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We present a mathematical description of turbulent entrainment that is applicable to
free-shear problems that evolve in space, time or both. Defining the global entrainment
velocity V̄g to be the fluid motion across an isosurface of an averaged scalar, we find
that for a slender flow, V̄g = ūζ − D̄ht/D̄t, where D̄/D̄t is the material derivative of the
average flow field and ūζ is the average velocity perpendicular to the flow direction across
the interface located at ζ = ht. The description is shown to reproduce well-known results
for the axisymmetric jet, the planar wake and the temporal jet, and provides a clear link
between the local (small scale) and global (integral) descriptions of turbulent entrainment.
Application to unsteady jets/plumes demonstrates that, under unsteady conditions, the
entrainment coefficient α no longer only captures entrainment of ambient fluid, but also
time-dependency effects due to the loss of self-similarity.
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1. Introduction

Despite over half a century of research and several review articles (e.g. Turner 1986;
Fernando 1991; Woods 2010; de Rooy 2013; Da Silva et al. 2014; Mellado 2017), our
understanding of turbulent entrainment (the transport of fluid from regions of relatively
low to relatively high levels of turbulence) remains fragmented. One important reason is
that turbulent entrainment is notoriously difficult to determine. Entrainment is a process
that typically occurs over much larger time scales than turbulent time scales, and its effects
are therefore easily obfuscated by turbulent fluctuations and transient effects. Furthermore,
the quantification of turbulent entrainment requires the determination of a turbulent and
non-turbulent (or less turbulent) region which is, by definition, arbitrary and thus subject
to uncertainty.

However, there are other reasons that the understanding of turbulent entrainment
remains challenging. One challenge is the sheer number of flows in which turbulent
entrainment plays a role. Developing boundary layers can be classified based on the
number of independent variables on which their solution depends, with a further
distinction between statistically steady and unsteady problems, as shown in table 1.
Consider a turbulent velocity field u(x, y, z, t), which will generally not have any
symmetries. By ensemble averaging this velocity field, denoted by ·̄, an average velocity

† Email address for correspondence: m.vanreeuwijk@imperial.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-4840-5050
https://orcid.org/0000-0003-1828-6628
https://orcid.org/0000-0002-8888-3180
mailto:m.vanreeuwijk@imperial.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.836&domain=pdf
https://doi.org/10.1017/jfm.2020.836


908 A12-2 M. van Reeuwijk, J. C. Vassilicos and J. Craske

Dims Steady Unsteady

1 ū(z) ū(t)
(not encountered in free-shear flows) (not encountered in free-shear flows)

ū(x, z), ū(x, r) ū(z, t), ū(r, t)
2 jets, wakes, mixing layers, plumes, Temporal jets, wakes, mixing layers,

inclined gravity currents, . . . plumes, inclined gravity currents,
penetrative convection, convective

boundary layer, . . .

3

ū(x, y, z)
gravity currents from a point source,
stratified wakes, jets and plumes in

cross-flow, . . .

ū(x, z, t), ū(x, r, t)
Unsteady versions of those in the

category of 2-D steady flows, e.g. unsteady
jets, plumes, . . .

4

ū(x, y, z, t)
Unsteady versions of those in the

category of 3-D steady flows, e.g. gravity
currents from a point source with variable

discharge, . . .

TABLE 1. Classification of free-shear flows based on the number of independent variables.

field ū is obtained which satisfies the symmetries present in the problem formulation (such
as axisymmetric or streamwise homogeneity). In table 1, x is the (slowly developing)
streamwise direction, and z or r is the normal direction, where z would be used for
planar problems and r for axisymmetric problems. Free-shear flows require a minimum
of two inhomogeneous directions. The class of steady problems with two independent
variables comprises e.g. planar and axisymmetric jets (Hussein, Capp & George 1994; Da
Silva & Métais 2002; Westerweel et al. 2005; Watanabe et al. 2014), plumes (List 1982),
wakes (Cantwell & Coles 1983; Obligado, Dairay & Vassilicos 2016), fountains (Hunt
& Burridge 2015), boundary layers (Head 1958; Sillero, Jimenez & Moser 2013), mixing
layers (Rajaratnam 1976) and inclined gravity currents (Wells, Cenedese & Caulfield 2010;
Odier, Chen & Ecke 2014; Krug et al. 2015).

In the class of unsteady problems with two independent variables are problems that
develop slowly in time in one spatial dimension, z or r. These are problems such as
penetrative convection (Mellado 2012; Holzner & van Reeuwijk 2017), convective and
stable boundary layers (as relevant to the atmospheric boundary layer and the oceanic
mixed layer; Kato & Phillips 1969; Deardorff, Willis & Stockton 1980; Sullivan et al.
1998; Jonker et al. 2013; Garcia & Mellado 2014), stratocumulus clouds (Mellado 2017),
but also include temporal jets (Da Silva & Pereira 2008; van Reeuwijk & Holzner 2014),
plumes (Krug et al. 2017), gravity currents (van Reeuwijk, Krug & Holzner 2018; van
Reeuwijk, Holzner & Caulfield 2019), wakes (Redford, Castro & Coleman 2012; Watanabe
et al. 2016), mixing layers (Watanabe et al. 2018a) and compressible reacting mixing layers
(Jahanbakhshi & Madnia 2018). These temporal flows are not generally encountered in
nature but share many of the features of their two-dimensional (2-D) steady cousins.
However, with two homogeneous spatial directions, they are ideal for exploration with
direct numerical simulation.

Steady problems with three independent variables possess two normal directions in
which the flow develops ‘fast’ but in an anisotropic manner. Examples are jets and plumes
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discharged vertically in a cross-wind (Mahesh 2013; De Wit, Van Rhee & Keetels 2014;
Woods 2010; Devenish, Rooney & Thomson 2010), stratified wakes (Xu, Fernando &
Boyer 1995) and horizontally discharged point releases in stratified fluid layers. The class
of unsteady problems with three independent variables comprises all the flows mentioned
in the category of 2-D steady developing boundary layers, provided that one of their
boundary conditions or the environment changes in time. Examples include unsteady jets
and plumes (Scase et al. 2006; Craske & van Reeuwijk 2015, 2016; Woodhouse, Phillips
& Hogg 2016) and starting plumes (Turner 1962). The class of unsteady problems with
four independent variables comprises unsteady versions in the category of 3-D steady
free-shear flows. These comprise unsteady gravity currents from a point source, and
unsteady jets/plumes in a cross-flow.

