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Abstract Initial–boundary-value problems for the two-dimensional Zakharov–Kuznetsov equation
posed on bounded rectangles and on a strip are considered. Spectral properties of a linearized oper-
ator and critical sizes of domains are studied. An exponential decay rate of regular solutions for the
original nonlinear problems is proved.
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1. Introduction

We are concerned with initial–boundary-value problems (IBVPs) posed on bounded
rectangles and on a strip located in the right half-plane {(x, y) ∈ R

2 : x > 0} for the
Zakharov–Kuznetsov (ZK) equation

ut + (α + u)ux + uxxx + uxyy = 0, (1.1)

where α is equal to 1 or to 0. Equation (1.1) is a two-dimensional analog of the well-known
Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0 (1.2)

which has applications in plasma physics [36].
Equations (1.1) and (1.2) are typical examples of so-called dispersive equations, which

have attracted considerable attention from pure and applied mathematicians over the
past decades. The KdV equation is probably the more studied of the two in this con-
text. The theory of the initial-value problem (IVP henceforth) for (1.2) is considerably
advanced today [1,4,7,15–17,32,35].

Recently, due to needs in physics and numerics, publications on IBVPs in bounded and
unbounded domains for dispersive equations have appeared [2,3,5,6,9,20,21,28,37].
In particular, it has been discovered that the KdV equation posed on a bounded interval
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possesses an implicit internal dissipation. This enabled the proof of an exponential decay
rate of small solutions for (1.2) posed on bounded intervals without the addition of any
artificial damping term [20]. Similar results were proved for a wide class of dispersive
equations of any odd order with one space variable [12].

Equation (1.2) is a satisfactory approximation for real wave phenomena when the
equation is posed on the whole real line (x ∈ R). If cutting-off domains are taken into
account, however, (1.2) is no longer expected to mirror reality. The correct equation in
this case (see, for example, [2,37]) should be written as

ut + ux + uux + uxxx = 0. (1.3)

Indeed, if x ∈ R, t > 0, the linear term ux in (1.3) can easily be scaled out by a simple
change of variables, but it cannot be safely ignored for problems posed on finite and
semi-infinite intervals without changes in the original domain.

Once bounded domains are considered as spatial regions of wave propagation, the size
of these domains appears to be restricted by certain critical conditions. An important
result regarding these conditions is the explicit description of a spectrum-related count-
able critical set [29]

N =
2π√

3

√
k2 + kl + l2, k, l ∈ N.

While studying the controllability and stabilization of solutions for (1.3), the set N
provides qualitative difficulties when the length of a spatial interval coincides with some
of its elements. In fact, the function

u(x) = 1 − cos x

is a stationary (non-decaying) solution for a linearized (1.3) posed on (0, 2π), and 2π ∈ N .
It was shown in [29] that control of the linear KdV equation with the term ux may

fail for critical lengths. This means that there is no decay of solutions for a countable
set of critical domains; hence, there is no decay in a quarter-plane, at least without the
inclusion of some additional internal damping [24, 27]. We recall, however, that if the
term ux is neglected, then (1.3) becomes (1.2) and it is possible to prove the exponential
decay rate of small solutions of (1.2) posed on any bounded interval. More recent results
on control and stabilizability for the KdV equation can be found in [30,31].

Quite recently the interest in dispersive equations began to extend to multi-dimensional
models such as the Kadomtsev–Petviashvili and ZK equations. As far as the ZK equation
is concerned, the results on both IVPs and IBVPs can be found in [10,11,13,23,25,26].
Our work is inspired by [33], where (1.1) posed on a strip bounded in the x variable
was considered. In studying this paper, we found that the term uxyy in (1.1) delivers
additional dissipation that may ensure the decay of small solutions. For example, the
term uxyy provides the exponential decay of small solutions in a channel-type domain;
namely, in a half-strip unbounded in the x-direction [22]. However, there are restrictions
on the width of the channel for the case in which α = 1 whereas no restrictions are
needed if α = 0.
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In the present paper we put forward the hypothesis that there are critical restrictions
upon the size of both bounded and unbounded domains. Indeed, the function

u(x, y) = cos( 1
2y)

(
1 − cos

(
x
√

3
2

))
solves the linearized (1.1) with α = 1, i.e. the equation

ut + ux + uxxx + uxyy = 0

considered on the rectangle

(x, y) ∈ (0, 4π/
√

3) × (−π, π),

and clearly it does not decay as t → ∞.
Explicit conditions (like the set N for (1.3)) have been established in the present paper

to describe the critical size of domains in which the decay of solutions fails, at least for
linear models (see (6.13)).

The main goal of our work is to prove the existence and uniqueness of global-in-time
regular solutions of (1.1) posed both on bounded rectangles and on a strip, and the
exponential decay rate of these solutions for sufficiently small initial data.

The paper is organized as follows. The formulation of the problem and auxiliaries are
contained in § 2. In § 3 a parabolic regularization is used to prove the existence theorem
in rectangles. Uniqueness is proved in § 4. The existence of a unique regular solution on a
strip is established in § 5. In § 6 we provide spectral arguments motivating the principal
stabilization results to be obtained in § 7. Concerning the nonlinear ZK equation, the
linear spectral arguments seem to be technically more difficult to apply for stabilizability
than in the one-dimensional case. Because of this, weight estimates are used in § 7 to prove
the decay of solutions as opposed to more modern unique continuation methods [8].

