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In this paper we characterize the boundedness on the product of Sobolev spaces
Hs(T) ×Hs(T) on the unit circle T, of the bilinear form Λb with symbol b ∈ Hs(T)
given by

Λb(ϕ,ψ) :=

∫
T

((−Δ)s + I) (ϕψ)(η)b(η) dσ(η).
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1. Introduction

In [20], V.G. Maz’ya and I.E. Verbitsky characterize the class of measurable func-
tions V such that the Schrödinger operator −Δ + V maps the homogeneous Sobolev
space Ẇ 1,2(Rn) to its dual, obtaining necessary and sufficient conditions for the
classical inequality

∣∣∣∣∫
Rn

(ϕ(x))2V (x) dx
∣∣∣∣ � C

∫
Rn

|∇ϕ(x)|2 dx, u ∈ D(Rn),

to hold. They also obtained analogous characterizations for the non-homogeneous
Sobolev space W 1,2(Rn). In this paper we will consider a similar problem on the
unit circle T for the space W s,2(T), 0 < s < 1/2.

The space W s,2(T) s > 0, is the space of functions ϕ ∈ L2(T) such that if
(ϕ̂(k))k∈Z is the sequence of its Fourier coefficients, then

‖ϕ‖W s,2(T) :=

(∑
k∈Z

(1 + |k|s)2|ϕ̂(k)|2
)1/2

<∞.
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When 0 < s < 1 and for functions in C∞(T), this norm is equivalent to ‖ϕ‖L2(T) +
‖(−Δ)sϕ‖L2(T), where (−Δ)s is the fractional Laplacian defined, up to a con-
stant, by

(−Δ)s(ϕ)(ζ) = P.V.

∫
T

ϕ(ζ) − ϕ(η)
|ζ − η|1+2s

dσ(η)

and the space W s,2(T) coincides with the completion of C∞(T) with respect to this
norm. In turn, this space coincides with the space of Riesz potentials, that we will
denote by Hs(T) := Is(L2(T)), where Is is the Riesz kernel defined by Is(ζ, η) =
((Γ((1 + s)/2)2)/Γ(s))(1/(|1 − ζη|1−s) and ‖ϕ‖Hs(T) = ‖ψ‖L2(T), if ϕ = Is(ψ).

We are interested in the case where 0 < s < 1/2. When 1/2 < s < 1, Hs(T) is an
algebra and the problem that we will consider becomes trivial.

Let Λb be the bilinear form with symbol b ∈ Hs(T) given by

Λb(ϕ,ψ) :=
∫

T

((−Δ)s + I) (ϕψ)(η)b(η) dσ(η).

The main object of this paper is the characterization of the symbols b ∈ Hs(T)
for which the bilinear form Λb is bounded on Hs(T) ×Hs(T), that is,

|Λb(ϕ,ψ)| � ‖ϕ‖Hs(T)‖ψ‖Hs(T). (1.1)

This problem is equivalent (see proposition 4.6), to the characterization of the
functions c ∈ L2(T) that are trace measures (that may change sign) for the space
Hs(T), i.e., ∣∣∣∣∫

T

|ϕ|2cdσ
∣∣∣∣ � ‖ϕ‖2

Hs(T),

In Rn, V.G. Maz’ya and I.E. Verbitsky considered this problem for s = 1
(see [20]), showing that the inequality

∣∣∫
Rn |ϕ|2cdσ

∣∣ � ‖ϕ‖2
H1(Rn), is equivalent

to the inequality
∣∣∫

Rn |ϕ|2|(−Δ)−1/2(c)|2 dσ
∣∣ � ‖ϕ‖2

H1(Rn), where |(−Δ)−1/2(c)|2 is
now a non-negative measure (see also [21] and [15] for related problems). In [9] it is
considered the case 0 < s < 1/2 in R. We also recall that N. Arcozzi, R. Rochberg,
E. Sawyer and B.D. Wick in [5] have considered a result on the boundedness of
a holomorphic version of this problem on the Dirichlet space (see also [8] for a
different proof).

Some of the main difficulties when dealing with fractional Laplacians arise from
the fact that on one hand these operators are non-local and on the other hand,
there is a complexity on the computation of fractional Laplacians when applied to
products of functions. In order to avoid these difficulties, we will follow the ideas
in [9] and consider an equivalent bilinear problem on a subspace of a weighted
Sobolev space W2

1,1−2s(D), of extensions of functions on Hs(T) by a generalized
Poisson operator Ps whose definition is given in § 2. For Rn, a similar extension
operator was considered by L. Caffarelli and L. Silvestre in [7].

Our main result is the following

Theorem 1.1. Let 0 < s < 1/2 and let b ∈ Hs(T). Then, the following assertions
are equivalent:
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(i) For any ϕ,ψ ∈ C∞(T),

|Λb(ϕ,ψ)| � ‖ϕ‖Hs(T)‖ψ‖Hs(T);

(ii) For any ϕ,ψ ∈ C∞(T),∣∣∣∣∫
D

∇(Ps(ϕψ))∇(Ps(b))(1 − |z|2)1−2s dm(z)

+ (1 − 2s)2
∫

D

Ps(ϕψ)Ps(b)(1 − |z|2)−2s dm(z)
∣∣∣∣ � ‖ϕ‖Hs(T)‖ψ‖Hs(T);

(iii) For any ϕ,ψ ∈ C∞(T),∣∣∣∣∫
D

∇(Ps(ϕ)Ps(ψ))∇(Ps(b))(1 − |z|2)1−2s dm(z)

+ (1 − 2s)2
∫

D

Ps(ϕ)Ps(ψ)Ps(b)(1 − |z|2)−2s dm(z)
∣∣∣∣ � ‖ϕ‖Hs(T)‖ψ‖Hs(T);

(iv) The measure dν :=
∣∣(−Δ)s/2(b)

∣∣2 dσ is a trace measure for Hs(T), that is,
Hs(T) ⊂ L2(dν);

(v) The measure dμ := |∇(Ps(b))|2(1 − |z|2)1−2s dm(z) is a Carleson measure for
Ps(Hs(T)), that is, Ps(Hs(T)) ⊂ L2(dμ).

We observe that as it happens in the real case for s = 1 (see [20]) or n = 1 and
0 < s < 1/2 (see [9]), the problem on traces in Hs(T) for measures that may change
sign is reduced to a problem of traces of non-negative measures on Hs(T), whose
characterization is well known.

The theorem answers the question posed at the beginning of the paper. Namely,
the symbols b ∈ Hs(T) that satisfy the bilinear problem given in (1.1) are the ones
for which the non-negative measures dν =

∣∣(−Δ)s/2(b)
∣∣2 dσ are trace measures for

Hs(T) (which correspond to statements (i) and (iv)). Since those trace measures
are non-negative, there are well-known characterizations.

The strategy of the proof of this equivalence is the following: the fact that (i) ⇒
(iv) will be deduced from a delicate estimate of the norms in Hs(T) of appropriate
test functions, norms that will be estimated using the extension operator Ps. The
implication (iv) ⇒ (i) will be obtained observing firstly that, by the properties of
the extension Ps and Stoke’s theorem, (i), (ii), (iii) are equivalent. We then prove
that (iv) ⇒ (v), that is, we relate the traces measures on T with suitable Carleson
measures on D. Then, since trivially (v) ⇒ (iii), we obtain the result.

The paper begins with the study of the extension kernel Ps which gives an
isomorphism between the space Hs(T) and a subspace of the weighted Sobolev
space W1

1,1−2s(D) defined in § 2. The Euler–Lagrange equation for a norm in this
space is a partial differential equation whose solutions are given in terms of the
so-called (α, α)-harmonic functions (see [3]). The solution of the corresponding
Dirichlet problem for this PDE is given in terms of a kernel defined, up to a
constant by ((1 − |z|2)2s)/(|1 − zζ|1+2s). The associated extension operator Ps, is
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studied in § 3. In particular, the above-mentioned isomorphism. We also obtain
a formula that represents the fractional Laplacian of a function, (−Δ)sϕ(ζ), in
terms of the radial derivative of its extension, showing that, up to a constant,
limr→1−(1 − r2)1−2s(∂/∂r)Ps(ϕ)(rζ) equals to ((−Δ)s + I)ϕ(ζ).

In § 4, we consider the relation of the discrete Fourier multiplier operator
((−Δ)s + I) with the Riesz operator Is on T, obtaining a basic relation between
these two operators, namely, ((−Δ)s + I)I2s = I. The family of Riesz kernels on T

are not a semigroup with the convolution and, in particular, I1/2
2s �= Is, defined as

discrete Fourier multipliers. In order to deal with this fact, we prove that the Fourier
multiplier operator I1/2

2s I−1
s can be realized as a Calderón-Zygmund operator of type

zero.
Sections 5 and 6 are technical, and they are necessary to obtain our main theorem,

whose proof is finished in § 7. In this section we show that (iv) ⇒ (v) using two non-
trivial facts: first that if pE is the potential asssociated with an extremal capacitary
measure, then there exists α such that pα

E is in the Muckenhoupt class A2 and
‖pα

E‖2
Hs(T) � Caps(E). The second one establishes a weighted estimate for an area

function of a kernel related to a convolution of Ps with a Riesz kernel.
Finally, the proof that |(−Δ)s/2(b)|2 dσ is a trace measure for Hs(T), that

is, (i) ⇒ (iv), is proved applying the hypothesis (i) to the test functions
(I1/2

2s (χEI
−(1/2)
2s b))/pα

E,δ and pα
E,δ where pE,δ are regularizations of pE . We use a

delicate estimate of the norm in Hs(T) of the first test function, deduced from the
the technical §§ 5 and 6.

Throughout the paper, the letter C may denote various non-negative numerical
constants, possibly different in different places. The notation ϕ(x) � ψ(x) means
that there exists C > 0, which does not depend on x, ϕ and ψ, such that ϕ(x) �
Cψ(x). We will write ϕ(x) ≈ ψ(x) if ϕ(x) � ψ(x) and ψ(x) � ϕ(x). The fact that an
estimate holds for x
 1, will mean that it holds for x big enough. All the function
spaces considered will be real valued, the points in T will be denoted either by ζ ∈ C

or parametrized by eix, the points in the unit disc D will be denoted either by z ∈ C

or r eix, 0 < r < 1 and |1 − zζ| = |z − ζ| will denote the Euclidean distance from
z ∈ D and ζ ∈ T.

2. The weighted Sobolev space W 2
1,1−2s

If 0 < s < 1, the space is defined by W2
1,1−2s := W2

1,1−2s(D), as the completion of
functions Φ in the space of real-valued C∞ functions on D, C∞(D), with respect to
the norm

‖Φ‖W2
1,1−2s

:=
∫

D

|∇Φ(z)|2(1 − |z|2)1−2s dm(z)

+
∫

D

|Φ(z)|2(1 − |z|2)1−2s dm(z) <∞.

This space coincides with the space of real-valued functions Φ defined a.e. on D,
such that Φ and its distributional derivatives are in L2((1 − |z|2)1−2s dm(z)) (see,
for instance, [22]).

The following lemma is well known (see [14] for the details of the proof).
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Lemma 2.1. The trace operator T : C∞(D) → Hs(T) defined by T (Φ) = Φ|T extends
by continuity to W2

1,1−2s Hence we have that for all Φ ∈ W2
1,1−2s,

‖T (Φ)‖2
Hs(T) �

∫
D

|∇Φ(z)|2(1 − |z|2)1−2s dm(z)

+
∫

D

|Φ(z)|2(1 − |z|2)1−2s dm(z).

From our next result we deduce an equivalent norm for W2
1,1−2s.

Lemma 2.2. Let 0 < s < 1/2 and let Φ ∈ C∞(D). We then have that for any ε > 0,
there exists Cε > 0 such that∫

D

Φ2(z)(1 − |z|2)−2s dm(z) � Cε

∫
D

Φ2(z)(1 − |z|2)1−2s dm(z)

+ ε

∫
D

|∇Φ|2(z)(1 − |z|2)1−2s dm(z). (2.1)

In particular,∫
D

|∇Φ(z)|2(1 − |z|2)1−2s dm(z) +
∫

D

Φ2(z)(1 − |z|2)−2s dm(z)

≈
∫

D

|∇Φ(z)|2(1 − |z|2)1−2s dm(z) +
∫

D

Φ2(z)(1 − |z|2)1−2s dm(z).

