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Abstract

Goldman (2010) proved that the distribution of a stationary determinantal point process
(DPP) � can be coupled with its reduced Palm version �0,! such that there exists a
point process η where � = �0,! ∪ η in distribution and �0,! ∩ η = ∅. The points
of η characterize the repulsive nature of a typical point of �. In this paper we use the
first-moment measure of η to study the repulsive behavior of DPPs in high dimensions.
We show that many families of DPPs have the property that the total number of points
in η converges in probability to 0 as the space dimension n → ∞. We also prove that for
some DPPs, there exists an R∗ such that the decay of the first-moment measure of η is
slowest in a small annulus around the sphere of radius

√
nR∗. This R∗ can be interpreted

as the asymptotic reach of repulsion of the DPP. Examples of classes of DPP models
exhibiting this behavior are presented and an application to high-dimensional Boolean
models is given.
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1. Introduction

Determinantal point processes (DPPs) are useful models for point patterns where the points
exhibit some repulsion from each other, resulting in a more regularly spaced pattern than
a Poisson point process. These models originally appeared in random matrix theory and
the formalism was introduced by Macchi [17], who was motivated by modeling Fermionic
particles in quantum mechanics. They have since been used in many applications; for example,
telecommunication networks, machine learning, and ecology; see [10], [12], [15], [16], and the
references therein. In this paper we describe the repulsive behavior of stationary and isotropic
DPPs as the space dimension goes to ∞.

In the following, a ball with center at the origin and radius r in R
n is denoted by Bn(r). The �2

vector norm is denoted by | · | and the L2-norm on the space L2(Rn) by ‖ · ‖2. Now, consider
a sequence of point processes �n indexed by dimension, each with constant intensity ρn.
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Determinantal point processes 761

If ρn = enρ and Rn = √
nR, with ρ ∈ R and R > 0, then Stirling’s formula yields

vol(Bn(Rn)) ∼ 1√
nπ

(
2πe

n

)n/2

Rn
n as n → ∞.

This implies there exists a threshold R∗ = 1/
√

2πeeρ such that, as n → ∞,

E[�n(Bn(Rn))] ∼ exp
(
n
(
ρ + 1

2 log 2πe + log R
) + o(n)

) →
{

0, R < R∗,
∞, R > R∗.

(1.1)

This justifies the interest in considering this regime where the intensities grow exponentially
with the dimension and distances grow with the square root of the dimension. This regime also
naturally arises in information theory, and following [1] we call it the Shannon regime. In this
paper we study the effect of repulsion in this regime and quantify the range and strength at
which DPPs asymptotically exhibit repulsion between points.

These issues were discussed in [24], where the authors characterized a certain class of DPPs
by an effective ‘hard-core’ diameter D that grows as

√
n, aligning with our observations. They

observed that for r < D, the number of points in a ball of radius r around a typical point
will be 0 with probability approaching 1, and for r > D, the number of points in a ball of
radius r around a typical point is 0 with probability approaching 0 as dimension n → ∞. The
behavior for r < D is a result of the natural separation due to dimensionality as exhibited
in (1.1). However, the observation that D is the maximal such separation is due to the ν-weakly
sub-Poisson property of DPPs as defined in [3], and is a feature of all DPPs, not just those
studied in [24]. This behavior is the same as a sequence of Poisson point processes in the same
regime and, thus, this separation of points in high dimensions is due to dimensionality and not
the repulsion of the DPP model. In this paper we provide a more precise description of the
repulsive behavior in high dimensions that is specific to the associated kernel of the DPP.

The measure of repulsiveness used in this paper is a refinement of the global measure of
repulsiveness for stationary DPPs described in the supplementary material to [15]; see [14].
In that work, the authors considered the measure

γ := ρ

∫
(1 − g(x)) dx, (1.2)

where ρ is the intensity, and (x, y) �→ g(x − y) is the pair correlation function of the point
process. A point process is considered more repulsive the farther g is away from 1; g ≡ 1
corresponds to a Poisson point process. As observed in [13], this measure has the upper bound
γ ≤ 1 for all stationary point processes.

This measure can be refined in order to examine the repulsive effect of a point of the point
process across some finite distance. Goldman [7] proved that for a stationary DPP � satisfying
certain conditions, there exists a point process η such that

�
d= �0,! ∪ η and �0,! ∩ η = ∅,

where �0,! denotes a point process with the reduced Palm distribution of � and ‘
d=’ denotes

equality in distribution. Thus, η is the set of points that have to be removed from � due to
repulsion when a point is ‘placed at’ the origin. In the following, the first-moment measure of η

will be used as a measure of the repulsiveness of a DPP �, and the repulsive effect of a typical
point over a finite distance R is quantified by E[η(Bn(R))]. Note also that

E[η(Bn(R))] = ρ vol(Bn(R)) − E[�0,!(Bn(R))] = ρ[KPoi(R) − KDPP(R)],

https://doi.org/10.1017/jpr.2018.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.49


762 F. BACCELLI AND E. O’REILLY

where KPoi and KDPP are Ripley’s K functions [20] for a Poisson point process and �,
respectively. Finally, note that the measure of global repulsiveness (1.2) corresponds to η

in the sense that γ = E[η(Rn)].
Our main results describe the behavior of the first-moment measure of η in the Shannon

regime. Consider a sequence of stationary DPPs {�n} such that �n lies in R
n. For each n,

let ηn be the point process such that �n
d=�

0,!
n ∪ ηn and �

0,!
n ∩ ηn = ∅. We consider the quantity

E[ηn(R
n)] and the probability measure E[ηn(·)]/E[ηn(R

n)] on R
n that is defined to estimate

the strength and reach of the repulsiveness of a DPP in any dimension.
It is often the case that E[ηn(R

n)] → 0 as n → ∞. In this case, Markov’s inequality and
the coupling inequality imply that, in high dimensions, the total variation distance is small
between �n and �

0,!
n . Indeed,

‖�n − �0,!
n ‖TV ≤ P(ηn(R

n) > 0) ≤ E[ηn(R
n)]. (1.3)

Since �n and �
0,!
n have the same distribution if and only if �n is Poisson by Slivnyak’s theorem

(see [4]), we see that such DPPs look increasingly like Poisson point processes as the space
dimension increases.

However, the effect of the repulsion can still be observed by examining the probability
measure E[ηn(·)]/E[ηn(R

n)] on R
n as seen in Propositions 3.1–3.3. Letting Xn be a random

vector in R
n with this probability distribution, we show that if |Xn|/√n

P−→ R∗ ∈ (0, ∞) then

lim
n→∞

E[ηn(Bn(R
√

n))]
E[ηn(Rn)] =

{
0, R < R∗,
1, R > R∗,

where ‘
P−→’ denotes convergence in probability. Here, R∗ is interpreted as the asymptotic reach

of repulsion in the Shannon regime for these DPPs. This result implies that in high dimensions
a typical point has its strongest repulsive effect on points that are at a distance

√
nR∗ away.

The parametric families of DPP kernels presented in [2] and [15] provide examples of DPPs
exhibiting a reach of repulsion R∗ and counterexamples where no finite R∗ exists, as well as
computational results on the rates of convergence when a threshold does occur. In Section 4
we study four classes of DPPs: Laguerre–Gaussian DPPs, power exponential DPPs, Bessel-
type DPPs, and normal-variance mixture DPPs. For Laguerre–Gaussian DPPs, the sequence
|Xn|/√n satisfies a large deviation principle; see Lemma 4.1. As a consequence, the reach of
repulsion R∗ becomes a phase transition for the exponential rate at which E[ηn(Bn(R

√
n))] →

0 as n → ∞; see Proposition 4.1. Power exponential DPPs are shown to have a finite reach of
repulsion in the Shannon regime for certain parameters; see Proposition 4.2. Bessel-type DPPs
are a more repulsive family that does not exhibit an R∗; see Proposition 4.3. Finally, normal-
variance mixture DPPs provide additional examples of DPPs that exhibit an R∗, including the
Whittle–Matérn and Cauchy models; see Propositions 4.4 and 4.5.

