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Abstract Can smoothing a single crossing in a diagram for a knot convert it into a diagram of the
knot’s mirror image? Zeković found such a smoothing for the torus knot T (2, 5), and Moore–Vazquez
proved that such smoothings do not exist for other torus knots T (2, m) with m odd and square free.
The existence of such a smoothing implies that K # K bounds a Mobius band in B4. We use Casson–
Gordon theory to provide new obstructions to the existence of such chiral smoothings. In particular, we
remove the constraint that m be square free in the Moore–Vazquez theorem, with the exception of m = 9,
which remains an open case. Heegaard Floer theory provides further obstructions; these do not give new
information in the case of torus knots of the form T (2, m), but they do provide strong constraints for
other families of torus knots. A more general question asks, for each pair of knots K and J , what is
the minimum number of smoothings that are required to convert a diagram of K into one for J . The
methods presented here can be applied to provide lower bounds on this number.
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1. Introduction

Given a knot K ⊂ S3, does it have a diagram for which smoothing a single crossing results
in a diagram of its mirror image? If so, the knot is said to support a chiral smoothing.
The existence of such a smoothing is easily seen to be equivalent to the existence of a
chiral band move [1, 10] or a chiral H(2) move [9], and such a move is called chirally
cosmetic. The problem naturally generalizes, asking if knots K and J are related by
a single smoothing. Literature on this topic includes [1, 9–11, 13–16]. The paper [24]
provides an overview of the role of studying smoothings in the knot theoretic study of
DNA. Perhaps the starting point of this line of research was in the work of Lickorish [19],
asking whether given knots could be unknotted with a single band move.

A basic example, first discovered by Zeković [29], is that the torus knot T (2, 5) supports
a chiral smoothing. Figure 1 illustrates such a smoothing. In the reverse direction, Moore
and Vazquez [23] showed that T (2, 5) is unique among positive torus knots T (2,m), with
m square-free, for which such a move exists. The paper [24] reports on extensive computer
searches that have discovered chiral smoothings for the knots 88 and 820.
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Figure 1. T (2,−5) smoothed to T (2, 5).

If K supports a chiral smoothing, then we will see in Theorem 1 that a single band
move converts K # K into K # −K, where −K denotes the mirror image of K with string
orientation reversed. Notice that the band moves we are considering act on unoriented
knots, but connected sums and knot concordance are well defined only in the oriented
category. In § 2.1, we will clarify orientation issues.

The knot −K is the inverse of K in the smooth concordance group, meaning that
K # −K is a slice knot; it bounds a properly embedded smooth disk in B4. In fact,
K # −K is a ribbon knot. (Recall that a properly embedded smooth surface F ⊂ B4 is
called ribbon if the restriction of the radial height function to F is a Morse function that
has no singularities of index 2.) Thus, if K supports a chiral smoothing, then K # K
bounds a ribbon Mobius band in B4. It follows that Casson–Gordon theory [2, 5] can be
applied. We will follow this approach by using the application of Casson–Gordon theory
to non-orientable ribbon surfaces in B4 that was developed in [7, § 8]. One corollary is
that the condition that m be square-free can be removed from the Moore–Vazquez result,
with the exception of T (2, 9), which remains an unknown case.

We will concentrate on the case of T (2,m), since these knots have two-fold branched
covers that are lens spaces, L(2m + 1, 1); Casson–Gordon invariants for these spaces can
be computed in closed form. This work can be extended in a number of ways:

• Casson–Gordon invariants of two-bridge knots, B(s, q), can be easily computed,
lending themselves to produce further examples.

• Pairs of knots (K,J) rather than (K,−K) can be considered. This is related to the
H(2) distance, studied, for instance, by Kanenobu in [14].

• The obstruction we focus on is based on the maximum of the absolute values of a
set of sums, {|ai + aj |}, where the (ai, aj) are specified pairs taken from a set {ai}.
We use a weak bound on these sums, based on constraints on the set, given by
|min{ai} + max{ai}|; this can be considerably improved.

We will provide a few examples of such extensions.
In the final section, we briefly discuss the application of Heegaard Floer techniques and

results of Ozsváth–Stipsicz-Szabó [27] to the general problem.