Proof. As a consequence of Stokes’s Theorem applied to the form

ω = xΦ2(x, y)(1 − x2 − y2)1−2s dy − yΦ2(x, y)(1 − x2 − y2)1−2s dx

and the disc Dr = {z ∈ D; |z| � r}, 0 < r < 1, we obtain∫
Dr

(
2(2 − 2s)Φ2(x, y) +

(
x
∂

∂x
+ y

∂

∂y

)
Φ2(x, y)

)
(1 − x2 − y2)1−2s dxdy

−
∫

Dr

2(1 − 2s)Φ2(x, y)(1 − x2 − y2)−2s dxdy

=
∫ 2π

0

Φ2(r cos t, r sin t)r2(1 − r2)1−2s dt � 0.

Hence, Hölder’s inequality gives that

2(1 − 2s)
∫

Dr

Φ2(x, y)(1 − x2 − y2)−2s dxdy

�
∫

Dr

Φ2(x, y)(1 − x2 − y2)1−2s dxdy +
∫

Dr

|∇Φ2(x, y)|(1 − x2 − y2)1−2s dxdy

�
∫

Dr

Φ2(x, y)(1 − x2 − y2)1−2s dxdy

+ ε

∫
Dr

|∇Φ(x, y)|2(1 − x2 − y2)1−2s dxdy
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and (2.1) is then a consequence of Lebesgue’s Monotone Convergence Theorem. �

3. The generalized Poisson extensions Ps

The Euler–Lagrange equation associated with the functional of the equivalent
norm in W2

1,1−2s, given by
∫

D
|∇u(z)|2(1 − |z|2)1−2s dm(z) + (1 − 2s)2

∫
D
u2(z)

(1 − |z|2)−2s dm(z) that corresponds to its stationary values, gives rise to the PDE
equation

(1 − (x2 + y2))Δu− 2(1 − 2s)
(
x
∂

∂x
u+ y

∂

∂y
u

)
− (1 − 2s)2u = 0, (3.1)

or equivalently to

div
(
(∇u)(1 − x2 − y2)1−2s

)
− (1 − 2s)2(1 − x2 − y2)−2su = 0. (3.2)

The next theorem is proved in [3] and establishes that the Dirichlet problem
associated with the PDE equation (3.1) has a unique solution. Namely:

Theorem 3.1. Let ϕ ∈ C(T). We then have that the function

u(z) = Ps(ϕ)(z) :=
∫

T

Ps(z, ζ)ϕ(ζ) dσ(ζ),

where

Ps(z, ζ) = Cs
(1 − |z|2)2s

|1 − zζ|1+2s
, z ∈ D, ζ ∈ T,

with Cs = (Γ(1 + s/2)2)/Γ(2s) is the unique solution to the PDE given in (3.1),
which is a continuous function on D and extends ϕ to D.

In addition, this solution u can be given in terms of its Fourier expansion. If
a, b, c > 0, the hypergeometric function is defined by

F (a, b; c;x) :=
∞∑

n=0

(a)n(b)n

(c)nn!
xn,

where (a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1) if n � 1.
If ϕ(eix) =

∑
k∈Z

ϕ̂(k) eikx is the Fourier expansion of ϕ, then the function u =
Ps(ϕ) can be expressed as

u(z) =
∞∑

k=0

fk(r2)rk(ϕ̂(k) eikx + ϕ̂(−k) e−ikx), z = r eix, (3.3)

where fk(x) = (Fk(x)/Fk(1)) and Fk(x) = F (k − s+ (1/2),−s+ (1/2); k + 1;x),
with uniform and absolute convergence on compact sets in D. In particular, if ϕ ≡ 1,
we have that ∫

T

Ps(z, ζ) dσ(ζ) = f0(|z|2). (3.4)
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We will see (see corollary 3.6) that Ps gives an isomorphism between the space
Hs(T) and its image in W2

1,1−2s.
Observe that (3.4) gives that, unlike what happens in the classical case for the

Poisson kernel (s = 1/2), Ps(1) is not constant.

Definition 3.2. Let 0 < s < 1. If ϕ ∈ C1(T), the fractional derivative of order s is
defined by

(−Δ)s(ϕ)(ζ) =
2sΓ(1/2 − s)2

Γ(1 − 2s)
P.V.

∫
T

ϕ(ζ) − ϕ(η)
|ζ − η|1+2s

dσ(η).

As it is usual, if the function ϕ is regular enough, the principal value of the
integral reduces to an ordinary integral of a function. We will see that this operator
can be also defined by a Fourier multiplier.

In Rn, in [7] it is proved that an operator analogous to Ps satisfies that

lim
y→0

y1−2s ∂

∂y
Ps(ϕ)(x, y) = −(−Δ)sϕ(x)

and that this operator Ps is an isometry. Our next theorems establish a version of
these results for the unit circle, which, in particular, permits to study the fractional
Laplacian on T through ordinary derivatives on W2

1,1−2s.

Theorem 3.3. Let 0 < s < (1/2) and let ϕ ∈ C1(T). We then have that

lim
r→1−

(1 − r2)1−2s ∂

∂r
Ps(ϕ)(rζ) = 2Cs

Γ(1 − 2s)
Γ(1/2 − s)2

((−Δ)s(ϕ)(ζ) + ϕ(ζ)) .

Proof. Let, as before, fk(x) be the function defined by fk(x) = (Fk(x)/Fk(1)). We
will first prove that

lim
r→1−

(1 − r2)1−2s d
dr
fk(r2)rk = 2

Γ(s+ 1/2)Γ(1 − 2s)
Γ(2s)Γ(1/2 − s)

Γ(k + s+ 1/2)
Γ(k − s+ 1/2)

k � 0.

(3.5)
Indeed, we have that

d
dr
fk(r2)rk = 2f ′k(r2)rk+1 + krk−1fk(r2) =

2F ′
k(r2)rk+1 + krk−1Fk(r2)

Fk(1)
.

Hence, using that by [13] page 58,

F ′
k(t) =

(k − s+ 1/2)(1/2 − s)
k + 1

F (k − s+ 3/2, 3/2 − s; k + 2; t),

we have that

d
dr
fk(r2)rk =

(k − s+ 1/2)(1/2 − s)
(k + 1)Fk(1)

F (k − s+ 3/2, 3/2 − s; k + 2; r2)2rk+1

+
krk−1

Fk(1)
Fk(r2).
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Next, it is well known (see, for instance, [13] page 64) that if |z| < 1, then

F (a, b; c; z) = (1 − z)c−a−bF (c− a, c− b; c; z).

Thus the above equals to

(k − s+ 1/2)(1/2 − s)
(k + 1)Fk(1)

(1 − r2)2s−1F (s+ 1/2, k + s+ 1/2; k + 2; r2)2rk+1

+
krk−1

Fk(1)
Fk(r2)

and

(1 − r2)1−2s d
dr
fk(r2)rk

=
(k − s+ 1/2)(1/2 − s)

(k + 1)Fk(1)
F (s+ 1/2, k + s+ 1/2; k + 2; r2)2rk+1

+ (1 − r2)1−2s kr
k−1

Fk(1)
Fk(r2) := Ak(r) +Bk(r). (3.6)

Since k + 1 − (k − s+ 1/2) − (1/2 − s) = 2s > 0, the series that defines the func-
tion Fk(r2) converges absolutely in r = 1 ([13] page 57), so we have that
limr→1− Fk(r2) = Fk(1). Hence, limr→1− Bk(r) = 0. Next, by hypothesis, we have
that k + 2 − (s+ 1/2) − (k + s+ 1/2) = 1 − 2s > 0, so using the preceding argu-
ment, we obtain that

lim
r→1−

Ak(r) =
2(k − s+ 1/2)(1/2 − s)

(k + 1)
F (s+ 1/2, k + s+ 1/2; k + 2; 1)

F (k − s+ (1/2),−s+ (1/2); k + 1; 1)
.

But (see [13] page 61), if Re c > Re b > 0 and Re (c− a− b) > 0, we have that

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

Thus, using that Γ(z + 1) = zΓ(z), we obtain that

lim
r→1−

Ak(r) =
2(k − s+ 1/2)(1/2 − s)

(k + 1)
Γ(k + 2)Γ(1 − 2s)

Γ(k − s+ 3/2)Γ(3/2 − s)

× Γ(s+ 1/2)Γ(k + s+ 1/2)
Γ(k + 1)Γ(2s)

=
2(k − s+ 1/2)Γ(s+ 1/2)Γ(k + s+ 1/2)Γ(1 − 2s)

(k − s+ 1/2)Γ(k − s+ 1/2)Γ(2s)Γ(1/2 − s)
(3.7)

= 2
Γ(s+ 1/2)Γ(1 − 2s)

Γ(2s)Γ(1/2 − s)
Γ(k + s+ 1/2)
Γ(k − s+ 1/2)

.

That gives (3.5).
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Next, we finish the proof of the theorem. Using (3.5) for k = 0, we have that

lim
r→1−

(1 − r2)1−2s ∂

∂r

∫
T

Ps(rζ, η) dσ(η)

= lim
r→1−

(1 − r2)1−2s d
dr
f0(r2) = 2Cs

Γ(1 − 2s)
Γ(1/2 − s)2

.

Hence,

lim
r→1−

(1 − r2)1−2s ∂

∂r
Ps(ϕ)(rζ) = lim

r→1−
(1 − r2)1−2s ∂

∂r

∫
T

Ps(rζ, η)ϕ(η) dσ(η)

= lim
r→1−

(1 − r2)1−2s ∂

∂r

∫
T

Ps(rζ, η) (ϕ(η) − ϕ(ζ)) dσ(η) + 2Cs
Γ(1 − 2s)

Γ(1/2 − s)2
ϕ(ζ).

(3.8)

We have that if ζη = eix, |1 − ζη| ≈ |x|, and

(1 − r2)1−2s ∂

∂r

(1 − r2)2s

|1 − rζη|1+2s
= (1 − r2)1−2s ∂

∂r

(1 − r2)2s

(1 + r2 − 2r cosx)((1+2s)/2)

=
−4sr

(1 + r2 − 2r cosx)((1+2s)/2)
− (1 + 2s)

(1 − r2)(r − cosx)
(1 + r2 − 2r cosx)((1+2s)/2)+1

.

Consequently, since ϕ ∈ C1(T), |ϕ(η) − ϕ(ζ)| = O(|x|) if x→ 0 and |1 − rζη| ≈
(1 − r) + |x|, we have that

(1 − r2)1−2s ∂

∂r
Ps(r, η) |ϕ(η) − ϕ(ζ)| � 1

|x|2s
∈ L1(T).

Hence, the Dominated Convergence Theorem gives that

lim
r→1−

(1 − r2)1−2s ∂

∂r

∫
T

Ps(r, η) (ϕ(η) − ϕ(ζ)) dσ(η)

= −4sCs

∫
T

ϕ(η) − ϕ(ζ)
|ζ − η|1+2s

dσ(η) = 2Cs
Γ(1 − 2s)

Γ(1/2 − s)2
(−Δ)s(ϕ(ζ)). (3.9)

This calculation and (3.8) finishes the proof of the theorem. �

Theorem 3.4. Let ϕ be a C∞ function on T. We then have that

2Cs
Γ(1 − 2s)

Γ(1/2 − s)2

(∫
T

ϕ2 +
∫

T

ϕ(−Δ)sϕ

)
=
∫

D

|∇Ps(ϕ)|2(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

D

|Ps(ϕ)|2(1 − x2 − y2)−2s dxdy.
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Proof. Let ω be the form defined on D by

ω(z) = Ps(ϕ)(z)
(
∂Ps(ϕ)
∂x

dy − ∂Ps(ϕ)
∂y

dx
)

(1 − x2 − y2)1−2s, z = x+ iy.

