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Destabilizing effects of confinement on
homogeneous mixing layers

J. J. HEALEY†
Department of Mathematics, Keele University, Keele, Staffs ST5 5BG, UK

(Received 30 July 2008 and in revised form 6 November 2008)

The absolute and convective instability properties of plane mixing layers are
investigated for linearized inviscid disturbances. It is shown that confinement by
plates parallel to the flow can enhance the absolute instability so much that even a
co-flow plane mixing layer becomes absolutely unstable when the ratio of distances
of the plates from the mixing layer lies in a certain range. Even when the plates
are placed equidistantly from the mixing layer, a co-flow mixing layer can become
absolutely unstable if the velocity profile has an asymmetry about its mid-plane.
‘Semiconfinement’, where a plate is only added to one side of the mixing layer, is also
investigated. A substantial destabilization is possible when the plate is added on the
side of the faster stream. Previous investigations seem only to have found absolute
instability when the streams flow in opposite directions.

1. Introduction
A flow is called absolutely unstable if growing disturbances propagate both

upstream and downstream of the disturbance source, and convectively unstable
if they only grow as they propagate away from the source. This distinction can
have important physical consequences because an absolute instability can generate
a global mode with an intrinsic natural frequency that dominates the flow, while
convectively unstable flows amplify certain extrinsic disturbances as they are carried
downstream. These ideas, and a method for distinguishing between absolute and
convective instabilities, were developed in the early 1960s in the field of plasma
physics (see Briggs 1964), and independently by Gaster (1968) in hydrodynamics.
However, they started to have a major impact in hydrodynamic stability theory
following Huerre & Monkewitz (1985)’s application of Briggs’ method to an inviscid
plane mixing layer, and here we return to this classic problem.

We consider plane mixing layers whose streams have constant dimensional velocities
U ∗

1 and U ∗
2 far from the mixing layer. In particular, making velocities dimensionless

using (U ∗
1 + U ∗

2 )/2, we examine mixing layers written in the form

U (y) = 1 + rf (y), (1.1)

where U is the dimensionless basic flow in the x direction, y is in the cross-stream
direction, limy→±∞ f (y) = ± 1 and r =(U ∗

1 − U ∗
2 )/(U ∗

1 +U ∗
2 ). Lengths have been scaled

on some convenient measure of shear-layer thickness. Without loss of generality, we
shall consider r > 0. We refer to the case r < 1 as a co-flow mixing layer since U ∗

1

and U ∗
2 then have the same sign, and the case r > 1, where U ∗

1 and U ∗
2 have opposite
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242 J. J. Healey

signs, as a counter-flow mixing layer. Intuitively, one expects the mixing layer to
be convectively unstable when r is small enough, and absolutely unstable when r

is large enough. Huerre & Monkewitz used f (y) = tanh(y/2) and found that the
transition from convective to absolute instability occurs at r = rt =1.315, i.e. when
the counter-flow is sufficiently strong.

Huerre & Monkewitz also noted a difficulty in the application of Briggs’ method
that arises when r < 0.84. In Briggs’ method the solution to the initial-value problem
posed by introducing an impulsive disturbance to an otherwise undisturbed flow is
expressed as an inverse Fourier–Laplace transform. The integration paths are placed
according to the principles of causality and residue theory is used to evaluate the ω

(angular frequency) integral, leaving an integral over α (streamwise wavenumber). At
large times this integral may be estimated asymptotically by deforming the integration
path through certain saddle points in the complex α plane where dω/dα =0.
The dominant saddle, called the ‘pinch point’ in Briggs’ terminology, is found by
mapping out contours of constant Im(ω) in the complex α plane. Essentially, the
pinch point is the highest saddle point whose valleys contain the real α axis as
α → ±∞.

When r < 0.84, the pinch point moves into the Re(α) < 0 half-plane, i.e. the left
half-plane. Such waves appear unphysical because modes continued into the left half-
plane grow exponentially with distance from the shear layer, and so fail to satisfy
homogeneous boundary conditions. This can be seen by considering the Rayleigh
equation, which describes small amplitude disturbances in the form v(y) exp i(αx −ωt)
superimposed on a basic flow U (y),

(U − c)(v′′ − α2v) − U ′′v = 0, (1.2)

where v is the vertical component of the disturbance velocity and c = ω/α. The
boundary conditions for mixing layers are v → 0 as y → ±∞, which defines an
eigenvalue problem, whose solution gives the dispersion relation, i.e. a relationship
between α and ω see Drazin & Reid (1981). When y → ∞, U → 1 + r by (1.1), so
(1.2) reduces to

v′′ − α2v = 0, (1.3)

provided c �= 1+r . The solution to (1.3) satisfying homogeneous boundary conditions
is v =A exp(−αy) when Re(α) > 0, where A is an arbitrary constant. If a solution of
the dispersion relation is followed across the imaginary α axis from the right half-
plane into the left half-plane, then v would increase exponentially in y, and no longer
satisfy homogeneous boundary conditions. Similar considerations apply as y → −∞.
This is the difficulty encountered by Huerre & Monkewitz; for r < 0.84 their shear
layer has no pinch point satisfying homogeneous boundary conditions. However, at
these values of r , Im(ω) < 0 at the pinch point, i.e. disturbances decay exponentially
in time, and this case was not studied further.

In fact, left half-plane modes have been observed in a number of different flows: in
swirling jets (see Lim & Redekopp 1998), and in plane and circular jets and wakes of
various density ratios (see Yu & Monkewitz 1990; Juniper & Candel 2003; Juniper
2006), but in these studies they were dismissed as non-physical.

Nonetheless, left half-plane modes do have a physical interpretation, and
furthermore, as we discuss below, they can imply that confinement of such a flow in the
cross-stream direction can strengthen or even create absolute instability. Therefore,
Huerre & Monkewitz’s observation of left half-plane modes in the mixing layer
suggests that this flow may also be destabilized by confinement. In the present work,
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Destabilizing effects of confinement on homogeneous mixing layers 243

we investigate this possibility and show that the effect can be sufficiently strong that
even co-flow mixing layers can become absolutely unstable.

Understanding left half-plane modes follows from remembering that one is
interested in an initial-value problem in which initially the flow is undisturbed.
After the disturbance has been introduced, the flow remains undisturbed far from
the disturbance source due to the finite propagation velocities of the disturbance.
Therefore, homogeneous boundary conditions are always satisfied. If a disturbance
with the frequency of an unstable left half-plane mode is introduced, then it propagates
in the y direction, growing exponentially in y behind a front, beyond which the flow
is undisturbed, and homogeneous boundary conditions are satisfied. This, perhaps
surprising, scenario was discovered by Healey (2006b) in a study of disturbances
in the rotating-disk boundary layer, where it had been found that the pinch point
for this flow can become asymptotically close to the imaginary α axis, giving rise
to unstable left half-plane modes (see Healey 2006a). It was shown that asymptotic
saddle point calculations, based on left half-plane modes, for propagation velocities,
and exponential growth rates in y, agree with numerical evaluation of the inverse
transforms where the integration path is made up of the usual right half-plane modes.
It was also shown how disturbance energy generated inside the boundary layer in the
main part of the disturbance is carried outside the boundary layer and back upstream
in such a way that sustains this wall-normal growth in a region of zero-mean shear,
and therefore zero-Reynolds stress. These papers show that the left half-plane modes
have the character of a convective instability in the crossflow direction.

Waves that grow in the cross-stream direction turn out to be very sensitive to
the boundary condition applied far from the shear layer. In an unconfined inviscid
shear layer the outer boundary condition is of exponential decay, i.e. v′(y) = −αv(y)
at some large value of y, but in an inviscid shear layer confined by a plate at y = h

the outer boundary condition is zero normal-flow at the plate, i.e. v(h) = 0. When
h � 1 the usual right half-plane modes are little affected by confinement because
the modes of the unconfined flow are exponentially small at y =h, so confinement
produces only a small modification to the dispersion relation, and in fact typically
stabilizes temporal waves (see § 2). However, flows with unstable left half-plane modes
are controlled by the properties of the dispersion relation near the imaginary α axis,
i.e. by the continuous spectrum associated with the branch cut of the square-root in

the solution outside a shear layer when it is written in the form v = A exp(−
√

α2y)
for y large and positive (this form makes it clear that it is the decaying solution
of (1.3) that is to be taken, regardless of the sign of Re(α)). Following a mode into
the left half-plane requires deforming this branch cut from the imaginary α axis.
The dispersion relation near the imaginary α axis is strongly affected by confinement
when Re(α) = O(h−1), i.e. when wavelengths are comparable to the distance to the
confining plate. Confinement causes the branch cut to be replaced by an infinite
discrete spectrum, which leads to infinitely many new saddle points lying close to the
imaginary α axis, some of which dominate the pinch point of the unconfined problem,
as shown by Healey (2007). Confinement therefore creates a new pinch point, which
destabilizes or can create absolute instability in flows with unstable left half-plane
modes.

Juniper (2007) used these ideas to extend his earlier work, Juniper (2006), in which
the left half-plane modes were excluded, so as to reinstate these modes in the jet/wake
problem. Juniper (2007) also considered the effect of finite thickness shear layers at
the jet/wake edge, but concluded that they only affect the growth in frames of
reference moving downstream, and so could be ignored when determining criteria for
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244 J. J. Healey

absolute instability. In the present paper, we identify circumstances where the detail
of the mixing-layer profile cannot be ignored in determining criteria for absolute
instability.

However, it seems that the first paper to recognize that confinement creates a family
of saddle points near the imaginary wavenumber axis was Koch (1985) in an early
application of Briggs’ method to a hydrodynamic stability problem. He studied the
inviscid compressible spatio-temporal stability of families of confined wake profiles,
including the piecewise-linear model considered by Juniper (2006). Koch’s primary
interest was in the saddle points of the unconfined version of the problem, but
his computational technique required a finite cross-stream domain, leading to the
appearance of the family of confinement saddle points. In his § 4.1, Koch notes
that a confinement saddle point can sometimes dominate the problem, and although
he questions its physical relevance, he points out that this shows the importance
that sidewalls, i.e. confinement, can have in spatio-temporal problems. We can now
recognize this as perhaps the earliest observation of destabilization of an absolute
instability by confinement.