2. Chiral smoothings, linking forms and metabolizers

We will be working in the smooth category throughout this paper. Homology groups are
always with integer coefficients.
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Figure 2. Local view of crossing in K and tangle schematic for K.

Figure 3. The two oriented smoothings of K.

2.1. Knot inversion via smoothings

The starting point for our work is the following result.

Theorem 1. If K supports a chiral smoothing, then there is a smoothing that converts
K # K into K # −K.

Proof. The illustration on the left in Figure 2 offers a schematic diagram of a crossing
point in an oriented knot diagram for a knot K. The circled tangles A and B can initially
be thought of as trivial tangles. On the right in the figure is a schematic tangle diagram
for K (that is, if you connect the upper and lower endpoints with a trivial arc that misses
the diagram, you get a diagram for K).

Figure 3 presents schematic diagrams of the smoothing of K with its two possible
orientations. To say that the smoothing is chiral means that one of the two oriented knot
diagrams is a representative of the concordance inverse, −K, that is, the mirror image of
K with string orientation reversed.

Suppose that the diagram on the left in Figure 3 represents −K. Then if the tangle
B is replaced with K, we have illustrated on the left a smoothing that converts K # K
into −K # K. On the other hand, if the diagram on the right in Figure 3 represents
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−K. Then if the tangle A is replaced with K, we have on the right an illustration of a
smoothing that converts K # K into −K # K. �

Remark 2. The reader might note that the proof above has an apparently stronger
consequence than what has been stated: If K supports a chiral smoothing then K # K
and K # Kr both bound ribbon Mobius bands in B4. The author has written several
papers concerning the role of reversal in knot concordance (for example, [17, 21]) but
is unaware of any tools that could possibly exploit this added information. That is, the
problem of finding a knot K for which exactly one of K # K and K # Kr bounds a ribbon
Mobius band seems to be completely inaccessible using currently known techniques.

2.2. Linking forms and metabolizers

Let MJ denote the two-fold branched cover of S3 branched over J . If J bounds an
embedded surface F ⊂ B4, let WF denote the two-fold branched cover of B4 branched
over F . In [5, Theorem 2] and in [25], a result is proved which immediately implies the
next theorem. In the statement of the theorem, we use (H1(M), lk) to denote the Q/Z–
valued linking form on the first homology of a rational homology sphere M ; more details
can be found in [7, Appendix A].

Theorem 3. If J bounds a Mobius band F ⊂ B4, then the linking form on MJ splits
as

(H1(MJ), lk) ∼= (G1, β1) ⊕ (G2, β2)

where G1 is cyclic (possibly trivial) and β2 vanishes on

MF = im
(
torsion

(
H2(WF ,MJ )

) → H1(MJ )
) ⊂ G2.

The order of MF satisfies |MF |2 = |G2|.
By definition, the form (G2, β2) is called metabolic because it vanishes on a subgroup of
order

√|G2|.
We now consider the case in which J = K # K and H1(MK) is cyclic. This includes

two-bridge knots K = B(s, q) for which MK is the lens space L(s, q). Choose a prime
divisor p of |H1(MK)| = s so that H1(MK) ∼= Zpa ⊕ Zb for some a > 0 and gcd(p, b) = 1.

Assume that J = K # K bounds a ribbon Mobius band and restrict the linking form to
the p–torsion subgroup Hp ⊂ H1(MJ) defined as the set of elements x such that pkx = 0
for some k > 0. Corollary 5 is the first place in which the fact the F is ribbon becomes
essential; details appear in [7]. The importance of the surface being ribbon is that this
condition implies that the map π1(S3 \ J) → π1(B4 \ F ) is surjective. This implies that
π1(MJ ) → π1(WF ) is surjective, which in turn places bounds on the rank of H2(W̃F ) for
the covers W̃F of WF that arise in Casson–Gordon theory.

Theorem 3 quickly implies that there are two possible splittings for the linking form
on Hp.

Corollary 4. Suppose J = K # K and H1(MK) ∼= Zpa ⊕ Zb, where p does not divide
b. If J bounds an embedded Mobius band in B4, then the linking form for H1(MJ ) splits
as one of two possibilities given by Theorem 3, with β2 metabolic.
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• (Hp, lk) ∼= (Zpa , β1) ⊕ (Zpa , β2), or

• (Hp, lk) ∼= (0, β1) ⊕ (Zpa ⊕ Zpa , β2).