Let r < 1 be fixed, and let Dr be the disc centred at the origin and of radius r > 0.
Stokes’s Theorem and (3.2) give that∫

∂Dr

ω =
∫

Dr

|∇Ps(ϕ)|2(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

Dr

|Ps(ϕ)|2(1 − x2 − y2)−2s dxdy. (3.10)

The Lebesgue’s Monotone Convergence Theorem gives that

lim
r→1−

∫
Dr

|∇Ps(ϕ)|2(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

Dr

|Ps(ϕ)|2(1 − x2 − y2)−2s dxdy

=
∫

D

|∇Ps(ϕ)|2(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

D

|Ps(ϕ)|2(1 − x2 − y2)−2s dxdy. (3.11)

On the other hand, we have∫
∂Dr

ω =
∫ 2π

0

Ps(ϕ)|∂Dr
(1 − r2)1−2s

(
∂Ps(ϕ)
∂x |∂Dr

r cosx+
∂Ps(ϕ)
∂y |∂Dr

r sinx

)
dx

=
∫ 2π

0

(1 − r2)1−2sPs(ϕ)|∂Dr
r
∂

∂r
Ps(ϕ)|∂Dr

dx.

In order to pass to the limit when r → 1−, we next check that we can apply the
Lebesgue’s Dominated Convergence Theorem. Since Ps(ϕ) ∈ C(D), we just have
to check that the function r(1 − r2)1−2s(∂/∂r)Ps(ϕ)|∂Dr

is uniformly bounded for
r ∈ [0, 1] by an integrable function. Using (3.3) and (3.6), we have that

r(1 − r2)1−2s ∂

∂r
Ps(ϕ)(r eix)

=
∑
k�0

r (Ak(r) +Bk(r))
(
ϕ̂(k) eikx + ϕ̂(−k) e−ikx

)
.

Since the hypergeometric function is an increasing function on r, we have that

Ak(r) � F (s+ 1/2, k + s+ 1/2; k + 2; 1)
Fk(1)

=
Γ(k + 2)Γ(1 − 2s)

Γ(k − s+ 3/2)Γ(3/2 − s)
Γ(1/2 + s)Γ(k + s+ 1/2)

Γ(k + 1)Γ(2s)
≈ k2s, k 
 1.

https://doi.org/10.1017/prm.2019.16 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.16


Bilinear forms on potential spaces in the unit circle 2127

And

Bk(r) � k.

Since ϕ ∈ C∞(T), we deduce that |ϕ̂(k)| � (/1|k|l), for each l � 1. Hence,

sup
r�1

r(1 − r2)1−2s

∣∣∣∣ ∂∂rPs(ϕ)(r eix)
∣∣∣∣ <∞.

and consequently applying theorem 3.3,

lim
r→1−

∫ 2π

0

Ps(ϕ)(r eix)r(1 − r2)1−2s ∂

∂r
Ps(ϕ)(r eix) dx

= 2Cs
Γ(1 − 2s)

Γ(1/2 − s)2

(∫ 2π

0

ϕ2 +
∫ 2π

0

ϕ(−Δ)s(ϕ)
)
.

Thus, using (3.10) and (3.11), we have proved the theorem. �

Corollary 3.5. Let ϕ ∈ C∞(T). Let ψ = ((−Δ)s + I)ϕ. For each k ∈ Z,

ψ̂(k) =
Γ(1/2 − s)Γ(|k| + s+ 1/2)
Γ(1/2 + s)Γ(|k| − s+ 1/2)

ϕ̂(k). (3.12)

In particular, (−Δ)s can be defined as a Fourier multiplier.

Proof. By (3.6) and (3.7), limr→1−(1 − r2)1−2s(∂/∂r)Ps(ϕ)(r eix) has as a sequence
of Fourier multipliers(

2Γ(s+ 1/2)Γ(1 − 2s)
Γ(2s)Γ(1/2 − s)

Γ(|k| + s+ 1/2)
Γ(|k| − s+ 1/2)

)
k∈Z

.

Since by (3.6) and (3.9),

lim
r→1−

(1 − r2)1−2s ∂

∂r
Ps(ϕ)(r eix)

= 2Cs
Γ(1 − 2s)

Γ(1/2 − s)2
((−Δ)sϕ+ ϕ) (eix),

we obtain (3.12). �

Corollary 3.6. For any ϕ ∈ Hs(T),

‖ϕ‖Hs(T) ≈ ‖Ps(ϕ)‖W 2
1,1−2s

.

Proof. It is a consequence of last theorem, the density of the functions C∞(T) in
Hs(T) and lemma 2.2, since by theorem 3.3 and Stirling’s formula we have that
‖((−Δ)s)1/2(ϕ)‖L2(T) ≈ ‖(−Δ)s/2(ϕ)‖L2(T). �
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Proposition 3.7. Let ϕ ∈ Hs(T) and let Ψ ∈ W2
1,1−2s and ψ its restriction to T.

We then have that

2Cs
Γ(1 − 2s)

Γ(1/2 − s)2

(∫
T

ψϕ+
∫

T

ψ(−Δ)sϕ

)
=
∫

D

∇Ψ∇Ps(ϕ)(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

D

ΨPs(ϕ)(1 − x2 − y2)−2s dxdy.

Proof. Since C∞(D) and C∞(T) are dense in W2
1,1−2s and in Hs(T), respectively,

we may assume, without loss of generality, that ϕ ∈ C∞(T) and Ψ ∈ C∞(D). Let ω
be the form defined on D by

ω(z) = Ψ(z)
(
∂Ps(ϕ)
∂x

dy − ∂Ps(ϕ)
∂y

dx
)

(1 − x2 − y2)1−2s, z = x+ iy.

Let r < 1 be fixed. Stokes’s Theorem and (3.2) give that∫
∂Dr

ω =
∫

Dr

∇Ψ∇Ps(ϕ)(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

Dr

ΨPs(ϕ)(1 − x2 − y2)−2s dxdy.

We now observe that since both ∇Ψ and Ψ are bounded on D and by theorem
3.4, ∇Ps(ϕ) is in the vector-valued space L2((1 − |z|2)1−2s dm(z)) and Ps(ϕ) ∈ L2

((1 − |z|2)−2s dm(z)), the Lebesgue’s Dominated Convergence Theorem gives that

lim
r→1−

(∫
Dr

∇Ψ∇Ps(ϕ)(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

Dr

ΨPs(ϕ)(1 − x2 − y2)−2s dxdy
)

=
∫

D

∇Ψ∇Ps(ϕ)(1 − x2 − y2)1−2s dxdy

+ (1 − 2s)2
∫

D

ΨPs(ϕ)(1 − x2 − y2)−2s dxdy.

A similar argument to the one used in the proof of theorem 3.4, gives that

lim
r→1−

∫ 2π

0

r(1 − r2)1−2sΨ|∂Dr

∂

∂r
Ps(ϕ)|∂Dr

dx

= 2Cs
Γ(1 − 2s)

Γ(1/2 − s)2

(∫ 2π

0

ψϕ+
∫ 2π

0

ψ(−Δ)s(ϕ)
)
. �

Finally, we recall the following estimate that was implicit in [3] page 130, and
whose proof we include for a sake of completeness.

Let

∇Dϕ(z) =
(
(1 − |z|2)Rϕ, (1 − |z|2)Rϕ

)
. (3.13)

where Rϕ(z) = z(∂ϕ/∂z)(z), Rϕ(z) = z(∂ϕ/∂z)(z) are the radial derivatives.
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Lemma 3.8. Let 0 < s < 1/2. Then∣∣∣∣∫
T

∇DPs(z, ζ) dσ(ζ)
∣∣∣∣ � (1 − |z|2)2s, z ∈ D.

Proof. Since (see [3] page 130), |
∫

D
∇TPs(z, ζ) dσ(ζ)| � (1 − |z|2)|F ′(1/2 − s,

1/2 − s; 1; |z|2)| and, by [13] page 58, we have that F ′(1/2 − s, 1/2 − s; 1; |z|2) =
(1/2 − s)2F (3/2 − s, 3/2 − s; 2; |z|2) = (1 − |z|2)2s−1F (1/2 + s, 1/2 + s; 1; |z|2). The
assertion is a consequence of the continuity on D of the function F (1/2 + s, 1/2 +
s; 1; |z|2) (see [13] page 57). �

4. The space Hs(T) and weighted estimates for a Fourier multiplier

4.1. The space Hs(T)

Definition 4.1. Let 0 < s < 1. The Riesz kernel Is on the unit circle is defined by

Is(ζ, η) =
Γ((1 + s)/2)2

Γ(s)
1

|1 − ζη|1−s
, ζ, η ∈ T.

If f is an integrable function on T, the Riesz operator is defined by

Is(f)(ζ) =
∫

T

Is(ζ, η)f(η) dσ(η).

The space Is(L2(T)) is the space of functions ψ = Is(ϕ), ϕ ∈ L2(T), normed by
‖ψ‖Is(L2(T)) = ‖ϕ‖L2(T).

The Fourier coefficients of the Riesz kernel in T are the following (see for
instance, [2]):

Lemma 4.2. Let 0 < s < 1. Then for any k ∈ Z,

Îs(k) =
Γ(|k| + ((1 − s)/2))Γ((1 + s)/2)
Γ((1 − s)/2)Γ(|k| + ((1 + s)/2))

.

Theorem 4.3. Let 0 < s < 1/2.

((−Δ)s + I) I2s = I.

Proof. Indeed, by corollary 3.5, we deduce that if ϕ ∈ C∞(T) has as the sequence
of Fourier coefficients (ϕ̂(k))k∈Z, then the function ((−Δ)s + I)ϕ has as sequence
of Fourier coefficients ([(Γ(|k| + s+ 1/2)Γ(1/2 − s))/(Γ(|k| − s+ 1/2)Γ(1/2 + s))]
ϕ̂(k))k∈Z. The proof of the proposition follows then from the density of C∞(T) in
L2(T) and lemma 4.2. �

Corollary 4.4. Let 0 < s < 1/2. We then have that ϕ ∈ Hs(T) (i.e.,
(−Δ)s/2ϕ,ϕ ∈ L2(T)) if and only if ϕ = Is(ψ), ψ ∈ L2(T) and ‖ϕ‖L2(T) ≈
‖ψ‖L2(T).

Corollary 4.5. If ϕ(eix) =
∑

k∈Z
ϕ̂(k) eikx, then ‖ϕ‖2

Hs(T) ≈
∑

k∈Z
|(|k|s + 1)

ϕ̂(k)|2.
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Proof. It is an immediate consequence of lemma 4.2, corollary 4.4 and Stirling’s
formula. �

From theorem 4.3 we deduce a reformulation of the bilinear problem (1.1). Namely,

Proposition 4.6. Let c ∈ L2(T). We then have that the boundedness of the bilinear
form ∣∣∣∣∫

T

ϕψcdσ
∣∣∣∣ � ‖ϕ‖Hs(T)‖ψ‖Hs(T),

is equivalent to the boundedness of the bilinear form

|ΛI2s(c)(ϕ,ψ)| =
∣∣∣∣∫

T

((−Δ)s + I) (ϕψ)I2s(c) dσ
∣∣∣∣ � ‖ϕ‖Hs(T)‖ψ‖Hs(T).

Proof. The identity obtained in theorem 4.3, together with the self-adjointness of
the operator (−Δ)s + I, gives that

ΛI2s(c)(ϕ,ψ) =
∫

T

ϕψcdσ =
∫

T

ϕψ ((−Δ)s + I) (I2s)(c) dσ

=
∫

T

((−Δ)s + I) (ϕψ)I2s(c) dσ,

from which we deduce the proposition. �

4.2. Weighted estimates for the operator I
1/2
2s I−1

s

On the real line, the analogous to the operator Is on T is the Riesz operator asso-
ciated with the kernel 1/(|x− y|1−s). This family of operators on R is a semigroup
and, in particular, IsIs = I2s. This fact gives that, as multipliers on L2(R), we have
that Is = I

1/2
2s or, equivalently, I1/2

2s I−1
s = Id. Here, in the unit disc, we can also

define I1/2
2s as a Fourier multiplier, but it does not coincide with Is. Nevertheless,

the asymptotic behaviour is the same and, in particular, I1/2
2s I−1

s defines a bounded
operator in L2(T). We will need to check that it also defines a bounded operator
on L2(ω), for any weight ω the Muckenhoupt class A2 on T.

We recall that the operator I1/2
2s I−1

s is defined as a Fourier multiplier operator,
up to a constant, by

̂
I
1/2
2s I−1

s (ϕ)(k) = Ψs(k)ϕ̂(k)

k ∈ Z, where

Ψs(x) =
(

Γ(|x| + 1/2 − s)
Γ(|x| + 1/2 + s)

)1/2(Γ(|x| + 1/2 − s/2)
Γ(|x| + 1/2 + s/2)

)−1

.

