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Hemiwicking refers to the spreading of a liquid on a rough hydrophilic surface driven
by capillarity. Here, we construct scaling laws to predict the velocity of hemiwicking
on a rough substrate and experimentally corroborate them with various arrangements
and dimensions of micropillar arrays. At the macroscopic scale, where the wetting
front appears parallel to the free surface of the reservoir, the wicking distance is
shown to grow diffusively, i.e. like t1/2 with t being time. We show that our model
is consistent with pillar arrays of a wide range of pitch-to-height ratios, either square
or skewed. At the microscopic scale, where the meniscus extension from individual
pillars at the wetting front is considered, the extension distance begins to grow like
t but the spreading slows down to behave like t1/3 when the meniscus is far from
the pillar. Our microscopic flow modelling allows us to find pillar spacing conditions
under which the assumption of densely spaced pillars is valid.

Key words: capillary flows, interfacial flows (free surface), micro-/nano-fluid dynamics

1. Introduction
Recent developments in micro- and nanoscale surface patterning technology have

made it possible to obtain tailored topography of solid surfaces with a wide range
of wettability conditions. This has allowed the investigation of novel liquid–solid
interaction behaviours, which are qualitatively different from the dynamics of
liquids on smooth solid surfaces. On microtextured hydrophobic surfaces, drops
roll (Mahadevan & Pomeau 1999; Richard & Quéré 1999) rather than slide (Kim,
Lee & Kang 2003). Drops bounce (Richard, Clanet & Quéré 2002) or fragment
(Tsai et al. 2009) upon collision with super-water-repellent surfaces depending on the
impact conditions. When a drop is deposited on microdecorated hydrophilic surfaces,
the liquid wicks into the gaps of protrusions; this behaviour is termed hemiwicking
(Bico, Thiele & Quéré 2002). Hemiwicking on a superhydrophilic surface leads to a
variety of intriguing flow characteristics such as polygonal spreading (Courbin et al.
2007), zippering wetting front (Kim et al. 2011a) and an enormous rise in the liquid
film against gravity (Xiao, Enright & Wang 2010).

In the present study, we consider the rate of a liquid film climbing a rough
hydrophilic substrate that is touching a liquid bath. The flow speed and film thickness
are so small that inertia and gravity can be neglected compared to viscous resistance.

† Email address for correspondence: hyk@snu.ac.kr
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The rate of hemiwicking is then determined by the balance between the driving
capillary forces and resisting viscous forces. Thus, the fundamental physics does
not differ from a capillarity-driven tube imbibition problem (Washburn 1921), and
a simple scaling law can be readily constructed as Ishino et al. (2007) explained.
Because the capillary force is scaled as γ a, where γ is the liquid–gas surface tension
and a is the length scale that generates the capillary effect, and the viscous force is
scaled as µLL̇, where µ is the liquid viscosity, L is the imbibition distance from the
source and the dot denotes the time derivative, the force balance leads to a diffusive
rule for L : L ∼ (Dt)1/2, where the dynamical coefficient D ∼ γ a/µ. A number of
studies regarding hemiwicking on superhydrophilic substrates have found that the
imbibition length indeed grows like t1/2 (Bico, Tordeus & Quéré 2001; Courbin et al.
2007; Ishino et al. 2007; Srivastava et al. 2010; Kim et al. 2011a,b).

However, rough substrates cannot be described by a single geometric parameter,
such as a tube with a constant radius a. For example, a square array of circular
micropillars should be described by the following three parameters: the height,
diameter and spacing of the pillars. As a result, different forms of the dynamical
coefficient have been suggested by various authors for regular micropillar arrays
(Bico et al. 2001; Courbin et al. 2007; Ishino et al. 2007; Srivastava et al. 2010;
Kim et al. 2011b). These previously suggested forms of the dynamical coefficient
only hold under limited conditions, which implies that further studies are called for to
gain a general understanding of the dynamics of hemiwicking. In addition to densely
spaced micropillar arrays, we consider cases where micropillars are sparse and the
meniscus should travel a significant distance before encountering neighbouring pillars.

In the following we begin with describing the experimental set-up and procedures.
We then present scaling laws developed for hemiwicking on pillar arrays with
a wide range of pillar dimensions and lattice structures. Both the macroscopic and
microscopic descriptions of the propagation velocity of the wetting front are presented,
and these are corroborated experimentally. Finally, we discuss the effect of the pillar
density on the hemiwicking flow to find the maximum pillar spacing up to which the
assumption of densely spaced pillars is valid.