After this work was completed, the paper [34] related to [33] appeared. It deals with
initial boundary-value problems in bounded domains for the ZK equation and emphasis
is given on the function spaces by using the refined methods of modern analysis. The
results there are different from ours but (from private discussions) one can say that all
the results complement each other. Moreover, we partly answer the question addressed
in Remark 3.7 from [34] (see the conclusion for more details).

2. Problem and preliminaries

Let L, B and T be finite positive numbers. Define

D = {(x, y) ∈ R
2 : x ∈ (0, L), y ∈ (−B, B)}, QT = D × (0, T ).

For α = 1 or α = 0 we consider the IBVP

Aαu ≡ ut + (α + u)ux + uxxx + uxyy = 0 in QT , (2.1)
u(x,−B, t) = u(x, B, t) = 0, x ∈ (0, L), t > 0, (2.2)

u(0, y, t) = u(L, y, t) = ux(L, y, t) = 0, y ∈ (−B, B), t > 0, (2.3)
u(x, y, 0) = u0(x, y), (x, y) ∈ D, (2.4)

where u0 : D → R is a given function.
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Hereafter, subscripts ux, uxy, etc., indicate partial derivatives, as do ∂x or ∂2
xy when

it is convenient. Operators ∇ and Δ are the gradient and Laplacian acting over D. By
(·, ·) and ‖ · ‖ we denote the inner product and the norm in L2(D) and ‖ · ‖Hk stands for
the norm in L2-based Sobolev spaces.

We will need the following result [18].

Lemma 2.1. Let u ∈ H1(D) and γ be the boundary of D.
If u|γ = 0, then

‖u‖Lq(D) � β‖∇u‖θ‖u‖1−θ, (2.5)

where q = 3 or q = 4, θ = 2((1/2) − (1/q)) and β = 2θ.
If u|γ 	= 0, then

‖u‖Lq(D) � CD‖u‖θ
H1(D)‖u‖1−θ, (2.6)

where CD does not depend on the size of D.

3. Existence theorem

In this section we state the existence result for a bounded domain.

Theorem 3.1. Let α = 1 and let u0 be a given function such that u0|γ = u0x|x=L = 0
and

I0 ≡ ‖u0‖2
H1

0 (D) + ‖∂2
yu0‖2 + ‖u0u0x + Δu0x‖2 < ∞.

Then, for all finite positive B, L and T , there exists a unique regular solution to (2.1)–
(2.4) such that

u ∈ L∞(0, T ; H2(D)) ∩ L2(0, T ; H3(D)),

Δux ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1(D)),

ut ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1(D))

and

‖u‖2
H2(D)(t) + ‖Δux‖2(t) + ‖ut‖2(t) + ‖ux(0, y, t)‖2

H1
0 (−B,B)

+
∫ T

0
{‖u‖2

H3(D)(t) + ‖Δux‖2
H1(D)(t) + ‖ux(0, y, t)‖2

H2(−B,B)} dt � CI0 ∀t ∈ [0, T ],

(3.1)

where the constant C depends on L, ‖u0‖ and T but does not depend on B > 0.
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To prove this theorem we consider, for all real ε > 0, the following parabolic regular-
ization of (2.1)–(2.4):

Aεuε ≡ A1uε + ε(∂4
xuε + ∂4

yuε)7 = 0 in QT , (3.2)

uε(x,−B, t) = uε(x, B, t) = ∂2
yuε(x,−B, t) = ∂2

yuε(x, B, t) = 0, x ∈ (0, L), t > 0,

(3.3)

uε(0, y, t) = uε(L, y, t) = ∂2
xuε(0, y, t) = ∂xuε(L, y, t) = 0, y ∈ (−B, B), t > 0,

(3.4)

uε(x, y, 0) = u0(x, y), (x, y) ∈ D.

(3.5)

For all ε > 0, (3.2)–(3.5) admits, at least for small T > 0, a unique regular solution
in QT [19]. We assume here that u0 is a sufficiently smooth function satisfying necessary
compatibility conditions. Exact restrictions on u0 will follow from a priori estimates that
are uniform for ε > 0. These estimates justify passage to the limit ε → 0, which proves
the existence part of Theorem 3.1. Uniqueness will be studied later.

In the following subsections we obtain a priori estimates independent of ε > 0 and
B > 0. The subscript ε will be omitted whenever it is unambiguous.

3.1. Estimate I

Multiply (3.2) by uε and integrate over D to obtain

‖uε‖2(t) + 2ε

∫ t

0
(‖∂2

xuε‖2(τ) + ‖∂2
yuε‖2(τ)) dτ

+
∫ t

0

∫ B

−B

u2
εx(0, y, τ) dy dτ = ‖u0‖2, t ∈ (0, T ). (3.6)

3.2. Estimate II

Write the inner product
2(Aεuε, (1 + x)uε)(t) = 0

as

d
dt

((1 + x), u2)(t) + (1 − 2ε)
∫ B

−B

u2
x(0, y, t) dy + 3‖ux‖2(t) + ‖uy‖2(t)

+ 2ε[((1 + x), u2
xx)(t) + ((1 + x), u2

yy)(t)] = ‖u‖2(t) + 2
3

∫
D

u3 dxdy.