We observe that Ψs is a continuous function on R and by Stirling’s formula, it
follows easily that Ψs is bounded. The following proposition estimates the derivates
of the function Ψs(x).
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Proposition 4.7. Let 0 < s < 1/2 . We then have that Ψs ∈ C(R) ∩ C∞(R \ {0})
and satisfies that for any j ∈ N, there exists C = C(j, s) such that

|Ψ(j)
s (x)| � C

|x|j , x �= 0.

Proof. Without loss of generality, we may assume that x
 1, since Ψs has
bounded derivatives in a neighbourhood of the origen. We will first obtain esti-
mates of the derivatives of the quotient of Gamma functions involved in the
definition of the function Ψ. Let Φ2s be the function defined by Φ2s(x) =
((Γ(x+ 1/2 − s))/(Γ(x+ 1/2 + s))), x � 0. We then have:

(i) For any j ∈ N ∪ {0}, there exists C = C(j, s) such that

Φ(j)
2s (x) � C

1
x2s+j

, x
 1.

(ii) For any j ∈ N ∪ {0}, there exists C = C(j, s) such that

(Φ−1
s )(j)(x) � C

1
xj−s

, x
 1.

We begin with the proof of (i). The proof will follow by induction on j � 0. Stirling’s
formula gives that, provided x is big enough, (Γ(x− s+ 1/2))/(Γ(x+ s+ 1/2)) ≈
1/x2s. Then (i) holds for j = 0. Next, if we denote by P = (Γ′/Γ), we have that

(
Γ(x− s+ 1/2)
Γ(x+ s+ 1/2)

)′
=

Γ(x− s+ 1/2)
Γ(x+ s+ 1/2)

(P(x− s+ 1/2) − P(x+ s+ 1/2)) . (4.1)

Let us now estimate the differences P(x− s+ 1/2) − P(x+ s+ 1/2). Observe
that

P(j)(z) = (−j)j−1
1

z1+j
+

∞∑
n=1

(−j)j−1
1

(n+ z)j+1
.
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Hence,

|P(x− s+ 1/2) − P(x+ s+ 1/2)| � sup
x−s+1/2<y<x+s+1/2

|P ′(y)|.

For x big enough we have that∑
n

1
(n+ x+ t+ 1/2)2

� 1
x
, −s < t < s.

Hence

|P(x− s+ 1/2) − P(x+ s+ 1/2)| � 1
x

and in general, ∣∣∣P(j)(x− s+ 1/2) − P(j)(x+ s+ 1/2)
∣∣∣ � 1

xj+1
.

Next, assume that the estimate (i) is true for l � j, and we will check that it also
holds for j + 1. By Leibniz’s formula, and the induction hypothesis applied to (4.1),

Φ(j+1)
2s (x) =

(
Γ(x− s+ 1/2)
Γ(x+ s+ 1/2)

)(j+1)

�
j∑

i=0

1
x2s+i

1
xj+1−i

≈ 1
x2s+j+1

.

A similar argument on induction proves (ii).
Next, Faà di Bruno formula, (see for instance [11]) gives that(

Φ1/2
2s

)(j)

(x) =
∑ j!

m1! · · ·mj !(1!)m1 · · · (j!)mj

× (1/2 − 1) · · · (1/2 − (m1 + · · · +mj))

× Φ2s(x)1/2−(m1+···+mj)

j∏
l=1

(Φ(l)
2s (x))ml ,

where the sum is over all the l-tuples of non-negative integers (m1, . . . ,ml) satisfying
that 1 ·m1 + 2 ·m2 + · · · + j ·mj = j.

Applying that by (i), |(Φ2s)(l)(x)| � (1/(x2s+l)), for x
 1, we then have∣∣∣∣(Φ1/2
2s

)(j)

(x)
∣∣∣∣ � 1

xs+j
, x
 1.

Finally, Liebniz’s rule together with this estimate and (ii) give that

|Ψ(j)
s (x)| �

j∑
i=0

1
xs+j−i

1
xi−s

=
1
xj
, x
 1. �

We recall the following result that can be found in [23], chapter VI, § 4.4,
proposition 2.
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Proposition 4.8. Let m be a bounded function that is in C∞(R \ {0}) and satisfies
that for any j � 0,

|m(j)(x)| � |x|−j .

Let L be the distribution whose Fourier transform is m. We then have that L agrees
with a function L(x) away from the origin that is in C∞(R \ {0}) and satisfies that
for any j � 0,

|L(j)(x)| � |x|−1−j .

Hence, L defines by convolution a Calderón-Zygmund operator and in particular we
have that for any Muckenhoupt weight ω ∈ Ap(R), we have that

‖L(f)‖Lp(ω) � ‖f‖Lp(ω).

We will also need the following theorem in [6]:

Proposition 4.9. Let 1 < p <∞ and ω ∈ Ap(T) (i.e., a periodic weight in Ap(R)).
If Ψ is a continuous function on R which is a Fourier multiplier for Lp(R, ω), then
Ψ|Z is a Fourier multiplier for Lp(T, ω).

Theorem 4.10. For any weight ω in the Muckenhoupt class Ap,

‖I1/2
2s I−1

s (ϕ)‖Lp(ω) � ‖ϕ‖Lp(ω), ϕ ∈ Lp(ω).

Proof. Since I1/2
2s I−1

s coincides with (Ψs)|Z as multipliers, the proposition follows
from propositions 4.7, 4.8 and 4.9. �

Remark 4.11. By similar arguments to proposition 4.8, the operator I1/2
2s can be

realized as an operator L satisfying |L(x)| � (1/(|x|1−s)).

5. Weighted estimates for a weighted area function

Let K : D × T → C × C be a vector-valued kernel. If ϕ is a function on T,

K(ϕ)(z) =
∫

T

K(z, ζ)ϕ(ζ) dσ(ζ).

The area function associated with K is

GK(ϕ)(ζ) :=

(∫
Γζ

|K(ϕ)(z)|2 dm(z)
(1 − |z|2)2

)1/2

, (5.1)

where Γζ , where Γ(ζ) = {z ∈ D ; |z − ζ| < α(1 − |z|2)}, α > 1, is the cone with
vertex ζ.

For the proof of our main theorem, we need the estimate

‖GK(ϕ)‖L2(ω) � ‖ϕ‖L2(ω) ω ∈ Ap.

The literature on estimates of this type is extense. It started with the area
function associated with the Poisson kernel. In the 60’s, E.M. Stein introduced
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the so-called Littlewood-Paley function on Rn, (
∫∞
0

|Kt(f)|2(dt/t))1/2, for kernels
Kt(x) = (1/t)Φ(x/t), where Φ is a function with integral zero. Later, the condition
on mean zero on the function ϕ were replaced by other conditions. Also there are
results on kernels that are not of convolution type. We refer, among others, to the
paper [10] and the references therein.

Since we do not have an explicit reference on the theorem needed for our results
(area function and kernel which is not of convolution type), we have opted to include
in Appendix a sketch of the proof of this theorem, adapting some of the known
results. Specifically, we have adapted to our context the arguments for convolution
kernels in [16]. Another type of results could have been adapted. For instance,
probably it would be possible to obtain the desired weighted estimate from a version
of the pointwise estimate in [12], lemma 1.6 or adapting for the area function the
arguments given for the Littlewood-Paley function in [10].

Theorem 5.1. Let K : D × T → C × C be a vector-valued kernel satisfying that
there exist constants C, c > 0 such that:

(i) ‖GK(ϕ)‖L2(T) � ‖ϕ‖L2(T), for any ϕ ∈ L2(T).

(ii) |K(z, ζ)| � (((1 − |z|2)ε)/(|1 − zζ|1+ε)), for some ε > 0.

(iii) For α1, α2, ζ ∈ T, 0 < r < 1 such that |α1 − α2| � c|1 − rζα1|,

|K(rα1, ζ) − K(rα2, ζ)| � (1 − r2)ε|α1 − α2|ε
|1 − rζα1|1+2ε

,

Then, for any ω ∈ Ap, we have,

‖GK(ϕ)‖Lp(ω) � ‖ϕ‖Lp(ω).

Our next goal is to check that the (vector-valued) kernel

K(z, ζ) = (1 − |z|2)−s

∫
T

∇DPs(z, η)
dσ(η)

|1 − ζη|1−s
, (5.2)

is in the hypothesis of theorem 5.1.

Proposition 5.2. Let K(z, ζ) be the vector-valued kernel defined in (5.2) and GK

as in (5.1). We have that there exist constants C, c > 0 such that:

(i’) ‖GK(ϕ)‖L2(T) � ‖ϕ‖L2(T), for any ϕ ∈ L2(T).

(ii’) |K(z, ζ)| � ((1 − |z|2)s)/(|1 − zζ|1+s).

(iii’) For α1, α2, ζ ∈ T, 0 < r < 1 such that |α1 − α2| � c|1 − rζα1|,

|K(rα1, ζ) − K(rα2, ζ)| � (1 − r2)s|α1 − α2|s
|1 − rζα1|1+2s

.

The proof of (i’) is an immediate consequence of Fubini’s Theorem, corollaries
3.6 and 4.4.
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For the proof of estimate (ii’), we write

K(z, ζ) = (1 − |z|2)−s

∫
T

∇DPs(z, η)
(

1
|1 − ζη|1−s

− 1
|1 − zζ|1−s

)
dσ(η)

+ (1 − |z|2)−s

∫
T

∇DPs(z, η)
dσ(η)

|1 − zζ|1−s
:= A(z, ζ) + B(z, ζ).

Let us begin obtaining the desired estimate for |A|. Computing ∇D and using that
we have that ∣∣∣∣ 1

aα
− 1
bα

∣∣∣∣ � |a− b|(aα + bα)
aαbα(a+ b)

, 0 < α < 1 a, b > 0, (5.3)

we obtain, considering separately the points η ∈ T such that |1 − ζη| � |1 − zζ| and
|1 − ζη| > |1 − zζ| respectively (see (3.13))

|A(z, ζ)| � (1 − |z|2)s

|1 − zζ|

∫
T

||1 − zζ| − |1 − ζη||
|1 − zη|1+2s

1
|1 − ζη|1−s

dσ(η)

+
(1 − |z|2)s

|1 − zζ|1−s

∫
T

||1 − zζ| − |1 − ζη||
|1 − zη|1+2s|1 − ζη|dσ(η) := A1(z, ζ) +A2(z, ζ).

A1(z, ζ) � (1 − |z|2)s

|1 − zζ|

∫
T

|1 − zη|
|1 − zη|1+2s|1 − ζη|1−s

dσ(η)

� (1 − |z|2)s

|1 − zζ|

∫
T

dσ(η)
|1 − zη|2s|1 − ζη|1−s

� (1 − |z|2)s

|1 − zζ|1+s
.

Next, we bound A2. Let 0 < δ < 2s be fixed. We then have:

A2(z, ζ) � (1 − |z|2)s

|1 − zζ|1−s+δ

∫
T

1
|1 − zη|2s|1 − ζη|1−δ

� (1 − |z|2)s

|1 − zζ|1+s
.

For the estimate of |B(z, ζ)|, we use that by lemma 3.8, |
∫

T
∇DPs(z, η) dσ(η)| �

(1 − |z|2)2s. Hence

|B(z, ζ)| � (1 − |z|2)s

|1 − zζ|1−s
� (1 − |z|2)s

|1 − zζ|1+s
.

Altogether gives that K satisfies (ii’).
Next we prove the estimate (iii’).
Assume first that |α1 − α2| � δ, for some δ > 0. This case is immedi-

ate since if |α1 − α2| � c|1 − rζα1|, with 2c < 1, we have that |1 − rζα1| ≈
|1 − rζα2| and |K(rα1, ζ) − K(rα2, ζ)| � |K(rα1, ζ)| + |K(rα2, ζ)| � |K(rα1, ζ)|.
Hence, using estimate (ii’) and the condition |α1 − α2| � δ, we deduce that

|K(rα1, ζ)| � (1 − r2)s

|1 − rα1ζ|1+s
� (1 − r2)s|α1 − α2|s

|1 − rα1ζ|1+2s
.

