flow, large energy-containing eddies, and
wave effect that is identified for the first time. As expected, the wave effect on the
wind turbulence spectrum is most prominent within a layer of a thickness that is
comparable to the peak wavelength. Via quadrant analysis on the wind turbulence
field, we have shown that the contributions of sweep and outward interaction events
to the shear stress are greatly enhanced by the waves. We have also quantified the
energy growth rate for each wave component in the broad-band wave field. The wind
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input is responsible for the wave energy increase while the energy dissipation related
to the wave breaking model is small compared with the wind input (appendix D).

We have examined the statistical properties of the wind–wave field. The probability
density function of the surface elevation and high-order wave statistics show a
deviation from the Gaussian distribution due to the wave nonlinearity. We have
calculated the total energy change in the wave spectrum. The result shows a
positive–negative sign change across the peak frequency. The shape of the energy
change is similar to that of the nonlinear interactions, suggesting that nonlinear
interactions play a dominant role in the wave field evolution although they have no
net contribution to the total wave energy growth. The presence of the nonlinear
interactions in the wind-forced wave field results in the frequency downshift
phenomenon throughout the numerical experiment, which is observed for the first time
in numerical studies when the wind turbulence is resolved using LES. To quantitatively
determine the role of the nonlinear interactions, we compute the value of α0 that
arises from the scaling based on intrinsic wave properties. Our numerical result
shows that while lower than the recommended value 0.7, α0 remains largely constant
in the evolution period and for the different simulation cases considered. In summary,
the present numerical result supports the dominant role of nonlinear interactions in
long-term wave evolution, and consequently the universal wave evolution law based
on the scaling of wave properties.

Finally, we remark that the deterministic numerical simulation used in this study
is a valuable research tool, but is also computationally demanding (for example,
a typical case takes about two months to run on a parallel computer using 384
cores). This poses challenges to further increase the evolution period of the wave
field with the existing computer power. In the future, with the increase of computer
power, when the simulations can be carried out for much longer evolution periods,
it would be helpful to provide further quantitative analysis on the wave evolution
process when the wave properties, including the total wave energy, peak wavenumber
and peak wave frequency, are plotted as functions of time or fetch. These functions
are valuable to the further assessment of the wave turbulence theory (see Badulin
et al. 2005; Gagnaire-Renou et al. 2011) and may provide additional support for
the significance of nonlinear interactions in the wind-forced wave evolution. The
computation framework developed in this study will be useful for such studies. In
addition, the energy dissipation of wave breaking is excluded in the analysis of the
present study. In the design of our numerical experiments, we deliberately chose
relatively weak wind speeds to reduce the impact of wave breaking that cannot be
directly resolved by the HOS method due to the potential flow assumption. The
complexity of wave breaking requires substantial work in modelling and validation,
which is beyond the scope of this study. In future study, it will be beneficial to
improve the heuristic wave breaking model in the present numerical tool to better
capture the energy dissipation caused by different types of breakers (Melville 1996;
Duncan 2001, Perlin, Choi & Tian 2013).
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FIGURE 14. (Colour online) Normalised omnidirectional frequency spectrum calculated
with: (a) different grid numbers; and (b) different perturbation orders. In (a), the results
are from cases BM, GN256, GN1024 and GN2048. In (b), results are from cases BM,
PO2, PO4 and PO5. The spectra are calculated from the instantaneous wave field at
t/Tp0 = 104.

Case Grid number Perturbation order M

BM (512, 256) 3
GN256 (256, 128) 3
GN1024 (1024, 512) 3
GN2048 (2048, 1024) 3
PO2 (512, 256) 2
PO4 (512, 256) 4
PO5 (512, 256) 5

TABLE 5. Numerical parameters of the test cases. Case BM has the same settings as the
wave part in the coupled LES–HOS simulation. Cases GNx are designed to test the effect
of grid number. Cases POx are designed to test the effect of maximum perturbation order.

Appendix A. Grid resolution and perturbation order in HOS simulation
We design a numerical experiment to assess the effect of grid number and order

of nonlinearity in the wave simulation. For the sake of computational cost, the
experiment involves only the wave simulation solving equations (2.12) and (2.13).
The physical parameter setting of the initial wave field is the same as that in table 1.
The numerical parameters are listed in table 5, where the case BM simply repeats the
wave portion in the coupled wind–wave simulation. For all simulations, the time step
is approximately 8.7 × 10−3Tp0 and the simulation duration is 104Tp0, comparable
to the study of Tanaka (2001). The maximum grid number (case GN2048) is about
2 × 106, the same as that in Korotkevich et al. (2008). When the grid number is
reduced (case GN256), the high frequency part of wave spectrum is not accurately
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resolved (figure 14a) because of low resolution. On the other hand, the results in the
cases BM, GN1024 and GN2048 collapse for all frequencies, suggesting that the grid
resolution (512, 256) is sufficiently high to resolve wave dynamics. In figure 14(b),
we observe a significant deviation in spectrum when the perturbation expansion order
is two, showing that the nonlinear interactions are not captured. On the other hand,
the result of case BM is consistent with those in cases PO4 and PO5. In conclusion,
the result of this test shows that our choice of numerical parameters is appropriate in
the coupled wind–wave simulation.