This has the following consequence.

Corollary 5. Suppose that H1(MK) ∼= Zs and K # K bounds a ribbon Mobius band
in B4. If p is a prime satisfying p ≡ 3 mod 4, then the exponent of p in s is even. If p
is a prime having odd exponent in s, then p ≡ 1 mod 4 and (Hp, lk) ∼= (0, β1) ⊕ (Zpa ⊕
Zpa , β2).

Proof. If a is odd, then a non-singular form on Zpa is not metabolic for any prime p. If
p ≡ 3 mod 4 and a is odd, the form (Zpa ⊕ Zpa , β2) is a direct sum (Zpa , β3) ⊕ (Zpa , β3)
for some non-singular form β3. Such a form cannot be metabolic. (The proof of this
number theoretic fact follows quickly from the theorem that −1 is a quadratic residue
modulo p if and only if p ≡ 2 or p ≡ 3 mod 4.) �

As a quick application that we use later, we have:

Corollary 6. If H1(MK) ∼= Zs with s ≤ 100 and K has a chiral smoothing, then

s ∈ {5, 9, 13, 17, 25, 29, 37, 41, 45, 49, 53, 61, 65, 73, 81, 85, 89, 97}.

3. Casson–Gordon invariants and non-orientable surfaces

Let M be closed three-manifold with H1(M, Q) = 0, and let ρ : H1(M) → Zm ⊂ Q/Z.
Casson and Gordon [2] defined an invariant σ(M,ρ) ∈ Q. This is additive over connected
sums and σ(M, 0) = 0. With regards to our work here, its key property is the following,
proved in [7, Theorem 21].

Theorem 7. Suppose that a closed three-manifold M = ∂W, where W is compact with
H1(W, Q) = 0, and the inclusion π1(M) → π1(W ) is surjective. For each ρ : H1(M) → Zp

that extends to H1(W ),

|σ(M,ρ)| ≤ 2β2(W ) + 1 +
1

p − 1
β1(M̃),

where M̃ is the p–fold cover of M associated with ρ.

To apply this, we consider branched covers over surfaces. Suppose that J bounds
a Mobius band F ⊂ B4. Let ρ ∈ MF . Linking with ρ defines a homomorphism
ρ : H1(MJ ) → Zn. Since ρ ∈ MF , one can show that ρ extends to H1(WF ). If the order
of ρ in MF is m, then the non-singularity of the linking form implies that the image of
ρ is cyclic of order m. To simplify our discussion, we will henceforth assume that m is a
prime integer, which we will denote p. Theorem 7 has the following corollary.

Corollary 8. If J bounds a ribbon Mobius band F ⊂ B4, then for all ρ ∈ MF of
prime order p,

|σ(MJ , ρ)| ≤ 3 +
1

p − 1
β1(M̃J ).
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Proof. Apply the theorem to M = MJ and W = WF . Since F is ribbon, the
map π1(M) → π1(W ) is surjective. A result first proved by Massey [22] implies that
β2(WF ) = 1. �

In general, determining β1(M̃J) might be difficult. For lens spaces, the value is easily
computed.

Theorem 9. Let ρ : H1(L(s, q)) ⊕ H1(L(s, q)) → Zp be a surjection. Let M̃ denote
the induced p–fold cover of the connected sum.

• If ρ is non-trivial on both summands, then β1(M̃) = p − 1.

• If ρ is trivial on one of the two summands, then β1(M̃) = 0.

Proof. Write L(s, q) # L(s, q) as A ∪S B, where A and B are punctured lens spaces
and S ∼= S2. Then the cover is of the form Ã ∪S̃ B̃. Each of Ã and B̃ are disjoint unions
of (possibly multi-)punctured lens spaces having trivial first homology with rational
coefficients. The cover S̃ consists of p copies of S2.

We have the Meyer–Vietoris sequence

0 → H1(M̃, Q) → H0(S̃, Q) → H0(Ã, Q) ⊕ H0(B̃, Q) → H0(M̃, Q) → 0.