An application of these results is presented in Section 5. We show that some threshold
results of [1] for Poisson–Boolean models can be extended to generalized Laguerre–Gaussian
DPP Boolean models in the Shannon regime using the rates of convergence computed for these
DPPs. Finally, concluding remarks and open questions are stated in Section 6.

2. Preliminaries

DPPs are characterized by an integral operator K with kernel K , and can be defined in terms
of their joint intensities, also known as correlation functions; see [10] and [15].
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Definition 2.1. A simple, locally finite, spatial point process � on R
n is a DPP with ker-

nel K : R
n × R

n → R (� ∼ DPP(K)) if its joint intensities exist for all order k and satisfy

ρ(k)(x1, . . . , xk) = det(K(xi, xj ))1≤i, j≤k, k = 1, 2, . . . .

Note that the intensity function of � is given by ρ(x) = K(x, x). The degenerate case
where K(x, y) = δ{x=y} coincides with a Poisson point process with unit intensity.

The following conditions on K are imposed to ensure that � ∼ DPP(K) is well defined.
Let K : R

n × R
n → R be a continuous kernel and assume that K is symmetric, i.e. K(x, y) =

K(y, x). The kernel K then defines a self-adjoint integral operator K on L2(Rn) given by
Kf (x) = ∫

K(x, y)f (y) dy. For any compact set S ⊂ R
n, the restricted operator KS given by

KSf (x) =
∫

S

K(x, y)f (y) dy, x ∈ S,

is a compact operator. By the spectral theory for self-adjoint compact operators, the spectrum of
KS consists solely of countably many eigenvalues {λS

k }k∈N with an accumulation point possible
only at 0. See [21] for more on compact operators. These conditions imply that for any compact
S ⊂ R

n, the kernel K restricted to S × S has a spectral representation

K(x, y) =
∞∑

k=1

λS
k φS

k (x)φS
k (y), (x, y) ∈ S × S,

where {φS
k }k∈N are the eigenvectors of KS , and form an orthonormal basis of L2(S).

Theorem 2.1. (Macchi [17].) Under the above conditions, a kernel K defines a determinantal
process on R

n if and only if the spectrum of K is contained in [0, 1].
If K(x, y) = K0(x − y) then � ∼ DPP(K) is stationary. In this case, the operator K is the

convolution operator K(f ) = K0 � f on L2(Rn). The intensity function ρ(x) is then constant
and satisfies ρ = K0(0). For these stationary DPPs, there is a simple spectral condition for
existence.

Theorem 2.2. (Lavancier et al. [15, Theorem 2.3].) Assume that K0 is a symmetric continuous
real-valued function in L2(Rn). Let K(x, y) = K0(x − y). Then DPP(K) exists if and only if
0 ≤ K̂0 ≤ 1, where K̂0 denotes the Fourier transform of K0.

For the rest of this paper, when we state that � ∼ DPP(K) is stationary, we assume that
K(x, y) = K0(x − y) for a real-valued K0 ∈ L2(Rn), and K is used to mean K0. There exist
stationary DPPs with kernels that are not of this form (see [10, Equation (4.3.7)]), but they are
complex-valued and not considered here. In addition, when we stated that � is isotropic, we
mean that K0(x) = R0(|x|) and the distribution of � is thus invariant under rotations about the
origin in R

n.
The reduced Palm distribution of a stationary point process � can be interpreted as the

distribution of � conditioned on there being a point at the origin with the point at the origin
removed (see [4, Chapter 4]) and is denoted by P

0,!. A point process with the Palm distribution
P

0,! of � is denoted �0,!. The following theorem is a special case of a useful result about the
Palm distribution of DPPs.
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764 F. BACCELLI AND E. O’REILLY

Theorem 2.3. (Shirai and Takahashi [23, Theorem 6.5].) Let � ∼ DPP(K) in R
n be stationary

with intensity ρ = K(0) > 0. Then �0,! is a DPP with associated kernel

K !
0(x, y) = 1

K(0)
det

(
K(x − y) K(x)

K(y) K(0)

)
= K(x − y) − 1

ρ
K(x)K(y).

The nearest-neighbor function of a stationary point process � in R
n is defined as

D(r) := P
0,!(�(Bn(r)) > 0). (2.1)

If � is Poisson, Slivnyak’s theorem yields D(r) = 1 − e−E[�(Bn(r))]. For � ∼ DPP(K),
Theorem 2.3 implies that D(r) = P(�0,!(Bn(r)) > 0) with �0,! ∼ DPP(K !

0).
As mentioned in the introduction, Goldman [7] proved the following result.

Theorem 2.4. (Goldman [7, Theorem 7].) Let � ∼ DPP(K), where K is continuous, and the
spectrum of the integral operator K with kernel K is contained in [0, 1). Then, there exists a
point process η such that

�
d= �0,! ∪ η and �0,! ∩ η = ∅.

From this theorem we see that a point process with the distribution of �0,! can be obtained
from � by removing a subset of points η. This is a striking result since the procedure does not
include shifting any of the remaining points. The points in η characterize the repulsive nature of
the DPP �, since these are the points that are ‘pushed out’by the point at zero under the reduced
Palm distribution. It also makes sense to compare the repulsiveness of DPPs using η. For two
stationary DPPs �1 and �2 with the same intensity, �1 is defined to be more repulsive than
�2 if E[η1(R

n)] > E[η2(R
n)]. This corresponds to the definition in [15] using the measure γ

defined in (1.2). Note that the assumptions for Theorem 2.4 excludes the interesting case of K
with an eigenvalue of 1, corresponding to when K̂(x) attains a value of 1 for some x.

3. Main results

When considering the reach of repulsion of a DPP, it is natural to first consider the nearest-
neighbor function (2.1). The following threshold behavior was observed for stationary DPPs
in [24]. It is stated here for a sequence of DPPs in the Shannon regime. For each n, let
�n ∼ DPP(Kn) in R

n be stationary with intensity Kn(0) = enρ for some ρ ∈ R. Then, for
R̃ := (2πe)−1/2e−ρ ,

lim
n→∞ P(�0,!

n (Bn(
√

nR)) > 0) =
{

0, R < R̃,

1, R > R̃.
(3.1)

A proof of this fact can be found in Appendix A.
From this result we see that there is a separation of points as the dimension n → ∞ for any

stationary DPP. However, the same threshold behavior occurs if the elements of the sequence
{�n} are stationary Poisson point processes, as a consequence of (1.1). Using this observation
we see that this separation is due purely to dimensionality and is not a result of the repulsiveness
of DPPs.

The point process ηn as defined in Theorem 2.4 can be used to provide an alternative
characterization of the repulsiveness of a DPP and can be used to measure the consequence of
repulsiveness in high dimensions that depends on the determinantal structure.
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Lemma 3.1. Let �n ∼ DPP(Kn) in R
n be stationary and assume that 0 ≤ K̂n < 1. Let ηn be

the point process given in Theorem 2.4 and define the random vector Xn in R
n with probability

density Kn(x)2/‖Kn‖2
2. Then

P(Xn ∈ B) = E[ηn(B)]
E[ηn(Rn)] , B ∈ B(Rn).