Turbulent entrainment is generally studied either from a local or a global
perspective. The global approach involves inferring the entrainment velocity from
the Reynolds-averaged equations (e.g. Townsend 1976; Turner 1986) and considers
entrainment from an integral perspective. The local approach, as pioneered by Corrsin
& Kistler (1955), considers the microscale perspective. The local approach starts from
choosing a scalar quantity χ to provide an implicit definition of the instantaneous
turbulent–non-turbulent interface (TNTI), where a threshold value χ0 is used to distinguish
the turbulent zone (χ � χ0) from the non-turbulent zone (χ < χ0). The most commonly
used scalar quantity is enstrophy (e.g. Bisset, Hunt & Rogers 2002; Holzner & Luethi
2011; Da Silva et al. 2014; van Reeuwijk & Holzner 2014), which is consistent with Corrsin
& Kistler (1955), but passive scalars (e.g. Sreenivasan, Ramshankar & Meneveau 1989;
Westerweel et al. 2005; Burridge et al. 2017) or the turbulence kinetic energy (Chauhan
et al. 2014; Philip et al. 2014) are also used to define the TNTI. Note, however, that care
needs to be taken when using turbulence kinetic energy to delineate the TNTI, as pressure
can induce irrotational velocity fluctuations in the ambient (Watanabe, Zhang & Nagata
2018b).

The choice of the threshold value χ0 is always slightly arbitrary, as the flow transitions
smoothly from turbulent to non-turbulent. In addition any measurement and simulation
data are subject to uncertainty, and background levels of χ may be non-zero (e.g. enstrophy
levels in a turbulent ambient). One therefore typically chooses a small and finite non-zero
threshold χ0 to define the TNTI. Since the interface between turbulent and non-turbulent
fluid is generally very sharp, there is a range of thresholds χ0 that can be chosen for which
the entrainment statistics are insensitive to the choice of χ0 (Da Silva et al. 2014).

The velocity v associated with any trajectory on an isosurface of χ satisfies

dχ

dt
= ∂χ

∂t
+ v · ∇χ = 0. (1.1)

By introducing a relative velocity V = v − u, which is the difference between the
isosurface velocity v and the fluid velocity u, (1.1) can be rewritten as (Dopazo, Martín &
Hierro 2007; Holzner & Luethi 2011)

Vn = − 1
|∇χ |

Dχ

Dt
, (1.2)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, Vn = V · N is the normal
component of the relative velocity and N = ∇χ/|∇χ | is the (3-D) normal vector pointing
into the turbulent region (figure 1a). Note that the other two components of V tangential
to the isosurface are not specified by this definition. For an entraining flow, Vn < 0, which
is a consequence of defining a normal N that points into Ω . The inward pointing normal
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FIGURE 1. Interface properties of the turbulent–non-turbulent interface separating turbulent
(T) from non-turbulent (NT) fluid. (a) Definition sketch. (b) Geometric properties.

also has consequences for the Gauss divergence theorem. By substituting the governing
equation for χ (usually enstrophy) into (1.2) and averaging, local aspects of turbulent
entrainment can be explored (e.g. Holzner & Luethi 2011; Da Silva et al. 2014; van
Reeuwijk & Holzner 2014; Krug et al. 2015; Jahanbakhshi & Madnia 2018).

The global entrainment velocity V̄g is not as uniquely defined as the local entrainment
velocity (1.2) (Hunt, Rottman & Britter 1983; Turner 1986). For spatially developing flows,
the entrainment velocity is usually associated with a flow into the turbulent region. For
temporal problems, however, it is defined via dh/dt, the growth of the layer in time,
where h is some characteristic layer thickness. For spatially developing flows in which
the environment is non-quiescent or is stratified, there is another mode of entrainment
which is associated with the entrainment across the boundary. These different forms of
entrainment were discussed in Hunt et al. (1983) and Turner (1986) and cause confusion
between disciplines, as they describe related processes that are not necessarily equivalent.
In this paper we derive an unambiguous definition of the global entrainment velocity that
can be used for spatial, temporal and spatio-temporal (unsteady) entrainment problems.

The aim of this paper is to derive an integral description of free-shear flows capable of
representing both the local and global viewpoints of turbulent entrainment. An equivalent
definition to (1.2) is presented for the global entrainment velocity. The framework provides
a unified description of entrainment in temporal problems (2-D unsteady; Da Silva &
Pereira 2008; van Reeuwijk & Holzner 2014; Krug et al. 2017), in which the TNTI moves
but there is no net flow into the turbulent layer (Vn produced by v), spatial problems (2-D
steady; Rajaratnam 1976; Turner 1986; Philip et al. 2014), in which the TNTI is statistically
steady but there is a net flow into the turbulent layer (Vn produced by u), and unsteady
free-shear layers (3-D unsteady; Craske & van Reeuwijk 2016).

This paper is organised as follows. Section 2 introduces the integral operator identities
and the averaged plane-integrated Navier–Stokes equations which describe the integral
spatio-temporal dynamics of free-shear flows. In § 3, an average isosurface of χ̄ is applied
to the equations which results in an expression for the global entrainment velocity V̄g
in terms of an explicit function ht describing the TNTI. The implications of this new
definition of V̄g are discussed in § 4. Four canonical free-shear flows (an axisymmetric jet,
a planar wake, a temporal jet and an unsteady jet/plume) are studied in § 5 to show that
the current definition of V̄g is fully consistent with previous results. Application of the
new description to unsteady jets and plumes reveals the relation between the entrainment
coefficient α and actual entrainment across the interface. Concluding remarks are made
in § 6.
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2. Local averaged integral equations

In this section we present integral volume (i.e. continuity) and momentum conservation
equations. The focus of this work is on turbulent free-shear flows which develop slowly
(in a statistical sense) in time t, in the spatial direction x or both. The incompressible
Navier–Stokes equations are given by

∇ · u = 0, (2.1)

Du
Dt

= − 1
ρ0

∇p + ∇ · T + f , (2.2)

where T denotes the viscous stress tensor and f is a body force. These equations will be
integrated over the turbulent region in the y–z plane which is denoted Ω . The following
identities for the integrals of the gradient, divergence and material derivative operators can
be derived: ∫

Ω

∇φ dA = ∂

∂x

∫
Ω

φ dAex −
∮

∂Ω

φ
N

|N⊥| d	, (2.3)∫
Ω

∇ · F dA = ∂

∂x

∫
Ω

Fx dA −
∮

∂Ω

F · N
|N⊥| d	, (2.4)∫

Ω

Dφ

Dt
dA = ∂

∂t

∫
Ω

φ dA + ∂

∂x

∫
Ω

uxφ dA −
∫

Ω

φ∇ · u dA +
∮

∂Ω

Vn

|N⊥|φ d	, (2.5)

where φ is an arbitrary scalar or vector component field and F is an arbitrary vector field.
Vectors with a perp (⊥) subscript denote the components perpendicular to the x-direction,
i.e. F = [Fx , F ⊥]T, and ∇⊥ = [∂/∂y, ∂/∂z]T. The unit vector N = ∇χ/|∇χ | is normal to
the 3-D surface χ = χ0 which demarcates between turbulent and non-turbulent regions.
The normal vector can be written as N = [Nx , N⊥]T, so that |N⊥| is the magnitude of
the 3-D normal in the y–z plane (see figure 1b). Finally, ex is the unit vector in the
x-direction and ux is the component of the fluid velocity field u in that same direction.
An easily accessible yet rigorous proof of these three identities is given in appendix A.
A more general derivation using differential geometry, which highlights the role of Stokes’
theorem and the Leibniz integral rule, is given in appendix B.