When the left half-plane modes are unstable, the destabilizing effect of confinement
persists even as h → ∞. However, Huerre & Monkewitz showed that the left half-plane
modes are stable for the mixing layer. Nonetheless, we shall show that symmetric
confinement (plates equidistant from the mixing layer) is destabilizing for a finite
range of h (see § 3). Furthermore, we show that a much stronger destabilization can
occur when the shear layer is asymmetrically confined, i.e. when the two plates are
at different distances from the mixing layer (see § 4). This effect persists even as plate
separation tends to infinity, and is independent of the velocity profile in the mixing
layer. This large-separation limit, where the plates are far apart compared with the
mixing-layer thickness, corresponds to the case of varicose modes of the confined
jet/wake profile studied by Juniper (2006). However, with symmetric confinement
the absolute instability is always sensitive to the form of the velocity profile. In
§ 5 we identify a class of velocity profiles that are particularly absolutely unstable
under symmetric confinement. What we call ‘semiconfinement’, where a plate is only
added to one side of the mixing layer, is studied in § 6. Even though the continuous
spectrum is not replaced by an infinite discrete spectrum, substantial destabilization
is still found, and the effect persists when the plate is arbitrarily far from the mixing
layer, and again occurs regardless of the details of the mixing-layer profile. In this
limit where the plate is far from the mixing layer, we again recover a case considered
by Juniper (2006), and also by Yu & Monkewitz (1990), that of varicose modes of an
unconfined jet/wake profile. Conclusions are drawn in § 7.

2. Temporal instability of confined mixing layers
Rayleigh (1894) showed that confining an inviscid piecewise-linear mixing layer by

placing plates at y = ±h, and imposing boundary conditions v(±h) = 0, i.e. symmetric
confinement, has a stabilizing effect, which becomes more pronounced when the flow
is more strongly confined, i.e. as h is reduced, and a sufficiently strong confinement
completely stabilizes the flow to inviscid disturbances (see § 23 of Drazin & Reid
1981).

This conclusion remains true for smooth velocity profiles, and in this section we
derive some general results for the confinement of arbitrary profiles (1.1) with the
property f (−y) = −f (y). The qualitative effects of asymmetric confinement by plates
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Destabilizing effects of confinement on homogeneous mixing layers 245

at y =h1, y = −h2, h1 �= h2, and semiconfinement by a single plate on just one side of
the mixing layer are compared with the case of symmetric confinement.

Our theoretical results concern the neutral curve as confinement parameters are
varied. The effect of confinement on growth rates will be illustrated using numerical
solutions of the Rayleigh equation. Neutral waves have a critical point, yc, where
U (yc) = c, that coincides with the inflexion point where U ′′ = 0. When f (−y) = −f (y)
this implies yc = 0, and therefore c = 1, thus reducing (1.2) to

f (v′′ − α2v) − f ′′v = 0. (2.1)

This equation, with appropriate homogeneous boundary conditions, gives an
eigenvalue problem for α on the neutral curve. The neutral curve for temporal
instability is therefore independent of r , but the growth rates of unstable waves do
depend on r . Further results can be obtained in the long-wave limit, i.e. when α is
small (see § 2.1), and they will be illustrated using a tanh mixing-layer profile in § 2.2,
for which further analytical results can be obtained.

2.1. Effects of confinement on temporal stability in the long-wave limit

The intercept of the neutral curve with the α =0 axis can be obtained by noting
that when α = 0, v = f is a solution to (2.1). The second independent solution can
be found by making the substitution v(y) = f (y)V (y) in (2.1), and then the solution
satisfying v(−h2) = 0 can be written as

v = f (y)

[∫ y

−h2

1

f (t)2
− 1

f ′(0)2t2
dt − 1

f ′(0)2

(
1

y
+

1

h2

)]
. (2.2)

The case of asymmetric confinement is obtained by applying the homogeneous
boundary condition, v(h1) = 0, to (2.2) to give the eigenrelation

0 =

∫ h1

−h2

1

f (t)2
− 1

f ′(0)2t2
dt − h1 + h2

h1h2f ′(0)2
. (2.3)

For example, if h2 is specified, then h1 given by solving (2.3) gives the point where
the neutral curve meets the α = 0 axis. There are unstable waves when h1 is greater
than this critical value, and only stable waves when h1 is less than this value.

We now show that the case of symmetric confinement, h1 = h2 = hs , is a local
minimum of the plate separation h1 +h2 for neutral waves as α → 0. This means that
for a given plate separation with h1 + h2 > 2hs , where hs is the root of

0 =

∫ hs

−hs

1

f (t)2
− 1

f ′(0)2t2
dt − 2

hsf ′(0)2
, (2.4)

the most unstable configuration (locally) is when the mixing layer is exactly halfway
between the plates. Consider h2 close to hs , and then solve (2.3) for h1 for neutral
waves, i.e. let

h2 = hs + δ, (2.5a)

h1 = hs + h11δ + h12δ
2 + · · · , (2.5b)

where |δ| 
 1. Substituting (2.5) into (2.3), equating like powers of δ, and solving for
h11 and h12, gives

h1 = hs − δ +
2f ′(hs)

f (hs)
δ2 + · · · (2.6)

(see Appendix A for details).
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The plate separation for neutral waves for slightly asymmetric confinement, h1 +
h2 = 2hs + 2f ′(hs)/f (hs)δ

2, is therefore larger than the plate separation for neutral
waves for symmetric confinement, 2hs , provided f increases monotonically with y.
Note, however, that if f is not monotonic, e.g. if the basic velocity in the mixing layer
overshoots its value in the free stream, causing f ′(hs) < 0, then the most confined
flow that can support unstable waves will be asymmetrically confined, and not
symmetrically confined.

The case of semiconfinement by a single plate is not directly obtained simply by
letting h1 → ∞ in (2.3) because the integral is then not convergent. Instead, we write
the solution (2.2) in the form

v = f (y)

[∫ y

−h2

1

f (t)2
− 1

f ′(0)2t2
− 1 dt + y + h2 − 1

f ′(0)2

(
1

y
+

1

h2

)]
. (2.7)

As y → ∞ we require v ∝ exp(−αy), which can be seen by letting f → 1 in (2.1). The
solution (2.7) is only valid for small α, and so the required behaviour of (2.7) as y

increases is that it should become proportional to 1 − αy, the first two terms in the
Taylor expansion for exp(−αy). Therefore,

α ∼ −
[∫ ∞

−h2

1

f (t)2
− 1

f ′(0)2t2
− 1 dt + h2 − 1

f ′(0)2h2

]−1

. (2.8)

This expression is only valid when the right-hand side of (2.8) is small, which happens
when h2 is small, and in this limit we obtain an expression for the neutral curve for
semiconfinement when the plate at y = −h2 is close to the centre of the mixing layer,

α ∼ f ′(0)2h2. (2.9)

The same result is obtained when the mixing layer is confined at y > 0, since this
corresponds to replacing f by −f .

2.2. Effects of confinement on the temporal stability of a tanh mixing-layer profile

Here we illustrate the results obtained in § 2.1 using

f (y) = tanh(y/2), (2.10)

which is to be substituted into (2.1), and gives the mixing-layer profile (1.1). Although
(2.10) does not typically arise as a solution to the Navier–Stokes equation, or to
boundary-layer equations, it is a convenient model mixing layer for which some exact
analytical stability results can be derived. Furthermore, it is the profile used by Huerre
& Monkewitz (1985) in their study of the absolute instability of an unconfined mixing
layer. We shall also use this model profile to illustrate the effects of confinement on
absolute instability in subsequent sections of the present paper.

It may be verified that the general solution of (2.1), when f is given by (2.10), is

v =A1

[
2α cosh(αy) − sinh(αy) tanh

(
y

2

)]
+ A2

[
2α sinh(αy) − cosh(αy) tanh

(
y

2

)]
,

(2.11)

where A1 and A2 are arbitrary constants (see Michalke 1964).
The only eigenvalue for the unconfined case, where limy→±∞ v = 0, is α = 1/2, and

the eigenfunction is given by A2 = 0, i.e. v =A1sech(y/2). The unconfined flow is
unstable for 0 <α < 1/2, and stable for α > 1/2. We shall show that the neutral
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1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

Stable

Unstable

A C

h

B

α

Figure 1. Dashed line is neutral wavenumber for temporal instability of the unconfined
mixing layer (2.10), α = 1/2. Solid lines are neutral curves for temporal instability of the same
mixing layer subject to confinement: A is for semiconfinement by a single plate placed at y = h,
(2.12); B is for symmetric confinement by plates placed at y = ± h, (2.13); C is for asymmetric
confinement by plates at y = h1 and y = −h2 where h2 = 3h1 and h is half the width of the
channel, h = (h1 + h2)/2, (2.14).

curves for temporal stability for confined flow all asymptote towards α = 1/2 as the
plates are moved away from the mixing layer. In fact, they approach this asymptote
exponentially fast.

The neutral curve for temporal stability in the semiconfined case, with boundary
conditions v(−h) = limy → ∞ v = 0, is obtained using A2 = −A1, so that v ∝ exp(−αy)
as y → ∞. Applying the boundary condition v(−h) = 0 gives the following equation
for the neutral curve for temporal instability of a semiconfined mixing layer:

α =
1

2
tanh

(
h

2

)
. (2.12)

The same equation is obtained when the plate is placed on the other side of the
mixing layer. For small h, (2.12) reduces to (2.9), and for large h, α → 1/2 from
below.

The neutral curve for temporal stability in the symmetrically confined case, with
boundary conditions v(±h) = 0, is obtained from taking A2 = 0, to give an even
eigenfunction, and points on the neutral curve then satisfy

0 = 2α − tanh(αh) tanh

(
h

2

)
. (2.13)

As α → 0, (2.13) reduces to 0 = 2 − h tanh(h/2), in agreement with (2.4), and it has
root h ≈ 2.399. Developing a large-h asymptotic approximation to (2.13), we find
α ∼ (1/2) tanh2(h/2), which approaches α = 1/2 more slowly than (2.12).