Appendix B. Gram–Charlier series
The Gram–Charlier series is an approximation to the Gaussian distribution (see

Kolassa 2006, chap. 3). It has the following form when truncated to the finite order

f (x) =
1

√
2πκ2

exp
[
−
(x− κ1)

2

2κ2

]
×

[
1+

κ3

3!κ3/2
2

H3

(
x− κ1

κ
1/2
2

)
+

κ4

4!κ2
2

H4

(
x− κ1

κ
1/2
2

)]
, (B 1)

where κi is the ith cumulant, and H3(·) and H4(·) are the third and fourth Hermite
polynomials, respectively.

Equation (B 1) is valid under the condition that the distribution of the data
is approximately Gaussian. Otherwise, the series do not converge and thus the
approximation fails to hold rigorously. For the distribution of ocean surface elevation
with a zero mean, κ3 and κ4 can be approximated using the skewness C3 and kurtosis
C4, respectively. For the standard Gaussian distribution, C3 = 0 and C4 = 3.

Appendix C. Surface wave spectrum
Here we briefly review two types of spectrum commonly used in the analysis

of surface wave energy: the wavenumber spectrum and the directional frequency
spectrum. The reader is referred to Young (1999) and Holthuijsen (2007) for more
details. The wavenumber spectrum is defined as

E(kx, ky)= lim
1kx→0

lim
1kx→0

1
1kx1ky

E
{

1
2

a2

}
, (C 1)

where a is the amplitude of the corresponding wave component and E{ 1
2 a2
} denotes

the variance in a spectral bin (1kx, 1ky). The directional spectrum is defined as

E( f , θ)= lim
1f→0

lim
1θ→0

1
1f1θ

E
{

1
2

a2

}
. (C 2)

Equations (C 1) and (C 2) are related by

E( f , θ)= E(kx, ky)
∂( f , θ)
∂(kx, ky)

, (C 3)

where the Jacobian ∂( f , θ)/∂(kx, ky) can be readily obtained from the dispersion
relation.
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FIGURE 15. (Colour online) Wind–wave conditions related to air flow separation over
water waves. Here, U∞ denotes the free-stream wind speed. In Tian et al. (2010),
the conditions are divided into the following categories: no separations, denoted by @;
separation undetermined, denoted byA; separations over non-breaking waves, denoted by
u; separations over breaking waves, denoted byq. Also included in their paper are results
from Kawai (1981), denoted byE, and Donelan et al. (2006), denoted byB. The trends of
non-separation and separation are denoted by blue arrows. The present simulation results
are denoted by ⊗, case WW6; ×, case WW7; ⊕, case WW8; +, case WW9.

Appendix D. Wind input by tangential stress and wave energy dissipation
The energy transfer from wind to wave can be caused by normal stress and

tangential stress. Generally, the work done by the tangential stress is small compared
with that done by normal stress (Young 1999). Under certain sea states, the air flow
separation may occur and the effect of the tangential stress cannot be neglected
(Tian, Perlin & Choi 2010). In figure 15, we compare the wind–wave conditions of
each individual wave component in our simulation with experimental data (Kawai
1981; Donelan et al. 2006; Tian et al. 2010). While there is no rigorous criterion
for determining the boundary of separation as indicated by the study of Tian et al.
(2010), our result shows that both the wave steepness and the wind speed relative
to the waves are small, suggesting that the air flow separation is unlikely to occur
for the wind field in the present study. Consequently, we expect the energy transfer
related to the tangential stress to be negligibly small.

To quantitatively assess the significance of tangential stress, we define the work
done by the tangential stress and the pressure per unit area per unit time as

Pν =
1
A

∫
A

(
u2
∗
−

pa

ρa

∂η

∂x

)
us dA, (D 1)

Pp =
1
A

∫
A

pa

ρa
un dA, (D 2)

where us is the streamwise velocity component at the wave surface, un is the velocity
component normal to the wave surface, and A denotes the area of the entire wave
field. Note that the tangential stress on the air side is not directly calculated from the
velocity profile as in the DNS of Yang & Shen (2010). Instead, in the present study,
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FIGURE 16. (Colour online) Time history of the work done by stress at the wave surface.
The work done by tangential stress Pν is denoted by the smaller symbols while that
done by the pressure Pp is denoted by the larger ones. The present simulation results
are denoted by: ⊗, case WW6; ×, case WW7; ⊕, case WW8; +, case WW9.
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P d
s/

P p

FIGURE 17. (Colour online) Time history of the ratio of the wave energy dissipation rate
to the wind input induced by pressure. The present simulation results are denoted by: ⊗,
case WW6; ×, case WW7; ⊕, case WW8; +, case WW9.

it is estimated by subtracting the horizontal component of the pressure-induced stress
from the total stress. As shown in figure 16, the work done by the tangential stress
is one order of magnitude smaller than that done by pressure.

The wave energy dissipation modelled by the adaptive filter (2.14) can be estimated
by

Pds =

∫
η2(k)
1t
[1−G2(k;C1,C2)] dk. (D 3)

The value of Pds is therefore a measure of the wave energy dissipated via the filter per
unit area per unit time. By comparing it with the work done by the pressure, we find
that the magnitude of Pds is generally one to three orders smaller than Pp (figure 17).
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Therefore, this energy dissipation is not a significant issue with regards to the wave
evolution in the present study. Note that wave breaking in the real ocean is a very
complex process, and the value calculated from (D 3) shall not be viewed as a high-
accuracy measure of the energy dissipation induced by wave breaking.
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