2. Experiments

To fabricate rough hydrophilic substrates, we etch an Si wafer using the deep
reactive ion etching process. This results in pillar arrays having various geometric
parameters depending on the design of the photomask and the etching duration.
The pillar arrays are coated with an Si-incorporated diamond-like carbon film
using a gas mixture of benzene and silane in a radio frequency chemical vapour
deposition chamber. Then, the surfaces are plasma etched with oxygen to turn them
superhydrophilic owing to the hydrophilic Si–O bonds and nanoscale roughness. For
more detailed process conditions, see Yi et al. (2010). As shown in figure 1(a), the
individual pillars are cylindrical with height h and diameter d, and are arranged with
longitudinal and transverse pitches sx and sy, respectively. The skewness of an array is
determined by the angle α, which can range from 0 to tan−1(sy/sx). See figure 1(b–e).
In our experiments, h ranges from 10 to 35 µm, d from 10 to 20 µm, sx from
12.5 to 112.5 µm, sy from 15 to 389.7 µm and α from 0 to 60◦. The roughness, f ,
which is defined as the ratio of the actual solid surface area to the projected area,
f = 1+πdh/(sxsy), ranges from 1.03 to 4.63.

As reservoir liquids, we use deionized water, silicone oil, 99 wt% ethylene glycol
(with 1 wt% water) and 90 wt% glycerine (with 10 wt% water). Table 1 lists their
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FIGURE 1. (Colour online) (a) Scanning electron microscopy (SEM) image of a
micropillar array of Si with geometric parameters indicated. The pitches sx and sy
correspond to the centre-to-centre distance between neighbouring pillars. (b–e) Lattice
structures with different skewness values measured according to α and longitudinal pitch
sx. ( f ) Wetting of a pillar with interface propagation by the distance sx.

Liquid γ (N m−1) µ (Pa s) ρ (kg m−3)

A Water 0.073 0.0013 999
B Silicone oil 0.020 0.110 980
C Ethylene glycol 99 wt% 0.048 0.018 1140
D Glycerine 90 wt% 0.066 0.118 1200

TABLE 1. Properties of liquids used in the experiments.

density (ρ), surface tension (γ ) and viscosity (µ). All of the liquids completely
wet the micropillar arrays, so the equilibrium contact angle of the liquids with the
prepared solid surfaces is nearly zero. We use the equilibrium contact angle in the
later evaluation of the surface energy. The area of the pillar arrays is measured to be
4× 50 mm2, and touches the reservoir liquid vertically. The liquid film climbing the
surface is recorded with a high-speed camera (Photron Fastcam SA1.1) at a frame
rate of up to 500 s−1.

While the front edge of the rising liquid film appears fairly straight when viewed
from a distance, as shown in figure 2(a), close observation reveals complex advancing
dynamics originating from the presence of the pillars. For rectangular arrays with
α = 0, the lateral propagation of a protruding step, or zippering, must occur before
the contact line advances to the next row of pillars (Courbin et al. 2007; Kim et al.
2011a), as shown in figure 2(b). On skewed arrays, as displayed in figure 2(c), the
liquid film apparently radiated from each pillar drives the advance of the contact line.
Below, we develop a scaling law to predict the advancing speed of the seemingly
straight interface edge, and then investigate the microscopic dynamics of a liquid
meniscus influenced by individual pillars.
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FIGURE 2. (Colour online) (a) Macroscopic view of the liquid rise (ethylene glycol
99 wt%) due to wicking within an array of micropillars with α = 0 and {h, d, sx, sy} =
{26.5, 10, 20, 20} µm. Enclosed by an ellipse at 5.0 s is a bulk protruding from the
reservoir liquid. (b) Magnified view of liquid rise on a rectangular pillar array with α= 0
and {h, d, sx, sy} = {7.2, 10, 40, 40} µm. (c) Magnified view of liquid rise on a skewed
pillar array with α = 60◦ and {h, d, sx, sy} = {20, 20, 62.5, 216.5} µm. The liquid shown
in (b,c) is water. (d) Side view of the microarray before (upper panel) and after (lower
panel) liquid impregnation (ethylene glycol 99 wt%). (e) Regions I and II, which are used
to evaluate the viscous friction due to the substrate.