Now assume that |α1 − α2| < δ, for some δ > 0.
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We recall that as before, if 2c < 1 and |α1 − α2| � c|1 − rζα1|, then |1 − rζα1| ≈
|1 − rζα2|.

|K(rα1, ζ) − K(rα2, ζ)|
= |K(rζ, α1) − K(rζ, α2)|

= (1 − r2)−s

∣∣∣∣∫
T

∇DPs(rζ, η)
(

1
|1 − ηα1|1−s

− 1
|1 − ηα2|1−s

)
dσ(η)

∣∣∣∣
� (1 − r2)−s

∫
T

|∇DPs(rζ, η)|
∣∣∣∣ 1
|1 − ηα1|1−s

− 1
|1 − ηα2|1−s

−
(

1
|1 − rζα1|1−s

− 1
|1 − rζα2|1−s

)∣∣∣∣ dσ(η)

+ (1 − r2)−s

∣∣∣∣∫
T

∇DPs(rζ, η)
(

1
|1 − rζα1|1−s

− 1
|1 − rζα2|1−s

)
dσ(η)

∣∣∣∣
= D + E.

This decomposition permits to avoid integrability problems when we introduce the
modulus inside the integral.

We first observe that by lemma 3.8, and using again (5.3), we have that since
|1 − rζα1| ≈ |1 − rζα2|,

E � (1 − r2)s

∣∣∣∣ 1
|1 − rζα1|1−s

− 1
|1 − rζα2|1−s

∣∣∣∣ � (1 − r2)s|α1 − α2|
|1 − rζα1|2−s

� (1 − r2)s|α1 − α2|s
|1 − rζα1|2−s+s−1

� (1 − r2)s|α1 − α2|s
|1 − rζα1|1+2s

.

In order to obtain the desired estimate for D, we consider separately the integra-
tion regions Ω1 := {η ∈ T, |1 − rζη| � ε|1 − rζα1|} and Ω2 := {η ∈ T, |1 − rζη| �
ε|1 − rζα1|}, where ε < 1 will be fixed later on. We denote the corresponding
integrals by D1 and D2.

We begin with the estimate of D1. Since in that case we are assuming that |1 −
rζη| � ε|1 − rζα1|) these are not integrability problems and we bound separately
the two summands. We have that

D1 � (1 − r2)−s

∫
Ω1

|∇DPs(rζ, η)|
∣∣∣∣ 1
|1 − ηα1|1−s

− 1
|1 − ηα2|1−s

∣∣∣∣ dσ(η)

+ (1 − r2)−s

∫
Ω1

|∇DPs(rζ, η)|
∣∣∣∣ 1
|1 − rζα1|1−s

− 1
|1 − rζα2|1−s

∣∣∣∣ dσ(η)

= D11 +D12.

OnD11 we assume without loss of generality that |1 − ηα1| � |1 − ηα2|. Then, using
(5.3) and choosing 0 < ε < s we have that

D11 � (1 − r2)s |α1 − α2|
|1 − rζα1|1+2s

∫
Ω1

dσ(η)
|1 − ηα1|1−s+ε|1 − ηα2|1−ε

,
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where ε satisfies that 0 < ε < s. Hence,

D11 � (1 − r2)s |α1 − α2|
|1 − rζα1|1+2s

1
|α1 − α2|1−s

= (1 − r2)s |α1 − α2|s
|1 − rζα1|1+2s

.

Next, we estimate D12. By (5.3) and the fact that since 2c < 1 for |α1 − α2| �
c|1 − rζα1|, we have that |1 − rζα1| ≈ |1 − rζα2|, then

D12 � (1 − r2)s

|1 − rζα1|2−s

∫
|1−rζη|�|1−rζα1|/2

|α1 − α2|
|1 − rζη|1+2s

dσ(η)

� (1 − r2)s|α1 − α2|
|1 − rζα1|2−s

1
|1 − rζα1|2s

� (1 − r2)s|α1 − α2|s
|1 − rζα1|1+2s

.

We now estimate D2. In this case, |1 − rζη| � ε|1 − rζα1| and we will use the
parametrization of the unit circle T by eit, t ∈ (−π, π]. We denote ζ = eix, η = eiy,
α1 = eia1 , and α2 = eia2 , where x, y, a1, a2 ∈ (−π, π]. With this notation we have

D2 �
∫
|1−r ei(x−y)|�ε|1−r ei(x−a1)|

(1 − r2)s

|1 − r ei(x−y)|1+2s

∣∣∣∣ 1
|1 − ei(y−a1)|1−s

− 1
|1 − ei(y−a2)|1−s

− 1
|1 − r ei(x−a1)|1−s

+
1

|1 − r ei(x−a2)|1−s

∣∣∣∣ dy

Next, for x, y ∈ (−π, π], such that |1 − r ei(x−y)| � ε|1 − r ei(x−a1)|, the function

Φ(t) :=
1

|1 − ei(y−t)|1−s
− 1

|1 − r ei(x−t)|1−s

=
1

4(1−s)/2
(
sin2((y − t)/2)

)((1−s)/2)
− 1(

(1 − r)2 + 4r sin2((x− t)/2)
)(1−s)/2

is differentiable for t ∈ [a1, a2]. By the Mean-Value Theorem, we deduce that

D2 �
∫
|1−r ei(x−y)|�ε|1−r ei(x−a)|

(1 − r2)s

|1 − r ei(x−y)|1+2s

∣∣∣∣∫ a2

a1

d
dt

Φ(t) dt
∣∣∣∣ dy

=
∫
|1−r ei(x−y)|�ε|1−r ei(x−a1)|

(1 − r2)s(1 − s)
|1 − r ei(x−y)|1+2s

(1/2)

×
∣∣∣∣∣
∫ a2

a1

(
sin((y − t)/2) cos((y − t)/2)

4(1−s)/2
(
sin2((y − t)/2)

)((1−s)/2)+1

− r sin((x− t)/2) cos((x− t)/2)(
(1 − r)2 + 4r sin2((x− t)/2

)((1−s)/2)+1

)
dt

∣∣∣∣∣ dy.

We first observe that if we choose ε small enough, then the condition |1 −
r ei(x−y)| � ε|1 − r ei(x−a1)| gives that 1 − r � |1 − ei(x−a1)|, and consequently, we
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have that |1 − ei(x−a1)| ≈ |1 − r ei(x−a1)|. Adding and substracting the interme-
diate term [sin((x− t)/2) cos((x− t)/2)4(1−s)/2]/[(sin2((x− t)/2))(1−s)/2)+1], we
have that

D2 �
∫
|1−r ei(x−y)|�ε|1−r ei(x−a)|

(1 − r2)s(1 − s)
|1 − r ei(x−y)|1+2s

×
∫ a2

a1

∣∣∣∣∣ sin((y − t)/2) cos((y − t)/2)

4(1−s)/2
(
sin2((y − t)/2)

)(1−s)/2)+1

− sin((x− t)/2) cos((x− t)/2)

4(1−s)/2
(
sin2((x− t)/2)

)((1−s)/2)+1

∣∣∣∣∣ dtdy

+
∫
|1−r ei(x−y)|�ε|1−r ei(x−a)|

(1 − r2)s(1 − s)
|1 − r ei(x−y)|1+2s

×
∫ a2

a1

∣∣∣∣∣ sin((x− t)/2) cos((x− t)/2)

4(1−s)/2
(
sin2((x− t)/2)

)((1−s)/2)+1

− r sin((x− t)/2) cos((x− t)/2)(
(1 − r)2 + 4r sin2((x− t)/2

)((1−s)/2)+1

∣∣∣∣∣ dtdy := D21 +D22.

We begin with D21. We apply the Mean Value Theorem, and for each t ∈ [a1, a2],
there exists lt between x and y such that

D21 �
∫
|1−r ei(x−y)|�ε|1−r ei(x−a1)|

(1 − r2)s|x− y|
|1 − r ei(x−y)|1+2s

∫ a2

a1

{∣∣∣∣ cos2((lt − t)/2)
| sin((lt − t)/2)|3−s

∣∣∣∣
+
∣∣∣∣ sin2((lt − t)/2)
| sin((lt − t)/2)|3−s

∣∣∣∣+ ∣∣∣∣ sin2((lt − t)/2) cos2((lt − t)/2)
| sin((lt − t)/2)|5−s

∣∣∣∣} dtdy

� |1 − r ei(x−a1)|1−2s (1 − r2)s|a1 − a2|
|1 − r ei(x−a1)|3−s

� (1 − r2)s|a1 − a2|s
|1 − r ei(x−a1)|1+2s

,

where we have used that for any t ∈ [a1, a2], | sin((lt − t)/2)| ≈ |1 − r ei(x−a1)| and
|a1 − a2| < c|1 − rζa1|.

Finally, for the estimate of D22, we use again the Mean Value Theorem and we
obtain that for each 0 < r < 1 and each t ∈ [a1, a2], there exists l ∈ [r, 1) such that

D22 �
∫
|1−r ei(x−y)|�ε|1−r ei(x−a1)|

(1 − r2)s(1 − r)
|1 − r ei(x−y)|1+2s

×
∫ a2

a1

(
| sin((x− t)/2) cos((x− t)/2)|(

(1 − l)2 + 4l sin2((x− t)/2
)((1−s)/2)+1

+
l| sin((x− t)/2) cos((x− t)/2)|(2(1 − l) + 4 sin2((x− t)/2)(

(1 − l)2 + 4l sin2((x− t)/2
)((1−s)/2)+2

)
dtdy.
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Since |1 − r ei(x−y)| � ε|1 − r ei(x−a1)|, we have that |1 − l ei(x−a1)| ≈ |1 − r ei(x−a1)|
for any l ∈ [r, 1). Hence the above is bounded by∫

|1−r ei(x−y)|�ε|1−r ei(x−a1)|

∫ a2

a1

(1 − r2)s(1 − r)
|1 − r ei(x−y)|1+2s

×
(

1
|1 − l ei(x−a1)|2−s

+
1

|1 − l ei(x−a1)|3−s

)
dtdy

� (1 − r2)s(1 − r2)1−2s|α1 − α2|
|1 − zα1|3−s

� (1 − r2)s|α1 − α2|s
|1 − zα1|1+2s

,

where in the last estimate we have used that |α1 − α2| � |1 − zα1| and (1 − r) �
|1 − zα1|.

6. Capacities, trace measures for Hs(T) and Carleson measures for
Ps(Hs(T))

Definition 6.1. Let E ⊂ T. The Riesz capacity of E is defined by

Caps(E) := inf{‖f‖2
2 : Is(|f |) � 1 on E}.

We list some properties of the equilibrium measure for a compact set in T, which will
be used below and that are essentially due to O. Frostman (see [1] theorem 2.2.7).

Theorem 6.2. Given a closed set E ⊂ T, there exists a positive capacitary measure
νE on T, such that:

(i) νE is supported on E and νE(E) = Caps(E).

(ii) qE := IsIs(νE) � 1 a.e. on E.

(iii) qE ∈ Hs(T) and ‖qE‖2
Hs(T) � Caps(E).

(iv) There is a constant C > 0 independent of E, such that for any ζ ∈ T,
qE(ζ) � C.

Remark 6.3. Since 2s < 1, we have that Is ∗ Is ≈ I2s. This fact and corollary 4.5
give that the function pE := I2s(νE) satisfies properties (6.2) and (6.2), with prop-
erty (6.2) replaced by pE � 1 a.e. on E. For our purposes this is the function we
will use when constructing appropriate test functions.

Let ϕ : (−π, π) → [0,∞) be a C∞ function on (−π, π], non-increasing in |x|,
with compact support on (−π, π) and such that

∫ π

−π
ϕ = 1. For δ > 0, let ϕδ(x) =

(1/δ)ϕ(x/δ). We write νE,δ := νE ∗ ϕδ, the regularizations of the measure νE . We
then have that νE,δ are functions in C∞ on T satisfying that dνE,δ := νE,δ dx→ dν
in the sense of distributions and such that ‖νE,δ‖1 = Caps(E).

We denote by pE,δ := I2s ∗ νE,δ, δ > 0.

Lemma 6.4 [18], chapter 2, lemma 3.6. If 0 < s < 1/2 and β ∈ (1, 1/(1 − 2s)], then
pβ

E,δ is in the Muckenhoupt class A1, with A1-constant independent of E and δ.
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Theorem 6.5. Let E ⊂ T be a closed set and let pE be the function given in remark
6.3 and pE,δ the regularization considered before. Let α > 1/2. Then,

(i) ‖pα
E,δ‖2

Hs(T) � Caps(E).