In the case that both maps to Zp are non-trivial, each of Ã and B̃ are connected. The
sequence then becomes

0 → H1(M̃, Q) → Qp → Q ⊕ Q → Q → 0,

and H1(M̃, Q) ∼= Qp−1, as desired.
In the case that, say, the map is non-trivial on H1(A) but trivial on H1(B), we have

that Ã has one component and B̃ has p components. Thus, the sequence becomes

0 → H1(M̃, Q) → Qp → Q ⊕ Qp → Q → 0,

and H1(M̃, Q) ∼= 0, as desired. �

4. Two-bridge knots and Casson–Gordon invariants of lens spaces

We begin by noting that Theorem 4 implies the following.

Corollary 10. If K is a two-bridge knot B(s, q) and J = K # K bounds a ribbon
Mobius band F ⊂ B4, then for every prime divisor of p of s there is an element ρ ∈ MF

of order exactly p. Consequently, there is a surjective homomorphism ρ : H1(MJ ) → Zp

that extends to H1(WF ).

We will consider surjective homomorphisms ρ : π1(L(s, q)) → Zp, so will write s = pn.
(In our main reference [2], the letter m was used instead of p, and m was not assumed to
be prime. Stronger results could be obtained here by not restricting to the prime setting,
but that generality is not required to generate interesting families of examples.)
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In [2], the values of σ(L(s, q), ρ) were presented within a computation preceding the
unnumbered corollary [2, p. 188]. We restate that result below as Theorem 11. There is
a subtlety to the formula that appears there, as it depends on the choice of a particular
generator of H1(L(s, q)). We will not specify that choice here, but note that since we will
be considering the set of all values, knowing the choice is not necessary for computation.
That is, we are interested in the set of all values that arise for ρ and its multiples, so can
avoid that technicality. Also, since σ(L(s, q), ρ) = σ(L(s, q),−ρ) we can further restrict
the set of values considered.

Theorem 11. Let ρ be an element of order p in H1(L(pn, q)). Then for 0 < r < p,

σ(L(pn, q), rqρ) = 4
(

area Δ(nr,
qr

p
) − int Δ(nr,

qr

p
)
)

.

Here Δ(x, y) represents a triangle with vertices {(0, 0), (x, 0), (0, y)}. The value of
int Δ(x, y) is the weighted count of integer lattice points in the triangle, with interior
points contributing 1, lattice points on the interiors of edges contributing 1/2, lattice
points at non-zero vertices contributing 1/4, and the vertex at the origin contributing 0.

Focusing on the case of L(s, 1), we have the following.

Corollary 12. Let p be a prime factor of s = pn, and let ρ be an element of MF of
order p. Then for all r, 0 < r < p,

σ(L(s, 1), rρ) = 4
(

area Δ
(

nr,
r

p

)
− int Δ

(
nr,

r

p

))

=
2n

p
r2 − 2nr + 1.

Proof. The computation of the lattice point count is simplified by the fact that r/p <
1, so that the only points in the count are on the left edge of the triangle. The rest of the
computation is simple algebra. �

Corollary 13. The maximum and minimum values of −σ(L(pn, 1), rρ) for 0 < r <
p − 1 are:

• Minimum = 2n(1 − 1/p) − 1 > 0; occurs at r = 1 and r = p − 1.

• Maximum = (n/2)(p − 1/p) − 1; occurs at r = (p ± 1)/2.

5. Torus knots T (2, m).

We can now use the results of Theorem 7 and Corollary 13 to restate the constraint
from Corollary 8. This is sufficient to rule out chiral smoothings for torus knot T (2,m) =
B(m, 1) for all odd m other than m = 5 and m = 9. As illustrated in § 1, T (2, 5) does
support a chiral smoothing. The case of T (2, 9) is unknown.

Let K = T (2,m) and suppose that K admits a chiral smoothing; in particular, assume
that K # K bounds a ribbon Mobius band F ⊂ B4. Note that M(K # K) = L(m, 1) #
L(m, 1). Let m = pn for some odd prime p, and let ρ be an element of order p in MF .
There are two cases to consider.
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Case 1. If ρ is non-trivial on both natural summands of H1(L(m, 1) # L(m, 1)) then(
2n

(
1 − 1

p

)
− 1

)
+

(
n

2

(
p − 1

p

)
− 1

)
≤ 4.