Making use of (2.5), we compute

2
3

∫
D

u3dxdy � 2
3‖u‖3

L3(D)(t)

� 2
3 [21/3‖∇u‖1/3(t)‖u‖2/3(t)]3

= 4
3‖∇u‖(t)‖u‖2(t)

� δ‖∇u‖2(t) +
4
9δ

‖u‖4(t).
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Taking ε ∈ (0, 1
4 ) and δ = 1

2 , we get

d
dt

((1 + x), u2)(t) + 1
2‖∇u‖2(t) + 1

2

∫ B

−B

u2
x(0, y, t) dy + ε(‖uxx‖2(t) + ‖uyy‖2(t))

� ‖u‖2(t) + 8
9‖u‖4(t).

Integration over (0, t) and (3.6) then imply that

((1 + x), u2
ε)(t) +

∫ t

0

∫ B

−B

u2
εx(0, y, τ) dy dτ +

∫ t

0
‖∇uε‖2(τ) dτ

+ ε

∫ t

0
[u2

εxx(τ) + u2
εyy(τ)] dτ � C((1 + x), u2

0), (3.7)

where the constant C does not depend on B, ε > 0 but does depend on T and ‖u0‖.

3.3. Estimate III

Transforming the inner product

−2((1 + x)∂2
yuε, A

εuε)(t) = 0

into the equality

d
dt

((1 + x), u2
y)(t) + 3‖uxy‖2(t) + (1 − 2ε)

∫ B

−B

u2
xy(0, y, t) dy + ‖uyy‖2(t)

+ 2ε[((1 + x), |∂2
yux|2)(t) + ((1 + x), |∂3

yu|2)(t)]

= ‖uy‖2(t) − 2((1 + x)uux, uyy)(t),
(3.8)

we estimate

I ≡ 2((1 + x)uux, ∂2
yu)(t)

= −2((1 + x)(uuy)x, uy)(t)

= (u, u2
y)(t) − ((1 + x)ux, u2

y)(t)

≡ I1 + I2.

Since uy |y=−B,B
	= 0, we use (2.6) to estimate

I1 � ‖u‖(t)‖uy‖2
L4(D)

� CD‖u‖(t)‖uy‖(t)‖uy‖H1(D)(t)

� δ‖uy‖2
H1(D)(t) +

C2
D

4δ
‖u‖2(t)‖uy‖2(t), δ > 0,
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and

I2 � (1 + L)CD‖ux‖(t)‖uy‖(t)‖uy‖H1(D)(t)

� δ‖uy‖2
H1(D)(t) +

1
4δ

(1 + L)2C2
D‖∇u‖2(t)((1 + x), u2

y)(t).

Estimates of I1, I2 and (3.7) give

I � 2δ‖∇uy‖2(t) +
C(L)

δ
(1 + ‖∇u‖2(t))((1 + x), u2

y)(t).

Setting ε ∈ (0, 1
4 ) and δ = 1

4 , (3.8) becomes

d
dt

((1 + x), u2
y)(t) + 1

2‖∇uy‖2(t) + 1
2

∫ B

−B

u2
xy(0, y, t) dy

+ 2ε(‖∂2
yux‖2(t) + ‖∂3

yu‖2(t)) � C(L)(1 + ‖∇u‖2(t))((1 + x), u2
y)(t). (3.9)

Hence, by the Gronwall lemma and (3.7),

((1 + x), u2
y)(t) � CI0

and, finally,

‖∂yuε‖2(t) +
∫ t

0
‖∇(∂yuε)‖2(τ) dτ +

∫ t

0

∫ B

−B

(∂2
xyuε)2(0, y, τ) dy dτ

+ ε

∫ t

0
(‖∂2

y∂xuε‖2(τ) + ‖∂3
yuε‖2(τ)) dτ � C(L)I0, (3.10)

where the constant C(L) depends neither on ε > 0 nor on B > 0, but does depend on T

and ‖u0‖.
To obtain the next estimate, we need the following simple result.

Proposition 3.2. Let u ∈ H1(D) and uxy ∈ L2(D). Then

sup
(x,y)∈D

u2(x, y, t) � ‖u‖2
H1(D)(t) + ‖uxy‖2

L2(D)(t).

Proof. For a fixed x ∈ (0, L) and for any y ∈ (−B, B), it holds that

u2(x, y, t) =
∫ y

−B

∂su
2(x, s, t) ds �

∫ B

−B

u2(x, y, t) dy +
∫ B

−B

u2
y(x, y, t) dy ≡ ρ2(x, t).

On the other hand,

sup
(x,y)∈D

u2 � sup
x∈(0,L)

ρ2(x, t)

= sup
x∈(0,L)

∣∣∣∣
∫ x

0
∂sρ

2(s, t) ds

∣∣∣∣
�

∫ L

0

∫ B

−B

(u2 + u2
x + u2

y + u2
xy) dxdy.

The proof is complete. �
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3.4. Estimate IV

Write
2((1 + x)∂4

yuε, A
εuε)(t) = 0

in the form

d
dt

((1 + x), u2
yy)(t) + (1 − 2ε)

∫ B

−B

u2
xyy(0, y, t) dy + 3‖∂2

yux‖2(t)

+ ‖∂3
yu‖2(t) + 2ε[((1 + x), |∂2

y∂2
xu|2)(t) + ((1 + x), |∂4

yu|2)(t)]

= ‖∂2
yu‖2(t) − ((1 + x)uyy, (u2)yyx)(t). (3.11)

Define

I = −((1 + x)uyy, (u2)yyx)(t) = (uyy, (u2)yy)(t) + ((1 + x)uxyy, (u2)yy)(t) ≡ I1 + I2,

where
I1 = 2(uyy, uuyy + u2

y)(t) = I11 + I12.