3. Macroscopic model of hemiwicking dynamics
We consider the advancing rate of a liquid film on a superhydrophilic textured

substrate that touches a reservoir liquid. The film thickness is defined by the
pillar height h. The hydraulic diameter of a rectangular duct, Dh, is given by
Dh = 2syh/(h + sy) and the ratio Dh/h ranges from 0.48 to 1.86 in our experiments.
The Reynolds numbers based on h and Dh, Reh = ρUh/µ and ReD = ρUDh/µ, with
U being the flow speed, are both O(10−10–10−2) in our experiments; thus, the inertial
effect is negligible. The Bond number, defined by Bo = ρh2g/γ , with g being the
gravitational acceleration, is O(10−7–10−4), implying negligible effects of gravity. The
flow is driven by capillary forces at the rising front. To evaluate the driving force, we
first consider a film that newly wets the area sxsy containing a single pillar, as shown
in figure 1( f ). By observing the side view of the liquid spreading through a forest of
micropillars, as shown in figure 2(d), we find that the tops of the pillars are hardly
wetted as the wet front propagates. Although we do not preclude the possibility that
the top surfaces slowly become wet as the liquid meniscus climbs the pillars over a
long period of time, this would hardly affect the rate of wetting that occurs at the
propagation front.

The change in the surface energy as the dry surface area turns wet is given by dE′=
(sxsy − (π/4)d2)γ + ( fsxsy − (π/4)d2)(γSL − γSG), where γSL and γSG are the solid–
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FIGURE 3. (Colour online) Velocity profiles of (a) region I and (b) region II.

liquid and solid–gas interfacial energy per unit area, respectively. At the macroscale,
where the pillar diameter and pitches are negligible compared to the rise height (Kim
et al. 2011a), we write the change in the surface energy per unit width associated
with the advance of the liquid front by dL as dE = {γ [1 − (π/4)d2/(sxsy)] + (γSL −
γSG)[ f − (π/4)d2/(sxsy)]} dL. On the basis of Young’s equation, γ = γSG − γSL with a
zero contact angle, we obtain dE = −γ ( f − 1) dL. The driving force per unit width
can then be estimated as Fd =−dE/dL= ( f − 1)γ .

The negligible effects of inertia imply that the driving force is balanced by the
resisting viscous force. The viscous shear force is exerted on the liquid flow by the
base and pillar side walls. We consider flow profiles in region I (before encountering
pillars) and region II (between pillars) separately, as illustrated in figure 2(e).
Inertialess film flows satisfying the no-slip boundary conditions at the solid surfaces
and a shear-free condition at the liquid–gas interface allow us to approximate the
velocity in each region as follows (figure 3): u(y, z)=Um[2(z/h)− (z/h)2] for region
I and u′(y, z) = U′m[2(z/h) − (z/h)2][1 − 4(y/s̄)2] for region II, where Um and U′m
are the maximum velocities in each region. Here, s̄ corresponds to the wall-to-wall
spacing between neighbouring pillars. The spacing starts from sy at the inlet, shrinks
to sy − d and grows back to sy at the outlet of region II. We simply determine s̄
by dividing the area of region II by the length d. Thus, s̄ can be considered as the
average wall-to-wall distance: s̄ = (syd − πd2/4)/d = sy − (π/4)d. The flow rates of
regions I and II are respectively given by

q1 = 2
∫ h

0

∫ sy/2

0
u(y, z) dy dz= 2

3
Umsyh, (3.1)

q2 = 2
∫ h

0

∫ s̄/2

0
u′(y, z) dy dz= 4

9
U′ms̄h. (3.2)

The average velocity is U=q1/(syh)= (2/3)Um in region I and U′=q2/(s̄h)= (4/9)U′m
in region II. For q1 = q2, we find U′ = (sy/s̄)U.
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Our simplified assumptions of the velocity profiles give the following scaling
estimates of the shear force. The shear force exerted by the base of region I with the
area (sx − d)sy is scaled as

F1 ∼µ(sx − d)sy
∂u
∂z

∣∣∣∣
z=0

∼µU(sx − d)
sy

h
. (3.3)

In region II, the shear forces due to the base F2,b and the pillar sides F2,s are
respectively scaled as