Since the flow is turbulent, the integration domain Ω( y, z; x) can consist of several
disconnected blobs of turbulent fluid, i.e. Ω = Ω1 ∪ Ω2 ∪ . . .. This implies that the
domain boundary ∂Ω contains multiple closed trajectories ∂Ω1, ∂Ω2, . . . which are
summed up with the line integral, That is,

∮
∂Ω

· d	 = ∮
∂Ω1

· d	 + ∮
∂Ω2

· d	 + . . . if the
domain contains multiple disconnected blobs.

Noting that ∇ · u = Dφ/Dt = 0 for φ = 1 and using (2.5) implies that the instantaneous
integral continuity equation is given by

∂

∂t

∫
Ω

dA + ∂

∂x

∫
Ω

ux dA = −
∮

∂Ω

Vn

|N⊥| d	. (2.6)

Note that if the relative isosurface velocity V is everywhere tangential to the interface then
Vn = 0, in which case (2.6) describes a streamtube. Entrainment allows exchange across
the isosurface χ = χ0. For an entraining flow, Vn < 0 (due to the inward pointing normal).

The line integral represents the net entrainment into the turbulent region. The factor
|N⊥| accounts for the projection of the 3-D quantity Vn onto the y–z plane. This is better
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seen by using Vn = V · N to write the entrainment term as∮
∂Ω

Vn

|N⊥| d	 =
∮

∂Ω

V ⊥ · n d	 +
∮

∂Ω

Vx
Nx

|N⊥| d	, (2.7)

where n = ∇⊥χ/|∇⊥χ | is the normal in the y–z plane, and note that this quantity is
related to the 3-D normal via n = N⊥/|N⊥|. The first term on the right-hand side of (2.7)
is simply the entrainment flux arising from the in-plane relative velocity components V ⊥.
As described in appendices A and B, the second term on the right-hand side of (2.7)
arises from the commutation of integration and differentiation with respect to x that
is required to formulate (2.6). It represents the net transport of the streamwise relative
velocity component Vx into the turbulent region across the interface whose local slope is
Nx/|N⊥| (see figure 1). We note that |N⊥| can be zero locally when N is aligned with the
x-direction , which would render the integrand infinite. This is an inescapable consequence
of determining entrainment as a function of x . Any subsequent integration over x will
remain finite, however, since Vn/|N⊥| d	 dx = Vn dS where dS is the local surface area of
the surface in three dimensions.

Integration over the region Ω of (2.2) and use of identities (2.3)–(2.5) results in

∂

∂t

∫
Ω

u dA + ∂

∂x

∫
Ω

(
ux u + p

ρ0
ex

)
dA

= −
∮

∂Ω

1
|N⊥|

(
Vnu − p

ρ0
N
)

d	 +
∫

Ω

f dA. (2.8)

Here, the shear-stress contributions have been neglected as is conventional for high
Reynolds free-shear flows. Equations (2.6) and (2.8) are instantaneous.

Performing ensemble averaging, denoted by the overbar ·, on the instantaneous
integrated continuity (2.6) and the streamwise x-component of the integrated momentum
(2.8) yields

∂

∂t

∫
Ω

dA + ∂

∂x

∫
Ω

ux dA = −
∮

∂Ω

Vn

|N⊥| d	, (2.9)

∂

∂t

∫
Ω

ux dA + ∂

∂x

∫
Ω

(
u2

x + p
ρ0

)
dA

= −
∮

∂Ω

1
|N⊥|

(
Vnux − p

ρ0
Nx

)
d	 +

∫
Ω

fx dA. (2.10)

In the integral continuity (2.9),
∫

Ω
dA represents the average instantaneous cross-sectional

area of the turbulent region at location x . It is not possible to commute the integral with
the ensemble averaging because the integration regions Ω and ∂Ω vary in time and per
ensemble instance.

3. Global averaged integral equations

Equations (2.9), (2.10) ultimately link the integral behaviour of the free-shear flow to
the small-scale dynamics at the TNTI when χ is an instantaneous quantity. The global,
integral dynamics can be obtained by using an average quantity χ̄ , with associated
threshold χ̄0, to identify the interface (figure 2). By considering an average quantity, the
TNTI will not be contorted but will be smooth and satisfy the symmetries corresponding
to homogeneity in the problem under consideration.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.836


Unified description of turbulent entrainment 908 A12-7

T

x

NT

�χ̄

|�χ̄|

χ̄(x, t) = χ̄ 0

ht (x, t)

V̄ = v̄  – ū

ζ

ū

V̄gNg v̄

Ng =

Ng

FIGURE 2. Definition sketch of the global (average) perspective on the
turbulent–non-turbulent interface.

3.1. Non-slender flows
We define the global entrainment velocity V̄g to be the net transport across an averaged
scalar χ̄ . This implies that the 3-D normal is defined as Ng = ∇χ̄/|∇χ̄ |, and therefore
that

Vg = (v − u) · Ng = v · ∇χ̄ − u · ∇χ̄

|∇χ̄ | = − 1
|∇χ̄ |

Dχ̄

Dt
, (3.1)

where use was made of (1.1) for χ = χ̄ . The equation above is the instantaneous global
entrainment velocity across an isosurface based on a Reynolds-averaged quantity. The
mean entrainment velocity can be determined by applying Reynolds averaging to (3.1),
with result

V̄g = V · Ng = V̄ · Ng = − 1
|∇χ̄ |

D̄χ̄

D̄t
, (3.2)

where D̄/D̄t = ∂/∂t + ū · ∇ is the material derivative of the average flow.
An advantage of considering averaged quantities is that it is possible to represent

the isosurface χ̄ = χ̄0 (which implicitly defines the TNTI) explicitly in terms of
a single-valued function ht in a coordinate system appropriately representing the
symmetries of the free-shear problem under consideration. Restricting attention to planar
or axisymmetric problems, a scalar level-set function L(x, ζ, t) = ht(x, t) − ζ can be
constructed such that L = 0 represents the average interface position where ζ is the
direction normal to the x-direction. Setting χ̄ = L implies that (3.1) can equivalently be
expressed as

V̄g = − 1
|∇L|

(
D̄ht

D̄t
− D̄ζ

D̄t

)
= 1

|∇L|
(

ūζ − D̄ht

D̄t

)
, (3.3)

where |∇L| = √
1 + (∂ht/∂x)2.

Because the interface is based on the average quantity χ̄ , the averaging and integral
operators do commute, which implies that (2.9), (2.10) simplify to

∂

∂t

∫
Ω̄

dA + ∂

∂x

∫
Ω̄

ūx dA = −
∮

∂Ω̄

V̄g

|Ng⊥| d	, (3.4)
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∂

∂t

∫
Ω̄

ūx dA + ∂

∂x

∫
Ω̄

(
u2

x + p̄
ρ0

)
dA

= −
∮

∂Ω̄

1
|Ng⊥|

(
Vgux − p̄

ρ0
Ngx

)
d	 +

∫
Ω̄

f̄x dA. (3.5)

Here, we have denoted the integration domain and boundary with Ω̄ and ∂Ω̄ , respectively,
to distinguish from the local viewpoint. The integrals can be made definite once a specific
coordinate system is selected. Note that u2

x = ū2
x + u′

x u′
x .