By Proposition 3.2,

I11 = 2(u, u2
yy)(t)

� 2 sup
(x,y)∈D

|u(x, y, t)|‖uyy‖2(t)

� (1 + ‖u‖2(t) + ‖∇u‖2(t) + ‖∇uy‖2(t))((1 + x), u2
yy)(t)

and

I12 = 2(uyy, u2
y)(t)

� 2‖uyy‖(t)‖uy‖2
L4(D)(t)

� 2CD‖uyy‖(t)‖uy‖(t)‖uy‖H1(D)(t)

� C‖uy‖2
H1(D)(t)‖uy‖(t).

Similarly,

I2 � 2(1 + L)(uxyy, uuyy + u2
y)(t)

� 2(1 + L)‖uxyy‖(t)(‖uuyy‖(t) + ‖u2
y‖(t))

� δ‖uxyy‖2(t) +
2(1 + L)2

δ
(‖uuyy‖2(t) + ‖u2

y‖2(t))

� δ‖uxyy‖2(t) +
2(1 + L)2

δ
[sup

D
|u(x, y, t)|2((1 + x), u2

yy)(t)

+ 2CD‖uy‖2(t)‖uy‖2
H1(D)(t)].

Estimates of I11, I12 and I2 then imply that

I � δ‖uxyy‖2(t) +
C(L)

δ
[1 + ‖u‖2(t) + ‖∇u‖2(t) + ‖uxy‖2(t)]((1 + x), u2

yy)(t)

+
C(L)

δ
‖uy‖2(t)‖uy‖2

H1(D)(t).
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Inserting I into (3.11) and taking δ > 0 and ε > 0 sufficiently small, we obtain

d
dt

((1 + x), u2
yy)(t) + 1

2

∫ B

−B

u2
xyy(0, y, t) dy

+ ‖∇uyy‖2(t) + ε(‖∂2
x∂2

yu‖2(t) + ‖∂4
yu‖2(t))

� C(L)‖uy‖2(t)(‖uy‖2(t) + ‖∇uy‖2(t))

+ C(L)[1 + ‖u‖2(t) + ‖∇u‖2(t) + ‖∇uy‖2(t)]((1 + x), u2
yy)(t). (3.12)

Making use of (3.10) and the Gronwall lemma, we infer that

‖uyy‖2(t) � ((1 + x), u2
yy)(t) � C(L)I0.

Returning to (3.12), we conclude that

‖∂2
yuε‖2(t) +

∫ t

0
‖∇(∂2

yuε)‖2(τ) dτ

+
∫ t

0

∫ B

−B

(∂3
xyyuε)2(0, y, τ) dy dτ

+ ε

∫ t

0
(‖∂2

y∂2
xuε‖2(τ) + ‖∂4

yuε‖2(τ)) dτ

� C(L)((1 + x), (u2
0 + u2

0y + u2
0yy)) � C(L)I0 (3.13)

with C(L) independent of ε > 0, B > 0.

3.5. Estimate V

Write the inner product

2((1 + x)∂tuε, ∂t(Aεuε))(t) = 0

as

d
dt

((1 + x), u2
t )(t) + (1 − 2ε)

∫ B

−B

u2
xt(0, y, t) dy + 3‖uxt‖2(t)

+ ‖uyt‖2(t) + 2ε[((1 + x), u2
xxt)(t) + ((1 + x), u2

yyt)(t)]

= ‖ut‖2(t) + 2((1 + x)uut, uxt)(t) + 2(u, u2
t )(t). (3.14)

We calculate

I1 = 2((1 + x)uut, uxt)(t)

� 2(1 + L)1/2‖uxt‖(t) sup
D

|u(x, y, t)|‖(1 + x)1/2ut‖(t)

� δ‖uxt‖2(t) +
(

1 + L

δ

)
[‖u‖2

H1(D)(t) + ‖uxy‖2(t)]((1 + x), u2
t )(t).
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Analogously,

I2 = 2(u, u2
t )(t)

� 2[1 + ‖u‖2(t) + ‖∇u‖2(t) + ‖uxy‖2(t)]((1 + x), u2
t )(t).

Taking δ > 0, ε > 0 sufficiently small, we transform (3.14) into the inequality

d
dt

((1 + x), u2
t )(t) + 1

2

∫ B

−B

u2
xt(0, y, t) dy

+ ‖∇ut‖2(t) + ε[‖∂2
xut‖2(t) + ‖∂2

yut‖2(t)]

� C(L)[1 + ‖u‖2(t) + ‖∇u‖2(t) + ‖uxy‖2(t)]((1 + x), u2
t )(t). (3.15)

By the Gronwall lemma,
((1 + x), u2

t )(t) � C(L)I0.

Therefore, (3.15) becomes

((1 + x), u2
εt)(t) +

∫ t

0

∫ B

−B

(∂2
xτuε)2(0, y, t) dy dτ

+
∫ t

0
‖∇∂τuε‖2(τ) dτ + ε

∫ t

0
[‖∂2

x∂τuε‖2(τ) + ‖∂2
y∂τuε‖2(τ)] dτ � CI0, (3.16)

where the constant C depends on L > 0, but does not depend on B, ε > 0.