The neutral curve for symmetric confinement, (2.13), therefore lies below, and to
the right, of the neutral curve for semiconfinement, (2.12), i.e. symmetric confinement
is more stable than semiconfinement (see figure 1).

The results in § 2.1 indicate that for a given plate separation, h1 + h2, asymmetric
confinement is more stable than symmetric confinement, and this can also be
illustrated for the mixing layer (2.10). The equation for the neutral curve for
asymmetric confinement is found by eliminating A1 and A2 from the pair of
simultaneous equations obtained by setting v(h1) = 0 and v(−h2) = 0 in (2.11)
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0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.10

Im (ω)

h
h = 6.0

h = 4.5

h = 3.0

∞ �

α

Figure 2. Growth rates for temporal instability of the mixing layer (2.10) substituted into
(1.2) confined by plates at y = ± h and with shear strength r = 1. The curve labelled h → ∞
corresponds to the unconfined flow.

to give

0 =
2α tanh(αh1) − tanh(h1/2)

2α − tanh(αh1) tanh(h1/2)
+

2α tanh(αh2) − tanh(h2/2)

2α − tanh(αh2) tanh(h2/2)
. (2.14)

If we let h2 = θh1, with θ > 1, then for large plate separations the neutral curve
behaves like α ∼ (1/2) tanh(h1/2), which approaches the unconfined limit, α = 1/2,
more slowly than the case of symmetric confinement with the same plate separation,
because 2h = h1+h2 ⇒ h1 = 2h/(1+θ) < h. Therefore, the neutral curve for asymmetric
confinement by plates a certain distance apart lies to the right, and below, the neutral
curve for symmetric confinement.

Examples of neutral curves for semiconfinement, symmetric confinement and
asymmetric confinement are given in figure 1, which confirms the progressively
increasing stabilization of these three cases, respectively.

Although figure 1 shows that confinement does not affect much the neutral curve
for temporal instability for symmetric confinement for h � 6, it has a relatively strong
stabilizing effect on the growth rate at h = 6, and for smaller h, especially for the
longer waves (see figure 2). These growth rates require a numerical solution of (1.2),
and depend on the shear strength, r .

3. Absolute instability of a symmetrically confined mixing layer
Despite the clear stabilizing effect of confinement on the temporal instability of

the mixing layer, confinement can destabilize an absolute instability, and Huerre &
Monkewitz’s observation that the pinch point can enter the left half of the complex
wavenumber plane indicates that this could be the case for the mixing layer. The
reasoning behind this unexpected assertion follows from the singular nature of the
perturbation on the dispersion relation produced by weak confinement (i.e. when
h is large). The solution to (1.3), v ∝ exp(−αy), confirms that confinement has a
negligible effect on the dispersion relation when Re(α)h � 1, and also tells us that
confinement has a significant effect when Re(α) = O(h−1), i.e. close enough to the
imaginary wavenumber axis.

The most dramatic alteration to the dispersion relation made by confinement is
the creation of poles along the imaginary wavenumber axis. Near a pole at a finite
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α = αp , ω → ∞, and therefore the coefficient of c in (1.2) tends to zero, giving

v′′ − α2
pv = 0. (3.1)

While (1.3) only applies to regions of the flow where the basic flow U has zero
curvature, (3.1) applies to the whole of any flow independently of U when |c| � 1.
There are no nontrivial solutions to (3.1) satisfying v → 0 at both y → ∞ and
y → −∞, and so there are no poles in the unconfined flow. However, there are non-
trivial solutions to (3.1) satisfying the confined flow boundary conditions, v(±h) = 0,
when

αp = ± inπ

2h
, where n= 1, 2, 3, . . . . (3.2)

Therefore, in the confined flow there are infinitely many poles along the imaginary
wavenumber axis; they are π/(2h) apart, and depend only on the separation of the
plates, not on the flow between the plates. The corresponding expression for the
poles for three-dimensional waves in a confined crossflow are given in (3.3) of Healey
(2007), and in a cylindrical geometry for confined swirling jets they are found from
zeros of the J1 Bessel function (see (4.15) of Healey 2008).

In fact, the poles created by confinement correspond to acoustic modes in the
compressible problem: the magnitude of the phase velocity |c| → ∞ near a pole
in the incompressible problem, and the waves are periodic in the cross-stream
direction with an integer number of half-wavelengths fitting between the confining
plates.

A pair of saddle points is associated with each pole. Even if the dispersion relation
is almost non-dispersive in the unconfined flow, e.g. ω ∼ a1α, then a pole created by
confinement at α = αp modifies the dispersion relation to ω ∼ a−1/(α−αp)+a1α, which
has saddle points at α = αp ±

√
a−1/a1, which are close to the pole if a−1 is small.

These saddles created by confinement must be close to the poles when h is large, since
the poles lie on the imaginary wavenumber axis, and the dispersion relation is only
affected by confinement close to the imaginary axis, i.e. for Re(α) = O(h−1), so the
confinement saddles are expected to lie no farther than O(h−1) from the imaginary
axis of the complex wavenumber plane. Asymptotic formulae for the saddle points
and branch points surrounding each pole at large h are presented in Healey (2007) for
the rotating-disk boundary layer, but the heuristic arguments presented here describe
the essence of the effect of confinement, which we now illustrate using a mixing-layer
profile.

The Rayleigh equation (1.2) is solved numerically. The boundary conditions
v(±h) = 0 are applied in the confined case. A solution v1, with initial conditions
v1(h) = 0, v′

1(h) = 1, is integrated from y = h to y = 0, and a solution v2, with
initial conditions v2(−h) = 0, v′

2(−h) = 1, is integrated from y = −h to y = 0.
Roots of the dispersion relation are obtained by adjusting either α or ω until
v1(0)/v′

1(0) = v2(0)/v′
2(0) is satisfied within some small tolerance. The same procedure

is followed in the unconfined case, but with initial conditions v1(h0) = 1, v′
1(h0) = −α

and v2(−h0) = 1, v′
2(−h0) = α, where h0 > 0 is a large enough value for the basic

velocity profile to be uniform at y = ± h0. These initial conditions force exponential
decay of the solution with distance from the shear layer when Re(α) > 0.

Figure 3(a) shows the complex wavenumber plane for the unconfined mixing layer
(2.10). There is a single saddle point, and at this value of r , the unconfined flow
is convectively unstable since Im(ω) < 0 at the saddle point. Figure 3(b) shows the
appearance of poles and saddles created by confinement. At this value of h, the
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Figure 3. Contours of constant Im(ω) for the mixing layer (2.10) for r = 1.25. (a) Unconfined
flow; (b) confined flow with h = 40; (c) confined flow with h = 13. In each case, the hills
and valleys of the dominant saddle point (pinch point) are marked by h and v, respectively.
Contours terminate when a critical point (at yc where U (yc) = c) crosses the real y axis. Disks
on imaginary α axis are poles given by (3.2).

saddles are close enough to the imaginary α axis not to affect the saddle point of
the unconfined flow, which remains the dominant saddle. However, as h is reduced,
the confinement saddle points move farther away from the imaginary α axis, and
in figure 3(c) the flow is absolutely unstable with one of the confinement saddle
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Figure 4. Neutral curve for absolute instability for the mixing layer (2.10) confined by plates
at y = ± h.

points becoming the dominant saddle point. Thus, confinement can create absolute
instability.

Figure 4 shows the neutral curve for absolute instability for (2.10) with confinement.
As h → ∞, the neutral curve approaches the value r = 1.316, corresponding to that
found by Huerre & Monkewitz (1985) for the onset of absolute instability in the
unconfined flow. For h < 20.2, a confinement saddle point becomes the dominant
saddle point, and for 8.7 <h< 19.8 confinement makes the flow more absolutely
unstable than the unconfined problem. It is only for h < 8.7 that the stabilizing effect
of confinement seen on the temporal instability also stabilizes the absolute instability.

4. Absolute instability of asymmetrically confined mixing layers
In this section, we show that much stronger destabilization of the absolute instability

is possible when the mixing layer is confined asymmetrically, i.e. when the mixing
layer does not lie exactly halfway between the plates. We show first that this effect
does not depend significantly on the shape of the velocity profile in the mixing layer
when the plates are far apart by developing a long-wave theory for the arbitrary
mixing layer (1.1).

When h → ∞ the poles (3.2), with n finite, approach the origin of the complex
wavenumber plane, and so do the confinement saddle points associated with each
pole. This means that in this limit the confinement saddle points can be described
by a long-wave theory. It turns out that the leading-order dispersion relation of the
long-wave theory captures the dominant saddle point (pinch point).

The linearized inviscid disturbance equations are obtained by substituting normal-
mode forms for disturbances superimposed on the basic flow, U (y),

û(x, y, t) = U (y) + δu(y) exp i(αx − ωt), (4.1a)

v̂(x, y, t) = δv(y) exp i(αx − ωt), (4.1b)

p̂(x, y, t) = δp(y) exp i(αx − ωt), (4.1c)

where û, v̂ and p̂ are the velocity components in the x and y directions, and press-
ure, respectively, into the inviscid equations of motion, and linearizing in the small
parameter δ, which characterizes the amplitude of the wavy disturbances, to give
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iαu + v′ = 0, (4.2a)

−iωu + iαUu + U ′v = −iαp, (4.2b)

−iωv + iαUv = −p′. (4.2c)

The quantities u and p can be eliminated from (4.2) to give the Rayleigh equation,
(1.2), but the long-wave theory follows more easily from (4.2).