To see this, we observe that choosing the correct multiple of ρ, we can assure that one of
the two values of the Casson–Gordon invariant is at the maximum.

Case 2. If ρ is trivial on one of the natural summands of H1(L(m, 1) # L(m, 1)) then(
n

2

(
p − 1

p

)
− 1

)
≤ 3.

Again, this follows by choosing the multiple of ρ for which the Casson–Gordon invariant
is at its maximum.

With these two bounds, the proof of the following theorem is immediate.

Theorem 14. If the knot K = T (2,m),m > 1, admits a chiral smoothing, then m = 5
or m = 9.

Proof. If p ≥ 11, then 1
2 (p − 1/p) − 1 > 4, so the inequality is violated regardless of

n. By Corollary 6, the only remaining possibilities are m = 5 and m = 9. �

It is interesting to observe that in the one unknown case, T (2, 9), we would consider
p = 3 and n = 3. Corresponding to the two cases, there are then two inequalities to
consider, both of which can be seen to actually be equalities:

• (3(1 − 1
3 ) − 1) + (3

2 (3 − 1
3 ) − 1) = 4.

• ( 3
2 (3 − 1

3 ) − 1) = 3.

6. Further metabolizer constraints

6.1. Identifying metabolizing vectors

In the following discussion, we use the identification of H1(M) with Q/Z–valued char-
acters on H1(M) that arises from the linking form. To generalize the examples of the
previous section, we observe that Corollary 5 leads to the following result.

Theorem 15. Suppose that K supports a chiral smoothing, that H1(MK) ∼= Zs, and
that p is a prime divisor of s with odd exponent a. Let ρ be a non-trivial Zp–valued
character on H1(MK). Then for some α ∈ Zp with 1 + α2 = 0 mod p and for all r :∣∣σ(K, rρ) + σ(K, rαρ)

∣∣ ≤ 4.

Proof. Let a = 2k + 1. For any abelian group G and prime p, let Gp = {g ∈ G
∣∣ pkg =

0 for some k ∈ Z+}. According to Corollary 5, if H1(MK)p
∼= Zpa , then H1(M(K #

K))p
∼= Zpa ⊕ Zpa has a metabolizer MF of order pa, and thus MF

∼= Zpb ⊕ Zpc , where
b + c = a. We can assume that b ≥ k + 1. In particular, MF contains an element of order
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at least pk+1. Some multiple of this element is of order exactly pk+1. By taking a fur-
ther multiple, we see that MF contains an element g = (pk, αpj) ∈ Zpa ⊕ Zpa , for some
j ≥ k, where gcd(α, p) = 1. This element has self-linking 0 if and only if j = k and 1 + α2

is divisible by p.
Suppose that the self-linking of (1, 0) ∈ H1(M(K # K))p is γ/pa, where gcd(γ, p) = 1.

If g is multiplied by pk, we get the element (pa−1, αpa−1) ∈ MF , a metabolizing element
of order p that takes value γ on the generator of the first summand and αγ on the second.
The pairs of metabolizing characters, (rρ, αrρ) all arise as multiples of this element. �

Example 16. Consider the two-bridge knot K = B(17, 2), also known as 101, the
four-twisted double of the unknot. We have H1(MK) ∼= Z17, and a calculation using
Theorem 11 yields the following values of Casson–Gordon invariants, listed as pairs
(r, σ(MK , 2rρ)):{(

1,−13
17

)
,

(
2,−35

17

)
,

(
3,−49

17

)
,

(
4,−55

17

)
,

(
5,−53

17

)
,

(
6,−43

17

)
,

(
7,−25

17

)
,

(
8,

1
17

)}
.

For any non-singular linking form on Z17, the metabolizer for the direct sum, Z17 ⊕ Z17

consists of the multiples of (1,±4). Thus, the metabolizer contains (3,±5) and the abso-
lute value of the sum of the two Casson–Gordon invariants is 102/17 > 4. An obstruction
to chirally smoothing this knot could not be derived by considering the maximum and
minimum values of the Casson–Gordon invariants.