3.6. Estimate VI

From the inner product
2((1 + x)Aεuε, uε)(t) = 0

we get

(1 − 2ε)
∫ B

−B

u2
x(0, y, t) dy + 3‖ux‖2(t)

+ ‖uy‖2(t) + 2ε((1 + x), [u2
xx + u2

yy])(t)

= ‖u‖2(t) + 2
3

∫
D

u3 dxdy − 2((1 + x)ut, u)(t). (3.17)

Acting as in § 3.2, we find, for all δ > 0,

I = 2
3

∫
D

u3 dxdy � δ‖∇u‖2(t) +
C

δ
‖u‖4(t),

whence, taking δ > 0, ε > 0 sufficiently small and using (3.7) and (3.16), we reduce (3.17)
to the form ∫ B

−B

(∂xuε)2(0, y, t) dy + ‖∇uε‖2(t) � CI0 ∀t ∈ (0, T ). (3.18)
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Now transform
−2((1 + x)∂2

yuε, A
εuε)(t) = 0

into the equality

(1 − 2ε)
∫ B

−B

u2
xy(0, y, t) dt + 3‖uxy‖2(t) + ‖∂2

yu‖2(t)

− 2((1 + x)ut, uyy)(t) + 2ε((1 + x), [|∂2
yux|2 + |∂3

yu|2])(t)

= ‖uy‖2(t) − ((1 + x)∂2
yx(u2), uy)(t). (3.19)

Repeating the computations of Estimate III and taking into account (3.18), we find that

I1 = −((1 + x)(u2)yx, uy)(t) � δ‖∇uy‖2(t) +
C

δ
‖u‖2(t)(‖∇u‖4(t) + ‖∇u‖2(t)),

that is
I1 � δ‖∇uy‖2(t) +

C

δ
I0.

For δ, ε > 0 sufficiently small, (3.19) reads

‖∇uεy‖2(t) +
∫ B

−B

(∂2
xyuε)2(0, y, t) dy + ε[‖∂2

xuε‖2 + ‖∂2
yuε‖2](t) � CI0.

The constant C depends on L and I0 but does not depend on B > 0 or ε > 0.
We combine Estimates I–VI as follows:

‖∇uε‖2(t) + ‖∇uεy‖2(t) + ‖uεt‖2(t) + ‖uεx(0, y, t)‖2
H1

0 (−B,B)

+
∫ T

0
{‖∇uεyy‖2(t) + ‖uεt‖2

H1(D)(t) + ‖uεx(0, y, t)‖2
H2(−B,B)} dt � C(L, T )I0 (3.20)

and
ε[‖uεxx‖2(t) + ‖uεyy‖2(t)] � C(L, T )I0, (3.21)

where the constant C(L, T ) depends on L and T but does not depend on B or ε.

3.7. Passage to the limit as ε → 0

It follows from (3.21) that for all ψ ∈ H2
0 (D)

lim
ε→0

ε(∂2
xuε, ψxx)(t) = 0 and lim

ε→0
ε(∂2

yuε, ψyy)(t) = 0.

Since the constants in (3.20) and (3.21) do not depend on ε > 0 or B > 0, one may pass
to the limit as ε → 0 in∫ T

0

∫
D

[∂tuε + (1 + uε)∂xuε + Δ∂xuε]ψ dxdy dt

+ ε

∫ T

0

∫
D

[∂2
xuεψxx + ∂2

yuεyyψyy] dxdy dt = 0 (3.22)
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to obtain ∫ T

0

∫
D

[ut + (1 + u)ux + Δux]ψ dxdy dt = 0. (3.23)

Estimating Δux from (3.22) and making use of (3.20) and (3.21), we establish the fol-
lowing lemma.

Lemma 3.3. Let all the conditions of Theorem 3.1 hold. Then there exists a weak
solution u(x, y, t) of (2.1)–(2.4) such that

‖∇u‖2(t) + ‖∇uy‖2(t) + ‖ut‖2(t) + ‖Δux‖2(t) + ‖ux(0, y, t)‖2
H1

0 (−B,B)

+
∫ T

0
{‖∇uyy‖2(t) + ‖Δux‖2(t) + ‖ut‖2

H1
0 (D)(t) + ‖ux(0, y, t)‖2

H2(−B,B)} dt

� C(L, T )I0 for almost every t ∈ (0, T ),
(3.24)

where C(L, T ), as earlier, depends on L, T and ‖u0‖ but does not depend on B > 0.

In order to complete the proof of the existence part of Theorem 3.1, it suffices to show
that

u ∈ L2(0, T ; H3(D)), Δux ∈ L2(0, T ; H1(D))

and
u ∈ L∞(0, T ; H2(D)), Δux ∈ L∞(0, T ; L2(D)).

These inclusions will be proved in the following lemmas.

Lemma 3.4. A weak solution from Lemma 3.3 satisfies∫ T

0
{‖u‖2

H3(D)(t) + ‖Δux‖2
H1(D)(t)} dt � CI0, (3.25)

where C does not depend on B > 0.

Proof. Taking into account (3.24) and Proposition 3.2, we write (3.23) in the form

Δux = −ut − (1 + u)ux ≡ f(x, y, t) ∈ L∞(0, T ; L2(D)),

ux(0, y, t) ≡ ϕ(y, t) ∈ L2(0, T ; H2(−B, B)) ∩ L∞(0, T ; H1
0 (−B, B)),

ux(x,−B, t) = ux(x, B, t) = ux(L, y, t) = 0.

Define Φ(x, y, t) = ϕ(y, t)(1 − x/L) in QT . Obviously,

Φ ∈ L2(0, T ; H2(D)).