F2,b ∼µd
∫ s̄/2

−s̄/2

∂u′

∂z

∣∣∣∣
z=0

dy∼µU d
sy

h
, (3.4)

F2,s ∼ 2µ d
∫ h

0

∂u′

∂y

∣∣∣∣
y=s̄/2

dz∼µU( f − 1)sx
s2

y

s̄2
. (3.5)

The shear force acting on a unit cell with the area sxsy encompassing regions I and
II is then scaled as F̂r ∼ F1 + F2,b + F2,s:

F̂r ∼µU
sxsy

h

[
1+ ( f − 1)

h
s
(1+ ε)

]
, (3.6)

where ε ∼ sys/s̄2− 1 and s= sy− d. Because ε/{1+ s/[( f − 1)h]} is typically smaller
than 0.1 under our experimental conditions, we neglect the term involving ε when
compared with the other terms in the bracket of (3.6). Then the term in the bracket
reduces to 1+ ( f − 1)h/s. We finally obtain the scale of the total resisting force on
the liquid film of propagation distance L per unit width:

Fr = L
sxsy

F̂r ∼µUL
(

1
h
+ f − 1

s

)
. (3.7)

In the macroscopic model, which ignores the effects of the pillar arrangement at the
propagating front, we simply take U≈ L̇. Balancing Fd and Fr gives the speed of the
hemiwicking front as

L̇∼ γ
µ

ηh
L
, (3.8)

where the dimensionless coefficient η is specified solely by the dimensions of the
pillar array: η= ( f − 1)/[1+ h( f − 1)/s]. Integrating (3.8) yields

L∼
(
γ

µ
ηh
)1/2

t1/2. (3.9)

While a similar scaling relation that reveals the diffusive dynamics of a hemiwicking
front on micropillar arrays was reported earlier (Kim et al. 2011a,b), here we suggest
a generalized coefficient η, which is not restricted to a case where h≈ s, as in previous
works. We compare this theoretical prediction with the experimental results obtained
by using various pillar arrays and different liquids, as discussed below.

Figure 4(a) shows that the propagation distance of the wetting front increases
linearly with

√
t for various pillar arrays and liquids but with different slopes. We

see in figure 4(b) that the current scaling law (3.9) makes all of the data collapse onto

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.386


Dynamics of hemiwicking 63

40.0
40.0

40.0

65.0
40.0

40.0
40.0

40.0 0 2.0226.0

65.0
40.0

1.51

C 1.51

62.5
20.0

65.0
55.0

216.5
40.0

75.0
65.0
55.0

C
C

C 10.0
10.0
10.0
10.0

0 1.15
C

C 10.0 0 1.20

1.12

C 10.0 0

0
0
0

1.27

40.0
40.0

40.0
40.0

D 1.69
1.39D 20.0

26.0
26.0

40.0
40.0
34.6

12.5

15.0

37.5

40.0
40.0
40.0

43.3

15.0
C
C
C
C

1.58

1.59

C

C 26.0

60.0
60.0
60.0
45.0

1.13

1.39
1.05

20.0

20.0129.9

A
0A
0B

B

1.51

1.51
1.51
1.2026.0 0

26.0

26.0

26.0
26.0

26.0

26.0
26.0

26.0
35.0

0
0

10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

10.0
20.0
10.0
20.0
10.0

10.0
10.0

75.0
85.0 85.0

36.9
25.6
30.0

4.63

Symbol Liquid d h f

(d)
Sl

op
e

0

0.2

0.4

0.6(c)

0.01

0

0.03

0.02

0.04(a)
L

 (
m

)

0

10 20

10 20

(b)
12

4

8

0.2 0.4 0.6

FIGURE 4. (a) Propagation distance of the wet front versus
√

t. (b) The scaled wetting
distance (L/lc) plotted according to the scaling law (3.9). The slope of the best fitting
straight line is 0.49. (c) Slope of the best fitting lines of the data in (b) against the
structural dimensionless coefficient η. (d) Experimental conditions for the symbols.

a single straight line, which validates our theory. In the plot, we scale the distance
L with the capillary length lc = [γ /(ρg)]1/2, which corresponds to the characteristic
elevation of the meniscus touching a smooth hydrophilic vertical wall. Figure 4(c)
displays the slopes of the best fitting straight line for each experimental condition
versus η, to show that they scatter within ±10 % of the average value, 0.49. In the
figure, we include error bars, which account for the measurement errors associated
with image analysis (∼±1 pixel) and the variation of pillar dimensions (∼±1.5 µm)
that occur inevitably in fabrication. Our scaling law is seen to be valid regardless of
the skewness of the pillar lattices despite differences in the microscopic shapes of the
wetting front, as demonstrated in figure 2(b,c). This is consistent with our simplified
estimations of the driving and resisting forces, ignoring the detailed lattice structure
under the assumption that d, sx and sy are significantly smaller than L.

