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Expansion and collapse are two key features of a financial asset bubble. Bubble
expansion may be modeled using a mildly explosive process. Bubble implosion may
take several different forms depending on the nature of the collapse and therefore
requires some flexibility in modeling. This paper first strengthens the theoretical
foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and
Yu (2015a,b, PSY) by developing analytics and studying the performance charac-
teristics of the testing algorithm under alternative forms of bubble implosion which
capture various return paths to market normalcy. Second, we propose a new reverse
sample use of the PSY procedure for detecting crises and estimating the date of mar-
ket recovery. Consistency of the dating estimators is established and the limit theory
addresses new complications arising from the alternative forms of bubble implosion
and the endogeneity effects present in the reverse regression. A real-time version
of the strategy is provided that is suited for practical implementation. Simulations
explore the finite sample performance of the strategy for dating market recovery.
The use of the PSY strategy for bubble monitoring and the new procedure for crisis
detection are illustrated with an application to the Nasdaq stock market.

1. INTRODUCTION

Following the global financial crisis (GFC) there has been widespread recognition
of the harm that financial bubbles can inflict on real economies. The slow recovery
from the great recession in the USA and the continuing debt crisis in Europe has
alerted central bankers and regulators to the need for greater understanding of
the mechanisms by which financial bubbles form, the dynamics of their evolution
and collapse, and the process of contagion through which other markets and the
real economy are affected. Few national economies have been unaffected by the
fallout from the GFC. The hazards have therefore become a matter of considerable
concern to central banks and policy makers.1,2
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While the potentially damaging impact of financial bubbles on the real econ-
omy is widely acknowledged, policy makers face major difficulties in designing
corrective measures and timing their implementation. Recent econometric work
has assisted the design and timing of policy measures by providing empirical tech-
niques that detect mildly explosive bubble-like behaviour in asset prices. While
some economists think it is impossible to see bubbles in their inflationary phase
(Cooper, 2008), recent developments in the econometric bubble literature deliver
real-time monitoring strategies, such as recursive right-sided unit root testing
procedures (Phillips, Wu and Yu, 2011, PWY; Phillips, Shi and Yu, 2014; PSY),
CUSUM monitoring techniques (Homm and Breitung, 2012; HB), and double-
recursive algorithms (Phillips, Shi and Yu, 2015a,b) that enable bubble detection
and consistent estimation of the origination and termination dates of bubble
expansion.

The present work focuses on the real-time monitoring procedure of PSY, which
is an extended version of the PWY recursive testing approach. The PSY algorithm
has been applied to a wide range of markets, including foreign exchange, real
estate, commodities and financial assets, and has attracted attention from policy
makers and the financial press.3 The algorithm has been shown (HB, 2012; PSY,
2015a,b) to have superior real time monitoring and detection performance than
other methods but nonetheless suffers from delay bias in detection.

The present paper contributes in two ways to this literature. First, it strength-
ens the foundation of the PSY approach to bubble monitoring by exploring its
asymptotics and behavioral characteristics under alternative collapse scenarios
which enable more flexible modeling of bubble implosion. Second, it proposes
an alternative ‘reverse regression’ implementation strategy for detecting bubble
implosion and estimating the origination and termination dates of bubble implo-
sion. It is noted that while events of bubble implosion are often referred to as
crises, crises are not necessarily led by bubbles. Since the focus of this paper is
on bubble-led crises, we use the term “bubble implosion/collapse” and “crisis”
interchangeably. The new algorithm, which is based on recursive reverse-sample
regression, assists in reducing the delay bias of the PSY procedure in the detection
of the bubble collapse date and by providing additional information on the market
recovery date.

The PSY double recursion strategy is particularly designed for detection pur-
poses when there are periodically collapsing bubbles (Blanchard, 1979) in the
data. Its asymptotic and finite sample performance has been studied under several
different bubble generating processes and performance measures. In particular,
PSY (2015b) demonstrate consistency of the strategy in estimating the origination
and termination dates of bubbles when either single or multiple bubbles appear in
the sample. The data generating processes considered in those exercises are based
on the model proposed in PWY where asset prices follow a random walk in nor-
mal market conditions, switch to a mildly explosive process under bubble expan-
sion, and return to martingale dynamics when the bubble implodes. In that model
bubbles collapse abruptly within one sample period, an assumption made largely

https://doi.org/10.1017/S0266466617000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000202


FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION 707

for analytic convenience but lacking empirical realism. Casual inspection of the
trajectories of financial asset bubbles typically reveal a more complex process of
market correction and reversion. For instance, Figure 1 shows monthly Nasdaq
price-dividend ratio from January 1991 to December 2005 with origination and
termination dates as determined in PWY. The observed trajectory shows that the
collapse process of the Nasdaq in the early 2000s is a complex one that is neither
immediate nor monotonic. Implosion of the famous Dot Com bubble4 does not
conclude within a single time period but involves many months of realignment.

Historical episodes of collapse have been classified in the literature into
‘sudden’, ‘disturbing’, or ‘smooth’ crisis events (Rosser, 2000; Huang, Zheng,
and Chia, 2010). ‘Sudden crises’ characterize precipitate declines and correspond
to the PWY model of abrupt declines in prices. In ‘smooth crises’ (a somewhat
oxymoronic description used in the literature), prices fall smoothly with a moder-
ate but persistent decline. ‘Disturbing crises’ are considered to be intermediate in
form between these two extremes.

The data generating process used in PSY is limited to sudden crises and there-
fore lacks realism for other crisis scenarios, potentially affecting the asymptotic
validity and finite sample performance of the testing algorithm under such condi-
tions. The present paper addresses this concern by providing limit behavior and
studying finite sample performance of the PSY strategy under more realistic bub-
ble generating processes that allow for various forms of implosion that fall into
the above categories. The process considered here, given in (2), is an extension
of the model proposed in PWY (2011) and used recently in Harvey, Leybourne,
Sollis, and Taylor (2016; HLST). The model involves normal market and bub-
ble exuberance dynamics similar to the PWY model while also allowing for drift
during normalcy, whereas bubble implosion is modeled by a (stationary) mildly

FIGURE 1. The monthly price-dividend ratio of the NASDAQ composite index for the
sample period from January 1991 to December 2005, showing the bubble period detected
by the PWY algorithm.
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integrated process that is intended to capture elements of the mean reversion pro-
cess that occur as prices collapse to normal market levels concordant with past and
present fundamentals. This extension of the bubble collapse mechanism to allow
for transitional dynamics was envisaged in the original formulation of the PWY
model5 but was not pursued in that work. Figure 2 displays a typical realization
of the PWY process and several realizations of the new process (2) with different
collapse speeds and durations. As is evident in these graphs, the new bubble model
is flexible and can produce richer dynamic trajectories in the collapse period. The
PSY procedure is shown to be consistent and to have satisfactory finite sample
performance in estimating the origination and termination dates of bubbles under
the more realistic data generating process. This evidence provides additional sup-
port for the testing algorithm and reassurance to practioners of its suitability in
bubble monitoring and detection under a variety of crisis scenarios.

An important feature of the new model is the embodiment of a recovery date
break point in the process. Market recovery is defined as the date asset prices
return to their normal martingale path, effectively the switch point from the mildly
integrated collapse process to the martingale path. A second aim of the paper is
to address the econometric issues associated with consistent estimation of the
recovery date. For the simplified PWY bubble process, market recovery coin-
cides with bubble implosion because immediate market correction ensures that the
asset price returns abruptly to its martingale path up to a term of Op (1). In the
new model, the date of bubble implosion (the switch point from exuberant behav-
ior to market correction behavior) differs from the market recovery date. By con-
struction, the market recovery date of the new process is the conclusion point of

FIGURE 2. Typical bubble collapse patterns generated by a mildly integrated process,
giving sudden, disturbing, and smooth correction trajectories. Model parameters in (2) are
set as T = 100, η = 1, α = 0.7, dBT = 0.2, β = 0.1,dCT = �0.01T � for sudden collapse,
β = 0.5,dCT = �0.10T � for disturbing collapse, and β = 0.9,dCT = �0.20T � for smooth
collapse.
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the mildly integrated collapsing process (see Figure 3). This feature of the model
leads to new practical issues such as the existence and nature of the collapsing
regime and the econometric estimation of the crisis recovery date.

Econometric detection of the crisis regime is possible because the collapse pro-
cess, modeled here by a mildly integrated process, is embedded in a long sam-
ple period that includes multiple regimes of martingale and explosive behavior.
Doubly-recursive tests like those in PSY are well suited to deal with such break
analysis. In an important related literature on testing for stationarity Leybourne,
Kim and Taylor (2007) suggested doubly-recursive tests for unit roots against
stationary alternatives. In their work on bubble break point testing Harvey,
Leybourne, and Sollis (2015, HLS) perform sequential procedures based on PWY
tests, HB (2012) Chow tests, and a union of rejections strategy (combining PWY
and HB tests) to identify bubble behavior. The HLS (2015) model uses a simple
collapse process like that of PWY—either an abrupt collapse (like PWY) or an
immediate transition to normal market behavior (a unit root process initialized at
the last period of the explosive regime). In work that is much closer in spirit to
that of the present paper and the extension suggested in PWY, HLST (2016) use
a 4-regime model that incorporates an intermediate stationary regime to model
a collapsing bubble.

A second contribution of the paper is the development of a new algorithm
for detecting crises or bubble implosion and estimating their associated multiple
turning points. Specifically, we recommend applying the recursive (or doubly-
recursive) PSY test to data that is arranged in reverse order to the original series.
This reverse regression strategy is suited to detecting either a single market crash
or multiple crashes, included those most commonly occuring cases where the
number of crashes is unknown. In contrast to PSY and PWY (2011) but similar to
HLST (2016), the procedure is primarily designed for ex post analysis rather than
real-time monitoring.

A challenging aspect with the approach proposed by HLST (2016) is feasi-
bility. Their procedure requires that hypothesis tests be conducted between turn-
ing points. But in practical work, bubble expansions and contractions are often

FIGURE 3. Turning points of different bubble generating processes showing abrupt cor-
rection (PWY) and mildly integrated correction with a separate market recovery date.
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short-lived, producing insufficient observations for unit root tests to be conducted
or to have good performance (particularly against stationary alternatives). This
limitation of the HLST procedure is expected to be most apparent in cases of
sudden and disturbing crises where changes can occur rapidly. The double
recursive procedure used in the present work is not as affected by this limitation.
The second major difference between the HLST and present procedure relates to
prior knowledge concerning the number of bubble episodes. HSLT requires the
number of bubble episodes to be known beforehand so that one can estimate the
turning points before conducting sequential tests, whereas the method proposed
in the present paper estimates the number of bubble/crisis episodes and turning
points simultaneously. This is a useful advance for practical work as the number
of bubble (crisis) episodes are usually unknown in advance. Assuming the wrong
number of bubble episodes will result in miscalculation of the turning points and
hence incorrect hypothesis testing results.

We demonstrate that the new procedure consistently estimates the origination
and termination/recovery dates of crises. It has good finite sample performance
in simulations and helps to reduce bias in some of the date estimates. A real-
time version of the strategy is provided that is suited for practical implementation
and ongoing policy analysis. In view of the technical complications arising from
multiple collapse processes, from the presence of a unknown recovery date, and
from the endogeneity introduced by reverse regression, the limit theory of the
date stamping procedures involves substantial extension of earlier work in PWY
(2011) and PSY (2015b).

Reverse recursive regression, like the forward regression approach of PSY, is a
reduced form methodology. The collapse phase of a bubble is modeled as a tran-
sient mechanism in terms of a mildly integrated autoregression whose duration is
data-determined. This mechanism accords with the mildly explosive process that
captures the data-determined expansionary phase of the bubble. Both mechanisms
may therefore be interpreted as mild deviations from martingale behavior and
efficient market modeling. The reduced form specification facilitates estimation
and testing. But it also enables some connections to be built with work that has
been done in economics on modeling bubbles.

While there is no general theory or consensus on bubbles in economics or
finance that explains their emergence and termination and that provides a struc-
tural model for estimation and testing, some recent work has explored behavioral,
game theoretic, and learning mechanisms to capture certain elements of bubbles.
Akerlof and Shiller (2009), for instance, advance a behavioralistic description of
how psychological forces such as confidence, fear and greed can drive financial
and real estate markets into regions where market prices are no longer supported
by fundamentals. While Akerlof and Shiller provide no modeling apparatus, the
divergences from efficient markets that they describe may be well represented by
mildly explosive and mildly integrated departures from normal martingale behav-
ior where all the driver elements are in balance with fundamentals. An alterna-
tive Bayesian perspective that also embodies investor attitudes has recently been
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advanced by Li and Xue (2009) to explain the 1990s Nasdaq bubble. They suggest
“new economy thinking” as a primary driver of “rational investor” exuberance.
Using a model of economic growth in which total factor productivity undergoes
a structural break in the mid 1990s, these authors explain investor exuberance in
terms of the “belief evolution” that occurs with Bayesian updating in response to
the structural break. Such a structural break in productivity and the learning and
uncertainty that it induces may be represented by a structural break in the reduced
form that leads again to a mild departure from martingale behavior that can be
modeled as in our approach. In other work, Abreu and Brunnemeier (2003) pro-
vide a dynamic gaming explanation for investors formulated under the assump-
tion of a known terminal date to justify sustained departures from fundamentals.
According to these authors, “rational investors” engage in gaming strategies
that can lead to longlasting departures from fundamentals even though there
is widespread recognition that prices are too high and must ultimately fall in
line with fundamentals by the terminal date. This structural explanation of
departures from normal market behavior can again be captured in terms of mild
(reduced form) departures from the martingale behavior which links prices to
fundamentals, thereby leading to both expansionary and contractionary phases of
a bubble.