6.2. Non-prime order metabolizing elements

We have concentrated on the case of characters taking values in Zp for some prime
p. In the setting of ribbon surfaces, Theorem 7 applies without the constraint the p be
prime (see [7] for details). However, the proof of Theorem 9 did require that p be prime. In
general, the ranks of H0(Ã, Q) and H0(B̃, Q) might be any pair of divisors of p, say d1 and
d2, except that surjectivity ensures that both cannot be p. Then, a simple modification
of the proof of Theorem 9 shows β1(M̃, Q) = p + 1 − d1 − d2. In all possible cases,

1 ≤ p + 1 − d1 − d2 ≤ p − 1,

so we continue to have
1

p − 1
β1(M̃) ≤ 1.

Example 17. To find a knot in which the basic constraints do not apply, we need to
consider a two-bridge knot B(s, q), where s is composite and all prime factors that equal
3 modulo 4 have even exponent. Furthermore, we have already handled the case of q = 1,
so must consider a larger value of q. A basic example is K = B(32 · 13, 20). In this case,
if we consider only characters to Z3, the absolute value of the sum of the maximum and
minimum Casson–Gordon invariant is 2. For characters to Z13, the sum is 4. However,
for surjective characters to Z39 the sum is 53

13 > 4. Thus, this knot is obstructed from
supporting a chiral smoothing.
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Figure 4. A band move yielding a 4-move.

6.3. Doubled knots

We have restricted to two-bridge knots, largely because this led to settings in which
Casson–Gordon invariants are readily computed. In the case of doubled knots, the
invariants can often be computed using results of Gilmer [6] and Litherland [20].

It was noticed by Kanenobu [14, § 11] that a so-called 4–move can be performed on a
knot via a single band move. See Figure 4, taken from [14]. In particular, a single smooth-
ing in a diagram for the positive clasped, k–twisted double of a knot J , D+(J, t) converts
it into the negative clasped double, D−(J, t). In general, −D+(J, t) = D−(−J,−t); thus, if
J is amphicheiral, a single smoothing converts D+(K, 0) into −D+(J, 0), so these doubled
knots support chiral smoothings. What if t �= 0?

Example 18. The figure eight knot, L = 41, can be described as D+(U,−1) where
U is the unknot. We have ML = L(5, 2), a lens space. More generally, for any J ,
H1(M(D+(J,−1))) ∼= Z5. According to the results of Gilmer and Litherland [6, 20],
for any surjective character ρ : H1(MD+(J,−1)) → Z5, the value of σ(MD+(J,−1), ρ) is
determined by the values of σ(L(5, 2), ρ′) (for some non-trivial ρ′) and the classical
Levine–Tristram signatures [18, 28] of J , as we now explain.

We first transcribe a formula from Litherland’s paper [20, Corollary 2] and then
translate into our situation:

τ(S, χ)[t] = τ(K,χ)[t] +
n∑

i=1

αC [χ(xi)tw/n].

In this formula, the knot S is a satellite knot, in our case D+(J,−1). The knot K in
Litherland’s formula is the orbit knot, in our case the figure eight, L. Finally, C is the
companion, in our case J . The character χ is our ρ. The invariant τ(S, χ)[t] is a Casson–
Gordon Witt class invariant, from which the invariant we are using, σ(M,ρ), is derived.
The integer w is a winding number, in our case 0. We will consider the case of two-fold
branched covers, for which n = 2. Finally, the invariant α is an algebraic concordance
invariant that determines the Levine–Tristram signature; here we view this signature
function as a function on the unit complex circle, denoted σK(ω). The value of χ(xi)
will be a non-trivial value attained by ρ, which, without loss of generality, we can take
as e±2πi/5. (As usual, we can view Z5 as contained in the unit complex circle.) To write
the formula using this information, we change the summation index to j, so we can use
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i =
√−1. Putting this together we have in our setting:

σ(MK , ρ) = σ(L(5, 2), ρ) + σK(e2πi/5) + σK(e−2πi/5).

The signature function is conjugation invariant, so these last two summands are equal.
We can now apply Theorem 17 and find(

σ(L(5, 2), ρ) + σK(e2πi/5) + σK(e−2πi/5)
)

+
(
σ(L(5, 2), 2ρ) + σK(e4πi/5) + σK(e−4πi/5)

)
≤ 4.