In the skewed arrays, the pitches differ in the longitudinal (sx) and transverse (sy)
directions, and sy plays a more important role than sx in determining the viscous
resisting force, as seen in (3.7). Because skewed arrays have a larger transverse pitch
than square arrays for the same pillar density (e.g. sy for a skewed array with α =
45◦ is

√
2 times larger than the pitch of the same array with α = 0), skewed arrays

always exhibit faster wetting front propagation than square arrays. Note that η in (3.9)
increases with s = sy − d. It is then possible to design a pillar arrangement which
maximizes the hemiwicking velocity for the given pillar dimensions, h and d, and the
roughness, f . Since we need to maximize sy, we let sx = d, the smallest longitudinal
pitch allowable, which gives the maximum transverse pitch sm = πh/( f − 1). Then,
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A
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B
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x

(a) (b)

FIGURE 5. (Colour online) Schematics of the meniscus propagation at the microscale the
moment the meniscus reaches the top of some pillars behind the contact line: (a) densely
spaced pillar array, (b) sparsely spaced pillar array.

the maximum structural coefficient is ηm = ( f − 1)/[1 + h( f − 1)/(sm − d)], and
the maximized hemiwicking distance is written as L≈ 0.49(γ ηmh/µ)1/2t1/2, where the
prefactor 0.49 is empirically obtained in figure 4(b). For instance, when the substrate
conditions are such that h= 26 µm, d = 10 µm and f = 2, the maximum structural
coefficient is predicted to be 0.734 when sy = 82 µm and sx = 10 µm (with α = 0),
which is 1.8 times higher than that of a square array with sx = sy = 29 µm.

In appendix A, we compare our experimental results with the previously suggested
scaling laws for the hemiwicking speed, and find that those theories fail to predict all
of the experimental data. It can also be shown that our scaling law (3.9) is compatible
with a previous theory (Ishino et al.) in the limit where it was derived. When the
gap of pillars (s) is much larger than the height (h), s � h, the resisting force is
dominated by the friction of the base. Thus, we get η ≈ f − 1, which reduces (3.9)
to L ∼ (Dt)1/2, where D ∼ (γ /µ)[dh2/(sxsy)]. This is consistent with the theory of
Ishino et al. in the limit s� h. When the gap of pillars (s) is much smaller than the
height (h), s� h, the friction of the pillar sides governs the resisting force, and we get
η≈ s/h, yielding D∼ (γ /µ)s. Ishino et al. suggested D∼ (γ /µ)d[ln (2sx/d)−1.31] by
using the theory of Hasimoto (1959) for the flow past an array of circular cylinders.
Because our micropillar arrays do not cover the cases s� h, we are unable to give
the range of h/s up to which our simplified prediction is valid. However, our scaling
shares common features with that of Ishino et al. in that D is independent of h and
increases with s. Our dynamical coefficients yield a similar plot to figure 6 of Ishino
et al., which essentially demonstrates the experimental data’s independence of h.

4. Microscopic model of hemiwicking dynamics
While the foregoing model considers the speed of the wicking front as viewed from

a distance, the magnified views of the front, figure 2(b,c), lead us to consider the
effects of individual pillars and their spacing on the shape and local speed of the
interface. We illustrate the profiles of the liquid film at the wet front in figure 5,
for both dense (a) and sparse (b) arrays. While the film climbs the hydrophilic pillar
(in the z-direction), the meniscus extends over the substrate surface. In the figure, x0
corresponds to the distance from a pillar whose top has been just reached by the
climbing film (denoted by A in figure 5) to the wet front on the base. When the array
is skewed by α, the centre-to-centre distance b from pillar A to the nearest pillar in
the next row (pillar B) can be shown to be b=min{sx/ cos α, [(sx/ cos α− sy sin α)2+
s2

y cos2 α]1/2}. We refer to the pillar array as dense when pillar B is located within x0
from pillar A and as sparse when pillar B is located farther than x0 from pillar A.
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To find the scaling approximation of x0, we consider the force balance for the
meniscus hanging on the pillars at the wet front. The capillary force along the pillar
perimeter, Fc = πdγ , is balanced by the force due to the pressure drop across the
interface (1p) on the area syx0, which gives 1p ≈ πdγ /(syx0). The directions of
the capillary and pressure forces are denoted in figure 5(b). By relating 1p to the
meniscus curvature via the Young–Laplace equation, 1p≈ γ ∂2z/∂x2 ∼ γ h/x2