3.2. Slender flows
Many free-shear flows have the additional property of being slender, i.e. they develop
much more slowly in the streamwise x-direction than in the normal direction,
which implies that, apart from all quantities changing slowly in the x-direction, ∂χ̄/∂x �
|∇⊥χ̄ |. Under the assumption of slenderness, (3.1), (3.3) become

V̄g = − 1
|∇⊥χ̄ |

D̄χ̄

D̄t
= ūζ − D̄ht

D̄t
. (3.6)

The assumption of slenderness also implies that |Ngx | � |Ng⊥|, which furthermore
implies that |Ng⊥| ≈ 1 and Ng⊥ ≈ ng = ∇⊥χ̄/|∇⊥χ̄ |. Thus, under this assumption (3.4),
(3.5) further simplify to

∂

∂t

∫
Ω̄

dA + ∂

∂x

∫
Ω̄

ūx dA = −
∮

∂Ω̄

V̄g d	, (3.7)

∂

∂t

∫
Ω̄

ūx dA + ∂

∂x

∫
Ω̄

(
u2

x + p̄
ρ0

)
dA

= −
∮

∂Ω̄

(
Vgux − p̄

ρ0
Ngx

)
d	 +

∫
Ω̄

f̄x dA. (3.8)

4. Implications

4.1. Reconciliation of entrainment definitions
Equation (3.6) brings perspective to the different definitions of the global entrainment
velocity that have previously been used. Taking the example of an axisymmetric jet, it
follows that ζ = r and thus that (3.6) is given by

V̄g(x, t) = ūr(x, ht, t) −
(

∂ht

∂t
(x, t) + ūx(x, ht, t)

∂ht

∂x
(x, t)

)
. (4.1)

Hunt et al. (1983) and Turner (1986) discuss the different definitions that were used
in the thirty years prior, and distinguished between the entrainment rate E, a boundary
entrainment rate Eb and a net entrainment rate E∗. Loosely speaking, one can relate V̄g to
the net entrainment rate E∗, ūr with the entrainment rate E and D̄ht/D̄t to the boundary
entrainment rate Eb, such that E∗ = E − Eb. However, note that only steady problems were
considered in these discussions. The definitions of E∗, E and Eb will be detailed below, as
well as the similarities and differences in the concepts.
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In Hunt et al. (1983) and Turner (1986), E and Eb were determined from the top-hat
‘cartoon’ of a jet, i.e. the jet has a width h with a uniform velocity um inside and zero
velocity outside it (this viewpoint has been used extensively for integral descriptions of
free-shear flows and should not be applied locally, e.g. to quantify Reynolds stresses which
would be zero). Here, the top-hat width h and velocity um are defined as h = Q/M1/2

and um = M/Q, where Q = 2
∫ ht

0 ūx r dr is the volume flux and M = 2
∫ ht

0 ū2
x r dr is the

momentum flux per unit radian. For a steady jet, dh/dx = 2α, where α is the entrainment
rate (Turner 1986). In the cartoon view, E = −αum is the flow perpendicular through the
jet boundary, and Eb = um dh/dx is the outward velocity of an observer moving along the
interface. Using the spreading rate of the jet, we can write this as Eb = 2αum = 2E, such
that the net entrainment rate E∗ = −3E.

However, the classical arguments suggest that there is a choice in the entrainment
definition when (4.1) clarifies there is not. Indeed, if we restrict ourselves to a steady
flow and choose a conventional threshold strategy by using χ̄ = ū(x, r)/um(x) (e.g. van
Reeuwijk et al. 2016), then we immediately obtain that

V̄g(x, t) = ūr(x, ht) − χ̄0um
dht

dx︸ ︷︷ ︸
≈0

, (4.2)

where the boundary contribution can be assumed zero because χ̄0 � 1. This then
immediately implies that Eb ≈ 0, and that the only correct expression for the entrainment
rate for the steady axisymmetric jet is that E∗ = E.

4.2. Relation between h and ht

Integral models do not typically make explicit reference to a scalar interface ht. Instead,
it is conventional to define a characteristic width of the flow h from either integral flow
properties, resulting in a (top-hat) width h = Q/M1/2 (as used in the previous section), or
via the specific features of a given velocity profile, such the half-width h1/2, defined as
ūx(x, h1/2) = ūx(x, 0)/2 where ūx(x, 0) and is the centreline velocity.

For self-similar flows, h and h1/2 and ht are trivially related by a proportionality
coefficient which translates through to the value of the entrainment coefficient. Therefore,
they play an influential, albeit superficial, role in studies of entrainment. A further
complication arises in flows that are not self-similar, which makes it impossible to relate
h with ht using a constant of proportionality (see § 5.4)

Note that ht is present in the definitions of the volume flux Q and momentum flux M.
This is important from a practical perspective as the flow in the ambient, even if only
considering the induced irrotational flow due to entrainment, will not necessarily produce
a finite volume flux from integrals to infinity (Kotsovinos 1978) and will contaminate the
results.

4.3. Entrainment interacting with turbulence
Although turbulent entrainment is usually associated with a net velocity relative to an
interface due to the interior turbulence, it is important to acknowledge that in turbulent
ambients there are also turbulent–turbulent exchanges across the interface. These are not
present in the continuity equation, which does not contain products, but these terms do
feature in the momentum and scalar equations. For example, in (3.8), the term Vgux =
V̄gūx + V ′

gu′
x contains two contributions, one associated with the mean flow and one
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with turbulent exchanges across the interface. These can be expected to be important in
environments in which there are substantial fluctuations in the ambient, such as jets in
a turbulent environment (Ching, Fernando & Robles 1995; Gaskin, McKernan & Xue
2004; Kankanwadi & Buxton 2020), turbulent fountains (Hunt & Burridge 2015) or
clouds (de Rooy 2013). Importantly, the turbulent transport V ′

gu′
x may require different

parameterisation than the mean transport V̄gūx .

4.4. Connection between the local and global viewpoints
The integral representations of the local and global continuity equations, (2.9) and (3.4)
respectively, can be used to establish the relation between the local entrainment velocity
and the global entrainment velocity. If the threshold χ0 encompasses all of the turbulence
and χ̄0 accounts for the mean area of the turbulent region, the left-hand sides of (2.9) and
(3.4) can be assumed to be approximately equal. This results in

∮
∂Ω

Vn

|N⊥| d	 =
∮

∂Ω̄

V̄g

|Ng⊥| d	. (4.3)

Consistent with Zhou & Vassilicos (2017), we introduce the average instantaneous
interface and average interface lengths as L = ∮

∂Ω
d	 and Lg = ∮

∂Ω̄
d	, respectively. Note

that Lg can be determined straightforwardly from the problem geometry and ht (see also
§ 5). The average instantaneous interface length L is expected to scale in a fractal manner
(Sreenivasan et al. 1989), implying that L � Lg for Re � 1. Equation (4.3) can be recast
as (van Reeuwijk & Holzner 2014; Zhou & Vassilicos 2017)