In the following result we show that under certain limit conditions on the kernels of a sequence
of DPPs, the repulsiveness measured by the first-moment measure of ηn is concentrated at a
distance

√
nR∗ for some R∗ ∈ (0, ∞) as n → ∞.

Proposition 3.1. For each n, let �n ∼ DPP(Kn) be a stationary and isotropic DPP in R
n,

and assume that 0 ≤ K̂n < 1. Let Xn be a random vector in R
n with probability density

Kn(x)2/‖Kn‖2
2. Assume that, as n → ∞,

|Xn|√
n

P−→ R∗. (3.2)

Then

lim
n→∞

E[ηn(B(
√

nR))]
E[ηn(Rn)] =

{
0, R < R∗,
1, R > R∗.

(3.3)

Remark 3.1. One way to prove (3.2) is to show that

lim
n→∞

var(|Xn|2)
n2 = 0 and lim

n→∞

(
E[|Xn|2]

n

)1/2

= R∗ ∈ (0, ∞),

and then apply Chebychev’s inequality.

Remark 3.2. For general vectors Xn in R
n, the concentration of |Xn| for large n has been well

studied; see [6], [9], and [11]. Indeed, Fradelizi et al. [6, Proposition 3] proved that Xn is
concentrated in a ‘thin shell’, i.e. there exists a sequence {εn} such that εn → 0 as n → ∞ and
for each n,

P

(∣∣∣∣ |Xn|
E[|Xn|2]1/2 − 1

∣∣∣∣ ≥ εn

)
≤ εn

if and only if |Xn| has a finite rth moment for r > 2, and for some 2 < p < r ,∣∣∣∣E[|Xn|p]1/p

E[|Xn|2]1/2 − 1

∣∣∣∣ → 0 as n → ∞.

For random vectors with log-concave distributions, the deviation estimate can be improved
from the estimate obtained through Chebychev’s inequality; see Remark 3.1. The best known
estimate is given by the following theorem from [9].

Theorem 3.1. (Guédon and Milman [9, Theorem 1.1].) Let X denote a random vector in R
n

such that E[X] = 0 and E[X ⊗X] = In. Assume X has a log-concave density. Then, for some
C > 0 and c > 0,

P

(∣∣∣∣ |X|√
n

− 1

∣∣∣∣ ≥ t

)
≤ Ce−c

√
n min(t3,t).

This leads to the following result.
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Proposition 3.2. For each n, let �n ∼ DPP(Kn) be a stationary and isotropic DPP in R
n,

and assume that 0 ≤ K̂n < 1. Let Xn be a random vector with density Kn(x)2/‖Kn‖2
2 and let

σ 2
n = E[|Xn|2]. If K2

n is log-concave for all n then there exist positive constants C and c such
that for all δ ∈ (0, 1),

E[ηn(Bn(σn(1 − δ)))]
E[ηn(Rn)] ≤ Ce−c

√
nδ3

,

and for all δ > 0,
E[ηn(R

n \ Bn(σn(1 + δ)))]
E[ηn(Rn)] ≤ Ce−c

√
n min(δ3,δ).

If, in addition,

lim
n→∞

σn√
n

= R∗ ∈ (0, ∞), (3.4)

then for this R∗, the threshold (3.3) occurs, and for all R < R∗, there exists a constant C(R) > 0
such that

lim inf
n→∞ − 1√

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] ≥ C(R).

Remark 3.3. The final conclusion of Proposition 3.2 concerning the rate also holds for R > R∗
if Bn(

√
nR) is replaced by R

n \ Bn(
√

nR).

The assumption of a large deviation principle (LDP) concentration leads to an estimate of
the exponential rate of convergence with speed n and an exact computation of the reach of
repulsion R∗.

Proposition 3.3. For each n, let �n ∼ DPP(Kn) be a stationary and isotropic DPP in R
n,

and assume that 0 ≤ K̂n < 1. Let Xn be a random vector with density Kn(x)2/‖Kn‖2
2 and

suppose that |Xn|/√n satisfies an LDP with strictly convex rate function I . Then, for R∗ such
that I (R∗) = 0, the threshold (3.3) occurs. Also, for R < R∗,

− inf
r<R

I (r) ≤ lim inf
n→∞

1

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] ≤ lim sup

n→∞
1

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] ≤ − inf

r≤R
I (r),

and if the rate function I is continuous at R,

lim
n→∞ −1

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] = I (R).

Remark 3.4. The second conclusion of Proposition 3.3 concerning the rate also holds for
R > R∗ if Bn(

√
nR) is replaced by R

n \ Bn(
√

nR).

If a sequence of DPPs in increasing dimensions exhibits a reach of repulsion R∗, this means
that the points of ηn are most likely to be near distance

√
nR∗ away from the origin in high

dimensions. If R∗ is less than R̃ from (3.1), points are most likely to be removed at a distance
where points of �n appear with probability decreasing to 0 as n increases, due to dimensionality.
If R∗ can reach past R̃, the points ‘pushed out’ by repulsion are most likely to lie at a distance
where points of �n appear with high probability. Thus, it is of interest to check whether there
exist DPP models such that R∗ is greater than or equal to R̃, i.e. if P(�

0,!
n (Bn(

√
nR∗)) = 0) → 0

as n → ∞. In Sections 4.1 and 4.2 we provide examples of DPP models with this reach.
The above results have strong assumptions, and open up additional questions. The first

question is whether the points of ηn tend to lie at distances scaling with
√

n, i.e. is the Shannon
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regime the correct one to examine the repulsiveness between points of a family of DPPs in high
dimensions? By the radial symmetry of the density of each Xn, the coordinates {Xn,k}nk=1 are
identically distributed, and the sequence |Xn|2 is the sequence of row sums of a triangular array
of random variables with identically distributed rows. If the coordinate distributions depend
on the dimension in such a way that E[|Xn|2] �= O(n) then a different scaling is needed.

4. Examples

In the following we examine specific families presented in [2] and [15] that illustrate both
examples of DPP models satisfying the above results, as well as examples that do not. These
examples provide a window into the wide scope of repulsive behavior that can be described
using this framework.

The first task is to determine the behavior of E[ηn(R
n)] as n increases. For each of

the examples provided in this section, limn→∞ E[ηn(R
n)] = 0, but each class exhibits this

convergence at different speeds. Then the goal is to determine if the DPP models satisfy the
conditions of Propositions 3.1, 3.2, or 3.3.

4.1. Laguerre–Gaussian models

For each n, let �n ∼ DPP(Kn) in R
n be a Laguerre–Gaussian DPP as described in [2] with

intensity Kn(0) = enρ , i.e. for some m ∈ N, α ∈ R
+, let

Kn(x) = enρ(
m−1+n/2

m−1

)L
n/2
m−1

(
1

m

∣∣∣∣xα
∣∣∣∣2)

e−|x/α|2/m, x ∈ R
n, (4.1)

where L
β
m(r) = ∑m

k=0

(
m+β
m−k

)
(−r)k/k! for all r ∈ R denote the Laguerre polynomials. From [2],

the condition 0 ≤ K̂n < 1 translates to a bound on αn, i.e.