Let ε 
 1 be a small parameter characterizing the smallness of the wavenumber.
The separation of the plates (relative to the shear-layer thickness) is chosen to be of the
order of the wavelength of disturbances so that confinement effects enter the problem
at leading order. In the unconfined Kelvin–Helmholtz instability, c = ω/α = O(1),
and the same scaling applies in the confined problem. Therefore, the leading-order
long-wave scalings are

α = α0ε, ω = c0α0ε + · · · (4.3a, b)

and the boundary conditions are

v(h1/ε) = 0, v(−h2/ε) = 0, (4.4a, b)

where h1 and h2 are positive, and asymmetric confinement occurs when h1 �= h2.
The disturbance equations (4.2) are solved using matched asymptotic expansions,

in which the solution’s slow exponential behaviour far from the shear layer, where the
solution varies on the scale of the wavelength, is matched to a more rapid variation
on the scale of the shear-layer thickness. The dispersion relation at leading order for
(1.1) is found to be

[(c0 − 1)2 + r2] sinhα0(h1 + h2) = 2r(c0 − 1) sinh α0(h2 − h1) (4.5)

(see Appendix B for details). It is important to note that, at this order, the dispersion
relation is independent of f (y); the dependence on the detail of the velocity profile is
a higher-order effect. In fact, (4.5) is the dispersion relation that would be obtained
by confining two uniform streams that are separated by a vortex sheet, i.e. f (y) = 1
for y > 0 and f (y) = −1 for y < 0.

The case of symmetric confinement, h1 = h2, is seen to be a degenerate case,
reproducing the non-dispersive unconfined Kelvin–Helmholtz dispersion relation
c0 = 1± ri. However, any degree of asymmetry in the confinement, h1 �= h2, makes the
flow dispersive at leading order, and therefore gives the possibility of saddle points,
and absolute instability, for mixing layers independently of their velocity profiles
provided that the plate separation is sufficiently large.

Even though (4.5) was derived for small α and c = O(1), (4.3), it correctly predicts
the existence and location of poles in the complex wavenumber plane; poles, at which
|c0| → ∞, occur at zeros of the coefficient of c2

0 in (4.5), i.e. at

αp = ± inπ

(h1 + h2)
, where n= 1, 2, 3, . . . , (4.6)

in agreement with (3.2) where h = h1 = h2. As discussed in § 3, there are saddle points
close to the poles, and figure 5 gives an example of the complex wavenumber plane for
the asymmetrically confined mixing layer in the long-wave limit, showing saddle points
created by confinement near the imaginary wavenumber axis. The dispersion relation
(4.5) reduces to the non-dispersive unconfined Kelvin–Helmholtz dispersion relation
when Re(α0)h1 � 1 and Re(α0)h2 � 1, because then | sinhα0(h2 − h1)| 
 sinhα0(h1 +
h2), and so contours of constant Im(ω) become straight lines with gradient −r . These
contours do not return to the real α axis for (4.5) because at this order there is no
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Figure 5. Contours of constant Im(ω0) in the complex α0 plane for the leading-order
long-wave dispersion relation (4.5) for the asymmetric confinement h1 = 1, h2 = 2.5 and shear
strength r = 1. The dominant saddle point (pinch point) is marked by the solid disk and lies
at α0 = 0.554 − 1.008i and has ω0 = 1.850 + 0.004i, corresponding to absolute instability. (b) is
an enlargement of (a). Darker shades correspond to more negative Im(ω0), and lighter shades
to more positive Im(ω0).

short-wave stabilization, which depends on the mixing layer having finite thickness;
at leading order in the long-wave theory, the mixing layer has a negligible thickness
compared to wavelength. Note also that the qualitative arrangement of contours in
figure 5 depends only on r and the ratio h2/h1; changing h1 and h2 at fixed h2/h1

only changes the scales on the axes of the complex wavenumber plane and the value
of Im(ω) on each contour.

Figure 5 shows that all shear layers with r = 1 are absolutely unstable for h2/h1 = 2.5
with finite positive Im(ω), provided that the plates are far enough apart. Therefore,
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Figure 6. Neutral curve for absolute instability for the leading-order long-wave dispersion
relation for asymmetric confinement (4.5). Discontinuities in gradient correspond to changes
in dominance of saddle points.

co-flow shear layers with r < 1 can be absolutely unstable with suitable asymmetric
confinement. Figure 6 shows the neutral curve for absolute instability in the long-
wave limit. The minimum value of r for absolute instability in this limit is r =0.996,
which occurs at h2/h1 = 2.53. There is co-flow absolute instability, i.e. r < 1, for
2.35 <h2/h1 < 2.72, and the asymmetrically confined tanh profile, (2.10), is more
absolutely unstable than the unconfined case for h2/h1 > 1.42, i.e. the neutral curve
then lies in r < 1.316.

These long-wave results apply in the limit h1 → ∞ and h2 → ∞. Greater
destabilization of the absolute instability occurs as h1 and h2 are reduced due to
the same mechanism as described in § 3 where the confinement saddles move farther
away from the imaginary wavenumber axis as the mixing layer becomes more strongly
confined (see figure 3), leading to enhanced absolute instability at finite confinements
(see figure 4). Figure 7 shows the extent of this additional destabilization effect at finite
plate separations: at h1 = 15, h2 = 2.53h1, the flow becomes absolutely unstable when
r = 0.934. The long-wave dispersion relation (4.5) is shown to give good quantitative
predictions for the dominant saddle point even when the plate separation is not
especially large.

Figure 8 shows the complex wavenumber plane obtained from numerical solutions
of the Rayleigh equation, (1.2), for the tanh profile, (2.10), for an asymmetric
confinement. The dominant saddle point is the one nearest the real α axis, which is
in agreement with the prediction made by the long-wave theory shown in figure 5.
The qualitative arrangement of the saddle points nearest the real α axis in figure 8 is
also very similar to those in figure 5. However, while the contours in figure 5 become
parallel to Im(α) = −rRe(α) as Re(α) increases, in figure 8 they return to the real α

axis because the finite thickness of the mixing layer (2.10) stabilizes sufficiently short
waves.

In the long-wave limit the dispersion relation for asymmetric confinement of a
mixing layer corresponds to that for varicose modes of the confined jet/wake flow
considered by Juniper (2006). Figure 6 thus corresponds to Juniper’s figure 11. Juniper
provides an explanation for the multiple minima of the neutral curve in figure 6. A
family of confinement saddle points can be associated with each plate. The distance
of each family from the imaginary wavenumber axis, and the distance between them
along the imaginary axis, scales inversely with the distance of each respective plate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

52
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005284


Destabilizing effects of confinement on homogeneous mixing layers 255

25 50 75 100 125 150 175 200

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

20 40 60 80 100
–0.10

–0.05

0

0.05

0.10

r

Long-wave theory

Absolutely
unstable

(a)

Convectively unstable

Re(ω)

Re (α)

(b)

Im(α)

h1

Figure 7. (a) Neutral curve for absolute instability for the asymmetrically confined tanh
profile, (2.10), with h2 = 2.53h1 and ε = 1 in (4.4). (b) Real and imaginary parts of the
eigenvalues at the saddle point along the neutral curve shown in (a). In each diagram, solid
lines correspond to numerical solutions of the Rayleigh equation, (1.2), and dashed lines to
the leading-order long-wave theory, (4.5).
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Figure 8. Complex wavenumber plane for the asymmetrically confined tanh profile, (2.10), at
the point h1 = 30, h2 = 2.53h1, r = 0.9489 on the neutral curve shown in figure 7(a). Solid disks
are the poles predicted by (4.6) and the dominant saddle point (pinch point) is marked P .

from the mixing layer. It is found that when the plate separations are such that the
saddle points of one family interact with saddle points of the other, then there is
particular destabilization of the absolute instability giving local minima of the neutral
curve in figure 6. Physically, this interaction corresponds to when the cross-stream
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wavelengths in the streams on either side of the mixing layer match, leading to a kind
of constructive interference.

5. Dependence of absolute instability on the velocity profile with symmetric
confinement

We now return to the case of symmetric confinement studied in § 3 where it
was shown that a range of finite plate separations could destabilize the absolute
instability of the tanh mixing-layer profile (2.10) when the plates are equidistant from
the mixing layer. The discussion in § 4 shows that certain asymmetric confinements
cause significantly greater destabilization of the absolute instability, such that even
co-flow mixing layers become absolutely unstable. Furthermore, it was shown that
this effect persists even when the plate separation is arbitrarily large.

It was also noted in § 4 that symmetric confinement is a degenerate case in
the long-wave limit, with dispersion only appearing as a higher-order correction
in the theory. The results for symmetric confinement are therefore expected to be
sensitive to the particular shape of the velocity profile. In the present section, we
show that this is indeed the case, and identify a class of modifications to the basic
velocity profile that substantially enhances absolute instability in the presence of
symmetric confinement, to the extent that co-flow absolute instability is possible in
this case too, for carefully chosen profiles and plate separations.

The nature of the modifications to the basic velocity profile that can enhance
the absolute instability can be found by considering the second-order long-wave
dispersion relation for the symmetrically confined mixing layer because this provides
an analytical expression for confinement saddle points that explicitly includes the
basic velocity profile. Although this theory applies in the limit h → ∞, and figure 4
shows that confinement saddle points are only dominant at finite values of h (h < 20.2
for the tanh profile 2.10), we find that the theory does give practical insights into how
modifications to the basic velocity profile affect absolute instability when the mixing
layer is symmetrically confined.