0, we get

x0 ∼ hsy

πd
. (4.1)

As noted above, we consider two different situations where the smallest pillar spacing
that a meniscus needs to extend before encountering a neighbouring pillar, b− d, is
either less than or greater than x0. If b− d< x0, the meniscus touches the next pillar
before it reaches top of the previous pillar, i.e. the pillars are dense. However, the
meniscus needs to keep extending on the base even after reaching the top to meet the
next pillar if b− d> x0, i.e. the pillars are sparse.

First, we consider the wetting front propagation for b− d< x0, i.e. when the pillars
are dense. In this case, multiple pillars are partially touched by the front meniscus,
as shown in figure 5(a). If the effect of a single pillar is taken into account, the
driving force per unit width is given by −dE/dx=−(dE/dz)(dz/dx), where z is the
direction perpendicular to the base. Here −dE/dz corresponds to the capillary force
(per transverse pitch sy) pulling the liquid upward along the pillar of diameter d, so
that −dE/dz≈πγ d/sy. Given the number of pillars partially touched by the meniscus
per transverse pitch, n, we get dz/dx ∼ h/(nsx), where nsx approximates the length
of meniscus extension. The driving force arises at multiple pillars, which gives Fd =
−n dE/dx∼πγ dh/(sxsy). Because f =πγ dh/(sxsy)+ 1, we get Fd ∼ ( f − 1)γ .

Although the local advance of the interface is ‘driven’ by individual pillars at the
wetting front, the liquid that wets new pillars and their neighbour must come from
the liquid reservoir a distance away of L. Thus, the viscous resisting force per unit
width is scaled as Fr ∼ µẋL[1/h+ ( f − 1)/s], following (3.7). Balancing the driving
and resisting forces yields the scaling estimates of the microscopic advancing velocity
and distance of the meniscus:

ẋ∼ γ
µ

ηh
L
, (4.2)

x∼ γ
µ

ηh
L

t. (4.3)

This is consistent with the result of Kim et al. (2011a), a constant speed of zippering
at a given distance from a liquid source (L). The macroscopic front propagation is a
collective consequence of microscopic wicking in the direction perpendicular to the
free surface of the liquid reservoir. Then we see that (4.2) is consistent with (3.8) for
macro time scales.

We next consider the rate of increase in x for b− d> x0, i.e. when the pillars are
sparse, figure 5(b). Because b > sx always holds, we have x0 < sx − d. The meniscus
that touches the top of pillar must propagate further to meet the next pillar, as shown
in figures 2(c) and 5(b). For x> x0, the driving force is given by the product of the
pressure drop, γ κ , and an area syh, which gives the driving force per transverse pitch:
Fd ∼ γ hκ . Here, the meniscus curvature is κ ∼ h/x2, so that Fd ∼ γ h2/x2. The viscous
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FIGURE 6. (Colour online) Dimensionless advancing distance of meniscus on the base,
x/x0, versus the dimensionless elapsed time (ηγ /µh)t/l2

c on a log–log scale for sparse
arrays. The insets show linear plots of x versus t with error bars. The liquid is water.
(a) Square pillar array with {h, d, sx, sy} = {7.2, 10, 40, 40} µm and the corresponding
b= 40 µm. The distance of the meniscus from the liquid source L≈ 7 mm. (b) Skewed
pillar array of α= 60◦ with {h, d, sx, sy} = {20, 20, 62.5, 216.5} µm and the corresponding
b= 125 µm. The distance of the meniscus from the liquid source is L≈ 5 mm.

resisting force is again scaled as Fr ∼µẋL( f − 1)/(ηh) along the same line as above.
Then, balancing Fd and Fr gives the local front speed ẋ as

ẋ∼ η

f − 1
γ

µ

h3

L
1
x2
. (4.4)