α <
1

eρ(mπ)1/2

(
m − 1 + n/2

m − 1

)1/n

. (4.2)

Direct calculations yield that the global measure of repulsiveness is

E[ηn(R
n)] = enραn

n(
m−1+n/2

m−1

)2

(
mπ

2

)n/2 m−1∑
k,j=0

(
m − 1 + n/2

m − 1 − k

)(
m − 1 + n/2

m − 1 − j

)

× (−1)k+j

k! j !
�(n/2 + k + j)

2k+j�(n/2)
. (4.3)

From (4.2), E[η(Rn)] < 2−n/2f (n, m), where

f (n, m) =
m−1∑
k,j=0

(
m−1+n/2
m−1−k

)(
m−1+n/2
m−1−j

)
(
m−1+n/2

m−1

) (−1)k+j

k! j !
�(n/2 + k + j)

2k+j�(n/2)
= O(nm−1).

It follows from [2, Equation (5.7)] that for fixed n, limm→∞ 2−n/2f (n, m) = 1, and as α → 0,
Kn approaches the Poisson kernel. Thus, this class of DPPs covers a wide range of repulsiveness
for fixed dimension n. However, for any fixed m, the dominant behavior as n increases is 2−n/2.

Since
(
m−1+n/2

m−1

)1/n
decreases to 1 as n → ∞, a sufficient condition for (4.2) to hold for

all n is 0 < α < e−ρ(mπ)−1/2. Note that this scaling for the intensity is the correct one for

https://doi.org/10.1017/jpr.2018.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.49


768 F. BACCELLI AND E. O’REILLY

observing interactions between the parameters of the model since it provides a trade-off between
how large the parameter α can be and the magnitude of ρ. If the intensity does not grow as
quickly with the dimension, the upper bound on α depends less and less on changes in ρ as
the dimension increases, and if the intensity grows more quickly, the upper bound for α would
tend to 0 as n → ∞.

Proposition 3.3 holds for this sequence of DPPs. Indeed, in the next lemma we show that
the sequence of R

+-valued random variables |Xn|/√n satisfies an LDP.

Lemma 4.1. Fix m ∈ N, ρ ∈ R, and let α ∈ (0, e−ρ(mπ)−1/2). For each n, let Xn be a
random vector in R

n with probability density Kn(x)2/‖Kn‖2
2, where Kn is given by (4.1). Then

the sequence {|Xn|/√n}n satisfies an LDP with rate function

�∗(x) = 2x2

α2m
− 1

2
+ 1

2
log

(
α2m

4x2

)
.

Using this lemma, Proposition 3.3 implies that an R∗ exists, and the exponential rates can
be determined. In addition, using (4.3), the exponential rate of decay of E[ηn(Bn(

√
nR))] can

be computed.

Proposition 4.1. Fix m ∈ N, ρ ∈ R, and let α ∈ (0, e−ρ(mπ)−1/2). For each n, let �n ∼
DPP(Kn), where Kn is given by (4.1). Then, for R∗ := 1

2α
√

m,

lim
n→∞ −1

n
log E[ηn(Bn(

√
nR))] =

⎧⎪⎪⎨
⎪⎪⎩

−ρ − 1

2
log 2πe + 2R2

α2m
− log R, 0 < R < R∗,

−ρ − log α − 1

2
log

mπ

2
, R > R∗.

The rate decays as R increases to R∗ := 1
2α

√
m, and then for R > R∗, the rate no longer

depends on R. This coincides with our interpretation of R∗ as the asymptotic reach of repulsion
of the sequence of DPPs.

For a fixed α, a larger m will result in a farther reach, and for a fixed m, a larger α will
provide a farther reach. However, using the bound α < 1/eρ(mπ)1/2, the following upper
bound on the reach holds uniformly for all m:

R∗ := α

2

√
m <

1

2eρπ1/2 .

Note that the larger ρ is, the smaller the upper bound on R∗ can be. This follows from the
relationship between α and ρ: the higher the intensity, the smaller α must be for the DPP to
exist. Since a larger α implies a larger value of E[ηn(R

n)], the parameter α is associated with
the strength of the repulsiveness. The relationship with ρ showcases the following trade-off
observed in [15]: the higher the intensity of the DPP, the less repulsive it can be.

As mentioned in the previous section, it is of interest to know whether there is a range of
parameters such that R∗ is greater than R̃, the threshold for the convergence of the nearest-
neighbor function of �; see (3.1). For Laguerre–Gaussian models, R∗ := 1

2

√
mα is larger

than R̃ and α satisfies the condition of Lemma 4.1 if(
2

e

)1/2

< eρ
√

mπα < 1.

Since the lower bound is strictly less than 1, there is a nonempty range for α such that the reach
of repulsion reaches past R̃.
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4.2. Power exponential spectral models

The power exponential spectral models, introduced in [15], are defined through the Fourier
transform of the kernel. For almost all these models, there is no closed form for the kernel K .
Using properties of the Fourier transform, a similar analysis of the repulsive behavior can still
be performed.

For each n, let �n ∼ DPP(Kn) be a power exponential DPP with intensity Kn(0) = enρ

and parameters ν > 0 and αn > 0, i.e. let

K̂n(x) = enρ �(n/2 + 1)αn
n

πn/2�(n/ν + 1)
e−|αnx|ν , x ∈ R

n. (4.4)

When ν = 2, a closed-form expression for Kn exists and is called the Gaussian kernel. The
condition 0 ≤ K̂n < 1 implies the following upper bound on αn:

αn <
�(n/ν + 1)1/nπ1/2

eρ�(n/2 + 1)1/n
, (4.5)

and the asymptotic expansion for the upper bound on αn as n → ∞ is(
�(n/ν + 1)πn/2

enρ�(n/2 + 1)

)1/n

∼
(√

2πn/ν(n/νe)n/νπn/2

enρ
√

2πn/2(n/2e)n/2

)1/n

∼ e−ρn1/ν−1/2 (2πe)1/2

(νe)1/ν

= O(n1/ν−1/2).

By Parseval’s theorem and a change of variables,

E[ηn(R
n)] = 1

enρ
‖Kn‖2

2

= 1

enρ
‖K̂n‖2

2

= 1

enρ

(
enρ �(n/2 + 1)αn

n

πn/2�(n/ν + 1)

)2 ∫
Rn

e−2|αnx|ν dx

= enρ

(
�(n/2 + 1)αn

n

πn/2�(n/ν + 1)

)2
nπn/2

�(n/2 + 1)

∫ ∞

0
rn−1e−2(αr)ν dr

= enρ �(n/2 + 1)α2n
n

πn/2�(n/ν + 1)2

n

2n/νναn
n

∫ ∞

0
tn/ν−1e−t dt

= 2−n/ναn
n

enρ�(n/2 + 1)

πn/2�(n/ν + 1)
. (4.6)

Using the bound on αn (4.5),
E[ηn(R

n)] < 2−n/ν.

For fixed dimension n, the global measure of repulsion approaches its upper bound of 1 for
large ν. Thus, this class covers a wide range of repulsiveness similar to the Laguerre–Gaussian
DPPs. However, for fixed ν, the measure decays exponentially as n → ∞. Note that for ν > 2,
the rate is smaller than for the Laguerre–Gaussian models, i.e. the decay is slower.

In the following results we show that if the parameters αn grow appropriately with n, this
sequence satisfies the assumptions of Proposition 3.1.
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Lemma 4.2. For each n, let Xn be a vector in R
n with density K2

n/‖Kn‖2
2 such that K̂n is given

by (4.4). Assume that αn ∼ αn1/ν−1/2 as n → ∞ for α ∈ (0, ∞), and

αn <

(
�(n/ν + 1)πn/2

enρ�(n/2 + 1)

)1/n

for all n.

Then, as n → ∞,
|Xn|√

n

P−→ α
(2ν)1/ν

4π
.