5.1. Long-wave theory for weakly confined mixing layers

The leading-order expansions (4.3) are extended to

α = α0ε, ω = α0ε(c0 + c1ε + · · ·) (5.1a, b)

and the boundary conditions are

v(±h0/ε) = 0. (5.2)

Setting h1 = h2 =h0 in (4.5), we find that the unstable solution of the leading-order
dispersion relation is c0 = 1 + ri, i.e. the non-dispersive unconfined Kelvin–Helmholtz
instability. The dispersion relation at next order is found to be

c1 =
i

4
rα0I1 tanh(α0h0) + irα0I2 coth(α0h0), (5.3)

where the dependence on the basic flow, (1.1), enters through the integrals

I1 =

∫ ∞

−∞
[f (t) − i]2 dt, I2 =

∫ ∞

−∞

1

[f (t) − i]2
dt (5.4a, b)

(see Appendix C for details). This second-order theory correctly predicts the existence
of poles at α0 = ± inπ/(2h0) for n= 1, 2, 3, . . . in agreement with (3.2).
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The condition for a saddle point, dω/dα = 0, can now be written using (5.1) as

0 =
d

dα0

[α0(c0 + εc1 + · · ·)]

⇒ 0 = 1 + ri + iεrα0

[
I1

2
tanh(α0h0) + 2I2 coth(α0h0)

+
α0h0I1

4
sech2(α0h0) − α0h0I2cosech2(α0h0)

]
. (5.5)

Equation (5.5) has roots when a term in the square brackets is O(ε−1). This occurs
when either sinh(α0h0) or cosh(α0h0) is small, i.e. near poles. In particular, at a saddle
point, α0 = ± inπ/(2h0) + O(ε−1/2). There are two cases depending on whether n is
odd or even

α = εα0 ∼ (2m + 1)πiε

2h0

{
1 ±

[
irI1ε

4h0(1 + ir)

]1/2
}

(5.6a)

⇒ ω ∼ (2m + 1)πiε

2h0

(1 + ir)

{
1 ±

[
irI1ε

h0(1 + ir)

]1/2
}

, (5.6b)

i.e. n = 2m + 1, and

α = εα0 ∼ mπiε

h0

{
1 ±

[
irI2ε

h0(1 + ir)

]1/2
}

(5.7a)

⇒ ω ∼ mπiε

h0

(1 + ir)

{
1 ±

[
4irI2ε

h0(1 + ir)

]1/2
}

, (5.7b)

i.e. n = 2m, where in each case m is a negative integer for the confinement saddle
points lying near the negative imaginary α axis, which figure 3 shows can form pinch
points when h is not too large. In fact, figure 3(c) shows that it is the n = −2, i.e.
m = −1 of (5.7), saddle point that becomes the pinch point for finite h, because the
pinch point in the figure is associated with the second pole down from the origin of
the complex wavenumber plane.

The results for the saddle points in the large h, long-wave, limit (5.6) and (5.7),
confirm that at large enough h symmetric confinement does not produce absolute
instability because in both (5.6b) and (5.7b), Im(ω) → nπ/(2h), as ε → 0, which is
negative for n< 0. However, at finite h, figure 4 shows that the confinement saddle
points can produce absolute instability, and the O(ε1/2) corrections shown in (5.6)
and (5.7) indicate the destabilizing effects as h is reduced, i.e. as ε increases.

The influence of the basic flow, f (y), on the absolute instability enters through the
integrals I1 and I2, and the growth rate of the saddle points depends on both the
modulus and argument of these complex quantities. The real and imaginary parts of
these integrals are

I1 =

∫ ∞

−∞
f (t)2 − 1 dt − i

∫ ∞

−∞
2f (t) dt, (5.8a)

I2 =

∫ ∞

−∞

f (t)2 − 1

[f (t)2 + 1]2
dt + i

∫ ∞

−∞

2f (t)

[f (t)2 + 1]2
dt. (5.8b)
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Figure 9. Asymmetric shear layer (5.9) with φ = 2 and δ = 0.1.

Therefore, both integrals are real when f is an odd function, such as (2.10), but
become complex when f is not an odd function. Therefore, breaking the symmetry
f (−y) = −f (y) directly modifies the growth rate of the confinement saddle points,
and offers the possibility of further enhancing the absolute instability.

5.2. Absolute instability of asymmetric mixing-layer profiles

The following velocity profile has parameters that control the strength of the profile
asymmetry, and therefore the size and sign of the imaginary parts of the integrals I1

and I2, which in turn modify the growth rate of the confinement saddle points,

f (y) =
δ

2

(
φ log

{
cosh[(1 + φy)/(φδ)]

cosh(y/δ)

}
+ log

{
cosh(y/δ)

cosh[(y − 1)/δ]

})
. (5.9)

In the limit δ → 0 (5.9) approaches the piecewise-linear profile

f (y) =

⎧⎪⎨
⎪⎩

1 for 1 � y

y for 0 � y < 1
φy for −1/φ � y < 0
−1 for y < −1/φ

. (5.10)

Thus, the parameter φ controls the asymmetry of the mixing layer: φ =1 causes
f (−y) = −f (y); φ > 1 causes the shear to be greater towards the slower stream; φ < 1
causes the shear to be greater towards the faster stream. The parameter δ characterizes
the distance over which each of the four layers in (5.10) merges into its adjacent layers.
In the limit δ → ∞ and φ = 1, (5.9) approaches f (y) = tanh(y/δ). Figure 9 illustrates
(5.9) for a particular pair of values of φ and δ.

By making suitable choices for φ and δ, and also the symmetric confinement
parameter h, it is possible to destabilize the absolute instability sufficiently to obtain
co-flow absolute instability, i.e. for r < 1. Figure 10 shows an example of the complex
wavenumber plane for co-flow absolute instability obtained from numerical solutions
of the Rayleigh equation. Note that, as for the symmetrically confined tanh profile
(2.10) (see figure 3), the pinch point in figure 10 also corresponds to the second pole
down from the origin, i.e. m = 1 in (5.7). In this example, the mixing layer is relatively
strongly confined, and the boundary layers on the confining plates might be expected
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Figure 10. Contours of constant Im(ω) for the asymmetric shear layer (5.9) with φ = 1.6,
δ = 0.02, h = 2.4 and r = 0.99003. The solid disks represent the poles (3.2). At the pinch
point, marked by a P , α = 0.912 − 1.201i and ω = 0.759. This flow is absolutely unstable for
r > 0.99003.

to affect the absolute instability, even though instabilities associated with boundary
layers are generally weaker than those associated with mixing layers.

In fact, asymmetry in the mixing-layer profile is a common feature in experiments,
and would be produced, for example, by the wake behind a splitter plate. This
asymmetry can be further strengthened if the boundary-layer thickness on one side
of the splitter plate is different from the boundary-layer thickness on the other side.
This will generally be the case because the flow velocity is different on either side of
the splitter plate. However, such an asymmetry will decay with distance downstream
from the splitter plate.

We note that Koch (1985) also considered asymmetric wake profiles, but he found
stabilization rather than destabilization. The results in this section for mixing layers,
guided by the long-wave theory, indicate that although destabilization by profile
asymmetry can be large enough to produce a co-flow absolute instability, it only does
so for carefully chosen profiles and confinements.

6. Absolute instability of semiconfined mixing layers
The absolute instability of the mixing layer is also affected by adding just a single

plate. We call this case ‘semiconfinement’; the flow is still taken to be of infinite extent
on one side of the mixing layer, but of finite extent on the other side. For example, if
a plate is added at y = h > 0, then the boundary conditions become

v(h) = 0, lim
y→−∞

(v′ − αv) = 0. (6.1a, b)

It is helpful to consider the long-wave dispersion relation for this case,

[(c0 − 1)2 + r2] exp(α0h0) = 2r(c0 − 1) exp(−α0h0), (6.2)

where the long-wave scalings (4.3) apply, and the plate is placed at y = h0/ε (see
Appendix D for details). The non-dispersive unconfined Kelvin–Helmholtz result,
c0 = 1 ± ri, is recovered when Re(α0)h0 � 1, but the exponential terms in (6.2) are
oscillatory near the imaginary α0 axis, and this leads to the appearance of an infinite
number of saddle points near this imaginary axis (see figure 11 for an example showing
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Figure 11. Contours of constant Im(ω0) in the complex α0 plane for the leading-order
long-wave dispersion relation (6.2) for the semiconfinement h0 = 1 and shear strength r =1.153.
The dominant saddle point (pinch point), marked by a solid black disk, lies at α0 = 0.414−1.132i
and has ω0 = α0c0 = 2.009. There is absolute instability for r > 1.153. Darker shades correspond
to more negative Im(ω0), and lighter shades to more positive Im(ω0).

the start of the sequence of saddle points that lie to the right of the negative imaginary
α0 axis). Note that the qualitative arrangement of the contours is independent of h0

in this leading-order dispersion relation; changing h0 only rescales the axes of the
diagram and the values on contours.

Although semiconfinement does not replace the imaginary axis branch cut with
poles (the coefficient of c2

0 in 6.2 is always non-zero, so there are no solutions
with |c0| → ∞), it generates an infinite number of saddle points near the imaginary
wavenumber axis. They correspond to columnar modes in the uniform flow between
the mixing layer and the confining plate whose cross-stream wavelengths are
compatible with the distance between the mixing layer and plate. These modes
are not present in boundary-layer flows, even though these flows might be regarded
as semiconfined shear layers, because they depend on there being a region of uniform
flow between the shear layer and plate that is significantly larger than the shear-layer
thickness.

The key observation to be made from figure 11 is that semiconfinement creates a
saddle point with Im(ω0) > 0 at lower values of r than required for absolute instability
in the unconfined case. Therefore, semiconfinement by a plate in the faster stream
enhances absolute instability provided the plate is far from the mixing layer, and in this
limit the effect is independent of the detail of the velocity profile. In fact, the threshold
for absolute instability in the semiconfined problem, r = 1.153, gives the horizontal
asymptote of the neutral curve for asymmetric confinement as h2/h1 → ∞ that can
be seen developing in figure 6. Figure 12 shows that this destabilization becomes
stronger as the plate approaches the mixing layer, leading to absolute instability at
r = 1.005, h = 11, for the tanh profile (2.10).