Proof. We define the form ωδ by

ωδ = (Ps(pE,δ))2α−1(1 − r2)1−2s

(
∂

∂x
Ps(pE,δ) dy − ∂

∂y
Ps(pE,δ) dx

)
.

Arguing as in theorem 3.4, using that pE,δ is bounded we can pass to the limit
under the integral sign. Then using theorem 3.3 and proposition 4.3, we have that

lim
r→1−

∫
∂Dr

ωδ = lim
r→1−

∫ 2π

0

(1 − r2)1−2s(Ps(pE,δ)2α−1
|∂Dr

r
∂

∂r
Ps(pE,δ)|∂Dr

dx

=
∫

T

p2α−1
E,δ (I + (−Δ)s)pE,δ

=
∫

T

p2α−1
E,δ dνE,δ �

∫
T

dνE,δ = Caps(E),

Next, Stokes’s Theorem and the Lebesgue’s Monotone Convergence Theorem,
give that

lim
r→1−

∫
∂Dr

ωδ =
2α− 1
α2

∫
D

(1 − r2)1−2s|∇(Ps(pE,δ))α|2 dm(z)

+ (1 − 2s)2
∫

D

(1 − r2)−2s|(Ps(pE,δ))α|2 dm(z).

On the other hand, the function (Ps(pE,δ))α has boundary values pα
E,δ. Conse-

quently, by lemma 2.1, we have that

‖pα
E,δ‖2

Hs(T) �
∫

D

(1 − r2)1−2s|∇(Ps(pE,δ))α|2 dm(z)

+
∫

D

(1 − r2)−2s|(Ps(pE,δ))α|2 dm(z)

≈ lim
r→1−

∫
∂Dr

ωδ � Caps(E).

�

6.1. Trace measures for Hs(T) and Carleson measures for Ps(Hs(T))

The characterization of the positive trace measures for Hs(T) is well known (see,
for instance the book [17] or [1] theorem 7.2.1 for a proof). Namely

Proposition 6.6. Let 0 < s < 1/2 and let μ be a positive Borel measure on T.
Then, μ is a trace measure for Hs(T), that is,

∫
T
|f |2 dμ � ‖f‖2

Hs(T) for every f ∈
Hs(T), if and only if there exists Cμ > 0 such that for any compact set E ⊂ T

μ(E) � CμCaps(E).
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Definition 6.7. Let E ⊂ T. Then the tent over E, T (E) is defined by T (E) =
D \

⋃
ξ/∈E Γ(ξ).

The arguments for the proof of the next elementary lemma can be found, for
instance, [9] lemma 3.25.

Lemma 6.8. Let 0 < s < 1/2, and let E ⊂ T. Let f be a non-negative measurable
function on T such that f � 1 a.e. on E. Then Ps(f) � 1 on T (E).

Our next result gives a characterization of the Carleson measures for the space
Ps(Hs(T)). The proof heavily relies on Hanson’s strong capacitary estimate (see,
for instance theorem 7.1.1 in [1] for a proof) and in lemma 6.8 (see [9] theorem 3.26
for the details of the arguments of the proof).

Theorem 6.9. Let 0 < s < 1/2 and let μ be a positive Borel measure on D. Then,
μ is a Carleson measure for Ps(Hs(T)), that is,

∫
D
Ps(ϕ)2 dμ � ‖ϕ‖2

Hs(T) for every
ϕ ∈ Hs(T) if and only if, there exists Cμ > 0 such that for any compact set E ⊂ R,
μ(T (E)) � CμCaps(E).

We finish the section with two results that will give equivalent reformulations to
(iv) and (v) in theorem 1.1 and that will be used when needed in the proof of this
Theorem.

Lemma 6.10. Assume that the measure |∇Ps(b)|2(1 − |z|2)1−2s dm(z) is a Car-
leson measure for Ps(Hs(T)), then the measure |Ps(b)|2(1 − |z|2)−2s dm(z) is also
a Carleson measure for Ps(Hs(T)).

In particular, |∇Ps(b)|2(1 − |z|2)1−2s dm(z) is a Carleson measure for Ps(Hs(T))
if and only if (|∇Ps(b)|2(1 − |z|2)1−2s + |Ps(b)|2(1 − |z|2)−2s) dm(z) is a Carleson
measure for Ps(Hs(T)).

Proof. Let ϕ ∈ Hs(T). Applying lemma 2.2, we deduce that∫
D

|Ps(ϕ)|2|Ps(b)|2(1 − |z|2)−2s dm(z) �
∫

D

|Ps(ϕ)|2|Ps(b)|2(1 − |z|2)1−2s dm(z)

+
∫

D

|Ps(ϕ)||∇Ps(ϕ)|Ps(b)|2(1 − |z|2)1−2s dm(z)

+
∫

D

|Ps(ϕ)|2|Ps(b)||∇Ps(b)|(1 − |z|2)1−2s dm(z) = I + II + III.

Now, we use the pointwise estimate for extensions of L2 functions in T given in [3]
lemma 2.8, which gives in particular that |Ps(b)(z)| � (1/((1 − |z|2)1/2)), together
with corollary 3.6 to obtain

I �
∫

D

|Ps(ϕ)|2(1 − |z|2)−2s dm(z) � ‖Ps(ϕ)‖2
W 2

1,1−2s
≈ ‖ϕ‖2

Hs(T).
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Next, Hölder’s inequality and the same pointwise estimate |Ps(b)(z)| �
((1/((1 − |z|2)1/2)), give that

II �
(∫

D

|Ps(ϕ)|2|Ps(b)|2(1 − |z|2)−2s dm(z)
)1/2

×
(∫

D

|∇Ps(ϕ)|2|Ps(b)|2(1 − |z|2)2−2s dm(z)
)1/2

� ε

2

∫
D

|Ps(ϕ)|2|Ps(b)|2(1 − |z|2)−2s dm(z) +
1
2ε

‖Ps(ϕ)‖2
W 2

1,1−2s
,

where ε < 1. Hence, II � ‖Ps(ϕ)‖2
W 2

1,1−2s
≈ ‖ϕ‖2

Hs(T).
Finally, Hölder’s inequality, the hypothesis and the pointwise estimate

|Ps(b)(z)| � ((1/((1 − |z|2)1/2)) give

III �
(∫

D

|Ps(ϕ)|2|Ps(b)|2(1 − |z|2)1−2s dm(z)
)1/2

×
(∫

D

|Ps(ϕ)|2|∇Ps(b)|2(1 − |z|2)1−2s dm(z)
)1/2

�
(∫

D

|Ps(ϕ)|2(1 − |z|2)−2s dm(z)
)1/2

‖Ps(ϕ)‖W 2
1,1−2s

� ‖Ps(ϕ)‖2
W 2

1,1−2s
≈ ‖ϕ‖2

Hs(T).

Altogether gives finally that∫
D

|Ps(ϕ)|2|Ps(b)|2(1 − |z|2)−2s dm(z) � ‖Ps(ϕ)‖2
W 2

1,1−2s
≈ ‖ϕ‖2

Hs(T).

�

Lemma 6.11. The following assertions are equivalent:

(i) The measure dν :=
∣∣(−Δ)s/2(b)

∣∣2 dσ is a trace measure for Hs(T).

(ii) The measure dν̃ :=
∣∣((−Δ)s + I)1/2(b)

∣∣2 dσ is a trace measure for Hs(T).

Proof. The proof is based in the following result by V. Maz’ya and I.E. Verbitsky
(see [19]):

Proposition 6.12. Let g be an integrable function on T such that |g|p dσ is a trace
measure for Is[Lp]. Let h be a measurable function on T satisfying that for any
weight w in A1, ∫

T

|h|pw �
∫

T

|g|pw.

We then have that |h|p dσ is a trace measure for Is[Lp].
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Assume that (6.11) holds, that is
∣∣(−Δ)s/2(b)

∣∣2 dσ is a trace measure for Hs(T).
Let h = (−Δ)s/2(b) and g = ((−Δ)s + I)1/2(b).

Then g = ((−Δ)s + I)1/2(−Δ)−s/2(−Δ)s/2b = Th, where T = ((−Δ)s + I)1/2

(−Δ)−s/2. Applying corollary 3.5 and lemma 4.2 and using an argument sim-
ilar to the one used in proposition 4.7, we deduce that T is an operator of
Calderón–Zygmund type.

Hence, applying Theorem 4.10, we have that for any ω ∈ A1 ⊂ A2,∫
T

|g|2 dω =
∫

T

|Th|2 dω �
∫

T

|h|2 dω.

Now, proposition 6.12 gives that dν̃ is a trace measure for Hs(T), which is (6.11).
The implication in the other sense is proved in an analogous way. �

7. Proof of the main result (theorem 1.1)

7.1. Proof of (i) ⇔ (ii) ⇔ (iii)

If ϕ,ψ ∈ C∞(T), then Ps(ϕ), Ps(ϕ) and Ps(ϕψ) are in W2
1,1−2s ∩ L∞. Hence

Ps(ϕ)Ps(ϕ) ∈ W2
1,1−2s with the same boundary values, ϕψ, as the function Ps(ϕψ).

Consequently, the equivalences between (i), (ii) and (iii) follow from proposition 3.7.

7.2. Proof of (v) ⇒ (iii)

We first observe that if

|∇Ps(b)|2(1 − |z|2)1−2s dm(z)

is a Carleson measure for Ps(Hs(T)), lemma 6.10 gives that the measure(
|∇Ps(b)|2(1 − |z|2)1−2s + |Ps(b)|2(1 − |z|2)−2s

)
dm(z)

is also a Carleson measure for Ps(Hs(T)).
Next, in order to prove (iii), it is enough to consider the case ϕ = ψ. Then Hölder’s

inequality and the above observation gives that∣∣∣∣∫
D

∇(Ps(ϕ)2)(z)∇Ps(b)(z)(1 − |z|2)1−2s dm(z)
∣∣∣∣

�
∫

D

|Ps(ϕ)(z)||∇Ps(ϕ)(z)||∇Ps(b)(z)|(1 − |z|2)1−2s dm(z)

�
(∫

D

|Ps(ϕ)(z)|2|∇Ps(b)|2(1 − |z|2)1−2s dm(z)
)1/2

×
(∫

D

|∇Ps(ϕ)(z)|2(1 − |z|2)1−2s dm(z)
)1/2

� ‖ϕ‖2
Hs(T).

Similarly, ∣∣∣∣∫
D

(Ps(ϕ))2(z)Ps(b)(z)(1 − |z|2)−2s dm(z)
∣∣∣∣ � ‖ϕ‖2

Hs(T),
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7.3. Proof of (iv) ⇒ (v)

By lemmas 6.10 and 6.11 it is enough to show that if |((−Δ)s + I)1/2(b)|2 dσ is
a trace measure for Hs, then |∇Ps(b)|2(1 − |z|2)1−2s dm(z) is a Carleson measure
for Ps(Hs(T)(T)). Using theorem 6.9, we must show that for any closed set E ⊂ T,∫

T (E)
|∇Ps(b)|2(1 − |z|2)1−2s dm(z) � Caps(E).

Let E ⊂ T be closed and let pE be the potential of the extremal measure for
the set E. For z ∈ D, let Iz = {ζ ∈ T ; z ∈ Γ(ζ)}. We have that if z ∈ T (E), then
Iz ⊂ E and |Iz| ≈ (1 − |z|2). Let α ∈ (1/2, 1/(2(1 − 2s))]. Then, lemma 6.4, gives
that p2α

E ∈ A1, and, in particular, p2α
E ∈ A2.

Since pE � 1 a.e. on E, Fubini’s theorem gives,∫
T (E)

|∇Ps(b)(z)|2(1 − |z|2)1−2s dm(z)

�
∫

D

|∇Ps(b)(z)|2(1 − |z|2)1−2s 1
(1 − |z|2)

∫
Iz

p2α
E (ζ) dσ(ζ) dm(z)

�
∫

T

∫
Γ(ζ)

|∇Ps(b)(z)|2(1 − |z|2)−2sp2α
E (ζ) dm(z) dσ(ζ)

=
∫

T

∫
Γ(ζ)

|(1 − |z|2)−s∇Ps(Is(I−1
s (b)))(z)|2p2α

E (ζ) dm(z) dσ(ζ)

= ‖GK(I−1
s (b))‖2

L2(p2α
E ).