Now, applying Proposition 3.1, the following result holds for a sequence of power exponential
DPPs in the Shannon regime.

Proposition 4.2. For each n, let �n ∼ DPP(Kn), where K̂n satisfies the assumptions in
Lemma 4.2. Then, for R∗ := α((2ν)1/ν/4π),

lim
n→∞

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] =

{
0, R < R∗,
1, R > R∗.

For ν > 1, the reach of repulsion R∗ for the power exponential models can also reach past
the nearest-neighbor threshold R̃. Indeed, for αn ∼ αn1/ν−1/2, R∗ := α((2ν)1/ν/4π) satisfies
P(�n(Bn(0,

√
nR∗)) = 0) → 0 as n → ∞ if

α
(2ν)1/ν

4π
>

1√
2πeeρ

.

By asymptotic equation (4.5) for the upper bound of αn, α <
√

2πe/eρ(νe)1/ν . Thus, R∗
reaches past R̃ when αn ∼ αn1/ν−1/2 and

4π

(2ν)1/νeρ
√

2πe
< α <

√
2πe

eρ(νe)1/ν
.

The interval is nonempty since the upper bound is strictly greater than the lower bound for ν > 1.

4.3. Bessel-type models

Another class of DPP models presented in [2] is the Bessel type. This class is more repulsive
than the previous two families of models. We show that while the Shannon regime is the correct
scaling to examine the repulsiveness of this class in high dimensions, a sequence of these DPPs
does not satisfy the conditions of Proposition 3.1.

For each n, let �n ∼ DPP(Kn) be a Bessel-type DPP with parameters σ ≥ 0 and α > 0,
and intensity Kn(0) = enρ for ρ ∈ R. That is, let

Kn(x) = enρ2(σ+n)/2�

(
σ + n + 2

2

)
J(σ+n)/2(2|x/α|√(σ + n)/2)

(2|x/α|√(σ + n)/2)(σ+n)/2
. (4.7)

From [2], the bound 0 ≤ K̂n < 1 implies that

αn
n <

(σ + n)n/2�(σ/2 + 1)

enρ(2π)n/2�((σ + n)/2 + 1)
. (4.8)
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Similar to the previous examples, this family contains DPPs covering a wide range of repul-
siveness measured by ηn, and as n → ∞ they are more repulsive in the sense that E[ηn(R

n)]
decays more slowly. Indeed,

E[ηn(R
n)] = 1

enρ

∫
Rn

Kn(x)2 dx

= enρ (2π)n/2αn

(σ + n)n/2�(n/2)

�((σ + n + 2)/2)2�(n/2)�(σ + 1)

�(σ/2 + 1)2�(σ + n/2 + 1)

= enρ (2π)n/2αn

(σ + n)n/2

�(σ + 1)�(σ/2 + n/2 + 1)2

�(σ/2 + 1)2�(σ + n/2 + 1)
,

and from the upper bound (4.8),

E[ηn(R
n)] <

�(σ + 1)�(σ/2 + n/2 + 1)

�(σ/2 + 1)�(σ + n/2 + 1)
.

By Stirling’s formula,

�(σ + 1)�(σ/2 + n/2 + 1)

�(σ/2 + 1)�(σ + n/2 + 1)
= O(n−σ/2) as n → ∞.

These DPPs do not satisfy the conditions of Proposition 3.1, and so the concentration of the
first-moment measure does not occur, contrary to the first two families presented. However, the
repulsive measure does not reach past the

√
n scale in the sense of the following proposition.

Proposition 4.3. Let ρ ∈ R, α > 0, and σ > 0. For each n, let �n ∼ DPP(Kn) in R
n with Kn

given by (4.7). Then, for any β > 1
2 and R > 0,

lim
n→∞

E[ηn(R
n \ Bn(Rnβ))]

E[ηn(Rn)] = 0.

4.4. Normal-variance mixture models

Another class of DPPs described in [15] are those with normal-variance mixture kernels.
Let �n ∼ DPP(Kn) be a normal-variance mixture DPP in R

n with intensity enρ for ρ ∈ R,
i.e. let

Kn(x) = enρ E[W−n/2e−|x|2/2W ]
E[W−n/2] , x ∈ R

n,

for some nonnegative real-valued random variable W such that E[W−n/2] < ∞. From [15],
the bound 0 ≤ K̂ < 1 translates to the following bound on the intensity:

enρ <
E[W−n/2]
(2π)n/2 . (4.9)

If
√

2W = α, this is known as the Gaussian DPP model. If W ∼ gamma(ν + 1
2n, 2α2), this is

called the Whittle–Matérn model. This is the Cauchy model when 1/W ∼ gamma(ν, 2α−2).
In both cases, ν > 0 and α > 0 are parameters.

This family of DPPs does not cover a wide range of repulsiveness as in the previous families.
Indeed, for any random variable W in R

+ such that E[W−n/2] < ∞, Parseval’s theorem,
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Jensen’s inequality, (4.9), and Fubini’s theorem imply that

E[ηn(R
n)] = 1

enρ

∫
Rn

K̂n(x)2 dx

= 1

enρ

∫
Rn

(
enρ (2π)n/2

E[W−n/2]E[e−2π2|x|2W ]
)2

dx

≤ (2π)n/2

E[W−n/2]
∫

Rn

E[e−4π2|x|2W ] dx

= (2π)n/2

E[W−n/2]E
[
(4πW)−n/2

E

[
(4πW)n/2

∫
Rn

e−4π2|x|2W dx

∣∣∣∣ W

]]
= 2−n/2.

It is difficult to make further general statements about this class because the behavior of the
sequence |Xn|/√n depends heavily on the distribution of the R

+-valued random variable W .
In the rest of the section we will describe results for specific models in this class.

Consider a sequence of normal-variance mixture DPPs all associated with the same random
variable W . If W is a constant α, the random variables Xn become multivariate Gaussian
vectors with mean zero and variance depending on α. The scaled norms of these vectors are
well known to satisfy an LDP since the coordinates are independent. This also corresponds to
a Laguerre–Gaussian DPP with parameter m = 2.

There is also a subclass of the normal-variance mixture models that satisfy Proposition 3.2.
In [25], it was proved that if W has a log-concave density then the normal-variance mixture
distribution is log-concave. This implies that K2

n is log-concave and, thus, if condition (3.4)
holds, the conclusion of Proposition 3.2 holds. Since the gamma distribution for a shape
parameter ν greater than 1 is log-concave and ν + 1

2n ≥ 1 for large n, Whittle–Matérn DPPs are
an example from this subclass and exhibit an R∗ as we demonstrate in the following proposition.

Proposition 4.4. For each n, let �n ∼ DPP(Kn) be a Whittle–Matérn model in R
n with

intensity enρ and parameters ν > 0 and α > 0, i.e. let

Kn(x) = enρ 21−ν

�(ν)

|x|ν
αν

Kν

( |x|
α

)
, x ∈ R

n, (4.10)

where

α <
�(ν)1/n

�(ν + n/2)1/n2
√

πeρ

and Kν is the modified Bessel kernel of the second kind. Then, for R∗ := 1
2α,

lim
n→∞

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] =

{
0, R < R∗,
1, R > R∗.

Remark 4.1. The upper bound on α needed for existence implies that for all ν,

R∗ := α

2
<

�(ν)1/n

�(ν + n/2)1/n4
√

πeρ
<

1√
2πeeρ

:= R̃,

since (�(ν)/�(ν + 1
2n))1/n ≤ 1 and 4 >

√
2e. Thus, for these models, R∗ never reaches past

the nearest-neighbor threshold R̃.
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Finally, in the following proposition we show that the Cauchy models satisfy the conditions
of Proposition 3.1 if the α parameter grows appropriately with n.