While none of the work just described is formulated in a way that is well suited
to econometric implementation and structural model testing, all of these ideas
may be captured in a reduced form framework where evolution in the coefficients
embodies the various behavioralistic, learning, or gaming elements that underlie
the suggested structural mechanisms. The absence of an agreed structural the-
ory suited to econometric implementation is precisely the reason we work with
reduced form models. Such models provide a natural mechanism for detecting
change points that signify emergence and termination of bubble behavior.
These models represent the (reduced form) outcome of many different structural
models, and they have the powerful advantage, in view of their parsimony, of
detecting and dating origination and termination.

We illustrate the use of the new strategy for crisis identification, along with the
PSY strategy for bubble detection, in an application to the Nasdaq stock market
over 1973M01–2013M08. While the PSY test suggests that the Dot Com bubble
originated in December 1996, the reverse procedure finds that implosion occurred
in February 2000 and the market recovered from December 2000, with a further
correction in 2004M02–M04. Over this long historical series, the PSY procedure
identifies two other bubble incidents (the 1983 bubble episode and the subse-
quent 1980s bubble leading up to the famous ‘black Monday’ crash of 1987). The
reverse procedure also detects the 1973 stock market crash.

The rest of the paper is organized as follows. Section 2 introduces the PSY
procedure for bubble monitoring and the reverse procedure of crisis detection.
Section 3 derives the limit theory for the PSY strategy and the reverse procedure
under the new bubble generating process that allows for flexibility in the col-
lapse mechanism. Finite sample performance is studied in Section 4. An empirical
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application to long historical Nasdaq series is conducted in Section 5. Section 6
concludes. Two appendices contain supporting lemmas and derivations for the
limit theory, which deals with both forward and reverse regression asymptotics.
Complete details of the derivations and supporting lemmas are given in a techni-
cal supplement to the paper (Phillips and Shi, 2017) which is available online at
Cambridge Journals Online (journals.cambridge.org/ect).

2. ECONOMETRIC METHODS

The following development uses models in which a single bubble occurs. Exten-
sion of the methods to cases where there are multiple bubbles may be established
using PSY (2015a,b) and for brevity these are not provided here.

We denote the bubble origination and collapse dates by Te and Tc, so that
B = [Te,Tc] is the bubble period and N0 = [1,Te) and N1 = (Tc,T ] represent
normal periods before and after the bubble episode. In this change point frame-
work, the PWY bubble model has the form

Xt =

⎧⎪⎨
⎪⎩

Xt−1 + εt , t ∈ N0,

δT Xt−1 + εt , t ∈ B,

X∗
Tc

+∑t
i=Tc+1 εi , t ∈ N1,

εt ∼ i id
(
0,σ 2), (1)

where t = 1,2, . . . ,T , δT = 1+c1T −α with c1> 0 and α ∈ [0,1) , X∗
Tc

= XTe + X∗
with X∗ = Op (1), and X0 = op (1). Asset prices are assumed to be a pure ran-
dom walk during normal periods. During market exuberance, asset prices follow
a mildly explosive process. An abrupt collapse occurs at Tc, which brings the
asset price back to the level when the bubble originated (i.e., XTe ) plus a random
perturbation X∗. The asset price then continues its martingale path towards the
end of the sample period.

The new generating process considered here differs from the PWY model in
three respects. First, it includes an asymptotically negligible drift in the martingale
path during normal periods. Second, the collapse process is modeled directly as
a transient mildly integrated process (Phillips and Magdalinos, 2007a,b, 2009)
that covers an explicit period of market collapse. Third, a market recovery date is
introduced to capture the return to normal market behavior. The idea of using a
transient process for the collapse period was suggested, but not pursued, in PWY
(2011). The model has the following specification

Xt =

⎧⎪⎨
⎪⎩

cT −η+ Xt−1 + εt , t ∈ N0 ∪ N1,

δT Xt−1 + εt , t ∈ B,

γT Xt−1 + εt , t ∈ C,

(2)

where B = [Te,Tc] is the bubble episode as before, C = (Tc,Tr ] is the collapse
period, Tr is the date of market recovery, and N0 ∪ N1 = [1,Te)∪ (Tr ,T ] are the
normal market periods. Following PSY (2015a), the asset price process during
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N0 ∪ N1 involves an asymptotically negligible deterministic trend (cT −ηt with
constant c and some η > 1/2) which adds a small drift to the normal martin-
gale path.6 Both autoregressive coefficients δT = 1 + c1T −α (with c1 > 0 and
α ∈ [0,1)) and γT = 1 − c2T −β (with c2 > 0 and β ∈ [0,1)) involve mild devia-
tions from unity in the sense of Phillips and Magdalinos (2007a,b, 2009), one (δT )
in the explosive direction and the other (γT ) in the stationary direction. For given
c2 > 0, the speed of collapse is controlled by the parameter β. The smaller is β,
the faster is the implosion rate during the collapse period C .

Similar to (2), the model in HLST (2016) contains four regimes. Instead of us-
ing local to unity specifications, HLST assume that the bubble and crisis regimes
have fixed coefficients, modeling Xt = μ+ ut with

ut =

⎧⎪⎨
⎪⎩

ut−1 + εt t ∈ N0 ∪ N1,

(1 + δ1)ut−1 + εt t ∈ B,

(1 − δ2)ut−1 + εt t ∈ C,

(3)

so that regime B is purely explosive with coefficient 1 + δ1 > 1 and the collapse
regime C is stationary with 1−δ2< 1. As in (2), this formulation captures the idea
suggested in PWY of a transient adjustment from regime B back to normalcy,
but the coefficients are not localized to unity and the model lacks a drift in the
martingale regime.

It is noted that while the autoregressive coefficients in (2) depend on sample
size, they do not in the HLST model. Empirical considerations often indicate
that the explosive (collapse) rate is sample size or frequency dependent. As an
example, we take the NASDAQ price index during the Dot Com bubble period
(1995–1999 for bubble expansion and 2000 for bubble collapse) at both monthly
and daily frequency.7 For the bubble expansion phase, we have 60 observations
for monthly and 1,300 observations for daily data. The estimated autoregressive
coefficients for the monthly and daily NASDAQ index are 1.042 and 1.001. For
the bubble collapsing period, there are 12 and 260 observations, respectively, for
the monthly and daily data. The estimated autoregressive coefficient for 2000 is
0.721 using monthly data and 0.993 with daily data. It is obvious that both the
explosive and reverting elements (0.042 and 0.279 for monthly and 0.001 and
0.007 for daily) are inversely related to the sample size. The new DGP makes
the link explicit by allowing the explosive and collapse specification rates to
depend on T .

In (2) the localized specification γT = 1− c2T −β for the autoregressive coeffi-
cient during the collapse period allows for flexibility in possible collapse trajec-
tories while retaining a vicinity of unity or near martingale flavor. In particular,
the data generating process (2) is capable of generating abrupt collapses like the
PWY process (1) if the value of β is small and the collapse duration (i.e., Tr − Tc)
is short. But the model can also generate smooth, slow or turbulent trajectories of
correction for which the market collapse duration lasts longer, corresponding to
quite different collapse processes in practice. Figure 2 shows a realization of the
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PWY process against some typical realizations of the mechanism (2) for various
values of the parameters that indicate some of these possibilities.

2.1. The PSY Strategy for Bubble Origination and Collapse Dates

The null hypothesis of the PSY (2015a) test is a unit root process with an asymp-
totically negligible drift, namely

Xt = kT −γ + Xt−1 + εt , with constant k and γ > 1/2. (4)

The PSY strategy conducts a backward sup Dickey Fuller (BSDF) test for each
observation of interest, which we briefly explain here for completeness. Let f1
and f2 be the (fractional) starting and ending points of the DF regression. The
regression model includes an intercept but no time trend8 such that

	Xt = μ+ρXt−1 + εt ,εt
i.i.d∼ (

0,σ 2), (5)

where t = � f1T 	 , . . . ,� f2T 	. The corresponding DF statistic sequence is DF f2
f1

.
Suppose interest focuses on the properties of the generating process at obser-

vation t := � f T 	, where f is the sample fraction corresponding to t . We are
particularly interested in whether there is a unit or explosive root in the process
at this observation, therefore focusing attention on the upper tail (right side) of
the distribution. The backward sup DF test (denoted BSDF) therefore calculates
the sup of the DF statistics computed recursively over a sample sequence whose
end point (expressed in fractional form) f2 is fixed at f and whose start point f1
runs backwards from f − f0 to 0, where f0 is the smallest window size in these
regressions. Specifically, we define

BSDFf ( f0)= sup
f1∈[0, f − f0], f2= f

{
DF f2

f1

}
, with f ∈ [ f0,1]

giving the statistic at t (or sample fraction f ) using a minimum window of size f0.
To identify a mildly explosive bubble episode, the BSDF statistic is compared

to its corresponding right-tail critical value. Let scv(βT ) be the (1 −βT )100%
critical value of the BSDFf statistic and assume that scv(βT )→ ∞ as βT → 0.
For practical implementation, βT is often fixed at 0.01, 0.05, or 0.1. The origina-
tion (termination) date of bubble expansion is then calculated as the first chrono-
logical observation whose BSDF statistic exceeds (falls below) its corresponding
critical value. The (fractional) dates of bubble emergence (origination) and col-
lapse are denoted by fe and fc with corresponding estimates f̂e and f̂c which are
defined in terms of first crossing times. Specifically,

f̂e = inf
f ∈[ f0,1]

{
f : BSDFf ( f0) > scv(βT )

}
, (6)

f̂c = inf
f ∈
[

f̂e+LT ,1
]{ f : BSDFf ( f0) < scv (βT )

}
. (7)
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It is often useful to define a bubble as having a required minimum duration
to eliminate potentially misleading information from short term blips in the
data. PSY (2015a) used a minimum duration based on a slowly varying func-
tion such as log T to distinguish bubbles. In sample fraction form we can set
LT = δ log(T )/T , where δ is a sample-frequency dependent parameter (so that
δ is greater for monthly data than quarterly or annual data). The sample fraction
LT is used in defining the collapse date f̂c in (2) as the first crossing time follow-
ing the minimum duration period of the bubble, f̂e + LT , when the test sequence
recursion BSDFf ( f0) falls below the critical value scv(βT ).

2.2. Reverse Recursion Tests for Crisis Origination and Termination

For identifying crisis episodes, we suggest applying the BSDF test to data X∗
t

arranged in reverse order to the original series Xt , so that X∗
t = XT +1−t , for

t = 1,2, . . . ,T . If asset prices follow model (2), the reversed series X∗
t satisfies

the following dynamics

X∗
t =

⎧⎪⎨
⎪⎩

−cT −η+ X∗
t−1 + vt , t ∈ N0 ∪ N1,

δ−1
T X∗

t−1 + δ−1
T vt , t ∈ B,

γ−1
T X∗

t−1 +γ−1
T vt , t ∈ C,

(8)

with vt = −εT−(t−2). In (8) the original mildly integrated collapse process trans-
forms to a mildly explosive process and vice versa. Hence, detecting crisis
episodes in Xt is equivalent to testing for mildly explosive behavior in X∗

t .
The BSDF statistic for crisis episode detection is defined as

BSDF∗
g (g0) with g ∈ [g0,1] and g = 1 − f,

where BSDF∗
g (g0) is the BSDF statistic for observation (fraction) g of X∗

t where
the recursion (in reverse direction) initiates with a minimum window size g0.
The market recovery date ( fr ) and crisis origination date ( fc), both expressed in
fractions of the original series sequence are then calculated as follows:

f̂r = 1 − ĝe, where ĝe = inf
g∈[g0,1]

{
g : BSDF∗

g (g0) > scv∗ (βT )
}
, (9)

f̂c = 1 − ĝc, where ĝc = inf
g∈[ĝe,1]

{
g : BSDF∗

g (g0) < scv∗ (βT )
}
, (10)

where scv∗ (βT ) is the (1 −βT )100% critical value of the BSDF∗
g (g0) statistic,

with scv∗ (βT ) → ∞ as βT → 0. According to these crossing times, market
recovery ( f̂r ) following a crash begins when normal market behavior changes to
exuberance in the reverse series (ĝe). Similarly, market collapse in the original
series begins when exuberance in the reverse series shifts to collapse at (ĝc).
In many applications restrictions on crisis duration via the presence of a slowly
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varying function LT in these crossing time expressions will not be needed,
especially when there is interest in the detection of abrupt crisis movements in
the data.

Notice that the information set for calculating the BSDF∗
g (g0) statistic in the

original series is I R
f = {Tf ,Tf + 1, . . . ,T

}
with T − Tf ≥ �T g0	, the minimum

window size used in the reverse recursion. In the reverse time series X∗
t this data

corresponds to I R
g = {1,2, . . . ,Tg = �T g	} , where g = 1 − f . Clearly, at any

point in the sample t < T the information set {t, t + 1, . . . ,T } contains future
observations up to the sample end point T . Accordingly, we can regard this crisis
detection strategy as an ex post identification tool. Nevertheless, there is a real
time detector version of this algorithm that may be implemented in practical work
as we now explain.

Specifically, the algorithm may be implemented on subsets of the data from
any end point K < T . For example, suppose in the original series a bubble has
been detected in the expansionary phase in real time so that K > � f T 	. Then
a question of major importance to all market participants and regulators is the
timing of a market correction. To test for correction the above procedure may be
implemented in reverse order from any sample point t to assess evidence of a cor-
rection. In particular, suppose the current observation is t = �κT 	 = K for some
κ > 0. Reversing the series and writing X∗

s = X K+1−s for s = 1, . . . ,�gK 	 with

g ∈ [0,1], the recursive statistics BSDF∗
g (g0) may be calculated from

{
X∗

s

}�gK 	
s=1

starting from some minimal window size g0. In real time applications, g0 will need
to be small (in sample observation terms perhaps �g0T 	 ≥ 6) so that evidence for
possible market correction is collected as early as possible. The main advantage
of this approach (rather than testing for correction in the original series) is that
right-sided unit root tests are typically much more sensitive to departures from
the null than left-sided tests. In other words, the hypothesis of market correction
is the existence of a mildly explosive process in the reverse series.