Since p2α
E ∈ A2, proposition 5.2 and theorem 5.1 give that the above is bounded by

(∫
T

|I−1
s (b)(ζ)|2p2α

E (ζ) dσ(ζ)
)2

= ‖I−1
s (b)‖2

L2(p2α
E ).

Since I−1
s = I

1/2
2s I−1

s I
−1/2
2s , theorem 4.10 gives

‖I−1
s (b)‖2

L2(p2α
E ) = ‖I1/2

2s I−1
s I

−1/2
2s (b)‖2

L2(p2α
E ) � ‖I−1/2

2s (b)‖2
L2(p2α

E )

� lim inf
δ→0+

∫
T

p2α
E,δ(ζ)|I

−1/2
2s (b)(ζ)|2 dσ(ζ)

But I−1/2
2s = ((−Δ)s + I)1/2 and |I−1/2

2s (b)(ζ)|2 dσ is by hypothesis a trace measure
for Hs(T). Then we have that the above is bounded by lim infδ→0 ‖pα

E,δ‖2
Hs(T),

which by theorem 6.5, is in turn bounded by Caps(E).

7.4. Proof of (i) ⇒ (iv)

By lemma 6.11, we have that proving condition (iv) is equivalent to proving
that dμ(ζ) = |((−Δ)s + I)1/2(b)(ζ)|2 dσ(ζ) = |I−1/2

2s (b)(ζ)|2 dσ(ζ) is a trace mea-
sure for Hs. This will be checked by proving that it satisfies the capacitary
characterization given in proposition 6.6, that is, we will show that for each compact
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set E ⊂ T, ∫
E

|I−1/2
2s (b)(ζ)|2 dσ(ζ) � Caps(E).

Let E ⊂ T be a closed subset of T and let pE,δ = I2s ∗ νE,δ, δ > 0, where νE,δ is a
regularization of the extremal capacitary measure of E. Let α ∈ (1/2, 1/(2(1 − 2s)))
be fixed. We consider the test functions

ϕδ :=
I
1/2
2s (χEI

−1/2
2s (b))

pα
E,δ

, ψδ := pα
E,δ.

We write gE = χE(I−1/2
2s (b)). Applying the hypothesis (i), we have that∫

E

|I−1/2
2s (b)|2 dσ =

∫
T

I
−1/2
2s (ϕδψδ)I

−1/2
2s (b) dσ � ‖ϕδ‖Hs(T)‖ψδ‖Hs(T). (7.1)

We next estimate each of these last norms. First, we have that by theorem 6.5,
‖ψδ‖2

Hs(T) = ‖pα
E,δ‖2

Hs(T) � Caps(E). Our next objective is to prove that

lim
δ→0

‖ϕδ‖2
Hs(T) �

∫
T

|gE |2 dσ. (7.2)

If this estimate holds, we will have by (7.1) that
∫

E
|I−1/2

2s (b)|2 dσ � Caps(E), which
is the estimate we wanted to prove.

Using lemma 2.1,

‖ϕδ‖2
Hs(T) �

∫
D

∣∣∣∣∣∣∇
⎛⎝Ps

(
I
1/2
2s (gE)

)
(Ps(pE,δ))α

⎞⎠∣∣∣∣∣∣
2

(1 − |z|2)1−2s dm(z)

+
∫

D

∣∣∣∣∣∣
Ps

(
I
1/2
2s (gE)

)
(Ps(pE,δ))α

∣∣∣∣∣∣
2

(1 − |z|2)1−2s dm(z)

�
∫

D

∣∣∣∣∣∣
∇
(
Ps

(
I
1/2
2s (gE)

))
(Ps(pE,δ))α

∣∣∣∣∣∣
2

(1 − |z|2)1−2s dm(z)

+
∫

D

∣∣∣Ps

(
I
1/2
2s (gE)

)
∇ (Ps(pE,δ))

∣∣∣2
(Ps(pE,δ))2α+2

(1 − |z|2)1−2s dm(z)

+
∫

D

∣∣∣∣∣∣
Ps

(
I
1/2
2s (gE)

)
(Ps(pE,δ))α

∣∣∣∣∣∣
2

(1 − |z|2)1−2s dm(z)

= I + II + III.

We begin with the estimate of I. Let z ∈ D. We have that

Ps(pE,δ)(z) � 1
|Iz|

∫
Iz

pE,δ.
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Using this estimate and Hölder’s inequality twice, we obtain that

I �
∫

D

|∇
(
Ps(I

1/2
2s (gE))

)
|2(1 − |z|2)1−2s

(
1
|Iz|

∫
Iz

pE,δ(η) dσ(η)
)−2α

dm(z)

�
∫

D

|∇
(
Ps(I

1/2
2s (gE))

)
|2(1 − |z|2)1−2s

(
1
|Iz|

∫
Iz

p−1
E,δ(η) dσ(η)

)2α

dm(z)

�
∫

T

∫
Γ(ζ)

|∇
(
Ps(IsI−1

s I
1/2
2s (gE))

)
|2(1 − |z|2)−2s dm(z)

1
p2α

E,δ

(η) dσ(η).

Since by lemma 6.4, p2α
E,δ ∈ A2 with constants independent of E and δ (and hence

also p−2α
E,δ ∈ A2), proposition 5.2 and theorem 5.1 give that the above is bounded,

up to a constant, by∫
T

|I−1
s I

1/2
2s (gE)|2 1

p2α
E,δ

(η) dσ(η) �
∫

T

g2
E(η)

1
p2α

E,δ

(η) dσ(η),

where in the last estimate we have used theorem 4.10, since p−2α
E,δ ∈ A2. Altogether

we deduce that

I �
∫

T

g2
E(η)

1
p2α

E,δ

(η) dσ(η).

Now we proceed to estimate II. We consider the form given by

ωδ(z) =
(Ps(I

1/2
2s gEδ

))2

(Ps(pE,δ))2α+1
(1 − |z|2)1−2s

(
∂Ps(pE,δ)

∂x
dy − ∂Ps(pE,δ)

∂y
dx
)
.

Integrating on the circle of radius r < 1, taking polar coordinates and letting
r → 1−, we have (see theorem 3.3) that

lim
r→1−

∫
∂Dr

ωδ = lim
r→1−

∫
∂Dr

(1 − r2)1−2sr
(Ps(I

1/2
2s gEδ

))2

(Ps(pE,δ))2α+1

∂

∂r
Ps(pE,δ)

=
∫

T

(I1/2
2s gEδ

)2

p2α+1
E,δ

((−Δ)s + I)pE,δ =
∫

T

(I1/2
2s gEδ

)2

p2α+1
E,δ

dνδ � 0.

Applying Stokes’s Theorem on Dr, and letting r → 1− as in theorem 3.4, we have
that ∫

T

ωδ =
∫

T

I
1/2
2s g2

Eδ

p2α+1
E,δ

dνδ

= −(2α+ 1)
∫

D

(Ps(I
1/2
s gEδ

))2

(Ps(pE,δ))2α+2
|∇Ps(pE,δ)|2(1 − |z|2)1−2s dm(z)

+ 2
∫

D

Ps(I
1/2
2s gE)∇Ps(I

1/2
2s gE)∇Ps(pE,δ)

Ps(pE,δ)2α+1
(1 − |z|2)1−2s dm(z)

+ (1 − 2s)2
∫

D

(Ps(I
1/2
s gEδ

))2

(Ps(pE,δ))2α+1

∫
T

pE,δ(ζ)
|z − ζ|1+2s

dσ(ζ) dm(z).
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Since we have shown that
∫

T
ωδ � 0, we deduce that

II �
∫

D

Ps(I
1/2
2s gE)∇Ps(I

1/2
2s gE)∇Ps(pE,δ)

Ps(pE,δ)2α+1
(1 − |z|2)1−2s dm(z)

+
∫

D

(Ps(I
1/2
s gEδ

))2

(Ps(pE,δ))2α
(1 − |z|2)−2s dm(z).

Next, we proceed to estimate the first term on the right. Hölder’s inequality gives
that ∫

D

Ps(I
1/2
2s gE)∇Ps(I

1/2
2s gE)∇Ps(pE,δ)

Ps(pE,δ)2α+1
(1 − |z|2)1−2s dm(z)

�

⎛⎝∫
D

|Ps

(
I
1/2
2s (gE)

)
|2|∇ (Ps(pE,δ)) |2

|Ps(pE,δ)|2α+2
(1 − |z|2)1−2s dm(z)

⎞⎠1/2

×

⎛⎝∫
D

|∇Ps

(
I
1/2
2s (gE)

)
|2

Ps(pE,δ)2α
(1 − |z|2)1−2s dm(z)

⎞⎠1/2

= II1/2I1/2 � (1/ε)I + εII.

In addition, (2.1) gives that∫
D

(Ps(I
1/2
s gEδ

))2

(Ps(pE,δ))2α
(1 − |z|2)−2s dm(z) � III + ε(I + II).

Consequently, we have shown that

II � I + III. (7.3)

Next, if we now choose 0 < ε′ < 1, we have

III �

=
∫

1−|z|2<ε′

Ps(I
1/2
2s gE)2

Ps(pE,δ)2α
(1 − |z|2)1−2s dm(z)

+
∫

1−|z|2�ε′

Ps(I
1/2
2s gE)2

Ps(pE,δ)2α
(1 − |z|2)1−2s dm(z).

Since in the first integral 1 − |z|2 < ε′, using (2.1) and (7.3), it is bounded by
ε′(I + II + III). We pass that to the left-hand side and obtain that

I + II + III � I +
∫

1−|z|2�ε′

Ps(I
1/2
2s gE)2

Ps(pE,δ)2α
(1 − |z|2)1−2s dm(z). (7.4)

But, when 1 − |z|2 � ε′, we have that Ps(I
1/2
2s (gE)) ≈

∫
T
I
1/2
2s (gE) and Ps(pE,δ) ≈∫

T
pE,δ.
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Hence, using Hölder’s inequality and that by lemma 6.4, p2α
E,δ ∈ A2, with

constants independent of E and δ we have that∫
1−|z|2�ε′

Ps(I
1/2
2s gE)2

Ps(pE,δ)2α
(1 − |z|2)1−2s dm(z)

�

(∫
T
I
1/2
2s (gE)

)2

(∫
T
pE,δ

)2α �

(∫
T
I
1/2
2s (gE)

)2∫
T
p2α

E,δ

. (7.5)

Fubini’s Theorem and the fact that the operator I1/2
2s can be represented as a

convolution by a kernel TK(ζ, η) satisfying that TK(ζ, η) � (1/(|ζ − η|1−s)) (see
remark 4.11), give that∣∣∣∣∫

T

I
1/2
2s (gE)(ζ) dσ(ζ)

∣∣∣∣ � ∣∣∣∣∫
T

∫
T

1
|ζ − η|1−s

dσ(η)gE(ζ) dσ(ζ)
∣∣∣∣ � ∫

T

|gE(ζ)|dσ(ζ).

Plugging this estimate in (7.5), and using that gE is supported on E, we have that
Hölder’s inequality gives that(∫

T

I
1/2
2s (gE) dσ

)2

∫
T
p2α

E,δ dσ
�
(∫

T
|gE(ζ)|dσ(ζ)

)2∫
T
p2α

E,δ dσ
�
m(E)

∫
T
g2

E(ζ) dσ(ζ)∫
T
p2α

E,δ dσ
.

So, we have just proved that, using (7.1) and (7.4), that

‖ϕδ‖2
Hs(T) � I + II + III �

∫
T

g2
E(η)

1
p2α

E,δ

(η) dσ(η) +
m(E)

∫
T
g2

E(ζ) dσ(ζ)∫
T
p2α

E,δ dσ
.

We next have that p2α
E,δ is bounded above, and also bounded below (with constant

depending on E) since,

pE,δ(ζ) =
∫

T

dνδ(η)
|1 − ζη|1−2s

�
∫

T

dνδ(η) = νs(T) = ν(T).

Hence, we can apply the Lebesgue’s Dominated Convergence Theorem and deduce
that

lim
δ→0

‖ϕδ‖2
Hs(T) �

∫
T

g2
E(η)

1
p2α

E

(η) dσ(η) +
m(E)

∫
T
g2

E(ζ) dσ(ζ)∫
T
p2α

E dσ
.