Proposition 4.5. For each n, let �n ∼ DPP(Kn) be a Cauchy model in R
n with intensity enρ

and parameters ν > 0 and αn > 0, i.e. let

Kn(x) = enρ

(1 + |x/αn|2)ν+n/2 , x ∈ R
n.

Assume αn ∼ αn1/2 as n → ∞ for some α > 0 such that αn < �(ν + 1
2n)1/n/

√
πeρ�(ν)1/n

for each n. Then, for R∗ := α,

lim
n→∞

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] =

{
0, R < R∗,
1, R > R∗.

Remark 4.2. The upper bound on αn has the following asymptotic expansion as n → ∞:

αn <
�(ν + n/2)1/n

√
πeρ�(ν)1/n

∼ n1/2

√
2πeeρ

.

Thus, if αn ∼ αn1/2, the reach of repulsion has the upper bound

R∗ := α <
1√

2πeeρ
.

This upper bound is precisely the threshold R̃ for the nearest-neighbor function, and so unlike
in the case of Laguerre–Gaussian DPPs and power exponential DPPs, the reach of repulsion R∗
for a sequence of Cauchy models with fixed parameter ν cannot reach past R̃.

5. Application to determinantal Boolean models in the Shannon regime

Poisson–Boolean models in the Shannon regime were studied in [1], and the degree threshold
results can be extended to Laguerre–Gaussian DPPs using Proposition 4.1.

The setting is as follows. Consider a sequence of stationary DPPs �n, indexed by dimension,
where �n ∼ DPP(Kn) in R

n. Assume that for each n, Kn is continuous, symmetric, and
0 ≤ K̂n < 1. Let the intensity of �n be Kn(0) = enρ . Let �n = ∑

kδT
(k)
n

and R > 0. Then
consider the sequence of particle processes (see [22]), called determinantal Boolean models,

Cn =
⋃
k

Bn

(
T (k)

n , 1
2

√
nR

)
.

The degree of each model is the expected number of balls that intersect the ball centered at 0
under the reduced Palm distribution, i.e. E[�0,!

n (Bn(
√

nR))]. In the case when �n is Poisson,
E

0,![�n(B(
√

nR))] = E[�n(B(
√

nR))] by Slivnyak’s theorem, and

lim
n→∞

1

n
ln E

0,![�n(Bn(
√

nR))] = ρ + 1

2
log 2πe + log R.

To extend this result to DPPs, we need, as n → ∞,

E[�0,!
n (Bn(

√
nR))] ∼ E[�n(Bn(

√
nR))].

Note that this would be impossible for a repulsive point process such as the Matérn hardcore
process, since E[�0,!

n (Bn(Rn))] = 0 for all Rn less than the hardcore radius.
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However, for DPPs, note that

E[�0,!
n (Bn(

√
nR))]

E[�n(Bn(
√

nR))] = 1 − E[ηn(Bn(
√

nR))]
E[�n(Bn(

√
nR))] .

Thus, if
E[ηn(Bn(

√
nR))]

E[�n(Bn(
√

nR))] → 0 as n → ∞,

then the degree of the determinantal Boolean model has the same asymptotic behavior as the
Poisson–Boolean model.

In the case of Laguerre–Gaussian kernels, this is the case, and the earlier results even provide
the rate at which the quantity goes to 0, which exhibits a threshold at R∗ as expected.

Proposition 5.1. Let m ∈ N and ρ ∈ R. For each n, let �n ∼ DPP(Kn) in R
n, where

Kn(x) = enρ

( m−1+n/2
m−1 )

L
n/2
m−1

(
1

m

∣∣∣∣xα
∣∣∣∣2)

e−|x/α|2/m,

and α is a parameter such that 0 < α < 1/
√

mπeρ . Then

lim
n→∞ −1

n
ln

E[ηn(Bn(
√

nR))]
E[�n(Bn(

√
nR))]

=

⎧⎪⎨
⎪⎩

2R2

α2m
, 0 < R < 1

2α
√

m,

1
2 + log 2 − log α − 1

2 log m + log R, R > 1
2α

√
m.

6. Conclusion

By examining a measure of repulsiveness of DPPs, we have provided insight into the high-
dimensional behavior of different families of DPP models. Most of the families of DPPs
presented in this paper have a global measure of repulsion decreasing to 0 as the dimension
increases, indicating that they become more and more similar to Poisson point processes in
high dimensions as a result of (1.3). However, the reach of the small repulsive effect can still
be quantified. By making a connection between the kernel of the DPP and the concentration in
high dimensions of the norm of a random vector, we have shown under certain conditions that
there exists a distance on the

√
n scale at which the repulsive effect of a point of the DPP model

is strongest as n → ∞. We have illustrated that some families of DPPs exhibit this reach of
repulsion and some do not. The results are summarized in Table 1.

Many questions remain concerning the range of possible repulsive behavior of DPPs in high
dimensions. First, the results can be extended to scalings other than the Shannon regime in
the following way. Assumption (3.2) in Proposition 3.1 can be generalized to the assumption
that for some sequence bn, |Xn|/bn → R∗ as n → ∞. If bn �= O(n1/2), the result holds
for a different scaling than the Shannon regime, and the repulsiveness is strongest near R∗bn

in high dimensions. While this is precisely what is shown not to happen for the Bessel-type
DPPs if σ > 0, examples of this generalization for bn = o(n) can be obtained from the power
exponential DPPs when αn = o(n1/ν−1/2). However, as noted in the introduction, any distance
scaling smaller than

√
n will not reach the regime where the expected number of points goes to

∞ as the dimension grows. Thus, this scaling appears less interesting. It would be interesting
to find a family of DPPs that exhibits the concentration for bn � √

n.
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Table 1: Summary of results.

DPP class E[ηn(R
n)] R∗ Rate type R∗ > R̃

Laguerre–Gaussian < 2−n/2O(nm−1) 1
2 α

√
m LDP

(
2

e

)1/2

< eρ
√

mπα < 1

Power exponential < 2−n/ν α
(2ν)1/ν

4π
Chebychev

2

21/νe
<

eρν1/ν

√
2πe

α <
1

e1/ν

Bessel-type < O(n−σ/2) — — —
Whittle–Matérn < 2−n/2 1

2 α Log-concave —
Cauchy < 2−n/2 α Chebychev —

For all the DPPs studied in this paper, E[ηn(R
n)] → 0 as n → ∞. This is not always the

case. For instance, there exists a class of DPPs such that for c ∈ (0, 1), E[ηn(R
n)] = c for

all n. Indeed, let Kn ∈ L2(Rn) be such that its Fourier transform is

K̂n(ξ) = √
c 1Bn(rn)(ξ), ξ ∈ R

n, (6.1)

where rn ∈ R
+ is such that vol(Bn(rn)) = Kn(0) and 1· is the indicator function. Then

E[ηn(R
n)] = 1

Kn(0)

∫
Rn

Kn(x)2 dx = 1

Kn(0)

∫
Rn

K̂n(ξ)2 dξ = c

Kn(0)
vol(Bn(rn)) = c.

It would be useful to find a necessary and sufficient condition for E[ηn(R
n)] to converge to 0.