However, semiconfinement by placing a plate in the slower stream is found to
stabilize the absolute instability. One can either modify the boundary conditions (6.1)
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Long-wave theory
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Convectively unstable
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Figure 12. Solid line is the neutral curve for absolute instability for the semiconfined tanh
profile, (2.10), obtained from numerical solutions of the Rayleigh equation (1.2) with boundary
conditions (6.1). Dashed line is the large h, long-wave, asymptote to this neutral curve obtained
from (6.2), i.e. r = 1.153.
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Figure 13. Contours of constant Im(ω) in the complex α0 plane for the leading-order
long-wave dispersion relation (6.2) for the semiconfinement h0 = 1 and shear strength
r = −2.018, i.e. with the plate placed in the slower stream. The dominant saddle point,
marked by the solid black disk, lies at α0 = 0.864 − 2.782i and has ω0 = α0c0 = 6.864. This
saddle has Im(ω0) > 0 for r < −2.018. Darker shades correspond to more negative Im(ω0), and
lighter shades to more positive Im(ω0). There is no saddle near α = 0.06 − 0.2i, the contours in
this region have jumped from one solution for c0 from (6.2) to the other.

to v(−h) = 0, limy → ∞(v′ + αv) = 0, or, more simply, retain (6.1) and consider r < 0,
which swaps over the faster and slower streams (see (1.1)). Figure 13 shows saddle
points near the negative imaginary α0 axis created by semiconfinement due to a plate
in the slower stream. The principal difference between this case and that shown in
figure 11 is that here a stronger shear strength, |r |, is needed to destabilize these
saddle points, i.e. Im(ω) > 0 only for −r > 2.018.
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Figure 14. Solid line is the neutral curve for absolute instability for the semiconfined tanh
profile, (2.10), obtained from numerical solutions of the Rayleigh equation (1.2) with boundary
conditions (6.1). r < 0 corresponds to placing the plate in the slower stream.

Semiconfinement by a plate in the slower stream corresponds to the limit h2/h1 → 0
with r > 0 in the asymmetrically confined case. Therefore, there is a second neutral
curve for h2/h1 < 1 in figure 6 that asymptotes towards r = 2.018 as h2/h1 → 0. This
critical value of r is larger than the shear strength that produces absolute instability
in the unconfined case (r = 1.316). Therefore, in the case of semiconfinement with
the plate placed in the slower stream, the saddle point of the unconfined problem
remains the pinch point. Figure 14 shows the neutral curve for finite semiconfinement
for the tanh profile with a plate in the slower stream. As h → ∞, the neutral curve is
seen to asymptote towards the result for unconfined flow, as in figure 4. As h is reduced,
there is increasing stabilization of the absolute instability by semiconfinement.

These results agree with those of Yu & Monkewitz (1990) because in the long-
wave limit, the dispersion relation for semiconfinement of a mixing layer with the
plate in the faster stream corresponds to an unconfined jet, and when the plate is in
the slower stream it corresponds to an unconfined wake. Yu & Monkewitz found that
jets are more absolutely unstable than wakes.

7. Conclusions
7.1. General comments

Confinement of a mixing layer has a relatively straightforward effect on its temporal
stability. It exerts a stabilizing influence. This influence diminishes as the confining
plates are moved farther from the mixing layer. This behaviour has been known
since the work of Rayleigh (1894). The effects of semiconfinement (by a single plate),
symmetric confinement (by plates equidistant from the mixing layer) and asymmetric
confinement (by plates at unequal distance from the mixing layer) were studied in § 2.
Semiconfinement has the weakest stabilizing effect, symmetric confinement is more
stabilizing and asymmetric confinement is the most stabilizing. However, the neutral
curves for all these types of confinements asymptote towards the unconfined case
exponentially fast as the plates are moved away. These results underpin the pervasive
intuition that the presence of confinement can be ignored in many circumstances.

It is surprising, then, to discover that confinement can have a strong destabilizing
effect on a mixing layer’s absolute instability characteristics even when the plates are
arbitrarily far from the mixing layer.
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The strongest destabilizing effect of confinement was found for asymmetric
confinement when h2 = 2.53h1, where h2 is the distance of the plate in the slower
stream from the mixing layer, and h1 is the distance of the plate in the faster stream
from the mixing layer (see § 4). In fact, for 2.35 <h2/h1 < 2.72 there is co-flow absolute
instability when the plates are far enough apart regardless of the form of the mixing-
layer velocity profile (see figure 6). The absolute instability can be further enhanced by
bringing the plates closer to the mixing layer. For example, placing plates at h1 = 15,
h2 = 2.53h1 for the mixing layer (2.10) gives absolute instability when r > 0.934 (r < 1
gives co-flow, r > 1 gives counter flow).

Long-wave theories have been used to determine the circumstances when the
absolute instabilities are influenced by the details of the velocity profile and when
they are not. The long-wave theories also determine when the neutral curve for
absolute instability of a confined flow asymptotes towards the neutral curve for
absolute instability of the corresponding unconfined flow as the plates are moved
away from the mixing layer, and when they do not. For example, for the unconfined
mixing layer (2.10), the neutral curve for absolute instability is r = 1.316, but the
neutral curve for the asymmetrically confined case asymptotes towards a value of
r < 1.316 when h2/h1 > 1.42. The case of symmetric confinement, h2 = h1, therefore
lies in the range where the neutral curve for absolute instability asymptotes towards
the neutral curve for the unconfined flow, as illustrated in figure 4.

In fact, the long-wave theories reveal that symmetric confinement is a special case.
At leading order, the symmetrically confined flow has the same dispersion relation
as the unconfined flow, and is non-dispersive. Dispersion is an essential ingredient
of absolute instability, and there are no saddle points in the long-wave limit for
unconfined mixing layers (the long-wave dispersion relation is c = dω/dα = 1 ± ri �= 0).
The dispersion behind the absolute instabilities for asymmetric confinement is due to
the asymmetry of the confinement and is independent of the velocity profile. However,
dispersion only arises as a higher-order effect in the symmetrically confined case,
and at this order the dispersion relation depends on the mixing-layer velocity profile.
Therefore, absolute instability in symmetrically confined and unconfined mixing layers
depends sensitively on the basic velocity profile. A second-order long-wave theory
developed in § 5 for symmetric confinement indicates that breaking the f (−y) = −f (y)
symmetry can destabilize the absolute instability, and indeed we were able to find a
carefully chosen velocity profile that admits co-flow absolute instability for a certain
finite range of confinement.

Like asymmetric confinement, the case of semiconfinement also generates dispersion
at leading order in the long-wave limit. In § 6 we show that semiconfinement by a plate
in the faster stream enhances the absolute instability and produces absolute instability
for r > 1.153 regardless of the mixing-layer profile when the plate is far enough away
from the mixing layer. For the case of the tanh profile, (2.10), semiconfinement
produces absolute instability for r > 1.005 when h = 11. Co-flow absolute instability
could be possible for a semiconfined mixing layer for a suitably chosen profile and
confinement.

On the other hand, semiconfinement by a plate placed in the slower stream has
a stabilizing effect on the absolute instability, and this could provide a means for
substantially suppressing absolute instability in mixing layers.

Semiconfinement represents limiting cases of asymmetric confinement.
Semiconfinement by a plate placed in the faster stream corresponds to asymmetric
confinement as h2/h1 → ∞ and by a plate placed in the slower stream it corresponds
to asymmetric confinement as h2/h1 → 0.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

52
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005284


264 J. J. Healey

7.2. A mechanism for destabilization and stabilization by semiconfinement

Given that asymmetric confinement is the most stabilizing case for temporal instability,
it is curious that it should turn out to be the most destabilizing case for absolute
instability. Michael McIntyre (personal communication) has suggested a mechanism
that might underlie this behaviour. Consider Rayleigh’s piecewise-linear mixing-layer
profile

f (y) =

⎧⎨
⎩

1 for y > 1
y for −1 < y < 1

−1 for y < −1
(7.1)

substituted into (1.1). A derivation of the dispersion relation for the unconfined
problem can be found in Drazin & Reid (1981). In our variables, it is

c = 1 ± r

2α
[(1 − 2α)2 − exp(−4α)]1/2, (7.2)

which in the long-wave limit (small α) reduces to c ∼ 1 ± ri. In the short-wave limit
(large α) the joins in the segments at y = ± 1 act as waveguides and there are two
neutral branches to the dispersion relation, with a faster wave travelling at almost
the speed of the faster stream, and a slower wave travelling at almost the speed of
the slower stream,

c ∼ 1 + r − r

2α
, c ∼ 1 − r +

r

2α
. (7.3a, b)

The waves are non-dispersive in this limit too; they only see the jump in basic vorticity
at a join, which has no natural length scale. However, there is dispersion if a confining
plate is close enough to a join. Therefore, consider disturbances to (7.1) satisfying
boundary conditions v(1 + h1ε) = v(−1 − h2ε) = 0 with α = α0/ε and ε 
 1. We find

c ∼ 1 + r − εr

2α0

[1 − exp(−2α0h1)], c ∼ 1 − r +
εr

2α0

[1 − exp(−2α0h2)], (7.4a, b)

and the group velocities of these waves are

dω

dα
∼ 1 + r − εrh1 exp(−2α0h1),

dω

dα
∼ 1 − r + εrh2 exp(−2α0h2). (7.5a, b)

Therefore, the plate near the join at y = 1 slows down the mode associated with
this waveguide, (7.5a), and the plate near the join at y = −1 speeds up the mode
associated with this waveguide, (7.5b). The Kelvin–Helmholtz instability arises at the
coalescence of these two neutral waveguide modes as their wavelengths increase, i.e.
when the square bracket in (7.2) vanishes, leading to a complex conjugate pair of
branches to the dispersion relation, and hence temporal instability. Absolute instability
is associated with points of zero-group velocity, so it may be that placing a plate near
the mixing layer in the faster stream, which slows down the faster mode, while placing
the plate in the slower stream far from the mixing layer or removing it completely, so
as not to speed up the slower mode, has the net effect of tending to reduce the group
velocity, and thus promote absolute instability.

This mechanism is consistent with our observations that (i) asymmetric confinement
is destabilizing for a certain range of h1 < h2, (ii) semiconfinement is destabilizing when
the plate in the slower stream is removed and (iii) it is stabilizing when the plate in
the faster stream is removed. However, it does not explain all of our observations;
for example, the neutral curve for asymmetric confinement does not tend towards the
semiconfinement case monotonically as h2/h1 → ∞, and as noted above, the strongest
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destabilization was found for h2 = 2.53h1. Also, h2/h1 must exceed a threshold before
destabilization occurs; for the tanh profile (2.10) this threshold is h2 > 1.42h1.