〈V̄g〉
〈Vn〉 = L

Lg
, (4.4)

where 〈Vn〉 = L−1
∮

∂Ω
Vn/|N⊥| d	 and 〈V̄g〉 = Lg

−1 ∮
∂Ω̄

V̄g/|Ng⊥| d	 are the effective local
and global entrainment velocities, respectively. The fractal arguments for L can imply that
the local entrainment velocity 〈Vn〉 is of the order of the Kolmogorov velocity (Corrsin
& Kistler 1955; van Reeuwijk & Holzner 2014; Silva, Zecchetto & da Silva 2018) for a
specific value of the fractal dimension of the interface, but Zhou & Vassilicos (2017) also
argued for the possibility of a different scaling, independent of the value of the fractal
dimension, in the presence of non-equilibrium turbulence. It must be noted, however, that
the definition of local entrainment velocity used by Zhou & Vassilicos (2017) actually
relates to a pseudo-velocity (see appendix A and § B.2 of appendix B). Even so, their
local entrainment velocity does scale with the Kolmogorov velocity in the presence of
classical equilibrium turbulence. The connection between local and global entrainment
was shown to hold reasonably well for an experimental study of a developing boundary
layer (Chauhan et al. 2014).

It is unlikely that (4.3) will hold in an exact manner as χ̄0 → 0, since global entrainment
implicitly accounts for fluid entering or leaving non-turbulent regions where χ0 < χ̄ < χ̄0.
Indeed, Burridge et al. (2017) found that approximately five per cent of the volume flux of a
plume occurs outside of the turbulent region. For flows which are spatially and temporally
evolving, deviations will likely be higher. Nevertheless, (4.3) is useful from a conceptual
and practical point of view, because global entrainment is relatively straightforward to
compute.
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5. Application to four canonical flows

In this section the integral description will be applied to four canonical free-shear flows
namely the axisymmetric jet, the planar wake, the temporal jet and the unsteady jet/plume.
The first three cases serve to demonstrate that the framework reproduces the appropriate
entrainment velocities and well-known equations and results. The fourth case, the unsteady
jet/plume, will provide new insight into the interpretation of the entrainment coefficient
α. As turbulent free-shear flows are characterised by a high Reynolds number Re and a
slow development in the x (or t) direction, viscous stresses and pressure are neglected.
Furthermore, consistent with general practice on thresholding, all quantities containing a
prefactor χ̄0 will neglected.

5.1. Axisymmetric jet
The axisymmetric jet is homogeneous in the azimuthal direction θ and time t. The
streamwise velocity ūx is used to define the turbulent region for the global entrainment
as χ̄ = ūx/um(x), where um(x) is the characteristic velocity inside the jet. Applying the
symmetries to (3.6) and setting ζ = r, we have

V̄g = ūr(x, ht). (5.1)

Thus, (3.7), (3.8) are given by, using that dA = 2πr dr and Lg = 2πht:

2
d

dx

∫ ht

0
ūx r dr = −2htV̄g = −2htūr, (5.2)

2
d

dx

∫ ht

0
u2

x r dr = 0, (5.3)

which is consistent with straightforward integration of the Reynolds-averaged boundary
layer equations (e.g. Rajaratnam 1976), thereby confirming the appropriateness of the
description.

5.2. Planar wake
The planar wake is an interesting case, since it features a non-zero ambient flow
of amplitude U∞. This problem is statistically homogeneous in y and t. Applying
the symmetries to (3.6), setting ζ = z and using χ̄ = 1 − ūx/U∞ as the quantity for
thresholding, we obtain

V̄g = ūz − U∞
dht

dx
. (5.4)

Using that dA = Ly dz and Lg = 2Ly (since the interface is present on both sides of the
z = 0 plane), (3.7) and (3.8) are given by

d
dx

∫ ht

−ht

ūx dz = −2V̄g = 2
(

U∞
dht

dx
− ūz

)
, (5.5)

d
dx

∫ ht

−ht

u2
x dz = 2U∞

(
U∞

dht

dx
− ūz

)
. (5.6)

By substituting (5.5) into (5.6), assuming that u′
x u′

x � ū2
x and rearranging it follows that

the mean momentum deficit
∫ ht

−ht
ūx(U∞ − ūx) dz is conserved as expected (e.g. Pope

2000).
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5.3. Temporal jet
The capability to directly quantify the entrainment velocity V̄g in temporal free-shear
flows (e.g. atmospheric boundary layers) is one of the useful results of the integral
description put forward here. The distinguishing aspect of these flows is that they tend
to be homogeneous in x and y. For a temporal jet, in order to obtain an expression for
the global entrainment velocity we can define a threshold χ̄ = ūx/um(t), where um(t)
is the characteristic value inside the jet (van Reeuwijk & Holzner 2014). Applying the
symmetries of this flow to (3.6) then results in

V̄g = −dht

dt
. (5.7)

Using that dA = Ly dz and Lg = 2Ly , (3.7) and (3.8) simplify to

2Ly
dht

dt
= −2LyV̄g = 2Ly

dht

dt
, (5.8)

Ly
d
dt

∫ ht

−ht

ūx dA = 0. (5.9)

The first equation simply confirms that V̄g has been defined appropriately, whilst the
second equation demonstrates the conservation of volume flux for this flow (van Reeuwijk
& Holzner 2014).

The equivalence between the integrals of local and global entrainment (4.4), was studied
in van Reeuwijk & Holzner (2014). It was shown that for the temporal jet, the entrainment
at the global and local level are indeed identical over several decades of variation in
χ0 (enstrophy in this case), provided it was small enough. However, for the relatively
low Reynolds number under consideration it was shown to be important to take into
account the change in the interface location upon changing the threshold value χ0 if one
were to determine the entrainment coefficient α from the local entrainment velocity. The
consistency between the integral global and local entrainment flux (4.4) was shown also
for the case of penetrative convection (Holzner & van Reeuwijk 2017) and an inclined
temporal gravity current (van Reeuwijk et al. 2018).

5.4. Unsteady axisymmetric jets and plumes
In this section we apply the description to unsteady axisymmetric jets and plumes, which
will provide new insight in the extent to which the entrainment coefficient α is linked to
actual entrainment across the jet/plume boundary. Axisymmetric statistically unsteady jets
and plumes retain a dependence on three independent variables: the streamwise direction
x , the lateral or normal direction r, and time t. In the case of unsteady jets and plumes, it
cannot be assumed that the flow remains slender, since there can be substantial variation
of all the quantities of interest over short distances. As for the axisymmetric jet, the
streamwise velocity ūx is used to define the turbulent region for the global entrainment
as χ̄ = ūx/um(x, t), where um(x) is the characteristic velocity inside the jet. Applying the
symmetries to (3.4), setting ζ = r and dA = 2πr dr we obtain

∂h2
t

∂t
+ ∂Q

∂x
= − 1

π

∮
∂Ω̄

V̄g

|Ng⊥| d	, (5.10)

where Q = 2
∫ ht

0 ūx r dr. The right-hand side accords with our intuitive understanding of
entrainment across a physically defined interface. Similarly, defining a specific momentum
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flux M = 2
∫ ht