There is an important class of stationary and isotropic DPPs that should be mentioned.
Recall that to ensure η is well defined, it is assumed that the kernel K associated with �

satisfies 0 ≤ K̂ < 1. However, � still exists when K̂ is allowed to attain the maximum value
of 1. For the models studied in this paper, it is the case when the parameter achieves its upper
bound. In this case, we can still define the measure of repulsiveness (1.2) even though it may
not be interpretable as the intensity measure of a point process η. Replacing E[η(B)] with∫
B
(1 − g(x)) dx for B ∈ B(Rn), the main results (Propositions 3.1–3.3) can be restated with

the condition that 0 ≤ K̂ ≤ 1. In this case, the reach of repulsion R∗ is interpreted as the
distance on the

√
n scale at which the measure of repulsion is strongest.

A particularly interesting subclass of the DPPs described in the previous paragraph are the
most repulsive stationary DPPs, introduced in the supplementary material to [15]; see [14].
These DPPs maximize the measure of repulsiveness γ , and have a kernel K such that K̂ is
defined as in (6.1) but with c = 1. For the most repulsive DPPs, γ = 1 in any dimension.
In addition, for a sequence of DPPs {�n}n∈N, where �n is the most repulsive DPP in R

n with
intensity enρ , Xn as defined in Proposition 3.1 satisfies

E[|Xn|2] =
∫

Rn

|x|2 Kn(x)2

‖Kn‖2
2

dx

= �(n/2 + 1)

πn/2

∫
Rn

|x|2 J 2
n/2(2

√
π�(n/2 + 1)1/neρ |x|)

|x|n dx

= n

∫ ∞

0
rJ 2

n/2

(
2
√

π�
( 1

2n + 1
)1/neρr

)
dr,

where Jν is the Bessel function of the first kind of order ν; see [2]. By [19, Equation (1.17.13)],
this integral does not converge, i.e. |Xn| does not have a finite second moment.
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In the recent work of Møller and O’Reilly [18], it was proved that there exists a coupling
(�, �0,!) such that η := � \ �0,! contains at most one point. In this case, E[η(Rn)] =
P(η(Rn) > 0), and the random vector Xn with probability measure E[η(·)]/E[η(Rn)] has the
distribution of the point of η conditioned on η �= ∅.

Appendix A

Proof of Equation (3.1). For each n, let �n ∼ DPP(Kn) in R
n be stationary with intensity

Kn(0) = enρ . From (1.1), there exists R̃ := 1/
√

2πeeρ such that

lim
n→∞ E[�n(Bn(

√
nR))] =

{
0, R < R̃,

∞, R > R̃.

From Theorem 2.3,

E[�n(Bn(
√

nR))] − E[�0,!
n (Bn(

√
nR))] = 1

enρ

∫
Bn(

√
nR)

Kn(x)2 dx.

Then, using Parseval’s theorem and Theorem 2.2,

1

enρ

∫
Bn(

√
nR)

Kn(x)2 dx ≤ 1

enρ

∫
Rn

K̂n(ξ)2 dξ ≤ 1

enρ

∫
Rn

K̂n(ξ) dξ = 1.

Also, since (1/enρ)
∫
Bn(

√
nR)

Kn(x)2 dx ≥ 0, the following bounds hold:

E[�n(Bn(
√

nR))] − 1 ≤ E[�0,!
n (Bn(

√
nR))] ≤ E[�n(Bn(

√
nR))].

Thus, the threshold remains the same for the reduced Palm expectation, i.e.

lim
n→∞ E[�0,!

n (Bn(
√

nR))] =
{

0, R < R̃,

∞, R > R̃.

By the first-moment inequality and [3, Proposition 5.1], we have the following bounds:

1 − E[�0,!
n (B(

√
nR))] ≤ P(�0,!

n (Bn(
√

nR)) = 0) ≤ exp(−E[�0,!
n (B(

√
nR))]).

Thus,

lim
n→∞ P(�0,!

n (Bn(
√

nR)) > 0) =
{

0, R < R̃,

1, R > R̃.
�

Appendix B

Proof of Lemma 3.1. From Theorem 2.3, for any B ∈ B(Rn),

E[ηn(B)] = E[�n(B)] − E[�0,!
n (B)] = 1

Kn(0)

∫
B

Kn(x)2 dx,

i.e. the first-moment measure of ηn has a density with respect to the Lebesgue measure equal
to (1/Kn(0))Kn(x)2. Then, by the monotone convergence theorem,

E[ηn(R
n)] = lim

R→∞ E[ηn(Bn(R))] = 1

Kn(0)

∫
Rn

Kn(x)2 dx = ‖Kn‖2
2

Kn(0)
.

Thus, for all B ∈ B(Rn),

P(Xn ∈ B) =
∫

B

Kn(x)2

‖Kn‖2
2

dx = E[ηn(B)]
E[ηn(Rn)] . �
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Appendix C

We now present the proofs of our main results.

Proof of Proposition 3.1. The assumption |Xn|/√n
P−→ R∗ means that for all ε > 0,

P

(∣∣∣∣ |Xn|√
n

− R∗
∣∣∣∣ > ε

)
→ 0 as n → ∞.

First, assume that R < R∗. Then there exists ε > 0 such that R = R∗ − ε. Thus,

P(|Xn| ≤ √
nR) = P

( |Xn|√
n

≤ R∗ − ε

)
≤ P

(∣∣∣∣ |Xn|√
n

− R∗
∣∣∣∣ > ε

)
→ 0 as n → ∞.

Second, assume that R > R∗. Then there exists ε > 0 such that R = R∗ + ε, and

P(|Xn| ≤ √
nR) = 1 − P

( |Xn|√
n

> R∗ + ε

)
≥ 1 − P

(∣∣∣∣ |Xn|√
n

− R∗
∣∣∣∣ > ε

)
→ 1.

Finally, by Lemma 3.1, as n → ∞,

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] = P(|Xn| ≤ √

nR) →
{

0, R < R∗,
1, R > R∗,

completing the proof. �
Proof of Proposition 3.2. Since, for all n, �n is isotropic, Xn as defined in Proposition 3.1

has a radially symmetric density. Thus, Xn has the same distribution as the product RnUn,
where Rn is equal in distribution to |Xn|, Un is uniformly distributed on S

n−1, and Rn and Un

are independent. Letting σ 2
n = E[|Xn|2] for each n, (

√
n/σn)Xn then satisfies the conditions

of Theorem 3.1 for each n. Then, by Theorem 3.1, for any δ > 0, there exist absolute constants
C, c > 0 such that

P

(∣∣∣∣ |Xn|
σn

− 1

∣∣∣∣ ≥ δ

)
≤ Ce−c

√
n min(δ,δ3).

Now, let δ ∈ (0, 1). By Lemma 3.1,

E[ηn(Bn(σn(1 − δ)))]
E[ηn(Rn)] = P

( |Xn|
σn

≤ 1 − δ

)
≤ Ce−c

√
nδ3

,

since min(δ3, δ) = δ3 for δ ∈ (0, 1). Similarly, for any δ > 0,

E[ηn(R
n \ Bn(σn(1 + δ)))]
E[ηn(Rn)] = P

( |Xn|
σn

≥ 1 + δ

)
≤ Ce−c

√
n min(δ3,δ).

Now, assume that σn/
√

n → R∗ ∈ (0, ∞) as n → ∞. For R < R∗, there exists ε ∈ (0, 1)

such that R = R∗(1 − ε). Then, for all large enough n,
√

nR∗/σn < (1 − 1
2ε)/(1 − ε) and

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] = P(|Xn| ≤ √

nR)

= P

( |Xn|
σn

≤
√

nR

σn

)
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= P

( |Xn|
σn

≤
√

nR∗(1 − ε)

σn

)

≤ P

( |Xn|
σn

≤ 1 − ε

2

)

≤ P

(∣∣∣∣ |Xn|
σn

− 1

∣∣∣∣ ≥ ε

2

)
≤ Ce−c

√
n(ε/2)3

.