3. ASYMPTOTICS

From PSY (2015b), the asymptotic distribution of the BSDFf ( f0) statistic under
the null hypothesis (4) has the form

Ff (W, f0) := sup
f1∈[0, f − f0]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fw
[∫ f

f1
W (s)ds − 1

2 fw
]
− ∫ f

f1
W (s)ds

∫ f
f1

dW

f 1/2
w

{
fw
∫ f

f1
W (s)2 ds −

[∫ f
f1

W (s)ds
]2
}1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

where W is a standard Wiener process. The reverse regression asymptotics are
given in the following form.

THEOREM 1. When the regression model includes an intercept and the null
hypothesis is (4), the limit distribution of the BSDF∗

g (g0) statistic is:
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Fg (W,g0) := sup
g1∈[0,g−g0]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gw
[∫ 1−g1

1−g W (s)dW + 1
2 gw

]
+∫ 1−g1

1−g W (s)ds
∫ 1−g1

1−g dW

g1/2
w

{
gw
∫ 1−g1

1−g W (s)2 ds −
[∫ 1−g1

1−g W (s)ds
]2
}1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

See Appendix A and the Online Supplement for the proof. Notice that the
BSDF∗

g (g0) statistic has a noncentral asymptotic distribution. The noncentrality
arises from the endogeneity induced by the non-martingale implications of
reverse regression, viz., the error component

∑T
j=2 X∗

j−1v j which, by virtue of

the construction of the series X∗
t and vt , equals −∑T

j=2 XT − j+2εT − j+2 for which
E
(
XT − j+2εT− j+2

) 
= 0.

3.1. The BSDF f ( f0) Statistic

The asymptotic properties of the BSDF statistic under the PWY bubble model
are given in PSY (2015b). Here we derive the limit theory for the BSDF statistic
under the more realistic bubble process (2) allowing for various forms of finan-
cial contraction captured by the parameterization within the collapse process. The
derivations involve a non-trivial extension of the limit theory of PSY (2015b) to
account for the additional regime, the drift in the normal martingale process, and
the new bubble collapse process.

THEOREM 2 (BSDF detector). Under the alternative hypothesis of mildly
explosive behavior in model (2), the limit forms of the BSDFf ( f0) statistic are as
follows:

BSDFf ( f0)∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ff (W, f0) if f ∈ N0,

Op
(
T 1−α/2)→ +∞ if f ∈ B,

Op
(
Tω(α,β)

)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Op
(
T α/2

)→ −∞ if α > β and 1+β < 2α

Op
(
T (1−α+β)/2)→ −∞ if α > β and 1+β > 2α

Op
(
T (1−β+α)/2)→ −∞ if α < β and 1+α > 2β

Op
(
T β/2

)→ +∞ if α < β and 1+α < 2β

if f ∈ C.

Theorem 2 shows that the BSDF statistic diverges to infinity at rate
Op
(
T 1−α/2) when f ∈ B and is Op

(
T ω(α,β)

)
when f ∈ C where the order

ω(α,β) depends on the values of the rate parameters (α,β). These results dif-
fer from those under the PWY model analyzed in PSY (2015c) where the BSDF
statistic diverges to infinity at rate Op

(
T 1−α/2) when f ∈ B , as above, but

diverges to negative infinity at rate Op
(
T (1−α)/2) when f ∈ C in contrast to the

rate Op
(
Tω(α,β)

)
above, which depends on the relative strengths (α,β) of the

bubble and collapse processes. In particular, when the collapse regime follows
a mildly integrated process (rather than an abrupt collapse), for f ∈ C the limit
form of the BSDF statistic may diverge to positive or negative infinity depending
on the relative speeds of the bubble expansion and collapse, which are controlled
by the rate parameters α and β. These parameters then play a major role in the
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conditions for consistent estimation of the bubble origination and termination
dates, as shown in the following result.

THEOREM 3 (BSDF detector). Suppose f̂e and f̂c are the date estimates
obtained from the backward sup DF statistic crossing times (6). Under the
alternative hypothesis of mildly explosive behavior in model (2), if the following
conditions hold⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T α/2

scvβT
+ scvβT

T 1−α/2 → 0 if α > β and 1 +β < 2α,

T (1−α+β)/2
scvβT

+ scvβT

T 1−α/2 → 0 if α > β and 1 +β > 2α,

T (1−β+α)/2
scvβT

+ scvβT

T 1−α/2 → 0 if α < β and 1 +α > 2β,

T β/2

scvβT
+ scvβT

T 1−α/2 → 0 if α < β and 1 +α < 2β,

we have f̂e
p→ fe and f̂c

p→ fc as T → ∞.

Theorem 3 shows that consistent estimation of the dates of bubble origination
and collapse requires certain conditions on the expansion rate of the test critical
value scv(βT ). In particular, depending on the values of the rate parameters (α,β),
the critical value scv(βT ) needs to lie respectively in the intervals

(
T α/2,T 1−α/2),(

T (1−α+β)/2,T 1−α/2), (T (1−β+α)/2,T 1−α/2), and
(
T β/2,T 1−α/2) according as

{α > β and 1 +β < 2α}, {α > β and 1 +β > 2α}, {α < β and 1 +α > 2β}, and
{α < β and 1 +α < 2β}.

These conditions are more restrictive than the simple condition that applies in
the PWY bubble model, where the expansion rate of scv (βT ) is only required
to be lower than T 1−α/2. Importantly, Theorem 3 reveals that the conditions
for consistent dating of a bubble collapse become increasingly restrictive as the
rate of bubble collapse becomes slower with larger values of the collapse rate
parameter β (so that γT is closer to unity). In this case, as might be expected,
when the collapse is slow rather than rapid, large values of β make it harder
for the algorithm to distinguish the explosive bubble regime from the collapse
regime.

3.2. The BSDF∗
g (g0) Statistic

We first derive the limit properties of the BSDF∗
g (g0) under the data generating

process (8). Note that the volatility of X∗
t differs in regimes B and C , as is clear

from the reverse model specification (8), and there is a switch in the interpretation
of the regimes since the autoregressive coefficients for the explosive and station-
ary regimes are now γ−1

T ∼ 1 + c2T −β and δ−1
T ∼ 1 − c1T −α , respectively. The

mildly explosive rate is now governed by the parameter β and the collapse rate is
controlled by α.

THEOREM 4 (The BSDF∗
g (g0) statistic). Under the alternative hypothesis of

mildly explosive behavior in model (8), the limit behavior of the BSDF∗
g (g0)
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statistic is as follows:

BSDF∗
g (g0)∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fg (W,g0) if g ∈ N1,{
Op
(
T 1/2

)→ +∞ if α > β

Op
(
T 1−β/2)→ +∞ if α < β

if g ∈ C,

Op
(
Tω

∗(α,β))=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Op
(
T α/2

)→ +∞ if α > β and 1+β < 2α

Op
(
T (1−α+β)/2)→ −∞ if α > β and 1+β > 2α

Op
(
T (1−β+α)/2)→ −∞ if α < β and 1+α > 2β

Op
(
T β/2

)→ −∞ if α < β and 1+α < 2β

if g ∈ B;

Like the BSDF statistic, the BSDF∗
g (g0) statistic diverges to positive infinity

when X∗ is in the explosive regime (i.e., when g ∈ C ). The rate of divergence is
faster when α < β (i.e., T 1−β/2) than it is when α > β (i.e., T 1/2). In this case,
the divergence rate Op

(
T 1−β/2) of the statistic also increases as β decreases.

Intuitively, as β and α decrease both the collapse rate and bubble expansion rate
increase, making detection of the collapse easier. In regime B , the limiting form
of the BSDF∗ statistic has magnitude Op

(
Tω

∗(α,β)), which is the same as that for
the BSDF statistic in regime C , so in this case the reverse and forward regressions
are balanced.

THEOREM 5 (The BSDF∗
g detector). Suppose f̂c and f̂r are the date estimates

obtained from the BSDF∗
g (g0) statistic crossing times rules (10). Under the alter-

native hypothesis of mildly explosive behavior in model (2), if⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T α/2
scv∗(βT )

+ scv∗(βT )
T 1/2 → 0 if α > β and 1 +β < 2α,

T (1−α+β)/2
scv∗(βT )

+ scv∗(βT )
T 1/2 → 0 if α > β and 1 +β > 2α,

T (1−β+α)/2
scv∗(βT )

+ scv∗(βT )
T 1−β/2 → 0 if α < β and 1 +α > 2β,

T β/2
scv∗(βT )

+ scv∗(βT )
T 1−β/2 → 0 if α < β and 1 +α < 2β,

we have f̂r
p→ fr and f̂c

p→ fc as T → ∞.

To obtain consistent estimators of the crisis origination and termina-
tion dates, the expansion rate of scv∗ (βT ) is required to fall respectively
in the intervals

(
T α/2,T 1/2

)
,
(
T (1−α+β)/2,T 1/2

)
,
(
T (1−β+α)/2,T 1−β/2), and(

T β/2,T 1−β/2) for the cases {α > β and 1 +β < 2α} , {α > β and 1 +β > 2α} ,
{α < β and 1 +α > 2β}, and {α < β and 1 +α < 2β}. Despite their apparent
complexity, these conditions generally accord with intuition because they tend
to be less restrictive in the following cases: (i) as the value of α decreases (that is,
as the collapse rate for X∗

t becomes faster, or the mildly explosive rate for Xt

increases); and (ii) as the value of β decreases (that is, as the explosive rate for
X∗

t increases, or the collapse rate of Xt increases).

4. SIMULATION EVIDENCE

Extensive simulation studies were conducted in PSY (2015a,b) showing that
the PSY dating strategy performs well under the PWY data generating process
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compared with other strategies. These simulations are extended here to explore
finite sample performance under the new bubble generating process (2) that
allows for multiple forms of collapse regime. We consider bubble detection per-
formance as well as bubble origination and collapse date determination. These
findings complement those of PSY for abrupt collapse conditions. We also inves-
tigate performance characteristics of the BSDF∗ test for crisis detection under the
new bubble generating process.

The base parameter settings used here are the same as those in PSY (2015b),
namely X0 = 100, σ = 6.79, and c = c1 = c2 = 1, where X0 and σ are selected to
match the initial value and sample standard deviation of the normalized S&P 500
price-dividend ratio examined in PSY. Bubbles were identified using respective
finite sample 95% quantiles obtained from simulations with 2,000 replications. The
minimum windowsizehas19 observationsand lag order is set tozero.Theminimum
window size is set according to the rule f0 = 0.01 + 1.8/

√
(T ) suggested in

PSY (2015a). The simulations explore the effects of various settings for the mildly
explosive and collapse regime rate parameters (α,β) that enter the new process (2).

4.1. The BSDF Test for Bubble Origination and Collapse Dates

As in PSY (2015b) we examine the proportion of successful bubble detection,
along with the empirical mean and standard deviation (given in parentheses in
the following tables) of the estimated origination and collapse dates. Successful
detection of a bubble is defined as an outcome where the estimated origination
date is greater than or equal to the true origination date and smaller than the true
collapse date of that particular bubble (i.e., fie ≤ f̂ie < fic). So the narrower is the
interval ( fie, fic) the more challenging is the requirement. The duration of bubble
expansion is restricted to have a minimum of 3 observations and to confirm the
collapse of a bubble we require the test statistic BSDF to go below its critical
value for at least two consecutive periods.9

The first step is to investigate the impact of drift in the unit root process on
bubble detection accuracy. The PSY estimate of the bubble origination date
depends solely on past information. So when there is a single bubble in the sample
period, the mildly integrated collapse regime, which occurs after bubble origina-
tion and expansion, should have no impact on the accuracy of the bubble origi-
nation estimate. But the presence of drift, even asymptotically negligible drift, in
the unit root process that characterizes normal periods may well impact bubble
origination detection.

In the simulation, we fix β at 0.1 and the duration of bubble collapse dCT

at �0.01T�. This setting delivers an instantaneous one-period collapse when the
sample size T = 100, which resembles the abrupt collapse pattern of PWY.
We let η take the values {0.6,1,2}, which give corresponding drift values of
{0.063,0.010,0.000}. For each parameter constellation, 2,000 replications were
employed. As evident in Table 1, the parameter η has no material impact on bub-
ble detection when η > 0.5 as here, which is concordant with asymptotic theory.
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TABLE 1. Bubble detection rate and estimation of the origination and collapse
dates (for different drift values). Parameters are set to: X0 = 100,σ = 6.79,
c = c1 = c2 = 1,α = 0.60,β = 0.1,dBT = �0.20T	,dCT = �0.01T	, fe = 0.4,
T = 100. Figures in parentheses are standard deviations

DGP (PWY) DGP (PSY)

η = 0.6 η= 1 η = 2

Bubble detection rate 0.86 0.86 0.85 0.87
f̂e − fe 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04)
f̂c − fc 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

Note: Calculations are based on 2,000 replications. The minimum window has 19 observations.

Thus, the PSY strategy continues to deliver consistent estimates despite the in-
clusion of this type of drift. However, under these parameter settings, there is a
six-observation delay in detecting the bubble, indicating some upward bias in the
date estimates. On the other hand, just as in PSY, due to the sudden one-period col-
lapse, the termination date of the bubble expansion is estimated with great accuracy.

The next step is to explore the influence of a mildly integrated collapse regime
on the performance of the PSY strategy. The model specification of this regime
allows for processes with different collapse speeds and durations. We consider
three collapse patterns here: sudden collapse (i.e., β = 0.1 and dCT = �0.01T�),
disturbing collapse (i.e., β = 0.5 and dCT = �0.10T�), and smooth collapse
(i.e., β = 0.9 and dCT = �0.20T�). We let η = 1, α = 0.6, dBT = 0.2. Figure 2
plots one typical realization of these three collapse processes.