0 ū2
x r dr, the integral or top-hat width h = Q/

√
M of an unsteady jet or plume

obeys (Craske & van Reeuwijk 2016)

1
γ

∂h2

∂t
+ ∂Q

∂x
= 2αM1/2, (5.11)

where α is an entrainment coefficient that depends on dimensionless properties of the
flow, such as the Richardson number, dimensionless streamwise gradients and parameters
characterising the flow’s radial dependence. The dimensionless parameter γ characterises
the shape of the mean velocity in the plume as an integral of the mean flux of streamwise
kinetic energy divided by M2/Q. If one assumes self-similarity by introducing a similarity
variable η = r/h, it directly follows that (i) ht = ηth where ηt is a constant; and (ii) that γ
is a constant (4/3 for a Gaussian profile). In this case, the terms in (5.10) and (5.11) can be
matched individually with result

ηt = γ −1/2, α = − 1
2πM1/2

∮
∂Ω̄

V̄g

|Ng⊥| d	 ≡ α0. (5.12a,b)

Equation (5.12a,b) shows that, for an unsteady flow that remains self-similar, the global
entrainment coefficient α represents physical entrainment across its boundary ht, entirely
consistent with its classical interpretation.

However, in the vicinity of abrupt changes in the streamwise direction, unsteady
jets and plumes depart significantly from self-similarity (Craske & van Reeuwijk 2015,
2016). In this case, the equivalence between the individual terms in (5.10) and (5.11) is
lost. Consequently, the strongest statement that can be made regarding the entrainment
coefficient is that

α = − 1
2πM1/2

∮
∂Ω̄

V̄g

|Ng⊥| d	︸ ︷︷ ︸
α0

+ 1
2M1/2

(
∂

∂t

(
h2

γ
− h2

t

)
+ h2

γ 2

∂γ

∂t

)
︸ ︷︷ ︸

α1

. (5.13)

The entrainment coefficient α0 continues to account for fluid entrained across the TNTI
and therefore has a direct physical interpretation. In contrast, the pseudo-entrainment
described by α1 reconciles the definition of α, as stated in (5.11) terms of Q and M,
with entrainment across the TNTI during departures from self-similarity. It accounts for
differences between temporal changes in the widths h and ht, in addition to temporal
changes in the parameter γ , which accounts for a change in the shape of the mean velocity
profile.

If, in view of such difficulties, one is tempted to suggest that we should abandon
(5.11) and focus on (5.10) instead, it should be noted that (5.11), unlike (5.10), can be
readily augmented with a conservation equation for momentum containing ∂tQ + ∂x M to
produce a tractable model (Craske & van Reeuwijk 2016). Indeed, it is for this reason that
establishing the connection between the local and global perspectives of entrainment is
crucial.

6. Conclusions

Turbulent entrainment lies at the core of many important applications in engineering
and science. This paper developed an integral description of turbulent free-shear flows
that develop in space and/or time. It connects local and global descriptions of turbulent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.836


908 A12-14 M. van Reeuwijk, J. C. Vassilicos and J. Craske

entrainment, and provides a simple and clear notation to describe the intricacies of
TNTI dynamics. The description relies on the relative velocity between the fluid and
the scalar interface Vn . By applying this description, in which the interface is defined
implicitly via the isosurface χ = χ0, in a local manner, integral equations are obtained
that explicitly feature the role of local entrainment.

By using an average scalar field χ̄ , an equation for the global entrainment velocity V̄g
was obtained, which resulted in (3.3) formulated in terms of the interface thickness ht.
For slender flows, this equation simplified to V̄g = ūζ − D̄ht/D̄t. The associated integral
equations make a statement about global entrainment.

The description can be used to provide insight into the different entrainment
mechanisms of canonical free-shear flows. One important example where it can provide
insight is the parameterisation of entrainment for plumes in cross-flows. This flow is
interesting since it will have significant contributions from both direct entrainment (ūζ )
and from the Leibniz terms (Schatzman 1978; Davidson 1986). A detailed investigation
using direct numerical simulation is currently underway that investigates both types
of entrainment. The method will also be of interest to studying entrainment in clouds
(de Rooy 2013). Furthermore, the description can be applied to turbulent boundary
layers (Townsend 1976; Chauhan et al. 2014) and their control (Gad-El-Hak & Bushnell
1991), particularly in combination with recently developed decomposition techniques for
local (Holzner & Luethi 2011) and global (van Reeuwijk & Craske 2015) descriptions
of turbulent entrainment. The description can also be used to link entrainment to
non-equilibrium turbulence (Zhou & Vassilicos 2017; Cafiero & Vassilicos 2019).

Identifying discrete events that are responsible for entrainment has been a major focus
in entrainment research since its inception (e.g. Townsend 1976; Fernando 1991). The
description in its current form is not directly able to link turbulent entrainment to local
and discrete events, since the integrals sum over all events. However, it is possible to
combine the entrainment descriptions to a method to identify coherent structures (e.g.
Neamtu-Halic et al. 2020), although one should keep in mind that the choice of local or
global entrainment description can isolate different aspects of entrainment (engulfing or
nibbling, for example) which one can then link to each other via local–global approximate
balances such as the one discussed in § 4.4. It is hoped that the current description will be
able to assist in connecting macro-scale to micro-scale entrainment events and processes.
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Appendix A. Integral identities

In this appendix we derive the integral identities (2.3)–(2.5) by considering volume
and time integrals over infinitesimal slices of size δx → 0 and δt → 0, respectively. The
identity (2.3) for the integral gradient operator can be obtained directly from (2.4) by
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substituting F = φei for i ∈ {x, y, z}; we therefore only need to prove (2.4) and (2.5). We
start with the proof of (2.4) which is a generalisation of the method introduced by Zhou &
Vassilicos (2017) in their Appendix. The first step is to decompose

∫
Ω

∇ · F dA as follows:∫
Ω

∇ · F dA =
∫

Ω

∂Fx

∂x
dA +

∫
Ω

∇ ·⊥ F ⊥ dA =
∫

Ω

∂Fx

∂x
dA −

∮
∂Ω

F ⊥ · n d	, (A 1)

where use is made of Gauss’s divergence theorem (cf. Stokes’ theorem in appendix B) in
the y–z plane and n = N⊥/|N⊥| = ∇⊥χ/|∇⊥χ | is the surface normal in the y–z plane.
Note that the minus sign in the last term of (A 1) originates from the fact that n points into
Ω rather than outwards.

We now seek a formula for commuting
∫

Ω
and ∂/∂x in (A 1). Note that

∂

∂x

∫
Ω

Fx dA = lim
δx→0

1
δx

(∫
Ω(x+δx)

Fx(x + δx) dA −
∫

Ω(x)

Fx(x) dA
)

=
∫

Ω(x)

∂Fx

∂x
dA + lim

δx→0

1
δx

[∫
Ω(x+δx)

Fx(x + δx) dA−
∫

Ω(x)

Fx(x+δx) dA
]

.