Then, we get the scaling law for meniscus extension on sparse pillar arrays when x>
x0:

x∼
(

η

f − 1
γ

µ

h3

L

)1/3

t1/3. (4.5)

Our analysis on the meniscus extension around individual pillars reveals that x
grows like t for x < x0 (for both dense and sparse pillars) and like t1/3 for x > x0
(for sparse pillars only). Figure 6 shows that the experimentally measured meniscus
extension indeed follows the above power laws, which hold regardless of the skewness
of the pillar array. This supports our unified model for the microscopic extension of
the meniscus, whether it appears to laterally zip (figure 5a) or radiate (figure 5b) from
the pillars at the wet front. That is, the meniscus advances as it spreads on the base
surface while climbing the pillars at the front regardless of the pillar arrangement.

Figure 7(a) plots the experimental data from dense and sparse pillar arrays
according to the scaling law (3.9). The data from the dense arrays clearly collapse
onto a single straight line, while those from the sparse arrays deviate from the
master curve. Still, the macroscopic wetting distance L grows like t1/2 on the sparse
arrays, which can be explained as follows. On the sparse arrays, the liquid front
advances the distance x0 at the rate given by (4.2) for the duration τ0, and the
rest of the distance x1 at the rate (4.4) for τ1 before encountering the pillar in the
next row: sx − d = x0 + x1. Now we write the average velocity in the former region
ū0 = x0/τ0 ∼ β/L with β = γ ηh/µ. The average velocity in the latter region is given
by ū1 = x1/τ1 ∼ βφ/L, where φ = h2/[( f − 1)x̄2

1] from (4.4), with x̄1 being a value
that gives the average velocity. From a macroscopic point of view,

U = dL
dt
≈ sx − d
τ0 + τ1

∼ sx − d
L(x0 + x1/φ)/β

. (4.6)
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FIGURE 7. (Colour online) (a) Scaled wicking distance versus scaled time for dense (filled
symbol) and sparse (empty symbol) pillar arrays; the experimental conditions are listed in
the table. The slope of the best fitting line for the dense arrays is 0.49. The inset plots
the same experimental data on the log–log scale to show that the slope is close to 0.5
for sparse and dense arrays. (b) Schematic of the wet distance growth versus time on a
dense pillar array (dotted line) and sparse pillar array (solid line). L grows like t in blue
sections, but like t1/3 in red sections. The wet distance propagation on the sparse array
appears to follow L∼ t1/2 at the macroscale (grey broken line). (c) Regime map for the
validity of the scaling law for macroscopic wicking, equation (3.9), under the dense pillar
assumption. The filled and empty symbols correspond to the conditions where the dense
pillar assumption is valid and invalid, respectively. All of the experimental conditions
tested in this work are shown including those of (a).

Because LL̇/β ∼ ζ with ζ = (sx − d)/(x0 + x1/φ) being a function of only the given
pillar dimensions, we get L∼ (βζ t)1/2 for sparse arrays. The dynamical coefficient is
smaller than that for dense pillar arrays because ζ involves an additional term x1/φ
in the denominator. The deviation of the dynamical coefficient of sparse pillar arrays
from the value of the dense arrays increases with sx, which accompanies an increase
of x1/φ.

To aid the understanding of the reduced slope (or dynamical coefficient) in sparse
arrays in a graphical manner, figure 7(b) schematically compares the wet front
propagations from the liquid reservoir on dense and sparse arrays. On the dense
array, L grows like t1/2 following the scaling law (3.9), which is shown by a dotted
line. On the sparse array, however, the wet distance grows like t in the vicinity of
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the front pillar (with a slope dependent on its distance from the reservoir L), but
slows down when far from the pillar. The process repeats when the meniscus meets
the next pillar. The deviations from the dotted line caused by such a slowdown
accumulate with increasing t, which allows us to discriminate the data points on
sparse pillar arrays from those on dense pillar arrays in figure 7(a). We also find in
figure 7(a) that the data points of the sparse pillar arrays are shifted to the right near
t = 0, which is partly caused by retarded wicking initiation. When the pillar arrays
are sparse, the bulk, indicated by an empty ellipse in figure 2(a), first forms at the
centre of the substrate and then fills the rest of the dry side area before a film flow
emerges. On dense arrays, however, the film flow initiates almost immediately as the
bulk emerges upon the substrate contacting the liquid reservoir.