Table 2 displays the estimation results of the PSY strategy under different data
generating processes. We observe an increasing delay in bubble collapse date es-
timates (viz., fc) as the collapse process becomes smoother. For instance, the bias
( f̂c − fc) is three observations in a disturbing collapse regime but increases to
eleven observations for a smooth collapse. The bubble origination date is unaf-
fected by the collapse regime dynamics, as expected and indicated above.

TABLE 2. Bubble detection rate and estimation of the origination and col-
lapse dates (under different collapse patterns). Parameters are set to: X0 = 100,
σ = 6.79,c = c1 = c2 = 1,α = 0.60,dBT = �0.20T	, fe = 0.4,T = 100, β = 0.1,
dCT = �0.01T� for sudden collapse, β = 0.5,dCT = �0.10T� for disturbing col-
lapse, and β = 0.9,dCT = �0.20T� for smooth collapse. Figures in parentheses
are standard deviations

PWY Sudden Disturbing Smooth

Bubble detection rate 0.86 0.85 0.86 0.85
f̂e − fe 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04)
f̂c − fc 0.01 (0.01) 0.01 (0.01) 0.03 (0.01) 0.11 (0.04)

Note: Calculations are based on 2,000 replications. The minimum window has 19 observations.
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4.2. The BSDF∗ Test for Crisis Origination and Market Recovery
Dates

In the case of a bubble-led crisis such as model (2), the origination date of the
crisis coincides with the date of collapse. Successful detection of a bubble-led
crisis may then be defined as an outcome where the estimated collapse date is
greater than or equal to the true bubble origination date and smaller than the true
recovery date of that particular crisis (i.e., fie ≤ f̂ic < fir ). As earlier, we report
the detection rate of a crisis, along with the empirical mean and standard deviation
(shown in parentheses) of the estimated crisis origination and termination dates.
For the crisis identification, we do not impose restrictions on the crisis duration;
but, as in bubble identification, we require the test statistic BSDF∗ to go below its
critical value for at least two consecutive observations to confirm a recovery.10

Table 3 reports the performance characteristics of the BSDF∗ test under sudden,
disturbing, and smooth collapse processes with different bubble expansion rates.
As is evident in the Table, the crisis detection rate is highest for disturbing col-
lapses (97% when α = 0.6) and lowest for sudden collapses (44% when α = 0.6).
These findings are explained by the fact that sudden crises have short duration
and collapse date estimates come late, whereas in a disturbing crisis there is a de-
lay before recovery which aids crisis detection. The crisis detection rate increases
with the rate of bubble expansion. As a case in point, when α decreases from
0.8 to 0.6, the detection rate for disturbing collapses rises from 92% to 97%.

TABLE 3. Crisis detection rate and estimation of the collapse and recovery
dates (with various expansion and collapse patterns). Parameters are set to:
X0 = 100,σ = 6.79,c = c1 = c2 = 1,dBT = �0.20T	, fe = 0.4,T = 100, β = 0.1,
dCT = �0.01T� for sudden collapse, β = 0.5,dCT = �0.10T� for disturbing col-
lapse, and β = 0.9,dCT = �0.20T� for smooth collapse. Figures in parentheses
are standard deviations

Sudden Disturbing Smooth

α = 0.6
Crisis detection rate 0.44 0.97 0.89
f̂c − fc −0.00 (0.02) −0.03 (0.01) 0.00 (0.05)
f̂r − fr 0.00 (0.02) −0.03 (0.02) −0.10 (0.07)

α = 0.7
Crisis detection rate 0.41 0.95 0.80
f̂c − fc −0.00 (0.01) −0.03 (0.02) −0.01 (0.08)
f̂r − fr −0.00 (0.00) −0.04 (0.03) −0.14 (0.09)

α = 0.8
Crisis detection rate 0.40 0.92 0.69
f̂c − fc −0.02 (0.05) −0.04 (0.03) −0.02 (0.09)
f̂r − fr −0.01 (0.05) −0.05 (0.04) −0.16 (0.10)

Note: Calculations are based on 2,000 replications. The minimum window has 19 observations.

https://doi.org/10.1017/S0266466617000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000202


FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION 723

In addition, we see that the estimated crisis origination date is generally biased
downward. Moreover, the bias (i.e., f̂c − fc) is larger for disturbing collapses than
sudden and smooth collapses. Interestingly, the estimation accuracy of the crisis
origination date also depends on the bubble expansion rate. Namely, the bias is
marginally larger when the bubble expansion rate is slower. This is consistent
with our earlier finding for the BSDF test where the estimated crisis origination
(or bubble collapse) date is affected by the collapse pattern.

Estimates of the recovery date are evidently highly accurate for sudden col-
lapses, whereas there is substantial downward bias for smooth collapses. For
instance, when α = 0.6, there is a ten-period bias (earlier than the true date) in
the estimates of fr under a smooth collapse, which accounts for 50% of the col-
lapse duration. The bias for disturbing collapses is much smaller and is near zero
bias for sudden collapses. For the smooth collapse, the bias increases as the bubble
expansion rate becomes slower (with larger α).

For further investigation, we extend the parameter specification in the case of
disturbing collapses by varying β from 0.3 to 0.7 and dCT from 5% of the total
sample to 15%. Consistent with expectations, the BSDF∗ strategy provides higher
crisis detection rates when bubbles collapse faster and the crisis termination date
is more accurately estimated when there is shorter collapse duration. Detailed
results are provided in the online supplement (Phillips and Shi, 2017).

4.3. Real Time Monitoring of Market Correction

The goal of this use of reverse regression is to aid the ongoing detection of mar-
ket recovery dates. We propose to implement the reverse procedure repeatedly
for each observation starting from the date of the bubble collapse, that is Tc in
chronological time. The dating rules in (9) and (10) can always be rewritten as

f̂c = inf
f ∈[0,1−g0]

{
f : BSDF∗∗

f (g0) > scv∗∗ (βT )
}
, (11)

f̂r = inf
f ∈
[

f̂c,1−g0

]{ f : BSDF∗∗
f (g0) > scv∗∗ (βT )

}
, (12)

where BSDF∗∗
f (g0) and scv∗∗ (βT ) are the reverse series of BSDF∗

g (g0) and
scv∗ (βT ). Suppose we conduct the reverse PSY test on a sample period running
from some initial (reverse) observation 1 through to K (which includes observa-
tion Tc in chronological time) and identify one occurrence of market correction,
namely BSDF∗∗

t ′−1 > scv∗∗ with BSDF∗∗
t ′ < scv∗∗, BSDF∗∗

t ′+1 < scv∗∗, and t ′ ≥ Tc

for some given critical value scv∗∗ in the reverse regression. Suppose, in addition,
that no market correction is detected in samples from 1 to s, with s < K . Then,
we conclude that t ′ is the date of market recovery (i.e., f̂r = t ′/T ) and K is the
date at which the correction is detected in the data.

Table 4 reports the average delay of the estimated market recovery date
( f̂r − fr ) and the average delay in detecting this correction (DD = K/T − T f0).
By construction, the delay in detecting the market correction is bounded below by
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TABLE 4. The estimated dates of market recovery and the delays in detecting
market correction. Parameters are set to: X0 = 100,σ = 6.79,c = c1 = c2 = 1,
α = 0.6,dBT = �0.20T	, fe = 0.4,T = 100. Figures in parentheses are standard
deviations

f0 = 0.06 f0 = 0.08 f0 = 0.12 f0 = 0.18

(1) Disturbing crises
T = 100
Crisis detection rate 0.99 0.99 0.98 1.00
f̂r − fr −0.08 (0.03) −0.09 (0.01) −0.09 (0.01) −0.10 (0.00)
DD 0.05 (0.01) 0.07 (0.00) 0.11 (0.00) 0.17 (0.00)
T = 200
Crisis detection rate 1.00 1.00 0.99 0.99
f̂r − fr −0.09 (0.02) −0.09 (0.02) −0.10 (0.01) −0.10 (0.01)
DD 0.06 (0.00) 0.08 (0.00) 0.12 (0.00) 0.18 (0.00)

(2) Smooth crises
T = 100
Crisis detection rate 0.93 0.92 0.90 0.90
f̂r − fr −0.13 (0.07) −0.13 (0.06) −0.14 (0.06) −0.17 (0.31)
DD 0.06 (0.03) 0.08 (0.03) 0.12 (0.03) 0.18 (0.02)
T = 200
Crisis detection rate 0.98 0.96 0.96 0.94
f̂r − fr −0.15 (0.05) −0.16 (0.05) −0.16 (0.05) −0.18 (0.03)
DD 0.06 (0.02) 0.08 (0.01) 0.12 (0.02) 0.18 (0.01)

Note: Calculations are based on 2,000 replications.

the observations required to initiate the regression �T f0	−1. For early detection,
one would need to consider a small minimum window size. On the other hand,
choosing too small a value for the minimum window size may result in inaccurate
estimation of model parameters and lead to corresponding distortions in the mar-
ket recovery date estimates. Hence, the choice of f0 is important for performance
of the monitoring procedure. In simulations we allowed the minimum window
size f0 to vary from 0.06 to 0.18 to assess sensitivities to the choice of f0. The
sample sizes considered are 100 and 200. The number of replications was 2,000.

From Table 4, it is apparent that the procedure provides less accurate esti-
mates for the market recovery date of a smooth crisis than for a disturbing crisis.
For example, when sample size is 100, with a minimum window size of
12 observations, the estimated market recovery date of the disturbing crisis is
five observations closer to the true recovery date than that of the smooth crisis—
the bias of the estimates is −0.09 and −0.14, respectively, for a disturbing and a
smooth crisis. For both types of crisis, estimation accuracy of the market recov-
ery date improves slightly with a smaller setting for f0. For the disturbing crisis,
the bias reduces from 10 observations to 8 observations when f0 declines from
0.18 to 0.06.
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While the successful detection rate of a disturbing crisis is not affected by the
setting of the minimum window size, the SDR of a smooth crisis decreases
slightly when the minimum window size increases. When the sample size
increases from 100 to 200, although there is a slight increase in the successful
detection rate, the estimated market recovery date is less accurate. For example,
for a smooth crisis, when f0 = 0.12, both the successful detection rate and the
bias of the fr estimate increase (from 90% to 96% and from −0.14 to −0.16).

As expected, the average delay in detecting the correction is bounded below by
�T f0	− 1. Table 4 shows that for a disturbing crisis the average value of DD is
f0 − 0.01 when T = 100 and f0 when T = 200. For a smooth crisis, the value
of DD is f0 for both sample sizes. Furthermore, there is not much variation in
the estimated DDs. This is reflected in close-to-zero standard deviations in the
estimated DDs for both disturbing and smooth crises, although the standard devi-
ations for the smooth crisis are slightly above those of the disturbing crisis.

In summary, the real-time monitoring strategy for market recovery seems to
perform better with a smaller minimum window size. But such a practice does
need to be implemented with care because too small a value of f0 can potentially
lead to size distortion.11

5. EMPIRICAL APPLICATIONS

According to the monthly report of the World Federation of Exchanges,12 Nasdaq
is the second largest exchange in the world by market capitalization and trading
volume. The Nasdaq composite stock index is a market capitalization weighted
stock index of the common stocks and similar securities listed on the Nasdaq
stock market. It is weighted heavily towards information technology companies
and has been widely studied for speculative bubble behavior especially for periods
at the turn of the century (among others, Li and Xue, 2009; Phillips et al., 2011;
Shi and Song, 2016).

For the analysis here, we downloaded the Nasdaq composite index and
NASDAQ dividend yield at the monthly frequency from Datastream International,
starting from January 1973 to August 2013. The dividend index in the current
period (t), which is included as a proxy for stock market fundamentals,13 is cal-
culated by multiplying the price index by the dividend yield at period t + 1.

We date the bubble and crisis episodes of the Nasdaq stock market using the
Nasdaq price-dividend ratio. Results are reported in Figure 4. The left (right)
panel is for bubble (crisis) identification plotting the BSADF statistic (BSADF∗)
sequence against its 95% corresponding critical value sequence. The finite sample
critical value sequences are obtained by Monte Carlo simulation with 2,000 repli-
cations. We set the smallest window size according to the rule of 0.01 + 1.8/

√
T

recommended by PSY (2015a), giving 44 observations and consider a lag order
of one for the ADF regression.

According to Figure 4a, there is speculative bubble behavior in the stock mar-
ket in 1986–1987 and 1996–2000, which led successively to the Black Monday
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FIGURE 4. The identified bubble and crisis episodes using the PSY (left) and the reverse
(right) procedures. The lag order is one and minimum window size is 44 observations. The
finite sample critical value sequences are obtained by Monte carlo simulation with 2,000
replications.

crash in October 1987 and the Dot Com bubble crash in early 2000. The identified
bubble origination and collapsing dates for the 1986–1987 episode are 1986M04–
M09 and 1987M02–M10. The identified bubble period for the Dot Com episode
using PSY is 1996M12–2000M12 (with some small breaks in between). Recall
that the PSY procedure manifests some delay in detecting the bubble collapse
date, especially in the case of a smooth collapse. Therefore, it is likely that the
estimated collapse date exceeds the actual termination date of bubble expansion
and the identified bubble expansion period covers partially the bubble collapse
phase. Here, while the Nasdaq market collapses in March 2000, the estimated col-
lapsing date is December 2000. There is a nine-observation delay in estimation.
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There is another short duration bubble episode in 1983 (1983M06–M07 and
1983M9–M10).

The reverse procedure results for crisis period detection are presented in
Figure 4b. There are two major stock market downturns in the sample period.
One is in 1973 and the other in early 2000s corresponding to the Dot Com bub-
ble collapse. The 1973 episode lasts for four months, starting from 1973M03.
The estimated collapse date of the Dot Com bubble episode obtained from the
reverse procedure is 2000M02, which is closer to the peak of the Dot Com bubble
(i.e., 2000M3) than the estimated collapsing date from the PSY procedure. Inter-
estingly, therefore, the BSADF∗ test anticipates the crash but does so using the
ex post subsequent crash data, of course.