Then the function
v = ux − Φ(x, y, t)

solves in D the elliptic problem

Δv = f(x, y, t) − Φyy(x, y, t), v|γ = 0,
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which admits a unique solution v ∈ L2(0, T ; H2(D)) (see [18]). Consequently, ux ∈
L2(0, T ; H2(D)). Therefore, (3.24) implies (3.25). It remains to show that the constant
in (3.25) does not depend on B > 0. To prove this, consider the equality

∫ T

0
(Δv − v,Δv − v)(t) dt =

∫ T

0
[f − v − Φyy]2 dt,

which implies that

∫ T

0
{‖vxx‖2(t) + ‖vyy‖2(t) + 2‖vxy‖2(t) + 2‖∇v‖2(t) + ‖v‖2(t)} dt � CI0.

This gives ∫ T

0
‖v‖2

H2(D)(t) dt � CI0

with C independent of B > 0.
Taking into account (3.23) and (3.24), we complete the proof of Lemma 3.4. �

Lemma 3.5. A weak solution given by Lemma 3.3 satisfies

‖u‖2
H2(D)(t) + ‖Δux‖2(t) � CI0 (3.26)

with C independent of B > 0.

Proof. The proof is similar to the proof of Lemma 3.2. �

In the regularization process we have imposed suitable smoothness and consistency
conditions upon u0 that are actually defined by (3.15). In the final steps these excessive
restrictions may clearly be weakened by standard compactness arguments.

Making use of Lemmas 3.3–3.5, we complete the proof of the existence part of Theorem
3.1.

4. Uniqueness

Let u1 and u2 be two distinct solutions of (2.1)–(2.4) and let α = 1. Then z = u1 − u2

solves the following IBVP:

Az ≡ zt + zx + 1
2 (u2

1 − u2
2)x + Δzx = 0 in QT , (4.1)

z(0, y, t) = z(L, y, t) = zx(L, y, t) = z(x,±B, t) = 0, t > 0, (4.2)

z(x, y, 0) = 0, (x, y) ∈ D. (4.3)

From
2(Az, (1 + x)z)(t) = 0
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we infer

d
dt

((1 + x), z2)(t) + 3‖zx‖2(t) + ‖zy‖2(t) +
∫

D
z2 dxdy +

∫ B

−B

z2
x(0, y, t) dy

= −
∫

D
[(u1 + u2)z]xz(1 + x) dxdy. (4.4)

Consider

I = −
∫

D
[(u1 + u2)z]xz(1 + x) dxdy

=
∫

D
(u1 + u2)z2 dxdy +

∫
D

(u1 + u2)(1 + x)zzx dxdy

� sup
QT

|u1 + u2|‖z‖2(t) + ‖zx‖2(t) + (1 + L)2 sup
QT

|u1 + u2|2‖z‖2(t).

Due to (3.26) and Proposition 3.2,

sup
QT

|u1 + u2|2(x, y, t) � CI0,

whence
I � ‖zx‖2(t) + C‖z‖2(t).

This and (4.4) give
d
dt

((1 + x), z2)(t) � C((1 + x), z2)(t). (4.5)

Gronwall’s lemma and (4.3) then imply

‖z‖2(t) ≡ 0 for all t > 0.

The proof of uniqueness and, consequently, the proof of Theorem 3.1 is therefore com-
pleted. �

Remark 4.1. The estimate (4.5) partly implies that the data-solution map is contin-
uous. More precisely, let u0 and ū0 satisfy the conditions of Theorem 3.1 with I0 and Ī0,
respectively, and let u and ū be corresponding solutions to (2.1)–(2.4). Then, for all ε,
there exists δ = δ(ε, T, max{I0, Ī0}) such that

‖u0 − ū0‖ < δ =⇒ ‖u − ū‖(t) < ε for all 0 < t < T.

5. Problem on a strip

Taking into account that the estimates of Theorem 3.1 do not depend on B > 0, one can
expand a bounded domain D to a strip

SL = {(x, y) ∈ R
2 : x ∈ (0, L), y ∈ R}.
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The IBVP to be considered reads

Aαu ≡ ut + (α + u)ux + uxxx + uxyy = 0 in SL × (0, T ), (5.1)

u(0, y, t) = u(L, y, t) = ux(L, y, t) = 0, y ∈ R, t > 0, (5.2)

u(x, y, 0) = u0(x, y), (x, y) ∈ SL. (5.3)

The following result then holds.

Theorem 5.1. Let α = 1 and let u0 be a given function such that

‖u0‖2
H1(SL) + ‖∂2

yu0‖2
L2(SL) + ‖u0u0x + Δu0x‖2

L2(SL) < ∞

and
u0(0, y) = u0(L, y) = u0x(L, y) = 0.

Then, for all finite positive L and T , there exists a unique regular solution to (5.1)–(5.3)
such that

u ∈ L∞(0, T ; H2(SL)) ∩ L2(0, T ; H3(SL)),

Δux ∈ L∞(0, T ; L2(SL)) ∩ L2(0, T ; H1(SL)),

ut ∈ L∞(0, T ; L2(SL)) ∩ L2(0, T ; H1(SL))

and this solution depends continuously on the initial data.

6. Spectral analysis

In this section we provide explicit conditions defining critical sizes of bounded rectan-
gles and unbounded strip-like domains of R

2 in which the stabilization of solutions may
not hold, at least in a linear case. Our considerations are based on spectral-type argu-
ments and may be viewed as motivation for posterior nonlinear studies, as well as a
two-dimensional generalization of the critical lengths from [29].