Next, since gE is supported on E and pE � 1 on E, we deduce that

lim
δ→0

‖ϕδ‖2
Hs(T) �

∫
T

g2
E(η) dσ(η),

which prove (7.2) and, as it was pointed out, finishes the proof of the theorem.
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8. Appendix: Proof of theorem 5.1

The proof of theorem 5.1 follows the scheme given in [16]. In consequence, we will
just sketch the specific parts of the proof for our situation and remit to this paper
to find the proofs of the remaining parts used here. We recall some definitions.

If f is a measurable function on T and Q is an interval on T, the local mean
oscillation of f on Q is given by

ωλ(f ;Q) = inf
c∈R

((f − c)χQ)∗(λ|Q|), 0 < λ < 1,

where ((f − c)χQ)∗ is the non-increasing rearrangement of (f − c)χQ.
Let m(f,Q) be the median value of f over Q, as a (possibly non-unique) real

number such that

max (|{ζ ∈ Q ; f(ζ) > m(f,Q)}|, |{ζ ∈ Q ; f(ζ) < mf (Q)}|) � |Q|/2.

Next, given an interval Q0, let us denote D(Q0) the dyadic intervals with respect
to Q0. The dyadic local sharp maximal function m#,d

λ;Q0
f is defined by

m#
λ;Q0

f(ζ) = sup
ζ∈Q′∈D(Q0)

ωλ(f ;Q′).

One key ingredient in the proof of the theorem is the decomposition of A.K.
Lerner in terms of the local mean oscillation. In [4], it is proved the following
version of Lerner’s estimate for homogeneous spaces:

Theorem 8.1. Let f a measurable function on T, D a dyadic decomposition of
intervals of T. Let Q0 ∈ D. Then there exists ε > 0 and a (possibly empty) sparse
family S(Q0) of intervals in D included in Q0 such that for a.e. ζ ∈ Q0,

|f(ζ) −m(f,Q0)| � m#
ε,Q0

(f)(ζ) +
∑

Q∈S(Q0)

ωε(f,Q)χQ(ζ).

We would like to apply this theorem to the function f = GK(ϕ)2, and we will
need to obtain estimates for m#

ε,Q0
(GK(ϕ)2) and ωε(GK(ϕ)2, Q).

The following lemma follows from well-known techniques of splitting functions
in ‘good’ and ‘bad’ parts, which come from a method stated by A.P. Calderón and
A. Zygmund (see [16]).

Lemma 8.2. There exists C > 0 such that for any λ > 0, f ∈ L1(T),

|{η; GK(ϕ)(η) > λ}| �
‖ϕ‖L1( dσ)

λ
.

We now can prove the following version of Lerner’s estimate:

Lemma 8.3. Let 0 < λ < 1. Then, for any cube Q ∈ Dj,

ωλ(GK(ϕ)2;Q) �
∑
k�0

1
2ks

(
1

|2kQ|

∫
2kQ

|ϕ|
)2

.

https://doi.org/10.1017/prm.2019.16 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.16


2150 C. Cascante and J. M. Ortega

Proof. Let Q ∈ Dj . We decompose GK(ϕ)2(η) in two terms given by

GK(ϕ)2(η) =
∫

T (2Q)

χΓη
(z)
∣∣∣∣∫

T

K(z, ζ)ϕ(ζ) dσ(ζ)
∣∣∣∣2 dm(z)

(1 − |z|2)2

+
∫

D\T (2Q)

χΓη
(z)
∣∣∣∣∫

T

K(z, ζ)ϕ(ζ) dσ(ζ)
∣∣∣∣2 dm(z)

(1 − |z|2)2

= I1(ϕ)(η) + I2(ϕ)(η).

We will then have that if ζ1 is an arbitrary point in Q,

ωλ(GK(ϕ)2;Q)

�
(
(GK(ϕ)2 − I2(ϕ)(ζ1))χQ

)∗
(λ|Q|)

� (I1(ϕ)χQ)∗ ((λ|Q|/2) + ((I2(ϕ) − I2(ϕ)(ζ1))χQ)∗ ((λ|Q|/2))

� (I1(ϕ)χQ)∗ ((λ|Q|)/2) + ‖I2(ϕ) − I2(ϕ)(ζ1)‖L∞(Q). (8.1)

We will first show that

(I1(ϕ)χQ)∗ (λ|Q|/2) �
∑

2klQ�1

1
2k

(
1

|2kQ|

∫
2kQ

|ϕ|dσ
)2

.

Since (x+ y)2 � 2(x2 + y2), we have that for any η ∈ Q,

I1(ϕ)(η) � 2
(
I1(ϕχ4Q)(η) + I1(ϕχT\4Q)(η)

)
,

and consequently,

(I1(ϕ)χQ)∗ (λ|Q|/2) � (I1(ϕχ4Q))∗ (λ|Q|/4) +
(
I1(ϕχT\4Q)

)∗ (λ|Q|/4).

By lemma 8.2 we have that

(I1(ϕχ4Q))∗ (λ|Q|/4) �
(
(GK(ϕχ4Q))2

)∗
(λ|Q|/2) �

(
1

|4Q|

∫
4Q

|ϕ|dσ
)2

.

Consider now the term (I1(ϕχT\4Q))∗(λ|Q|/2). It will be enough to obtain, for
z ∈ T (2Q), the following pointwise estimate:

|K(ϕχT\4Q)(z)| �
(

1 − |z|2
lQ

)s ∑
k�1; 2klQ�1

1
2ks

1
2klQ

∫
2kQ

|ϕ|dσ. (8.2)

Indeed, if (8.2) holds, then we will have that by Chebyshev’s inequality(
I1(ϕχD\4Q)χQ

)∗ (λ|Q|/4) �
‖I1(ϕχT\4B(Q))χQ‖L1

(λ|Q|)/4

� 4
λ|Q|

∫
T

∫
D

χΓη
(z)
∣∣∣∣∫

T

K(z, ζ)ϕ(ζ)χD\4Q(ζ) dσ(ζ)
∣∣∣∣2 (1 − |z|2)−2dV (z) dσ(η)

�

⎛⎝ ∑
k�2, 2klQ�1

1
2ks

1
|2kQ|

∫
2kQ

|ϕ|dσ

⎞⎠2

.
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Consequently, applying Schwartz’s inequality,

(
I1(fχT\4Q)χQ

)∗ (λ|Q|/4) �
∑

k�2, 2klQ�1

1
2ks

(
1

|2kQ|

∫
2kQ

|ϕ(η)|dσ(η)
)2

.

Let us prove (8.2). If z ∈ T (2Q), we then have that

|K(ϕχT\4Q)(z)| = |
∫

T

K(z, ζ)ϕ(ζ)χT\4Q(ζ) dσ(ζ)|

�
(

(1 − |z|2)
lQ

)s ∑
k�2, 2klQ�1

1
2ks

1
2klQ

∫
2kQ

|ϕ|

So, in order to finish the proof of (8.1), we are left to estimate ‖I2(ϕ) −
I2(ϕ)(ζ1)‖L∞(Q). Let ω1, ω2 ∈ Q. Then,

|I2(ϕ)(ω1) − I2(ϕ)(ω2)| �
∑

k�1, 2klQ�1

∫
T (2k+1Q)\T (2kQ)

∣∣χΓω1
(z) − χΓω2

(z)
∣∣

×
∣∣∣∣∫

T

K(z, ζ)ϕ(ζ) dσ(ζ)
∣∣∣∣2 dV (z)

(1 − |z|2)2 . (8.3)

We split the points z ∈ T (2k+1Q) \ T (2kQ) such that χΓω1
(z) − χΓω2

(z) �= 0 in
two connected sets, Ωk

1 ,Ω
k
2 . We will obtain estimates for the integrals over one of

them, say Ωk
1 , being the estimates over Ωk

2 analogous. Then,

|I2(ϕ)(ω1) − I2(ϕ)(ω2)| �
∑

k�1, 2klQ�1

∫
Ωk

1

∣∣∣∣∫
T

K(z, ζ)ϕ(ζ) dσ(ζ)
∣∣∣∣2 dV (z)

(1 − |z|2)2

�
∑

k�1, 2klQ�1

∫
Ωk

1

∣∣∣∣∫
2kQ

K(z, ζ)ϕ(ζ) dσ(ζ)

+
∑

j>k, 2j lQ�1

∫
2jQ\2j−1Q

K(z, ζ)ϕ(ζ) dσ(ζ)

∣∣∣∣∣∣
2

dV (z)
(1 − |z|2)2 .

Next, observe that if ζ ∈ 2kQ and z ∈ Ωk
1 , we have that (1 − |z|2) ≈ 2klQ and

|1 − zζ| ≈ 2klQ. On the other hand, if ζ ∈ 2jQ \ 2j−1Q, j > k, we have that
|1 − zζ| � 2j lQ. Altogether gives, integrating in polar coordinates on Ωk

1 and using
the fact that the angle width is of order lQ, whereas the line integral on r is of order
2klQ , that the above is bounded, up to constant, by

(2klQ)2s

(2klQ)2(1+s)

lQ
(2klQ)

(∫
2klQ

|ϕ|dσ
)2

+
lQ

(2klQ)

⎛⎝ ∑
j>k, 2j lQ�1

(2klQ)s
∫
2jQ

|ϕ|dσ
(2j lQ)1+s

⎞⎠2

.
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Hence, adding up in k, we will have that (8.3) is bounded, up to a constant, by

∑
k�1, 2klQ�1

1
2k

(
1

2klQ

∫
2klQ

|ϕ|dσ
)2

+
∑

k�1, 2klQ�1

1
2k(1−2s)

⎛⎝ ∑
j>k, 2j lQ�1

1
2js

1
2j lQ

∫
2jQ

|ϕ|

⎞⎠2

By Hölder’s inequality, the above is bounded by

∑
k�1, 2klQ�1

1
2ks

(
1

2klQ

∫
2klQ

|ϕ)|
)2

.

We now sketch how to finish the proof of theorem 5.1. First, lemma 8.3 gives that
a.e. ζ ∈ Q, m#

λ,QG(ψ)2(ζ) � M(ψ)(ζ)2, where M(ψ) denotes the Hardy-Littlewood
maximal function. Next, we have that for any Q ∈ Di, there exists a sparse family
S(Q) = (Qk

j ), Qk
j ∈ Di so that if we denote by

T S
l (ψ)(ζ) =

⎛⎝ ∑
Qk

j ∈S(Q)

(ψ2lB(Qk
j ))

2χQk
j
(ζ)

⎞⎠1/2

,

then by theorem 8.1, we have that if

T S(ψ)(ζ) =
∑
l�0

1
2l/4

T S
l (ψ)(ζ),

then for a.e ζ ∈ Q,

|G(ψ)(ζ)2 −mQ(G(ψ)2)| �

⎛⎝M(ψ)(ζ)2 +
∑
l�0

1
2l/2

(
T S

l (ψ)
)2⎞⎠ .

Hence

|G(ψ)(ζ)2 −mQ(G(ψ)2)|1/2 � M(ψ)(ζ) + T S(ψ)(ζ),

where M is the Hardy-Littlewood maximal function.
It is proved in [16] that for any ω ∈ A3,

‖T S(ψ)‖L3(ω) � ‖ψ‖L3(ω).

Observe that here we are not interested in obtaining sharpest estimates and in
consequence, we could have chosen other index p0 > 2 instead of p0 = 3.
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On the other hand, the Hardy-Littlewood maximal function maps L3(ω) to L3(ω),
so, ‖M(ψ)‖L3(ω) � ‖ψ‖L3(ω). Altogether gives that

‖
(
G(ψ)2 −mQ(G(ψ)2)

)1/2 ‖L3(ω) � ‖ψ‖L3(ω).

Hence

‖G(ψ)‖L3(ω) = ‖G(ψ)2‖1/2

L3/2(ω)

� ‖G(ψ)2 −mQ(G(ψ)2)‖1/2

L3/2(ω)
+ ‖mQ(G(ψ)2)‖1/2

L3/2(ω)

� ‖ψ‖L3(ω) + ‖mQ(G(ψ)2)‖1/2

L3/2(ω)
.

Finally, it is proved in [9] that

‖mQ(G(ψ)2)‖1/2

L3/2(ω)
� ‖ψ‖L3(ω).

Rubio de Francia’s extrapolation theorem gives then that ‖G(ψ)‖Lp(ω) �
‖ψ‖Lp(ω). �
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