The BSADF∗ procedure does not detect collapses for the 1983 and 1986–1987
bubble episodes, which is perhaps unsurprising because simulations show that the
crisis detection rate is lower when the collapse is rapid with short duration as in
this case. The collapse process for the Dot Com episode is much smoother, which
partly explains the detective capability of the BSADF∗ test since the date of the
bubble collapse clearly differs from the date of later market recovery. According
to the BSADF∗ test, the crash lasts from February 2000 to December 2000, fol-
lowed by a further correction in February 2004 and full return to normal market
conditions in April 2004. As examples of rapid and smooth collapsing patterns,
Figure 5 displays the enlarged graphs of the 1986–1987 bubble episode and the
early 2000s crisis episodes.

Some sensitivity analyses are presented in the online supplement (Phillips and
Shi, 2017). First, to address potential conditional heteroskedasticity in the data,
a wild bootstrap is used to compute finite sample critical values. The results dif-
fer only marginally with the findings based on asymptotics without nonstationary
volatility. Second, as an alternative lag order selection method, we use BIC with
a maximum lag of four for each subsample regression. We find that the procedure
based on BIC tends to provide timelier signals but at the cost of more false pos-
itives than the one based on a fixed lag order of unity. Finally, the PSY methods
are applied to the log real Nasdaq price index as in PWY (2011), instead of the
price-dividend ratio. Procedures based on the log real Nasdaq price index tend to
provide an earlier but noisier signal of bubble existence. Use of this series can also
lead to the identification of different bubble and crisis episodes, including crises
that are not pre-dated by bubble behavior. This is not surprising as by conducting
the test on the log price series alone there is no control for (or implied connection
with) the market fundamentals. In addition, for comparison, we provide in the on-
line supplement test results from application of PWY to the same data and with
the exact settings of the tuning parameters (i.e., lag order, minimum window size).
The PWY algorithm identifies the starting of the Dot Com episode eight months
earlier (i.e., April 1996) but sets the collapse date three months later. PWY does
not detect the 1983 episode.

The sub-martingale (and implied explosive autoregressive) property of bub-
bles considered in the theory literature on rational bubbles and by Diba and
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FIGURE 5. The 1986–1987 bubble episode and the early 2000s crisis episode.

Grossman (1988) is fundamental to the bubble detection procedures of PWY, HB,
PSY, and HLST and plays a key role in the definition of the expansionary phase
of bubbles. Diba and Grossman (1988) argue that given free disposal a negative
rational-bubble cannot exist as “stock holders cannot rationally expect a stock
price to decrease without bound and, hence, to become negative at a finite future
date.” This is reflected in the sub-martingale property of bubbles and hence the
aforementioned bubble detection techniques are primarily designed for positive
bubble detection. This does not mean, of course, that short lived irrational negative
bubbles do not occur. Recent work by Phillips (2016) gives behavioral economic
theory that supports both expansionary and contractionary phases of bubbles.

Moreover, both the PWY and PSY tests can detect negative bubbles, especially
when there are sharply falling markets. For example, PSY (2015a), Yiu, Yu, and
Jin (2013), Fantazzini (2016), and Hu and Oxley (2017a, 2017b) have all found
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that these tests can register significance when prices fall rapidly. In fact, the tests
can be shown to register significance whenever there are sustained strong direc-
tional movements in a trajectory (either positive or negative). Details of this capa-
bility and the associated asymptotic theory have been worked out in an ongoing
study and will be reported in a later paper. Recognizing this capability, we here
recommend users to identify ex-post whether test significance signals expansion-
ary or contractionary phases.

6. CONCLUSION

Financial bubbles are typically characterized by mildly explosive expansions and
subsequent contractions that can be abrupt, extended, or various combinations of
the two. In this work we have modeled financial contractions using a mildly inte-
grated process that can capture a variety of forms of reversion to normal martin-
gale behavior in a financial market. The resulting model has multiple break points
corresponding to the bubble origination and peak, the implosion of the bubble,
and the reversion to normality. This framework is intended to be more realistic
than simpler models that assume an abrupt collapse of a bubble to normality and
is therefore suited to a wider range of practical applications.

The limit theory shows that the bubble dating strategy of Phillips, Shi and Yu
(2015a,b) delivers consistent date estimates within this more realistic bubble gen-
erating framework and simulations corroborate its advantages in finite samples.

The new reverse regression implementation of the PSY strategy developed here
helps to detect crises and estimate their associated turning points. The strategy is
suited to cases of a single crash or multiple crashes and provides consistent esti-
mates of the origination, termination, and recovery dates of a crisis under certain
conditions. The reverse regression procedure may be interpreted as an econo-
metric foundation for the real-time technical analysis of corrections and crises in
financial markets. Crisis detection methodology of this type can be applied when
crises or corrections occur in seemingly normal periods that are not prefaced by
an expansionary bubble phase. In applying these methods to the Nasdaq stock
market over 1973–2013, the tests identify several crisis incidents, including the
1973 and 1976 stock market crashes and the famous ‘black Monday’ crash of
1987, in addition to the 1990s Nasdaq bubble episode.

NOTES

1. Federal Reserve policymakers should deepen their understanding about how to combat specula-
tive bubbles to reduce the chances of another financial crisis. –Donald Kohn, Former Vice Chairman
of the Federal Reserve Board, March 2010.

2. How do we know when irrational exuberance has unduly escalated asset values? –Alan
Greenspan, Formal Chairman of Federal Reserve, December 1996.

3. See, for example, Bohl, Kaufmann, and Stephan (2013), Etienne, Irwin, and Garcia (2015),
Chen and Funke (2013), Meyer (2013), Gutierrez (2013), Phillips and Yu (2011a,b, 2013), Das et al.
(2011), and Yiu et al. (2013).

4. The presence of speculative bubble behavior in the Dot Com market around this sample period
has been documented in PWY.
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5. See the discussion following equation (14) of PWY.
6. See PSY (2014) for detailed discussions of the specification and properties of the drift term. For

ease of notation, we assume the drift term to be the same for N0 and N1. Provided that the condition
η > 1/2 is satisfied, allowing different drift values for N0 and N1 will not affect the analysis.

7. The Dot Com bubble is one of most famous bubble episodes in recent history and the rate of
explosive behavior is usefully representative of historical bubble episodes. The selected sample period
is based on the findings of PWY (2011) and the current paper. We estimate an AR(1) model for
monthly data and an AR(1)-GARCH(1,1) for daily data.

8. See PSY (2014) for a detailed discussion of regression model specification for right-tailed unit
root tests.

9. Specifically, f̂e = t if BSDFt−2 < scv, BSDFt−1 < scv, BSDFt > scv, BSDFt+1 > scv, and
BSDFt+2 > cv and f̂c = t if BSDFt−3 > scv, BSDFt−2 > scv, BSDFt−1 > scv, BSDFt < scv and
BSDFt+1 < scv.

10. Specifically, f̂c = t if BSDF∗
t−2 < rscv, BSDF∗

t−1 < rscv, BSDF∗
t > rscv and f̂r = t if BSDF∗

t >

rscv, BSDF∗
t+1 < rscv, and BSDF∗

t+2 < rscv.
11. The importance of the immediate past of a series on the test outcome depends on the difference

between the last two consecutive observations. The larger the difference the greater the impact of the
immediately preceding observation on the reject probability at the current observation. This difference
is governed by the values of α and β in the data generating process (2) and hence the impact can be
viewed from both the limit theory and in the finite sample simulations.

12. http://www.world-exchanges.org/statistics/monthly-reports.
13. All bubble detection procedures (including PWY, HB, PSY and HSLT) typically require con-

trolling for market fundamentals. The importance of the market fundamental is sample and trajec-
tory dependent and test rejection can be expected whenever there are sustained departures from
fundamentals.
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APPENDIX: Limit Theory and Proofs of Main Results

This Appendix has two main sections (A and B). The first provides limit theory for
the BSDF∗ statistic under the null based on the reverse regression model formulation (8).
The second gives limit theory for the BSDF and BSDF∗ statistics under the alternative.
Supporting lemmas are stated here. Complete details of the derivations and the supporting
lemmas are given in Phillips and Shi (2017) which provides a full technical supplement to
the paper. The general framework of the derivations follows PSY (2015a,b) but important
differences arise because of the treatment of the reverse regression statistic, the endogeneity
involved in that regression, and the presence of an asymptotically negligible drift in the
time series.

A. The Limit Behaviour of the BSDF∗ Statistic Under the
Null

Lemmas A1 and A2 below provide some standard partial sum asymptotics that hold
under the following assumption, where the input process εt is assumed to be iid for con-
venience but may be extended to martingale differences with appropriate changes to the
limit theory. These results mirror those given in PSY (2015b).

Assumption (EC). Let ut =ψ (L)εt =�∞
j=0ψjεt− j , where �∞

j=0 j
∣∣ψj
∣∣<∞ and {εt }

is an i.i.d sequence with mean zero, variance σ 2 and finite fourth moment.

LEMMA A.1. Suppose ut satisfies error condition EC. Define MT (g)= 1/T
∑[T g]

s=1 us

with r ∈ [g0,1] and ξt =∑t
s=1 us . Let g2,gw ∈ [g0,1] and g1 = g2 − gw . The following

hold:

(1)
∑t

s=1 us = ψ (1)
∑t

s=1 εs + ηt − η0, where ηt = ∑∞
j=0αj εt− j , η0 =∑∞

j=0αj ε− j and αj = −∑∞
i=1ψj+i , which is absolutely summable.

(2) 1
T
∑�T g2	

t=�T g1	 ε
2
t

p→ σ 2gw .

(3) T −1/2∑[T g]
t=1 εt

L→ σW (g).

(4) T −1∑�T g2	
t=�T g1	

∑t−1
s=1 εsεt

L→ σ 2
[∫ g2

g1
W (s)dW − 1

2 gw
]
.

(5) T −3/2∑�T g2	
t=�T g1	 εt t

L→ σ
[
g2W (g2)− g1W (g1)−

∫ g2
g1

W (s)ds
]
.

(6) T −1∑�T g2	
t=�T g1	

(
ηt−1 −η0

)
εt

p→ 0.

(7) T −1/2 (η[T g] −η0
) p→ 0.

(8)
√

T MT (g)
L→ ψ (1)σW (g).

(9) T −3/2∑�T g2	
t=�T g1	 ξt−1

L→ ψ (1)σ
∫ g2

g1
W (s)ds.

(10) T −5/2∑�T g2	
t=�T g1	 ξt−1t

L→ ψ (1)σ
∫ g2

g1
W (s) sds.

(11) T −2∑�T g2	
t=�T g1	 ξ

2
t−1

L→ σ 2ψ (1)2
∫ g2

g1
W (s)2 ds.

(12) T −3/2∑�T g2	
t=�T g1	 ξtεt− j

p→ 0, ∀ j = 0,±1,±2, . . . .
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LEMMA A.2. Define X∗
t = −αTψ (1) t +∑t

s=1ωs , where αT = cT −η with η > 1/2
and ωt = −uT +2−t =ψ (L)vt . Let ut satisfy condition EC. Then

(a) T −1
�T g2	∑

t=�T g1	
X∗

t−1vt
L→ ψ (1)σ 2

[∫ 1−g1
1−g2

W (s)dW + 1
2 gw

]
.

(b) T −3/2
�T g2	∑

t=�T g1	
X∗

t−1
L→ ψ (1)σ

∫ 1−g1
1−g2

W (s)ds.

(c) T −2
�T g2	∑

t=�T g1	
X∗2

t−1
L→ σ 2ψ (1)2

∫ 1−g1
1−g2

W (s)2 ds.

(d) T −3/2
�T g2	∑

t=�T g1	
X∗

t−1vt− j
p→ 0, j = 0,1, . . . .

(e) T −1/2
�T g2	∑

t=�T g1	
vt

L→ −σ ∫ 1−g1
1−g2

dW (s).

The proofs of Lemma A.1 and A.2 follow directly by standard methods (Phillips,
1987; Phillips and Perron, 1988). With these results and using standard weak convergence
methods, we can derive the asymptotic distribution of the BSDF∗

g (g0) statistic given in
Theorem 3.1. A complete proof of Theorem 3.1 is provided in the technical supplement
(PS, 2014).

B. The Limit Behaviour of the BSDF Statistic Under the
Alternative

B.1. Notation

• The bubble period B = [Te,Tc], where Te = �T fe	 and Tc = �T fc	.

• The crisis period C = (Tc,Tr ], where Tr = �T fr 	.

• The normal market periods N0 = [1,Te) and N1 = [Tr +1,T ], where T is the last
observation of the sample.

• The data generating process is specified as

Xt =

⎧⎪⎨
⎪⎩

cT −η+ Xt−1 +εt , constant c, η > 1/2, t ∈ N0 ∪ N1,

δT Xt−1 +εt , t ∈ B,

γT Xt−1 +εt , t ∈ C,

(B.1)

where εt ∼ N(0,σ 2), X0 = Op (1), δT = 1 + c1T −α and γT = 1 − c2T −β with
c1,c2 > 0 and α,β ∈ [0,1). If α > β, the rate of bubble collapse is faster than that
of the bubble expansion. If α < β, the rate of bubble collapse is slower than that of
the bubble expansion.

• Let X∗
t = XT +1−t . The dynamics of X∗

t are

X∗
t =

⎧⎪⎪⎨
⎪⎪⎩

−cT −η+ X∗
t−1 +vt , constant c, η > 1/2, t ∈ N0 ∪ N1,

γ−1
T X∗

t−1 +γ−1
T vt , t ∈ C,

δ−1
T

[
X∗

t−1 +vt
]
, t ∈ B,

(B.2)
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where vt = −εT +2−t ∼ N(0,σ 2) and X∗
0 = XT +1.

• Let τ1 = �T g1	 and τ2 = �T g2	 be the start and end points of the regression. We
have T1 = T +1− τ2, T2 = T +1− τ1 and τw = �T gw	 be the regression window
size.