We start with the linearization of (2.1)–(2.4) with α = 1:

Pu ≡ ut + ux + uxxx + uxyy = 0 in QT , (6.1)

u(x,−B, t) = u(x, B, t) = 0, x ∈ (0, L), t > 0, (6.2)

u(0, y, t) = u(L, y, t) = ux(L, y, t) = 0, y ∈ (−B, B), t > 0, (6.3)

u(x, y, 0) = u0(x, y), (x, y) ∈ D. (6.4)

The related eigenvalue problem for the stationary part of P becomes the following: find
L > 0, B > 0 and a non-trivial v : D → C such that

vx + vxxx + vxyy = λv in D, λ ∈ C, (6.5)

v(x,−B) = v(x, B) = 0, x ∈ (0, L), (6.6)

v(0, y) = v(L, y) = vx(0, y) = vx(L, y) = 0, y ∈ (−B, B). (6.7)
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To derive (6.5)–(6.7) see, for example, [29,30] for the direct approach, and [8,14] for the
duality arguments.

Separating variables as v(x, y) = p(x)q(y), we infer that

q′′ + ξq = 0, q(−B) = q(B) = 0, (6.8)

and
(1 − ξ)p′ + p′′′ = λp, p(0) = p(L) = p′(0) = p′(L) = 0. (6.9)

Therefore,

ξ =
(

πn

2B

)2

, n ∈ N,

and
λ = iβ, β ∈ R.

To find β from (6.9), let μj = μj(B, β), j = 1, 2, 3, be the roots of the characteristic
equation

(1 − ξ)μ + μ3 = iβ. (6.10)

Then a function

p(x) =
3∑

j=1

Cjx
kj eμjx

solves the ODE in (6.9). Here, Cj are constants to be determined and kj depends on the
multiplicity of μj . Observe that double roots of (6.10) give only p(x) ≡ 0, and therefore
kj = 0, j = 1, 2, 3. Boundary conditions in (6.9) yield

3∑
j=1

Cj = 0,

3∑
j=1

μjCj = 0,

3∑
j=1

CjeμjL = 0,

3∑
j=1

μjCjeμjL = 0.

Solving this system, we conclude that Cj 	= 0 if and only if

eμjL = eμiL, i 	= j. (6.11)

Next, taking μj = isj , (6.10) becomes

s3 − (1 − ξ)s + β = 0. (6.12)

This is the real coefficients equation, which always possesses at least one real root; call
it s1 ∈ R. Then (6.11) implies that∗

s2 = s1 +
2π

L
k, s3 = s1 +

2π

L
(k + l), k, l ∈ N.

∗ In general, k, l ∈ Z \ {0}, but one can set sj to be s1 < s2 < s3.
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Furthermore, Viète’s formulae for (6.12) read

s1 + s2 + s3 = 0,

s1s2 + s1s3 + s2s3 = −(1 − ξ),

s1s2s3 = −β.

Simple computations give

s1 = − 2π

3L
(2k + l) and L =

2π√
3

√
k2 + kl + l2

1 − ξ
,

and finally (
2π

L
√

3

√
k2 + kl + l2

)2

+
(

πn

2B

)2

= 1. (6.13)

Remark 6.1. If the size of a rectangle D = (0, L) × (−B, B) satisfies (6.13), there
are solutions to (6.1)–(6.4) that do not decay; if both L and B are sufficiently small, one
can expect decay (in time) of the solutions. Once either L or B is small, we expect decay
of solutions to problems posed on domains unbounded in one of the variables; namely,
those problems that are posed on a strip and/or on a half-strip.

Remark 6.2. If α = 0, (6.12) reads s3 + (πn/2B)2s + β = 0. This equation does not
possess three distinct real roots, and therefore (6.11) fails for all L > 0. This means that
decay (in time) of solutions to (6.1)–(6.4) holds for all sizes of rectangle D.

7. Decay of small solutions

In this section, we provide sufficient conditions to prove the exponential decay rate of
small regular solutions to problems (2.1)–(2.4) and (5.1)–(5.3).

We start with a bounded rectangle D = (0, L) × (−B, B).

Theorem 7.1. Let α = 1 and let B and L be positive real numbers such that

π2
[

3
L2 +

1
4B2

]
− 1 = 2A2 > 0. (7.1)

If

‖u0‖2 <
9A4L2B2

4π2(4B2 + L2)
,

then regular solutions of (2.1)–(2.4) satisfy the inequality

‖u‖2(t) � ((1 + x), u2)(t) � e−(A2/(1+L))t((1 + x), u2
0).

Proof. It is easy to see that the following equality

(A1u, u)(t) = 0
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can be reduced to the form

‖u‖2(t) +
∫ B

−B

u2
x(0, y, t) dy = ‖u0‖2.

From here,
‖u‖2(t) � ‖u0‖2. (7.2)

The following proposition is crucial for our proof.

Proposition 7.2. Let L > 0 and B > 0 be finite numbers and let w ∈ H1
0 (D). Then

the following inequalities hold:

∫ L

0

∫ B

−B

w2(x, y) dxdy � 4B2

π2

∫ L

0

∫ B

−B

w2
y(x, y) dxdy (7.3)

and ∫ L

0

∫ B

−B

w2(x, y) dxdy � L2

π2

∫ L

0

∫ B

−B

w2
x(x, y) dxdy. (7.4)

Proof. Since u(0, y, t) = u(L, y, t) = u(x,−B, t) = u(x, B, t) = 0, fixing one variable,
we can use the following Steklov inequality with respect to the other one: if f(s) ∈
H1

0 (0, π), then ∫ π

0
f2(x) dx �

∫ π

0
|fx(x)|2 dx.