These limitations are presumably related to the fact that this mechanism for slowing
the faster waveguide mode operates in the short-wave limit, while the absolute
instability is found to be destabilized by saddle points created by confinement near
the imaginary wavenumber axis, and when the branches form a complex conjugate
pair it is no longer possible to identify explicitly a faster and slower waveguide mode.

7.3. Relationship between mixing-layer results and jet/wake results

In the long-wave limit, the semiconfined mixing layer considered here corresponds
to varicose modes of the three-layered piecewise-linear model of the unconfined
jet/wake flow investigated by Yu & Monkewitz (1990). The confined mixing layer
in the long-wave limit corresponds to the varicose modes of the confined jet/wake
flow investigated by Juniper (2006). Consequently, Juniper’s figure 11 corresponds
to our figure 6. The non-monotonic behaviour of this neutral curve is explained by
Juniper in terms of interactions between families of saddle points associated with each
of the confining plates. The elimination of absolute instability at h = 1 in Juniper’s
figure 11 corresponds to the absence of absolute instability in the non-dispersive
leading-order long-wave limit of the symmetrically confined mixing layer. However,
this flow is absolutely unstable when one considers a realistic smooth velocity profile,
as in Huerre & Monkewitz (1985). Therefore, if smooth profiles are used for the
jet/wake velocity profiles instead of the piecewise linear profiles, then another saddle
point will appear and produce absolute instability when Juniper’s h (a ratio of fluid
layer thicknesses) is close to unity. Similar modifications would be present in Juniper’s
figure 15, which shows neutral curves for absolute instability over a range of density
ratios, and which also has absolute instability disappearing at h = 1.

The additional destabilization seen in our study at finite plate separations for
smooth profiles relative to the long-wave results at asymptotically large plate
separations for discontinuous profiles, e.g. in our figures 7 and 12, would also act to
extend the absolutely unstable parameter regions in Juniper’s figures 11 and 15.

7.4. Potential effects of viscosity

We conclude with some remarks concerning how the present inviscid results might
be affected by viscosity. The overall picture should not be modified much by small
viscosity, and in many mixing-layer flows the Reynolds number is relatively large.
The application of non-slip boundary conditions at the confining plates will generate
boundary layers adjacent to the plates. However, boundary-layer instabilities are
typically weaker than mixing-layer instabilities, so provided the boundary-layer
thicknesses are small compared to the distances from the plates and the mixing
layer, their presence should only make a small change to the stability characteristics.
The possibility that the boundary layers could nonetheless significantly affect the
propagation of disturbances is not so easily ruled out. After all, as we have illustrated
in this paper, confinement can have a negligible effect on temporal stability while
strongly affecting absolute instability, and so in principle, other small modifications,
like small viscosity, might do likewise. A viscous calculation would seem to be
necessary to settle the matter. However, the strong role of confinement was anticipated
because the pinch point in the unconfined problem lies relatively close to the
imaginary wavenumber axis, and this part of the wavenumber plane is strongly
affected by confinement. There appears not to be a similarly compelling reason
why weak viscosity should alter the propagation properties as dramatically as weak
confinement can.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

52
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005284


266 J. J. Healey

That said, the Orr–Sommerfeld equation for viscous disturbances to a parallel (or
weakly non-parallel) shear layer,

(U − c)(v′′ − α2v) − U ′′v =
1

iαRe
(v′′′′ − 2α2v′′ + α4v), (7.6)

i.e. the viscous extension to the Rayleigh equation, (1.2), has additional branch cuts in
the complex wavenumber plane. Outside a shear layer, where U → U∞, (7.6) reduces
to

(U∞ − c)(v′′ − α2v) =
1

iαRe
(v′′′′ − 2α2v′′ + α4v), (7.7)

which has independent solutions proportional to

exp(−
√

α2y), exp(
√

α2y), exp(−
√

α2 + iRe(αU∞ − ω)y), (7.8a, b, c)

exp(
√

α2 + iRe(αU∞ − ω)y) (7.8d )

of which (7.8a) and (7.8c) decay with distance from the shear layer. As noted in § 1,
the square-root function in (7.8a), which is the inviscid solution, has a branch point
at α = 0 and branch cuts on the imaginary axes of the complex wavenumber plane.
The square-root function in the viscous solution, (7.8c), has branch points at

α = − iRe U∞

2

[
1 ±

(
1 − 4iω

Re U 2
∞

)1/2
]

, (7.9)

and hence for Re � ω at α ∼ −iRe U∞ − ω/U∞ and α ∼ ω/U∞. The branch cuts from
these branch points form hyperbolae in the complex wavenmuber plane given by
αi = Re(ω − αrU∞)/(2αr ) for |αr | less than its values at the branch points (7.9), where
αr =Re(α) and αi = Im(α), and they asymptote towards the imaginary wavenumber
axes as αr → 0 (see Ashpis & Reshotko (1990) for sketches for a boundary-layer
flow). In a mixing layer, there will also be a second set of branch points and branch
cuts corresponding to the free-stream velocity in the other stream.

If the pinch point of the unconfined problem approaches these branch cuts
associated with the viscous solution, then confinement, which replaces the branch
cuts with infinitely many discrete modes, could destabilize the viscous problem even
when it does not destabilize the inviscid problem. Future investigations might uncover
such a scenario in another flow. However, the eigenvalues at the pinch point for the
unconfined mixing layer shown in figure 3(a) are α = 0.1179−0.2496i and ω = 0.1887−
0.0122i, and U∞ = limy → ∞ U = 1+ r = 2.25 and U−∞ = limy→−∞ = 1− r = −0.25. This
pinch point only collides with the branch cut of a viscous solution for Re = −0.2698,
i.e. for an unphysical Reynolds number. In fact, the pinch point only collides with a
branch cut of the viscous solution at Re > 0 for r < 0.84, i.e. when the pinch point
has crossed into the left half-plane, so for this flow destabilization by confinement is
only produced by the branch cuts due to the inviscid solution.

Appendix A. Neutral waves as α → 0 for nearly symmetric confinement
Substituting (2.5) into (2.3) gives

0 =

∫ hs+h11δ+h12δ
2

−hs−δ

g(t) dt − 2hs + (1 + h11)δ + h12δ
2

(hs + δ)(hs + h11δ + h12δ2)f ′(0)2
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=

∫ −hs

−hs−δ

g(t) dt +

∫ hs

−hs

g(t) dt +

∫ hs+h11δ+h12δ
2

hs

g(t) dt

− 2hs + (1 + h11)δ + h12δ
2

(hs + δ)(hs + h11δ + h12δ2)f ′(0)2

∼ g(hs)δ +
g′(hs)

2
δ2 +

∫ hs

−hs

g(t) dt + g(hs)(h11δ + h12δ
2) +

g′(hs)

2
(h11δ + h12δ

2)2

− 1

h3
s f

′(0)2
[
2h2

s − hs(1 + h11)δ +
(
1 + h2

11 − hsh12

)
δ2

]
+ · · ·

∼
∫ hs

−hs

g(t) dt − 2

hsf ′(0)2
+

(1 + h11)
(
1 + f ′(0)2g(hs)h

2
s

)
f ′(0)2h2

s

δ

+

(
1 + h2

11

)(
− 2 + f ′(0)2g′(hs)h

3
s

)
+ 2hs

(
1 + f ′(0)2g(hs)h

2
s

)
h12

2f ′(0)2h3
s

δ2 + · · · , (A 1)

where

g(t) =
1

f (t)2
− 1

f ′(0)2t2
, (A 2)

and use has been made of the fact that g is an even function because f is an odd
function, and also that∫ a+b

a

g(t) dt =

∫ a+b

a

g(a) + g′(a)(t − a) +
g′′(a)

2
(t − a)2 + · · · dt

= g(a)b +
g′(a)

2
b2 +

g′′(a)

6
b3 + · · · , (A 3)

when b is small. The leading-order terms of (A 1) are satisfied by (2.4). Equating the
O(δ) terms to zero gives h11 = −1, and then equating the O(δ2) terms to zero gives
h12 = 2f ′(hs)/f (hs) by (A 2). Substituting these values into (2.5b) gives (2.6).

Appendix B. Long-wave dispersion relation for asymmetric confinement
A slow spatial variable is introduced to describe the dependence of the solution

in the upper and lower layers outside the mixing layer: y = Y/ε, where Y =O(1) at
distances of order of wavelengths from the mixing layer. The subscripts ‘u’, ‘m’ and
‘l’ will be used to denote variables in the upper layer, mixing layer and lower layer,
respectively. The upper-layer variables at leading order are

u(y) = εuu0(Y ) + · · · , v(y) = εvu0(Y ) + · · · , p(y) = εpu0(Y ) + · · · , (B 1a, b, c)

and the boundary condition for the upper layer (4.4a) becomes vu0(h1) = 0 (these
variables are all of the same order of magnitude so that pressure and velocity fields
are coupled, and matching to the mixing layer leads to the conclusion that the
upper-layer horizontal velocity component is O(ε) smaller than in the mixing layer).
Substituting (B 1), (4.3) and f (y) = 1 into (4.2), equating leading-order powers of ε

and solving using the upper-layer boundary condition gives

vu0 = Au0 sinh[α0(Y − h1)], pu0 = −iAu0(1 + r − c0) cosh[α0(Y − h1)], (B 2a, b)

where Au0 is an arbitrary constant.
The leading-order mixing-layer variables are

u(y) = um0(y) + · · · , v(y) = εvm0(y) + · · · , p(y) = εpm0(y) + · · · , (B 3a, b, c)
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where the order of magnitude of v and p is fixed by the requirement to match
the upper-layer variables (B 1), and the order of magnitude of u then follows from
requiring u to appear at leading order in the continuity equation (4.2a). Substituting
(B 3) and (4.3) into (4.2), equating leading order powers of ε and solving gives

vm0 = Am0(1 + rf (y) − c0), pm0 = Pm0, (B 4a, b)

where Am0 and Pm0 are arbitrary constants.
The lower-layer variables follow the same scalings as the upper-layer variables

(B 1)

u(y) = εul0(Y ) + · · · , v(y) = εvl0(Y ) + · · · , p(y) = εpl0(Y ) + · · · , (B 5a, b, c)

and the boundary condition for the lower layer (4.4b) becomes vl0(−h2) = 0.
Substituting (B 5), (4.3) and f (y) = −1 into (4.2), equating leading-order powers of ε

and solving using the lower-layer boundary condition gives

vl0 = Al0 sinh[α0(Y + h2)], pl0 = −iAl0(1 − r − c0) cosh[α0(Y + h2)], (B 6a, b)

where Al0 is an arbitrary constant.
Matching between the upper layer and mixing layer is achieved by letting Y → 0

in (B 2), and y → ∞ in (B 4) and setting the results equal to one another to give

−Au0 sinhα0h1 = Am0(1 + r − c0), −iAu0(1 + r − c0) coshα0h1 = Pm0. (B 7a, b)

Matching between the lower layer and mixing layer is achieved by letting Y → 0 in
(B 6), and y → −∞ in (B 4) and setting the results equal to one another to give

Al0 sinhα0h2 = Am0(1 − r − c0), −iAl0(1 − r − c0) cosh α0h2 = Pm0. (B 8a, b)

Eliminating the constants Au0, Am0, Pm0 and Al0 between (B 7) and (B 8) gives the
leading-order long-wave dispersion relation (4.5).