(A 2)

The bracketed term in (A 2) is the difference between the surface integrals of Fx(x + δx)
over Ω(x + δx) and over Ω(x) respectively. This integral is crucially related to the slope
of the interface with the x-direction, Nx/|N⊥|. Indeed, the amount of substance flowing
into Ω at a certain location on the interface due to the slope is equal to Fxδhtδ	, where δht
is the change in the interface position in the y–z plane (normal to δ	) over the streamwise
distance δx . Since δht = Nx/|N⊥|δx (figure 1b), it follows that the difference between
the two surface integrals is, to leading order, equal to the curvilinear integral

∮
∂Ω

Fx(x +
δx)Nx/|N⊥|δx d	. Hence, (A 2) becomes

∂

∂x

∫
Ω

Fx dA =
∫

Ω

∂Fx

∂x
dA +

∮
∂Ω

Fx
Nx

|N⊥| d	. (A 3)

Combining (A 3) with (A 1) leaves us with our first main general result, identity (2.4).
In the case where F = Qu for some field Q, we have Fx(x)Nx/|N⊥| =

Q(x)ux(x)Nx/|N⊥|. Defining dt to be the time required for a fluid element to move
a distance d = ux dt in the streamwise direction, Zhou & Vassilicos (2017) defined
the pseudo-velocity dht/dt which they termed Vn (not to be confused with the
definition of Vn in the present paper). Given that their Vn equals ux(x)Nx/|N⊥|,∮

∂Ω
Fx(x)Nx/|N⊥| d	 = ∮

∂Ω
Q(x)VnNx/|N⊥| d	 in terms of their pseudo-velocity Vn (see

also § B.2 of appendix B). This establishes the correspondence between the results in their
appendix (which they gave for Q = 1) and (A 3), (2.4) here.

We now proceed with the proof of identity (2.5). Integrating the material derivative over
Ω yields ∫

Ω

Dφ

Dt
dA =

∫
Ω

∂

∂t
φ dA +

∫
Ω

∇ · (φu) dA −
∫

Ω

φ∇ · u dA (A 4)

and then making use of (2.4) for F = φu,∫
Ω

Dφ

Dt
dA =

∫
Ω

∂

∂t
φ dA + ∂

∂x

∫
Ω

φux dA −
∮

∂Ω

φu · N
|N⊥| d	 −

∫
Ω

φ∇ · u dA. (A 5)
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Following (A 2), we now wish to commute
∫

Ω
and ∂/∂t

∂

∂t

∫
Ω

φ dA = lim
δt→0

1
δt

(∫
Ω(t+δt)

φ(t + δt) dA −
∫

Ω(t)
φ(t) dA

)

=
∫

Ω(t)

∂φ

∂t
dA + lim

δt→0

1
δt

[∫
Ω(t+δt)

φ(t + δt) dA −
∫

Ω(t)
φ(t + δt) dA

]
. (A 6)

The bracketed term in (A 6) is the difference between the surface integrals of φ(t + δt)
over Ω(t + δt) and over Ω(t) respectively. The interface, which moves at normal velocity
vn = v · N , will move at velocity vn/|N⊥| when projected onto the y–z plane. Thus, over
a time increment δt, the interface element of length δ	 will sweep an area in the y–z plane
equal to −vn/|N⊥|δtδ	 (the minus sign once more originates from the inward pointing
normal N). This implies that difference between the two surface integrals in (A 6) is, to
leading order, equal to the curvilinear integral − ∮

∂Ω
φ(t + δt)vn/|N⊥|δt d	. Hence, (A 6)

becomes

∂

∂t

∫
Ω

φ dA =
∫

Ω

∂φ

∂t
dA −

∮
∂Ω

φ
vn

|N⊥| d	. (A 7)

Combining (A 7) with (A 5) and invoking the relative isosurface velocity V = v − u,
leaves us with our second main general result, identity (2.5), i.e.

∫
Ω

Dφ

Dt
dA = ∂

∂t

∫
Ω

φ dA + ∂

∂x

∫
Ω

uxφ dA +
∮

∂Ω

Vn

|N⊥|φ d	 −
∫

Ω

φ∇ · u dA. (A 8)

Noting that the approaches used in (A 2) and (A 6) are equivalent and account for the
commutation of integration with differentiation with respect to either time or space, we
abstract and generalise our results using differential geometry in the following section.

Appendix B. Differential geometry

In this appendix we regard the region Ω , defined by an isosurface of χ , as a submanifold
whose shape changes as a function of codimensions x and t, for example. In manipulating
integrals of partial derivatives over Ω , one is faced with two distinct types of expression.
The first involves derivatives in directions that lie within the dimensions of Ω and the
second involves derivatives in directions that lie in the codimension of Ω . The first can
be manipulated using a generalised version of Stokes’ theorem, whilst the second require
a generalised form of Leibniz’s rule for commuting integration and partial differentiation.
The first involve physical fluxes and velocities at the boundary ∂Ω . The second, in contrast,
involve pseudo-fluxes and velocities that account for deformations of the integration
domain with respect to changes in a given codimension. Since the integration domain
is specified by χ independently of physical boundary fluxes, the two are independent.

To crystallise these ideas, consider an n-dimensional slice Ω through an N-dimensional
manifold defined by χ(x, y) � χ0 by fixing m = N − n codimensions x, as depicted in
figure 3. The slice itself can be traversed locally by coordinates y1, . . . , yn . Components of
a differential (N − 1)-form ω can be partitioned into fluxes f and g that are either normal
or tangential to the area form dA = dy1 ∧ dy2 ∧ . . . ∧ dyn , respectively. For example, if
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Ω

y1

y3y2

x2

x1

∂Ω

g

h
f

FIGURE 3. A submanifold Ω described by local coordinates y1, . . . , yn and parameterised over
codimensions x1, . . . , xm. The physical flux in the plane of Ω corresponds to the (m + n −
1)-form g and the pseudo-flux, arising from the normal flux f through deformations in ∂Ω as
one moves with unit ‘velocity’ in the direction x i, corresponds to the (m + n − 1)-form h.

x1 = x , y1 = y and y2 = z, a flux ω can be partitioned, such that

ω = ωx dy ∧ dz︸ ︷︷ ︸
f

+ωy dz ∧ dx + ωz dx ∧ dy︸ ︷︷ ︸
g

. (B 1)

Integrals of the N-form dg at a given point in the codomain can be evaluated using a
generalised version of the fundamental theorem of calculus in the form of Stokes’ theorem.
With slight abuse of notation, because dg is an N-form rather than an n-form, we express
the application of Stokes’ theorem over the slice Ω as

∫
Ω

dg =
∫

∂Ω

g, (B 2)

which we will refer to as a partial integral (Whitney 2005) that results in a differential
form containing, in the case of (B 2), dx1 ∧ . . . ∧ dxm. A more rigorous treatment of the
operation would consider integrals along a fibre (Ω) of a fibre bundle (the entire space).
In either case, (B 2) states that integrals of derivatives with respect to y1, . . . , yn can be
evaluated as surface integrals that account for boundary transport.