After an appropriate scaling, we prove Proposition 7.2. �

Next, consider the inner product

((1 + x)A1u, u)(t) = 0

and write it as

d
dt

((1 + x), u2)(t) +
∫ B

−B

u2
x(0, y, t) dy + 3‖ux‖2(t) + ‖uy‖2(t) − ‖u‖2(t) = 2

3 (1, u3)(t).

(7.5)

Making use of (2.5), we compute

I1 = 2
3 (1, u3)(t)

� 2
3 (21/3‖∇u‖1/3(t)‖u‖2/3(t))3

� 4
3‖∇u‖(t)‖u‖2(t)

� δ‖u‖2(t) +
4
9δ

‖u‖2(t)‖∇u‖2(t)

= δ‖u‖2(t) +
4
9δ

‖u‖2(t)(‖ux‖2(t) + ‖uy‖2(t))
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with an arbitrary δ > 0 and, in addition,

I2 = 3‖ux‖2(t) + ‖uy‖2(t)

= (3 − ε)‖ux‖2(t) + (1 − ε)‖uy‖2(t) + ε‖ux‖2(t) + ε‖uy‖2(t)

with an arbitrary ε > 0. By Proposition 7.2 and (7.2), (7.5) reduces to

d
dt

((1 + x), u2)(t) +
[
π2

(
3
L2 +

1
4B2

)
− 1 − δ − επ2

(
1
L2 +

1
4B2

)]
‖u‖2(t)

+
[
ε − 4

9δ
‖u0‖2(t)

]
‖ux‖2(t) +

[
ε − 4

9δ
‖u0‖2(t)

]
‖uy‖2(t) � 0. (7.6)

Define

2A2 = π2
(

3
L2 +

1
4B2

)
− 1 > 0

and take

δ =
A2

2
, ε =

A2

2π2((1/L2) + (1/4B2))
.

With this choice of ε and δ, (7.6) reads

d
dt

((1 + x), u2)(t) + A2‖u‖2(t) +
[
ε − 4

9δ
‖u0‖2

]
‖∇u‖2(t) � 0. (7.7)

If ‖u0‖2 < 9εδ/4, then (7.7) becomes

d
dt

((1 + x), u2)(t) +
A2

1 + L
((1 + x), u2)(t) � 0,

which has a solution

‖u‖2(t) � ((1 + x), u2)(t) � e−(A2/(1+L))t((1 + x), u2
0).

The proof of Theorem 7.1 is complete. �

In the case of a strip (see § 5) the existence result is given by Theorem 5.1, and for
SL = {(x, y) ∈ R

2 : x ∈ (0, L), y ∈ R} the following assertion holds.

Theorem 7.3. Let α = 1 and let L > 0 be a finite number such that

3π2/L2 − 1 = 2A2 > 0

and

‖u0‖2 <
9A4L2

16π2 .

Then a regular solution to (5.1)–(5.3) satisfies

‖u‖2(t) � ((1 + x), u2)(t) � e−�t((1 + x), u2
0),

where � = (3π2 − L2)/2L2(1 + L).
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It is clear from (7.6) that restrictions on B and L appear due to the presence of the
term ux, i.e. α = 1 in (2.1). If α = 0, then there are no restrictions on B > 0 and L > 0,
and the following results hold.

Theorem 7.4. Let B and L be any finite positive numbers and let α = 0. If

‖u0‖2 <
9A4L2B2

4π2(4B2 + L2)
,

where

A2 = π2
[

3
2L2 +

1
8B2

]
,

then regular solutions to (2.1)–(2.4) satisfy the inequality

‖u‖2(t) � ((1 + x), u2)(t) � e−σt((1 + x), u2
0)

with σ = π2(12B2 + L2)/8B2L2(1 + L).

Theorem 7.5. Let L be any finite positive number and let α = 0. If

‖u0‖2 <
81π2

64L2 ,

then regular solutions to (5.1)–(5.3) satisfy the inequality

‖u‖2(t) � ((1 + x), u2)(t) � e−νt((1 + x), u2
0)

with ν = 3π2/2L2(1 + L).

8. Conclusions

As a conclusion, we provide a comparison between conditions (6.13) and (7.1), i.e. a
comparison between size restrictions for linear and nonlinear models. Taking k = l =
m = 1, (6.13) becomes

4π2

L2 +
π2

4B2 = 1 (8.1)

and recall that (7.1) reads
3π2

L2 +
π2

4B2 > 1. (8.2)

Suppose that L∗ > 0 and B∗ > 0 solve (8.1) and define

D∗ = (0, L∗) × (−B∗, B∗) ⊂ R
2.

Call this set the minimal critical rectangle. If L < L∗ and B < B∗ satisfy (8.2), then
D ⊂ D∗. This means that if D is located inside the minimal critical rectangle, then a suf-
ficiently small solution to the nonlinear problem (2.1)–(2.4) necessarily stabilizes. In this
sense, restrictions (7.1) are stipulated by (6.13) and, therefore, smallness conditions (7.1)
can be interpreted not as only technical ones, but as close to sharp ones. In particular,
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stabilizability holds for all rectangles D either with the width L <
√

3π or with the height
2B < π.

Furthermore, a small solution for problems posed on a sufficiently narrow strip SL

stabilizes as well. This partly responds to Remark 3.7 from [34]. Also observe that (8.1)
fits well with the stabilization result from [22].
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