• Let τe = �T ge	, τr = �T gr 	, and τc = �T gc	, where ge = 1− fr , gc = 1− fc , gr =
1− fe . This suggests that N1 = [1,τe), C = [τe,τc), B = [τc,τr ], N0 = (τr ,T ].

B.2. Dating Bubble Expansion

LEMMA B.1. Under the data generating process (B.1):

(1) For t ∈ N0, Xt=�T p	 ∼a T 1/2 B (p).

(2) For t ∈ B, Xt=�T p	 = δ
t−Te
T XTe

{
1+op (1)

}∼a T 1/2δ
t−Te
T B ( fe).

(3) For t ∈ C,

Xt=�T p	 = γ
t−Tc
T XTc +

t−Tc−1∑
j=0

γ
j

T εt− j ∼a T 1/2δ
Tc−Te
T γ

t−Tc
T B ( fe)+ T β/2 Xc2 .

(4) For t ∈ N1,

Xt=�T p	 =
⎧⎨
⎩
∑t−Tr −1

j=0 εt− j
{
1+op (1)

}∼a T 1/2 [B (p)− B ( fr )] if α > β,

γ
Tr −Tc
T XTc ∼a T 1/2γ

Tr −Tc
T δ

Tc−Te
T B ( fe) if α < β.

LEMMA B.2. Under the data generating process (B.1):

(1) For T1 ∈ N0 and T2 ∈ B,

1

Tw

T2∑
j=T1

Xj = TαδT2−Te
T

Twc1
XTe

{
1+op (1)

}∼a Tα−1/2δ
T2−Te
T

1

fwc1
B ( fe) .

(2) For T1 ∈ N0 and T2 ∈ C,

1

Tw

T2∑
j=T1

Xj =
⎧⎨
⎩

T αδTc−Te
T

Twc1
XTe

{
1+op (1)

}∼a T α−1/2δTc−Te
T

1
fwc1

B ( fe) if α > β,

XTc
T β

Twc2

{
1+op (1)

}∼a T β−1/2δTc−Te
T

B( fe)
fwc2

if α < β.

(3) For T1 ∈ N0 and T2 ∈ N1,

1

Tw

T2∑
j=T1

Xj =
⎧⎨
⎩

T αδTc−Te
T

Twc1
XTe

{
1+op (1)

}∼a T α−1/2δTc−Te
T

1
fwc1

B ( fe) if α > β,

T β
Twc2

XTc

{
1+op (1)

}∼a T β−1/2δTc−Te
T

1
fwc2

B ( fe) if α < β.

(4) For T1 ∈ B and T2 ∈ C,

1

Tw

T2∑
j=T1

Xj =
⎧⎨
⎩

T αδTc−Te
T

Twc1
XTe

{
1+op (1)

}∼a T α−1/2δTc−Te
T

1
fwc1

B ( fe) if α > β,

XTc
T β

Twc2

{
1+op (1)

}∼a T β−1/2δ
Tc−Te
T

1
fwc2

B ( fe) if α < β.
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(5) For T1 ∈ B and T2 ∈ N1,

1

Tw

T2∑
j=T1

Xj =
⎧⎨
⎩

T αδ
Tc−T1
T

Twc1
XTe

{
1+op (1)

}∼a T α−1/2δTc−Te
T

1
fwc1

B ( fe) if α > β,

XTc
T β

Twc2

{
1+op (1)

}∼a T β−1/2δ
Tc−Te
T

1
fwc2

B ( fe) if α < β.

(6) For T1 ∈ C and T2 ∈ N1,

1

Tw

T2∑
j=T1

X j

=
⎧⎨
⎩

1
Tw

∑T2
j=Tr +1

∑ j−Tr −1
i=0 εj−i

{
1 + op (1)

}∼a T 1/2 f2− fr
fw

∫ f2
fr

[B (s)− B ( fr )]ds if α > β,

XTc

γ
T1−Tc
T T β

Twc2

{
1 + op (1)

}∼a T β−1/2δ
Tc −Te
T γ

T1−Tc
T

1
c2 fw

B ( fe) if α < β.

LEMMA B.3. Define the centered quantity X̃t = Xt − T −1
w
∑T2

j=T1
Xj .

(1) For T1 ∈ N0 and T2 ∈ B,

X̃t =

⎧⎪⎪⎨
⎪⎪⎩

− T αδ
T2−Te
T

Twc1
XTe

{
1+op (1)

}
if t ∈ N0,[

δ
t−Te
T − T αδ

T2−Te
T

Twc1

]
XTe

{
1+op (1)

}
if t ∈ B.

(2) For T1 ∈ N0 and T2 ∈ C, if α > β

X̃t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− T αδTc−Te
T

Twc1
XTe

{
1+op (1)

}
if t ∈ N0,[

δ
t−Te
T − T αδTc−Te

T
Twc1

]
XTe

{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T XTc − T αδTc−Te

T
Twc1

XTe

]{
1+op (1)

}
if t ∈ C,

and if α < β,

X̃t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− T β
Twc2

XTc

{
1+op (1)

}
if t ∈ N0,[

δ
t−Te
T XTe − T β

Twc2
XTc

]{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T − T β

Twc2

]
XTc

{
1+op (1)

}
if t ∈ C.

(3) For T1 ∈ N0 and T2 ∈ N1, if α > β

X̃t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− T αδTc−Te
T

Twc1
XTe

{
1+op (1)

}
if t ∈ N0,[

δ
t−Te
T − T αδTc−Te

T
Twc1

]
XTe

{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T XTc − T αδTc−Te

T
Twc1

XTe

]{
1+op (1)

}
if t ∈ C,

− T αδTc−Te
T

Twc1
XTe

{
1+op (1)

}
if t ∈ N1,
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and if α < β,

X̃t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− T β
Twc2

XTc

{
1+op (1)

}
if t ∈ N0,[

δ
t−Te
T XTe − T β

Twc2
XTc

]{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T − T β

Twc2

]
XTc

{
1+op (1)

}
if t ∈ C,

− T β
Twc2

XTc

{
1+op (1)

}
if t ∈ N1.

(4) For T1 ∈ B and T2 ∈ C, if α > β

X̃t =

⎧⎪⎪⎨
⎪⎪⎩

[
δ

t−Te
T − T αδTc−Te

T
Twc1

]
XTe

{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T XTc − T αδTc−Te

T
Twc1

XTe

]{
1+op (1)

}
if t ∈ C,

and if α < β,

X̃t =

⎧⎪⎨
⎪⎩
[
δ

t−Te
T XTe − XTc

T β
Twc2

]{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T − T β

Twc2

]
XTc

{
1+op (1)

}
if t ∈ C.

(5) For T1 ∈ B and T2 ∈ N1, if α > β

X̃t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
δ

t−Te
T − T αδTc−Te

T
Twc1

]
XTe

{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T XTc − T αδTc−Te

T
Twc1

XTe

]{
1+op (1)

}
if t ∈ C,

− T αδTc−Te
T

Twc1
XTe

{
1+op (1)

}
if t ∈ N1,

and if α < β,

X̃t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
δ

t−Te
T XTe − T β

Twc2
XTc

]{
1+op (1)

}
if t ∈ B,[

γ
t−Tc
T − T β

Twc2

]
XTc

{
1+op (1)

}
if t ∈ C,

− T β
Twc2

XTc

{
1+op (1)

}
if t ∈ N1.

(6) For T1 ∈ C and T2 ∈ N1, if α > β,

X̃t =

⎧⎪⎨
⎪⎩
[
γ

t−Tc
T XTc − 1

Tw

∑T2
j=Tr +1

∑ j−Tr −1
i=0 εj−i

]{
1+op (1)

}
if t ∈ C,[∑t−Tr −1

j=0 εt− j − 1
Tw

∑T2
j=Tr +1

∑ j−Tr −1
i=0 εj−i

]{
1+op (1)

}
if t ∈ N1,

and if α < β,

X̃t =

⎧⎪⎨
⎪⎩
[
γ

t−Tc
T − γ

T1−Tc
T T β

Twc2

]
XTc

{
1+op (1)

}
if t ∈ C,

− γ
T1−Tc
T T β

Twc2
XTc

{
1+op (1)

}
if t ∈ N1.
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LEMMA B.4. Quadratic terms in X̃t behave as follows.

(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃2
j−1 ∼a T 1+α δ

2(T2−Te)
T

2c1
B ( fe)

2 .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃2
j−1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α < β.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃2
j−1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α ≤ β.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃2
j−1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α < β.

(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃2
j−1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α < β.

(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃2
j−1 ∼a

⎧⎪⎨
⎪⎩

T 2 ( f2 − fr )

{∫ f2
fr

[B (s)− B ( fr )]2 ds − f2− fr
fw

[∫ f2
fr

[B (s)− B ( fr )]ds
]2
}

if α > β,

T 1+βδ2(Tc−Te)
T γ

2(T1−Tc)
T

1
2c2

B ( fe)
2 if α < β.

(B.3)

LEMMA B.5. Cross-product terms involving X̃t and εt behave as follows.

(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃ j−1εj ∼a T (1+α)/2δT2−Te
T Xc1 B ( fe) .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃ j−1εj ∼a

⎧⎨
⎩

T (1+α)/2δTc−Te
T B ( fe) Xc1 if α > β,

T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.

https://doi.org/10.1017/S0266466617000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000202


738 PETER C.B. PHILLIPS AND SHU-PING SHI

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃ j−1εj ∼a

⎧⎨
⎩

T (1+α)/2δTc−Te
T B ( fe) Xc1 if α > β,

T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃ j−1εj ∼a

⎧⎨
⎩

T (1+α)/2δTc−Te
T B ( fe) Xc1 if α > β,

T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.

(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃ j−1εj ∼a

⎧⎨
⎩

T (1+α)/2δTc−Te
T B ( fe) Xc1 if α > β,

T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.

(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃ j−1εj ∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T
{

1
2 [B ( f2)− B ( fr )]2 − 1

2 ( f2 − fr )σ 2

−2 f2− fr
fw

[B ( f2)− B ( fr )]
∫ f2

fr
[B (s)− B ( fr )]ds

} if α > β,

T (1+β)/2γ T1−Tc−1
T δ

Tc−Te
T B ( fe) Xc2 if α < β.

(B.4)

LEMMA B.6. Cross-product terms involving X̃ j−1 and X̃ j − δT X̃ j−1 behave as
follows.

(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃ j−1
(
X̃ j − δT X̃ j−1

)∼a −T αδ2(T2−Te)
T

fe − f1
fw

B ( fe)
2 .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃ j−1
(
X̃ j − δT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

−T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j − δT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

fr − fc
fwc2

1
B ( fe)

2 if α > β and 1+β < 2α,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

−T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃ j−1
(
X̃ j − δT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

−T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.
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(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j − δT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

fr − fc
fwc2

1
B ( fe)

2 if α > β and 1+β < 2α,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

−T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.

(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j − δT X̃ j−1

) ∼a

⎧⎨
⎩−T 2−βc2

( fr − f1)( f2− fr )2

f 2
w

[∫ f2
fr

[B (s)− B ( fr )]ds
]2

if α > β,

−T 1+β−αδ2(Tc−Te )
T γ

2(T1−Tc )
T

c1
2c2

B ( fe)
2 if α < β.

LEMMA B.7. The sums of cross-products of X̃ j−1 and X̃ j − γT X̃ j−1 behave as
follows.

(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃ j−1
(
X̃ j −γT X̃ j−1

)∼a

⎧⎨
⎩

T 1+α−βδ2(T2−Te)
T

c2
2c1

B ( fe)2 if α > β,

T δ2(T2−Te)
T

1
2 B ( fe)2 if α < β.

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃ j−1
(
X̃ j −γT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fc− fe

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j −γT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fc− fe

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃ j−1
(
X̃ j −γT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fc− f1

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j − δT X̃ j−1

)∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fc− f1
fwc2

2
B ( fe)

2 if α < β and 1+α < 2β.
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(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j −γT X̃ j−1

)

∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T 2−βc2 ( f2 − fr )

{∫ f2
fr

[B (s)− B ( fr )]2 ds

+ ( f2− fr )( f2− fr −2 fw)
f 2
w

[∫ f2
fr

[B (s)− B ( fr )]ds
]2
} if α > β,

T βδ2(Tc−Te)
T γ

2(T1−Tc)
T

f2− fr
fwc2

B ( fe)
2 if α < β.

LEMMA B.8. The sums of cross-products of X̃ j−1 and X̃ j − X̃ j−1 behave as follows.

(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃ j−1
(
X̃ j − X̃ j−1

)∼a T δ2(T2−Te)
T

1

2
B ( fe)

2 .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃ j−1
(
X̃ j − X̃ j−1

)∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

op

(
T δ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

op

(
T δ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fe − f1

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j − X̃ j−1

)∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

op

(
T δ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

op

(
T δ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fc − fe

fw c2
2

B ( fe)
2 if α < β and 1+α < 2β.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃ j−1
(
X̃ j − X̃ j−1

)∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

op

(
T δ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

op

(
T δ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fc − f1

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j − X̃ j−1

)∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−T 2α−βδ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

op

(
T δ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

op

(
T δ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

T 2β−αδ2(Tc−Te)
T c1

fc − f1

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.
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(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃ j−1
(
X̃ j − X̃ j−1

)∼a

⎧⎨
⎩−T 2−βc2

( fr − f1)( f2− fr )2

f 2
w

[∫ f2
fr

[B (s)− B ( fr )]ds
]2

if α > β,

−T δ2(Tc−Te)
T γ

2(T1−Tc)
T

1
2 B ( fe)

2 if α < β.

B.2.1. Test Asymptotics. The fitted regression model for the recursive unit root tests is

Xt = μ̂ f1, f2 + ρ̂ f1, f2 Xt−1 + ε̂t ,

where the intercept μ̂ f1, f2 and slope coefficient ρ̂ f1, f2 are obtained using data over the
subperiod

[
f1, f2

]
.