Because the slowdown of the meniscus on sparse pillar arrays is directly associated
with the change in the power law of x for b − d > x0, we naturally expect that
the regime boundary indicating the validity of the dense pillar assumption would be
represented by the ratio (b − d)/x0. Figure 7(c) indeed shows that the dense array
and sparse array regimes are divided by a horizontal line, which corresponds to (b−
d)/x0≈ 1.35, where we used the right-hand side of (4.1) to determine a characteristic
value of x0. Here, the filled symbols correspond to the conditions where the slope of
the best fitting line lies between 0.44 and 0.54 (90 % and 110 % of the slope of the
best fitting line for the filled symbols in figure 7(a), i.e. 0.49), and the empty symbols
correspond to a slope of less than 0.44. The horizontal regime boundary reveals that
dense and sparse arrays cannot simply be discriminated according to the ratio of the
pitch to the diameter, sx/d. Rather, the boundary is a function of the pillar height as
well as the diameter and pitch, as described by our model.

5. Conclusions
We have constructed scaling laws to estimate the velocity of hemiwicking on rough

substrates and experimentally corroborated them for different liquids and various
arrangements of hydrophilic pillar arrays. Both the macroscopic and microscopic
flow behaviours have been considered. From the former viewpoint, the wicking front
appears parallel to the free surface of the reservoir regardless of the pillar arrangement.
The inertia-free dynamics has been analysed by balancing the capillary forces that
drive the flow and the resisting viscous shear forces. At macroscopic length scales,
the distance from the reservoir to the wicking front L grows like (ηγ h/µ)1/2t1/2

regardless of the precise arrangement of the pillars. At microscopic length scales
where L can be effectively assumed to be a constant, the meniscus extension x grows
like t in the vicinity of the front pillar. However, the microscopic meniscus extension
slows down significantly with the transition of the power law from x ∼ t to x ∼ t1/3

while the meniscus spreads on sparse pillar arrays. We have further showed that
the macroscopic diffusive behaviour of L persists on sparse pillar arrays but with a
smaller dynamical coefficient that for dense pillar arrays.

In addition to the fact that our macroscopic scaling law explains the experimental
data covering a wide range of ratios of pillar pitch to height, a remarkable advance
of our theory is that the model can consider non-square and even skewed arrays. We
have found that the transverse and longitudinal pitches have unequal roles for the
viscous resistance, while the driving force is only dependent on an averaged geometric
parameter: the roughness. This study can be used to analyse a thin film spreading on
a rough hydrophilic surface, like that in mundane painting activities (Kim et al. 2015),
as well as practical applications including evaporative cooling, absorption refrigeration,
paper-based microfluidics (Martinez, Phillips & Whitesides 2008) and water harvesting
from humid air (Lee & Kim 2012).
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FIGURE 8. Experimentally measured propagation distance of wet front plotted against
various scaling laws for square arrays. The scaling laws are from (a) Bico et al. (2001),
(b) Courbin et al. (2007), (c) Ishino et al. (2007), (d) Srivastava et al. (2010), (e) Kim
et al. (2011b) and ( f ) the current model, equation (3.9). (g) Table of the experimental
conditions.
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Appendix A. Comparison of experiment with previous theories
Several scaling laws have been previously suggested to model the hemiwicking

speed on square arrays of micropillars. They commonly present the propagation
distance of the wet front, L, in the form of L ∼ (Dt)1/2, where the dynamical
coefficient D is a function of γ , µ and geometrical parameters. We list the driving
and resisting forces and D suggested by each reference in table 2, and compare the
models with the current experimental results for square arrays in figure 8.

The limits of the previous models can be briefly summarized as follows. Bico
et al. considered the viscous forces of the array base while ignoring the effects of
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pillar side walls. Courbin et al. excessively simplified the driving force and considered
the viscous force of the pillar side only. Ishino et al. suggested a scaling law for
s� h, and the corresponding data points (empty circle, square and triangles) collapse
onto a single straight line in figure 8(c). However, the other experimental data that
do not correspond to the limit deviate from the line. Srivastava et al. resorted to
numerical simulation results to give a power law in an empirical manner, but failed
to account for all of the flow physics. Kim et al. (2011b) did not discriminate
between regions I and II in figure 2(e), which caused errors as shown in figure 8(e).
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