Appendix C. Long-wave dispersion relation for symmetric confinement
The derivation of the second-order long-wave theory follows closely the first-order

theory summarized in Appendix B, but with boundary conditions (5.2), and we
substitute the leading-order result for symmetric confinement, c0 = 1+ ri, directly into
(5.1). The upper-layer variables are now

u(y) = εuu0(Y ) + ε2uu1(Y ) + · · · , v(y) = εvu0(Y ) + ε2vu1(Y ) + · · · , (C 1a, b)

p(y) = εpu0(Y ) + ε2pu1(Y ) + · · · . (C 1c)

Substituting (C 1), (5.1) and f =1 into (4.2), equating coefficients of powers of ε and
solving the resulting differential equations with the boundary conditions gives

vu0 = Au0 sinh[α0(Y − h0)], pu0 = −(1 + i)rAu0 cosh[α0(Y − h0)], (C 2a, b)

vu1 = Au1 sinh[α0(Y − h0)], pu1 = [iAu0c1 − (1 + i)rAu1] cosh[α0(Y − h0)], (C 2c, d)

where Au1 is an arbitrary constant.
The main-layer variables are

u(y) = um0(y) + εum1(y) + · · · , v(y) = εvm0(y) + ε2vm1(y) + · · · , (C 3a, b)

p(y) = εpm0(y) + ε2pm1(y) + · · · . (C 3c)

Substituting (C 3) and (5.1) into (4.2), equating coefficients of powers of ε and solving
the resulting differential equations gives

vm0 = rAm0[f (y) − i], pm0 = Pm0, (C 4a, b)
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vm1 = −Am0c1 + r[f (y) − i]

{
Am1 +

iα0Pm0

r2

∫ y

−a

1

[f (t) − i]2
+

i

2
dt − i

2
y

}
, (C 4c)

pm1 = Pm1 − iα0r
2Am0

{∫ y

−a

[f (t) − i]2 − 2i dt + 2iy

}
, (C 4d )

where Am1 and Pm1 are arbitrary constants and a is a large positive parameter; after
matching, we will take a → ∞. Constant terms have been included in the integrals to
cause the integrands to tend to zero as y → −∞.

The lower-layer variables are

u(y) = εul0(Y ) + ε2ul1(Y ) + · · · , v(y) = εvl0(Y ) + ε2vl1(Y ) + · · · , (C 5a, b)

p(y) = εpl0(Y ) + ε2pl1(Y ) + · · · . (C 5c)

Substituting (C 5), (5.1) and f = −1 into (4.2), equating coefficients of powers of ε

and solving the resulting differential equations with the boundary conditions gives

vl0 = Al0 sinh[α0(Y + h0)], pl0 = −(1 − i)rAl0 cosh[α0(Y + h0)], (C 6a, b)

vl1 = Al1 sinh[α0(Y + h0)], pl1 = [iAl0c1 − (1 − i)rAl1] cosh[α0(Y + h0)], (C 6c, d)

where Al1 is an arbitrary constant.
At leading order, the solutions in each layer approach constants as they are followed

into adjacent layers, which allowed a particularly simple matching procedure to be
used, but at second order there is algebraic growth of the main-layer solutions as
they are followed into the upper and lower layers. We use van Dyke’s matching rule
in this case. Solutions in each layer are written in terms of the variables that apply to
the layer that they are to be matched to. The solutions are then expanded for small ε

v ∼ εvu0(εy) + ε2vu1(εy) ∼ −ε sinh(α0h0)Au0 + ε2α0 cosh(α0h0)Au0y

− ε2 sinh(α0h0)Au1 + · · · (C 7a)

p ∼ εpu0(εy) + ε2pu1(εy) ∼ −ε(1 + i)r cosh(α0h0)Au0 + ε2(1 + i)

× α0r sinh(α0h0)Au0y + ε2[ic1Au0 − (1 + i)rAu1] cosh(α0h0) + · · · (C 7b)

v ∼ εvm0(Y/ε) + ε2vm1(Y/ε) ∼ ε(1 − i)rAm0 − ε2c1Am0

+ ε2(1 − i)r

(
Am1 +

iα0Pm0

r2

{∫ a

−a

1

[f (t) − i]2
dt +

iY

2ε

})
+ · · · (C 7c)

p ∼ εpm0(Y/ε) + ε2pm1(Y/ε) ∼ εPm0 + ε2Pm1

− ε2iα0r
2Am0

{∫ a

−a

[f (t) − i]2 dt − 2i
Y

ε

}
+ · · · (C 7d)

v ∼ εvm0(Y/ε) + ε2vm1(Y/ε) ∼ −ε(1 + i)rAm0 − ε2c1Am0

− ε2(1 + i)r

(
Am1 +

α0Pm0Y

2r2ε

)
+ · · · (C 7e)

p ∼ εpm0(Y/ε) + ε2pm1(Y/ε) ∼ εPm0 + ε2Pm1 + 2ε2α0r
2Am0

Y

ε
+ · · · (C 7f)

v ∼ εvl0(εy) + ε2vl1(εy) ∼ ε sinh(α0h0)Al0 + ε2α0 cosh(α0h0)Al0y

+ ε2 sinh(α0h0)Al1 + · · · (C 7g)

p ∼ εpl0(εy) + ε2pl1(εy) ∼ −ε(1 − i)r cosh(α0h0)Al0 − ε2(1 − i)

× α0r sinh(α0h0)Al0y + ε2[ic1Al0 − (1 − i)rAl1] cosh(α0h0) + · · · , (C 7h)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

52
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005284


270 J. J. Healey

where the main-layer solution has been expanded both for Y > 0, (C 7c, d) and for
Y < 0, (C 7e, f ), for matching to the upper and layer lowers, respectively. Matching
(C 7a, b) to (C 7c, d), and (C 7e, f ) to (C 7g, h), i.e. replacing Y by εy and then
equating like powers of ε and y gives

−sinh(α0h0)Au0 = (1 − i)rAm0, α0 cosh(α0h0)Au0 = −(1 − i)
α0Pm0

2r
, (C 8a, b)

−sinh(α0h0)Au1 = −c1Am0 + (1 − i)r

(
Am1 +

iα0Pm0

r2

∫ ∞

−∞

1

[f (t) − i]2
dt

)
, (C 8c)

−(1 + i)r cosh(α0h0)Au0 = Pm0, (1 + i)α0r sinh(α0h0)Au0 = −2α0r
2Am0, (C 8d, e)

[ic1Au0 − (1 + i)rAu1] cosh(α0h0) = Pm1 − iα0r
2Am0

∫ ∞

−∞
[f (t) − i]2 dt, (C 8f )

sinh(α0h0)Al0 = −(1 + i)rAm0, α0 cosh(α0h0)Al0 = −(1 + i)
α0Pm0

2r
(C 8g, h)

sinh(α0h0)Al1 = −c1Am0 − (1 + i)rAm1, −(1 − i)r cosh(α0h0)Al0 = Pm0, (C 8i, j )

−(1 − i)α0r sinh(α0h0)Al0 = 2α0r
2Am0, [ic1Al0 − (1 − i)rAl1] cosh(α0h0) = Pm1,

(C 8k, l)

where the limit a → ∞ has been taken (the integrals are convergent if the limits are
taken in this way because the integrand approaches the same constant, but with
opposite sign, when t is large and positive, when t is large and negative). Eliminating
the eight constants of integration Au0, Au1, Am0, Am1, Pm0, Pm1, Al0 and Al1 between
the twelve equations (C 8a-l ) leads to the dispersion relation (5.3).

Appendix D. Long-wave dispersion relation for semiconfinement
This case is quickly adapted from the solutions in Appendix B. The boundary

condition (6.1a) becomes vu0(h0) = 0 in the upper layer, so the upper-layer solutions
(B 2) become

vu0 = Au0 sinh[α0(Y − h0)], pu0 = −iAu0(1 + r − c0) cosh[α0(Y − h0)]. (D 1a, b)

The mixing-layer solutions (B 4) are unaffected. The lower-layer solutions that satisfy
(6.1b), and so decay exponentially with distance below the mixing layer, are

vl0 = Al0 exp(α0Y ), pl0 = −iAl0(1 − r − c0) exp(α0Y ). (D 2a, b)

Using the same matching procedure as in Appendix B, but applied to the solutions
(D 1a, b), (B 4) and (D 2a, b), and eliminating the constants of integration gives the
leading-order dispersion relation for semiconfinement, (6.2).

Note that (6.2) can also be obtained from (4.5) in the limit where Re(α0)h2 � 1
since then sinh[α0(h1 + h2)]/ sinh[α0(h2 − h1)] ∼ exp(2α0h1), which leads to (6.2) on
taking h1 = h0.
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