Remark B.1. Based on Lemmas B.4 and B.6, we can obtain limit forms of ρ̂ f1, f2 − δT
using

ρ̂ f1, f2 − δT =
∑T2

j=T1
X̃ j−1

(
X̃ j − δT X̃ j−1

)
∑T2

j=T1
X̃2

j−1

.

When T1 ∈ N0 and T2 ∈ B

ρ̂ f1, f2 − δT ∼a − 1

T
2c1

fe − f1
fw

.

When T1 ∈ C and T2 ∈ N1,

ρ̂ f1, f2 − δT ∼a

⎧⎪⎪⎨
⎪⎪⎩

−T −β c2
( fr − f1)( f2− fr )

f 2
w

[∫ f2
fr

[B(s)−B( fr )]ds
]2

{∫ f2
fr

[B(s)−B( fr )]2ds− f2− fr
fw

[∫ f2
fr

[B(s)−B( fr )]ds
]2} if α > β,

−T −αc1 if α < β,

and for all other cases

ρ̂ f1, f2 − δT ∼a

⎧⎪⎪⎨
⎪⎪⎩

−T α−β−12c2
f2− fc
fwc1

if α > β and 1+β < 2α,

−T −αc1 if α > β and 1+β > 2α,

−T −αc1 if α < β.

Remark B.2. Based on Lemmas B.4 and B.7, we can obtain limit forms of ρ̂ f1, f2 −γT
using

ρ̂ f1, f2 −γT =
∑T2

j=T1
X̃ j−1

(
X̃ j −γT X̃ j−1

)
∑T2

j=T1
X̃2

j−1

.

When T1 ∈ N0 and T2 ∈ B

ρ̂ f1, f2 −γT ∼a

{
T −βc2 if α > β,

T −αc1 if α < β.
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When T1 ∈ C and T2 ∈ N1,

ρ̂ f1, f2 −γT ∼a

⎧⎪⎪⎨
⎪⎪⎩

T −βc2

{∫ f2
fr

[B(s)−B( fr )]2ds+ ( f2− fr )( f2− fr −2 fw)
f 2
w

[∫ f2
fr

[B(s)−B( fr )]ds
]2
}

∫ f2
fr

[B(s)−B( fr )]2ds− f2− fr
fw

[∫ f2
fr

[B(s)−B( fr )]ds
]2 if α > β,

2 1
T

f2− fr
fw

if α < β,

and for all other cases

ρ̂ f1, f2 −γT ∼a

⎧⎪⎪⎨
⎪⎪⎩

T −βc2 if α > β,

T −βc2 if α < β and 1+α > 2β,

Tβ−α−12c1
fc− fe
fwc2

if α < β and 1+α < 2β.

Remark B.3. Based on Lemmas B.4 and B.8, we can obtain limit forms of ρ̂ f1, f2 − 1
using

ρ̂ f1, f2 −1 =
∑T2

j=T1
X̃ j−1

(
X̃ j − X̃ j−1

)
∑T2

j=T1
X̃2

j−1

.

When T1 ∈ N0 and T2 ∈ B

ρ̂ f1, f2 −1 ∼a
c1

Tα
.

When T1 ∈ C and T2 ∈ N1,

ρ̂ f1, f2 −1 ∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T −βc2

( fr − f1)( f2− fr )
f 2
w

[∫ f2
fr

[B(s)−B( fr )]ds
]2

{∫ f2
fr

[B(s)−B( fr )]2ds− f2− fr
fw

[∫ f2
fr

[B(s)−B( fr )]ds
]2} if α > β,

−T −βc2 if α < β.

And for all other cases

ρ̂ f1, f2 −1 ∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−T α−β−12c2
f2− fc
fwc1

if α > β and 1+β < 2α,

op
(
T −α) if α > β and 1+β > 2α,

op
(
T −β) if α < β and 1+α > 2β,

T β−α−12c1
fe− f1
fwc2

if α < β and 1+α < 2β.

Based on the above three remarks, one can see that the quantity ρ̂ f1, f2 − δT diverges to
negative infinity and the quantity ρ̂ f1, f2 −γT diverges to positive infinity. In other words,
the estimated value of ρ̂ f1, f2 is bounded by δT and γT . Furthermore, the quantity ρ̂ f1, f2 −1
diverges to positive infinity when T1 ∈ N0 and T2 ∈ B and negative infinity when T1 ∈ C
and T2 ∈ N1.

LEMMA B.9. To obtain the asymptotic behaviors of the Dickey-Fuller t-statistic,
we first obtain the equation standard error of the regression over

[
T1,T2

]
which is

σ̂ f1 f2 =
⎧⎨
⎩T −1

w

T2∑
j=T1

(
X̃ j − ρ̂ f1, f2 X̃ j−1

)2

⎫⎬
⎭

1/2

.
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(1) When T1 ∈ N0 and T2 ∈ B,

σ̂ 2
f1 f2

= Op

(
T −1δ

2(T2−Te)
T

)
.

(2) When T1 ∈ N0 and T2 ∈ C,

σ̂ 2
f1 f2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.

(3) When T1 ∈ N0 and T2 ∈ N1,

σ̂ 2
f1 f2

∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.

(4) When T1 ∈ B and T2 ∈ C,

σ̂ 2
f1 f2

∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.

(5) When T1 ∈ B and T2 ∈ N1,

σ̂ 2
f1 f2

∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.

(6) When T1 ∈ C and T2 ∈ N1,

σ̂ 2
f1 f2

∼a

⎧⎨
⎩

Op
(
T 1−2β) if α > β,

Op

(
T β−2αδ

2(Tc−Te)
T γ

2(T1−Tc)
T

)
if α < β.

The asymptotic distribution of the Dickey-Fuller t-statistic can be calculated as follows

DFt
f1, f2

=
⎛
⎝
∑T2

j=T1
X̃2

j−1

σ̂ 2
f1 f2

⎞
⎠

1/2 (
ρ̂ f1, f2 −1

)
.

Notice that the sign of the DF statistics depend on that of ρ̂ f1, f2 −1.
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Remark B.4. (1)When T1 ∈ N0 and T2 ∈ B,

DFt
f1, f2

=
⎛
⎝
∑T2

j=T1
X̃2

j−1

σ̂ 2
f1 f2

⎞
⎠

1/2 (
ρ̂ f1, f2 −1

) = Op
(
T 1−α/2)→ +∞.

When T1 ∈ C and T2 ∈ N1

DFt
f1, f2

=
⎛
⎝
∑T2

j=T1
X̃2

j−1

σ̂ 2
f1 f2

⎞
⎠

1/2 (
ρ̂ f1, f2 −1

) =
{

Op
(
T 1/2)→ −∞ if α > β,

Op
(
T 1/2+α−β)→ −∞ if α < β.

For all other cases

DFt
f1, f2

=
⎛
⎝∑T2

j=T1
X̃ 2

j−1

σ̂ 2
f1 f2

⎞
⎠

1/2 (
ρ̂ f1, f2 −1

)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Op
(
T α/2

)→ −∞ if α > β and 1+β < 2α,

Op
(
T (1−α+β)/2) if α > β and 1+β > 2α,

Op
(
T (1−β+α)/2) if α < β and 1+α > 2β,

Op
(
T β/2

)→ +∞ if α < β and 1+α < 2β.

Given that f2 = f and f1 ∈ [0, f − f0
]
, the asymptotic behavior of the backward sup

DF statistic under the alternative hypothesis are

BSDFf ( f0)∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ff (W, f0) if f ∈ N0,

Op
(
T 1−α/2)→ +∞ if f ∈ B,

Op
(
Tω(α,β)

)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Op
(
T α/2

)→ −∞ if α > β and 1+β < 2α

Op
(
T (1−α+β)/2)→ −∞ if α > β and 1+β > 2α

Op
(
T (1−β+α)/2)→ −∞ if α < β and 1+α > 2β

Op
(
T β/2

)→ +∞ if α < β and 1+α < 2β

if f ∈ C.

This proves Theorem 3.2. Following the standard probability arguments (see PSY),

we deduce that Pr
{
| f̂e − fe|> η

}
→ 0 and Pr

{
| f̂c − fc|> γ

}
→ 0 for any η,γ > 0 as

T → ∞, provided that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T α/2

scvβT
+ scvβT

T 1−α/2 → 0 if α > β and 1+β < 2α,

T (1−α+β)/2
scvβT

+ scvβT

T 1−α/2 → 0 if α > β and 1+β > 2α,

T (1−β+α)/2
scvβT

+ scvβT

T 1−α/2 → 0 if α < β and 1+α > 2β,

T β/2

scvβT
+ scvβT

T 1−α/2 → 0 if α < β and 1+α < 2β.

Therefore, f̂e and f̂c are consistent estimators of fe and fc . This proves Theorem 3.3.

B.3. Dating Bubble Contractions

Define the demeaned quantity as X̃∗
t ≡ X∗

t − 1
τw

∑τ2
j=τ1

X∗
j . Since τw = Tw and∑τ2

j=τ1
X∗

j =∑T2
i=T1

Xi , we have

X̃∗
t = X∗

t − 1

Tw

T2∑
j=T1

X∗
j = XT +1−t − 1

Tw

T2∑
i=T1

Xi = X̃T +1−t .

Based on this linkage, we derive the next two lemmas.

https://doi.org/10.1017/S0266466617000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000202


FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION 745

LEMMA B.10. Quadratic terms in X̃∗
t behave as follows.

(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗2
j−1 =

T2∑
j=T1

X̃2
j+1 ∼a T 1+αδ2(T2−Te)

T
1

2c1
B ( fe)

2 .

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗2
j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α < β.

(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗2
j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α ≤ β.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗2
j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α < β.

(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗2
j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

⎧⎨
⎩

T 1+αδ2(Tc−Te)
T

1
2c1

B ( fe)2 if α > β,

T 1+βδ2(Tc−Te)
T

1
2c2

B ( fe)2 if α < β.

(6) For τ1 ∈ N1 and τ2 ∈ C,

τ2∑
j=τ1

X̃∗2
j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T 2 ( f2 − fr )

{∫ f2
fr

[B (s)− B ( fr )]2 ds

− f2− fr
fw

[∫ f2
fr

[B (s)− B ( fr )]ds
]2
} if α > β,

T 1+βδ2(Tc−Te)
T γ

2(T1−Tc)
T

1
2c2

B ( fe)
2 if α < β.

LEMMA B.11. Cross-product terms involving X̃∗
t and vt behave as follows.

(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1v j ∼a −T (1+α)/2δT2−Te

T Xc1 B ( fe) .

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1v j ∼a

⎧⎨
⎩

−T (1+α)/2δTc−Te
T B ( fe) Xc1 if α > β,

−T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.
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(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃ j−1v j ∼a

{
−T (1+α)/2δTc−Te

T B ( fe) Xc1 if α > β,

−T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗
j−1v j ∼a

⎧⎨
⎩

−T (1+α)/2δTc−Te
T B ( fe) Xc1 if α > β,

−T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.

(5) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1v j ∼a

⎧⎨
⎩

−T (1+α)/2δTc−Te
T B ( fe) Xc1 if α > β,

−T (1+β)/2δTc−Te
T B ( fe) Xc2 if α < β.

(6) For τ1 ∈ C and τ2 ∈ N1,

τ2∑
j=τ1

X̃∗
j−1v j ∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T
{

1
2 [B ( f2)− B ( fr )]2 + 1

2 ( f2 − fr )σ 2

− f2− fr
fw

[B ( f2)−2B ( fr )+ B ( f1)]
∫ f2

fr
[B (s)− B ( fr )]ds

} if α > β,

−T (1+β)/2γ T1−Tc
T δTc−Te

T B ( fe) Xc2 if α < β.

LEMMA B.12. Cross-product terms involving X̃∗
j−1 and X̃∗

j − γ−1
T X̃∗

j−1 behave as
follows.

(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j −γ−1
T X̃∗

j−1

)
∼a

⎧⎨
⎩

−T 1+α−βδ2(T2−Te)
T

c2
2c1

B ( fe)2 if α > β,

−T δ2(T2−Te)
T

1
2 B ( fe)2 if α < β.

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j −γ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− fe
fw c2

2
B ( fe)

2 if α < β and 1+α < 2β.

(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j −γ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− fe
fw c2

2
B ( fe)

2 if α < β and 1+α < 2β.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j −γ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− f1
fw c2

2
B ( fe)

2 if α < β and 1+α < 2β.
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(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j −γ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T 1+α−βδ2(Tc−Te)
T

c2
2c1

B ( fe)
2 if α > β,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− f1
fw c2

2
B ( fe)

2 if α < β and 1+α < 2β.

(6) For τ1 ∈ N1 and τ2 ∈ C,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j −γ−1
T X̃∗

j−1

)

∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−T 2−βc2 ( f2 − fr )

{∫ f2
fr

[B (s)− B ( fr )]2 ds

+ ( f2− fr )( f2− fr −2 fw)
f 2
w

[∫ f2
fr

[B (s)− B ( fr )]ds
]2
} if α > β,

−T βδ2(Tc−Te)
T γ

2(T1−Tc)
T

f2− fr
fwc2

B ( fe)
2 if α < β.

LEMMA B.13. The sums of cross-products of X̃∗
j−1 and X̃∗

j − δ−1
T X̃∗

j−1 behave as
follows.

(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − δ−1
T X̃∗

j−1

)
∼a Tαδ2(T2−Te)

T
fe − f1

fw
B ( fe)

2 .

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − δ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 2α−βδ2(Tc−Te)
T c2

f2− fc
fwc2

1
B ( fe)

2 if α > β and 1+β < 2α,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.

(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − δ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 2α−βδ2(Tc−Te)
T c2

fr − fc
fwc2

1
B ( fe)

2 if α > β and 1+β < 2α,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − δ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 2α−βδ2(Tc−Te)
T c2

f2− fc
fwc2

1
B ( fe)

2 if α > β and 1+β < 2α,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.