The manipulation df is fundamentally different from dg because df , unlike dg, involves
partial derivatives with respect to the codimensions x1, . . . , xm. Consequently, partial
integrals of df over Ω satisfy a generalised version of Leibniz’s rule that specifies how
to commute integration with exterior differentiation

∫
Ω

df = d
∫

Ω

f −
∫

∂Ω

h, (B 3)

in which the partial integral of f over Ω produces an (m − 1)-form to which the exterior
derivative d can be applied. The final term in (B 3) contains h, which is a differential
(N − 1)-form corresponding to a pseudo-flux, in contrast with the physical flux g. The
pseudo-flux h results from f and the dependence of Ω on the codimensions, and therefore
depends on the geometry of the surface χ − χ0 = 0.
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To determine h, we define a vector Y that is tangent to Ω , is perpendicular to an
isosurface of χ

(∇χ ¬ dA)(Y) = 0, (B 4)

and corresponds to a unit rate of change down χ , such that dχ(Y) = −1. Consequently,
the vector (∂x iχ)Y acts in a direction that is perpendicular to ∂Ω and describes the change
in ∂Ω that occurs as one moves with unit ‘velocity’ along the ith codimension. The effect
of changes in Ω on integrals is captured by Cartan’s magic formula for the Lie derivative
X ¬ dω = LXω − d(X ¬ ω), where LXω describes the change in ω along the flow defined
by X. Setting X = ∂x i + (∂x iχ)Y and focusing on each component fi of f in (B 1), leads
to a generalised version of Leibniz’s rule (see, for example, Flanders 1973) for partial
integration over Ω ∫

Ω

∂

∂x i
¬ dfi = ∂

∂x i

∫
Ω

fi −
∫

∂Ω

∂χ

∂x i
Y ¬ fi, (B 5)

which is an (m − 1)-form. Applying dx i∧ to (B 5), and summing over each codimension
i, shows that each term in (B 5) corresponds to the respective terms in (B 3) and therefore
reveals that

h = Y ¬ (dχ ∧ f ), (B 6)

which is fundamental in determining the boundary contribution of fluxes that are
perpendicular to dA. Combining (B 6) with (B 2) and (B 3) leads to a general formula
for commuting exterior differentiation and partial integration over a submanifold∫

Ω

dω − d
∫

Ω

ω =
∫

∂Ω

g︸ ︷︷ ︸
Stokes

−
∫

∂Ω

h︸ ︷︷ ︸
Leibniz

. (B 7)

As illustrated in figure 3, the commutation of integration and exterior differentiation leads
to physical fluxes g in the plane of dA in addition to pseudo-fluxes h, which account for the
flow f through the contraction and expansion of Ω as the codimensions t and x change.

B.1. Example: integration of Dφ/Dt over Ω(x, t) � ( y, z)
To integrate Dφ/Dt over an area Ω(x, t), we identify x1 = t, x2 = x as the submanifold’s
codimensions and y1 = y, y2 = z as the submanifold’s coordinates. We decompose
Dφ/Dt to incorporate the divergence of a flux ω and indicate the correspondence with
dω = df + dg:

Dφ

Dt
= ∂φ

∂t
+ ∂uxφ

∂x︸ ︷︷ ︸
df

+ ∂uyφ

∂y
+ ∂uzφ

∂z︸ ︷︷ ︸
dg

−φ∇ · u, (B 8)

which, regarding Dφ/Dt as a differential 4-form, implies that

ω = φ dx ∧ dy ∧ dz − uxφ dt ∧ dy ∧ dz︸ ︷︷ ︸
f

+ uyφ dt ∧ dx ∧ dz − uzφ dt ∧ dx ∧ dy︸ ︷︷ ︸
g

. (B 9)
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Here, the tangent vector Y is

Y = Yy
∂

∂y
+ Yz

∂

∂z
= −

((
∂χ

∂y

)2

+
(

∂χ

∂z

)2
)−1 (

∂χ

∂y

∂

∂y
+ ∂χ

∂z
∂

∂z

)
, (B 10)

which, using (B 7) and omitting the dt ∧ dx that remains after partial integration, results
in ∫

Ω

Dφ

Dt
dA = ∂

∂t

∫
Ω

φ dA + ∂

∂x

∫
Ω

uxφ dA +
∫

∂Ω

(
Yz

∂χ

∂t
+ ux Yz

∂χ

∂x
− uz

)
φ dy

−
∫

∂Ω

(
Yy

∂χ

∂t
+ ux Yy

∂χ

∂x
− uy

)
φ dz −

∫
Ω

φ∇ · u dA. (B 11)

Identities for the integral of ∇φ and the area of Ω can be obtained as corollaries of (B 11)
by substitution of u = (1, 1, 1)T and φ = 1, respectively.

B.2. Summary and connection with appendix A
Our results indicate that the commutation of integration and differentiation leads to storage
terms and pseudo boundary fluxes that depend on the t and x dependence of the domain of
integration. Such fluxes arise from Leibniz’s rule for differentiation under an integral sign
and are distinct from the physical boundary fluxes that are obtained by applying Stokes’
theorem to the divergence of fluxes that are in the same plane as the domain of integration.

To link (B 7) with appendix A it is necessary to note that the vector Y introduced at
(B 4), and written explicitly in (B 10), corresponds to −n/|∇⊥χ | and that

∂χ

∂t
= −vn|∇χ |, ∂χ

∂x
= ux Nx |∇χ |. (B 12a,b)

As made explicit in the fourth term of (B 11), each term in the integral of h accounts for
Y , which is normal to ∂Ω according to (B 4), scaled by either ∂tχ or ∂xχ . Consequently,
by expanding (2.5) for φ = 1, using (B 12) and recalling that |N⊥| = |∇⊥χ |/|∇χ |,

∂

∂t

∫
Ω

dA + ∂

∂x

∫
Ω

ux dA =
∮

∂Ω

u · n d	︸ ︷︷ ︸
−g

−
∮

∂Ω

vn

|N⊥| − ux
Nx

|N⊥| d	︸ ︷︷ ︸
−h

, (B 13)

which is a special case of the relation (B 7). The inward boundary flux g = u · n d	 results
from Stokes’ theorem and is identical to Vf d	 in Zhou & Vassilicos (2017). In contrast, the
pseudo-fluxes h result from Leibniz’s rule for commuting integration and differentiation.
The terms in h correspond to perpendicular fluxes through contractions and expansions
of the boundary ∂Ω as one traverses the codimensions t and x with unit velocity (see
figure 3). Specifically, the term ux Nx/|N⊥| d	 corresponds to the increase in volume flux
due to changes in the location of ∂Ω as one moves, one unit in the x direction and is
identical to Vn d	 in Zhou & Vassilicos (2017) (stressing, again, that this Vn is not the
same as the Vn defined in the present paper).

A practical advantage of the abstract approach adopted in appendix B is that the
resulting surface integrals (see (B 11), for example) are given explicitly in terms of
coordinate differentials dy, dz. The integral expressions can therefore be readily evaluated
on a numerical grid and, since differential forms dy, dz, dy ∧ dz have an orientation,
automatically account for the orientation of a surface and its normal.
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