The figure eight knot J is of order two, so there is a vanishing of a Casson–Gordon
invariant of J # J , yielding σ(L(5, 2), ρ) + σ(L(5, 2), 2ρ) = 0. The next result is then
immediate.

Theorem 19. If |σ1/5(K) + σ2/5(K)| > 2, then D+(K,−1) does not support a chiral
smoothing.

6.4. Smoothing distance

Rather than ask if a single smoothing can covert K into −K, one can more generally
ask whether a single smoothing can convert a knot K into a knot J .

Example 20. The first knot that was shown to be algebraically slice but not slice by
Casson and Gordon [2] was the two-bridge knot B(25, 2). Since the appearance of a prime
of even power in the first homology introduces challenges, we consider a related family of
examples, the set of four two-bridge knots {B(25, 1), B(25, 24), B(25, 2), B(25, 23)}. The
first two are mirror images, as are the last two. For each, up to conjugation, there are
two characters to Z5 and the pair of values of the Casson–Gordon invariants is, for each
knot, {(−7,−11), (7, 11), (−3,−5), (3, 5)}.

In general, if there is a smoothing that converts a knot K into a knot J , then K # −J
bounds a Mobius band in the four-ball. The bounds based on Theorem 7 continue to
apply. Using the additivity of the Casson–Gordon invariants, it is then clear that no two
of these four knots differ by a single smoothing.

This example cannot be expanded to include all knots B(25, q). For instance, consider
the knot B(25, 8). This knot has a diagram corresponding to each continued fraction
expansion of 25/8. Consider the particular expansion

25
8

= 4 +
1

−2 +
1

2 +
1

−1 +
1
−5

.

The corresponding diagram is illustrated schematically on the left in Figure 5, where the
numbers in the boxes are the number of half-twists; recall that the sign of the twisting is
opposite of that for the continued fraction for the second and fourth terms. Smoothing a
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Figure 5. A band move yielding a 4-move.

single crossing yields a two-bridge knot with a diagram corresponding to the continued
fraction

25
7

= 4 +
1

−2 +
1

2 +
1

0 +
1
−5

.

This is illustrated on the right in Figure 5, where it is evident that the knot does arise
from a smoothing and that it is a two-bridge knot. Thus, the two-bridge knots B(25, 7)
and B(25, 8) differ by a single smoothing. These are the knots −11a364 on the left and
89 on the right, in the standard notation [3].

7. Heegaard Floer obstructions and further examples of torus knots

In [27], Ozsváth–Stipcisz-Szabó developed a bound on the non-orientable four-ball genus
of a knot K in terms of the little upsilon function, υ(K), and the classical signature
[26], σ(K). In brief, if K bounds a connected smooth surface F ⊂ B4, then β1(F ) ≥
|υ(K) − σ(K)/2|. Both υ and σ are additive functions, so for knots of the form K # K,
the value of this difference is even, and in particular cannot equal 1. Thus, we have the
following theorem.

Theorem 21. If υ(K) �= σ(K)/2, then K does not support a chiral smoothing.

Denote the difference υ(K) − σ(K)/2 by φ(K).
For alternating knots K, φ(K) = 0, so no obstruction arises. To briefly illustrate the

application of this theorem, we summarize a few facts about torus knots T (p, q), with
p, q > 2, that follow quickly. For general torus knots, recursive formulas are available to
compute φ: for the signature function, see [8], and for the upsilon function, see [4]. For a
more general discussion, see [12]. As one example, one can show that φ(T (3, 4 + 6k)) = 1
and φ(T (3, 5 + 6k)) = 1 for all k ≥ 0, and thus these admit no chiral smoothings. On the
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other hand, φ(T (3, 7)) = φ(T (3, 8)) = 0 and we do not know if these knots admit chiral
smoothings. Similarly, φ(T (4, 4k + 3)) = 1, but φ(T (4, 4k + 1)) = 0. In general, one can
find infinite families for which Theorem 23 provides effective obstructions, and find others
for which we cannot at this time rule out the possibility of there being chiral smoothings.
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