(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − δ−1
T X̃∗

j−1

)
∼a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T 2α−βδ2(Tc−Te)
T c2

fr − fc
fwc2

1
B ( fe)

2 if α > β and 1+β < 2α,

T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

T 1+β−αδ2(Tc−Te)
T

c1
2c2

B ( fe)
2 if α < β.
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(6) For τ1 ∈ N1 and τ2 ∈ C,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − δ−1
T X̃∗

j−1

)

∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T 2−αc1 ( f2 − fr )
{∫ f2

fr
[B (s)− B ( fr )]2 ds

+ ( f2− fr )( f2− fr −2 fw)
f 2
w

[∫ f2
fr

[B (s)− B ( fr )]ds
]2
} if α > β,

T 2β−αδ2(Tc−Te)
T γ

2(T1−Tc)
T c1

f2− fr
fwc2

2
B ( fe)

2 if α < β.

LEMMA B.14. The sums of cross-products of X̃∗
j−1 and X̃∗

j − X̃∗
j−1 behave as follows.

(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − X̃∗
j−1

)
∼a T δ2(T2−Te)

T
1

2
B ( fe)

2 .

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − X̃∗
j−1

)
∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T 2α−β δ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

op

(
T δ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

op

(
T δ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− fe

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − X̃∗
j−1

)
∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T 2α−β δ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

op

(
T δ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

op

(
T δ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− fe

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − X̃∗
j−1

)
∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T 2α−β δ2(Tc−Te)
T c2

f2− fc

fwc2
1

B ( fe)
2 if α > β and 1+β < 2α,

op

(
T δ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

op

(
T δ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− fe

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.

(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − X̃∗
j−1

)
∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T 2α−βδ2(Tc−Te )
T

f2− fr
fwc2

B ( fe)
2 if α > β and 1+β < 2α,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α > β and 1+β > 2α,

−T δ2(Tc−Te)
T

1
2 B ( fe)

2 if α < β and 1+α > 2β,

−T 2β−αδ2(Tc−Te)
T c1

fc− f1

fwc2
2

B ( fe)
2 if α < β and 1+α < 2β.
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(6) For τ1 ∈ N1 and τ2 ∈ C,

τ2∑
j=τ1

X̃∗
j−1

(
X̃∗

j − X̃∗
j−1

)
∼a

⎧⎨
⎩T 2−βc2

( fr − f1)( f2− fr )2

f 2
w

[∫ f2
fr

[B (s)− B ( fr )]ds
]2

if α > β,

T δ2(Tc−Te)
T γ

2(T1−Tc)
T

1
2 B ( fe)

2 if α < β.

B.3.1. Test Asymptotics. The fitted regression model for the recursive unit root tests is

X∗
t = μ̂g1,g2 + ρ̂g1,g2 X∗

t−1 + v̂t ,

where the intercept μ̂g1,g2 and slope coefficient ρ̂g1,g2 are obtained using data over the
subperiod

[
g1,g2

]
.

Remark B.5. Based on Lemmas B.10 and B.12, we can obtain limit forms of
ρ̂g1,g2 −γ−1

T using

ρ̂g1,g2 −γ−1
T =

∑τ2
j=τ1

X̃∗
j−1

(
X̃∗

j −γ−1
T X̃∗

j−1

)
∑τ2

j=τ1
X̃∗2

j−1

.

When τ1 ∈ B and τ2 ∈ N0,

ρ̂g1,g2 −γ−1
T ∼a

{−c2T −β if α > β,

−c1T −α if α < β.

When τ1 ∈ N1 and τ2 ∈ C,

ρ̂g1,g2 −γ−1
T ∼a

⎧⎪⎪⎨
⎪⎪⎩

−T −βc2

{∫ f2
fr

[B(s)−B( fr )]2ds+ ( f2− fr )( f2− fr −2 fw)
f 2
w

[∫ f2
fr

[B(s)−B( fr )]ds
]2
}

{∫ f2
fr

[B(s)−B( fr )]2ds− f2− fr
fw

[∫ f2
fr

[B(s)−B( fr )]ds
]2
} if α > β,

−2T −1 f2− fr
fw

if α < β.

For all other cases, we have

ρ̂g1,g2 −γ−1
T ∼a

⎧⎪⎪⎨
⎪⎪⎩

−T −βc2 if α > β,

−T −βc2 if α < β and 1+α > 2β,

−T β−α−12c1
fc− fe
fwc2

if α < β and 1+α < 2β.

Remark B.6. Based on Lemmas B.10 and B.13, we can obtain limit forms of
ρ̂g1,g2 − δ−1

T using

ρ̂g1,g2 − δ−1
T =

∑τ2
j=τ1

X̃∗
j−1

(
X∗

j − δ−1
T X∗

j−1

)
∑τ2

j=τ1
X̃∗2

j−1

.

When τ1 ∈ B and τ2 ∈ N0,

ρ̂g1,g2 − δ−1
T ∼a

1

T
2c1

fe − f1
fw

.
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When τ1 ∈ C and τ2 ∈ N0,

ρ̂g1,g2 − δ−1
T ∼a

⎧⎪⎪⎨
⎪⎪⎩

T −α c1

{∫ f2
fr

[B(s)−B( fr )]2ds+ ( f2− fr )( f2− fr −2 fw)
f 2
w

[∫ f2
fr

[B(s)−B( fr )]ds
]2
}

∫ f2
fr

[B(s)−B( fr )]2ds− f2− fr
fw

[∫ f2
fr

[B(s)−B( fr )]ds
]2 if α > β,

2T β−α−1c1
f2− fr
fwc2

if α < β.

For all other cases

ρ̂g1,g2 − δ−1
T ∼a

⎧⎪⎨
⎪⎩

T α−β−1K if α > β and 1+β < 2α,

c1T −α if α > β and 1+β > 2α,

c1T −α if α < β,

where K is a constant which equals 2c1c2
fr − fc

fwc2
1

when τ1 ∈ N1 and τ2 ∈ N0 and when

τ1 ∈ N1 and τ2 ∈ B and equals 2c1c2
f2− fc

fwc2
1

when τ1 ∈ C and τ2 ∈ B and when τ1 ∈ C and

τ2 ∈ N0.

Remark B.7. Based on Lemmas B.10 and B.13, we can obtain limit forms of ρ̂g1,g2 −1
using

ρ̂g1,g2 −1 =
∑τ2

j=τ1
X̃∗

j−1

(
X∗

j − X∗
j−1

)
∑τ2

j=τ1
X̃∗2

j−1

.

When τ1 ∈ B and τ2 ∈ N0,

ρ̂g1,g2 −1 ∼a
c1

Tα
.

When τ1 ∈ N1 and τ2 ∈ C,

ρ̂g1,g2 −1˜

⎧⎪⎪⎨
⎪⎪⎩

T −βc2

( fr − f1)( f2− fr )
f 2
w

[∫ f2
fr

[B(s)−B( fr )]ds
]2

∫ f2
fr

[B(s)−B( fr )]2ds− f2− fr
fw

[∫ f2
fr

[B(s)−B( fr )]ds
]2 if α > β,

T −βc2 if α < β.

When τ1 ∈ N1 and τ2 ∈ B,

ρ̂g1,g2 −1 ∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T α−β−12c1
f2− fr
fwc2

if α > β and 1+β < 2α,

−c1T −α if α > β and 1+β > 2α,

−T −βc2 if α < β and 1+α > 2β,

−T β−α−12c1
fc− f1
fwc2

if α < β and 1+α < 2β.

For all other cases, we have

ρ̂g1,g2 −1 ∼a

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T α−β−12c1
f2− fr
fwc2

if α > β and 1+β < 2α,

op
(
T −α) if α > β and 1+β > 2α,

op

(
T −β) if α < β and 1+α > 2β,

−T β−α−12c1
fc− f1
fwc2

if α < β and 1+α < 2β.
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Based on the above three remarks, one can see that the quantity ρ̂g1,g2 −γ−1
T diverges

to negative infinity and the quantity ρ̂g1,g2 − δ−1
T diverges to positive infinity. In other

words, the estimated value of ρ̂g1,g2 is bounded by γ−1
T and δ−1

T . Furthermore, the quantity
ρ̂g1,g2 − 1 diverges to positive infinity when τ1 ∈ B and τ2 ∈ N0 and when τ1 ∈ N1 and
τ2 ∈ C . For all other cases, the quantity ρ̂g1,g2 −1 diverges to positive infinity when bubble
collapsing speed is much faster than expansion rate (i.e., 1 + β < 2α) and to negative
infinity otherwise.

LEMMA B.15. To obtain the asymptotic behaviors of the Dickey-Fuller t-statistic,
we first obtain the equation standard error of the regression over

[
T1,T2

]
is

σ̂g1g2 =
⎧⎨
⎩τ−1

w

τ2∑
j=τ1

(
X̃∗

j − ρ̂g1,g2 X̃∗
j−1

)2

⎫⎬
⎭

1/2

.

(1) When τ1 ∈ B and τ2 ∈ N0,

σ̂ 2
g1g2

= Op

(
T −1δ

2(T2−Te)
T

)
.

(2) When τ1 ∈ C and τ2 ∈ N0,

σ̂ 2
g1,g2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.

(3) When τ1 ∈ N1 and τ2 ∈ N0,

σ̂ 2
g1,g2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.

(4) When τ1 ∈ C and τ2 ∈ B,

σ̂ 2
g1,g2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.
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(5) When τ1 ∈ N1 and τ2 ∈ B,

σ̂ 2
g1,g2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1+β < 2α,

Op

(
T −βδ2(Tc−Te)

T

)
if α > β and 1+β > 2α,

Op

(
T −αδ2(Tc−Te)

T

)
if α < β and 1+α > 2β,

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1+α < 2β.

(6) When τ1 ∈ N1 and τ2 ∈ C,

σ̂ 2
g1,g2

=
⎧⎨
⎩

Op

(
T 1−2β

)
if α > β,

Op

(
T −1δ

2(Tc−Te)
T γ

2(T1−Tc)
T

)
if α < β.

The asymptotic distribution of the Dickey-Fuller t-statistic

DFt
g1,g2

=
⎛
⎝
∑τ2

j=τ1
X̃∗2

j−1

σ̂ 2

⎞
⎠

1/2 (
ρ̂g1,g2 −1

)

can be calculated as follows. Notice that the sign of the DF statistic is determined by the
quantity ρ̂g1,g2 −1.

Remark B.8. When τ1 ∈ B and τ2 ∈ N0,

DFt
g1,g2

=
⎛
⎝
∑τ2

j=τ1
X̃∗2

j−1

σ̂ 2

⎞
⎠

1/2 (
ρ̂g1,g2 −1

)= Op
(
T 1−α/2)→ +∞.

When τ1 ∈ N1 and τ2 ∈ C,

DFt
g1,g2

=
⎛
⎝
∑τ2

j=τ1
X̃∗2

j−1

σ̂ 2

⎞
⎠

1/2 (
ρ̂g1,g2 −1

)=
{

Op
(
T 1/2)→ +∞ if α > β,

Op
(
T 1−β/2)→ +∞ if α < β.

When τ1 ∈ N1 and τ2 ∈ B,

DFt
g1,g2

=
(∑τ2

j=τ1
X̃∗2

j−1

σ̂ 2

)1/2 (
ρ̂g1,g2 −1

)∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Op
(
T α/2

)→ +∞ if α > β and 1+β < 2α,

Op
(
T (1−α+β)/2)→ −∞ if α > β and 1+β > 2α,

Op
(
T (1−β+α)/2)→ −∞ if α < β and 1+α > 2β,

Op
(
T β/2

)→ −∞ if α < β and 1+α < 2β.

For all other cases

DFt
g1,g2

=
(∑τ2

j=τ1
X̃∗2

j−1

σ̂ 2

)1/2 (
ρ̂g1,g2 −1

)∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Op
(
T α/2

)→ +∞ if α > β and 1+β < 2α,

Op
(
T (1−α+β)/2) if α > β and 1+β > 2α,

Op
(
T (1−β+α)/2) if α < β and 1+α > 2β,

Op
(
T β/2

)→ −∞ if α < β and 1+α < 2β.
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Given that g2 = g and g1 ∈ [0,g − g0
]
, the asymptotic behavior of the backward sup DF

statistic under the alternative hypothesis are

BSDF∗
g (g0)∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fg (W,g0) if g ∈ N1,{
Op
(
T 1/2

)→ +∞ if α > β

Op
(
T 1−β/2)→ +∞ if α < β

if g ∈ C,

Op
(
Tω

∗(α,β))=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Op
(
T α/2

)→ +∞ if α > β and 1+β < 2α

Op
(
T (1−α+β)/2)→ −∞ if α > β and 1+β > 2α

Op
(
T (1−β+α)/2)→ −∞ if α < β and 1+α > 2β

Op
(
T β/2

)→ −∞ if α < β and 1+α < 2β

if g ∈ B.

This proves Theorem 3.4. Following the standard probability arguments (see PSY),
we deduce that Pr

{|ĝe − ge|> η
}→ 0 and Pr

{|ĝc − gc|> γ
}→ 0 for any η,γ > 0 as

T → ∞, provided that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T α/2
scv∗(βT )

+ scv∗(βT )
T 1/2 → 0 if α > β and 1+β < 2α,

T (1−α+β)/2
scv∗(βT )

+ scv∗(βT )
T 1/2 → 0 if α > β and 1+β > 2α,

T (1−β+α)/2
scv∗(βT )

+ scv∗(βT )
T 1−β/2 → 0 if α < β and 1+α > 2β,

T β/2
scv∗(βT )

+ scv∗(βT )
T 1−β/2 → 0 if α < β and 1+α < 2β.

Therefore, f̂r = 1− ĝe and f̂c = 1− ĝc are consistent estimators of fr and fc. This proves
Theorem 3.5.

https://doi.org/10.1017/S0266466617000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000202