Thus, for all R < R∗, there exists a constant C(ε(R)) = cε3/23 such that

lim inf
n→∞ − 1√

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] ≥ C(ε(R)).

A similar argument can be used to show that for all R > R∗, there exists C(ε(R)) such that

lim inf
n→∞ − 1√

n
ln

E[ηn(R
n \ Bn(

√
nR))]

E[ηn(Rn)] ≥ C(ε(R)).

This implies the threshold (3.3). �
Proof of Proposition 3.3. If |Xn|/√n satisfies an LDP with convex rate function I then, by

definition,

− inf
r<R

I (r) ≤ lim inf
n→∞

1

n
ln P

( |Xn|√
n

≤ R

)
≤ lim sup

n→∞
1

n
ln P

( |Xn|√
n

≤ R

)
≤ − inf

r≤R
I (r).

Thus, using Lemma 3.1,

− inf
r<R

I (r) ≤ lim inf
n→∞

1

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] ≤ lim sup

n→∞
1

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] ≤ − inf

r≤R
I (r).

By the assumption that the rate function I is strictly convex, there exists a unique R∗ such that
I (R∗) = 0. Note that infr≤R I (r) is then 0 for R > R∗. Thus,

lim
n→∞

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] =

{
0, R < R∗,
1, R > R∗.

Let R < R∗. If the rate function I is continuous at R then the above inequalities become
equalities and

lim
n→∞ −1

n
ln

E[ηn(Bn(
√

nR))]
E[ηn(Rn)] = I (R). �

Appendix D

Proof of Lemma 4.1. We show that the sequence of random variables satisfies the conditions
of the Gärtner–Ellis theorem; see [5]. First,

E[es|Xn|2 ] = e2nρ(
m−1+n/2

m−1

)2‖Kn‖2
2

∫
Rn

exp

(
−

(
2

α2m
− s

)
|x|2

)(
L

n/2
m−1

(
1

m

∣∣∣∣xα
∣∣∣∣2))2

dx︸ ︷︷ ︸
I (s)

.
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Writing out the polynomial, the integral above becomes

I (s) =
m−1∑
k,j=0

(
m − 1 + n/2

m − 1 − k

)(
m − 1 + n/2

m − 1 − j

)
(−1)k+j

k! j !(mα2)k+j

×
∫

Rn

exp

(
−

(
2

α2m
− s

)
|x|2

)
|x|2k+2j dx.

A quick calculation shows that for a > 0,∫
Rn

e−a|x|2 |x|b dx = πn/2

a(n+b)/2

�(n/2 + b/2)

�(n/2)
. (D.1)

Then

I (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

πn/2

(2/α2m − s)n/2�(n/2)

m−1∑
k,j=0

(
m − 1 + n/2

m − 1 − k

)(
m − 1 + n/2

m − 1 − j

)

× (−1)k+j�(n/2 + k + j)

k! j !(2 − smα2)k+j
if s < 2/α2m,

∞ otherwise.

For each k, j ∈ N,(
m − 1 + n/2

m − 1 − k

)(
m − 1 + n/2

m − 1 − j

)
�

(
n

2
+ k + j

)

∼ 1

(m − 1 − k)! (m − 1 − j)!
(

n

2

)2m−2

�

(
n

2

)
as n → ∞. (D.2)

So I (s) has the following asymptotic expansion for s < 2/α2m as n → ∞:

I (s) ∼ πn/2

(2/α2m − s)n/2

(
n

2

)2m−2 m−1∑
k=0

m−1∑
j=0

(−1)k+j

k! j ! (m − 1 − k)! (m − 1 − j)!
1

(2 − smα2)k+j
.

From (4.3) and (D.2),

1

e2nρ
‖Kn‖2

2 ∼ αn(
m−1+n/2

m−1

)2

(
mπ

2

)n/2(
n

2

)2m−2 m−1∑
k,j=0

(−1)k+j

k! j ! (m − 1 − k)! (m − 1 − j)!
1

2k+j
,

(D.3)
and, hence,

E[es|Xn|2 ]

∼
(

1 − sα2m

2

)−n/2( m−1∑
k,j=0

(−1)k+j

k! j ! (m − 1 − k)! (m − 1 − j)!
1

(2 − smα2)k+j

×
[ m−1∑

k,j=0

(−1)k+j

k! j ! (m − 1 − k)! (m − 1 − j)!
1

2k+j

]−1)
as n → ∞.
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Thus,

�(s) = lim
n→∞

1

n
log E[es|Xn|2 ] =

⎧⎨
⎩−1

2
log

(
1 − sα2m

2

)
if s < 2/α2m,

∞ otherwise.

It is clear that 0 ∈ (D(�))◦, where D(�) = {s ∈ R : �(s) < ∞}. Thus, the Gärtner–Ellis
conditions are satisfied. The rate function for the LDP can be computed with the optimization

�∗(x) = sup
λ∈R

[xλ − �(λ)] = sup
λ∈R

[
xλ + 1

2 log
(
1 − 1

2λα2m
)]

.

Then, since

0 = d

dλ

[
xλ + 1

2
log

(
1 − λα2m

2

)]
= x − α2m

4 − 2α2mλ
⇐⇒ λ = 2

α2m
− 1

2x
,

the rate function is

�∗(x) = x

(
2

α2m
− 1

2x

)
+ 1

2
log

((
1− 1

2

(
2

α2m
− 1

2x

)
α2m

))
= 2x

α2m
− 1

2
+ 1

2
log

(
α2m

4x

)
.

Then, by the contraction principle (see [5]), the sequence |Xn|/√n satisfies an LDP with rate
function

�∗(x) = 2x2

α2m
− 1

2
+ 1

2
log

(
α2m

4x2

)
.

Note that �∗(x) = 0 if and only if x = 1
2α

√
m, implying |Xn|/√n

P−→ 1
2α

√
m. �

Appendix E

Proof of Proposition 4.1. For each n, let Xn be a random vector in R
n with density

K2
n/‖Kn‖2

2. From Lemma 4.1, for R < 1
2α

√
m,

lim
n→∞ −1

n
log P

( |Xn|√
n

≤ R

)
= 2R2

α2m
− 1

2
+ 1

2
log

(
α2m

4R2

)
.

Then, using (D.3), as n → ∞,

E[ηn(R
n)] = 1

enρ
‖Kn‖2

2 ∼
(

e2ρα2mπ

2

)n/2 m−1∑
k,j=0

(−1)k+j

k! j ! (m − 1 − k)! (m − 1 − j)!
1

2k+j
,

Thus, from Lemma 3.1,

lim
n→∞ −1

n
log E[ηn(Bn(

√
nR))]

= lim
n→∞ −1

n
log E[ηn(R

n)] + lim
n→∞ −1

n
log P

( |Xn|√
n

≤ R

)
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=

⎧⎪⎪⎨
⎪⎪⎩

−ρ − log α − 1

2
log

(
mπ

2

)
+

(
2R2

α2m
− 1

2
+ 1

2
log

(
α2m

4R2

))
, 0 < R < 1

2α
√

m,

−ρ − log α − 1

2
log

(
mπ

2

)
, R > 1

2α
√

m

=

⎧⎪⎪⎨
⎪⎪⎩

−ρ − 1

2
log 2πe + 2R2

α2m
− log R, 0 < R < 1

2α
√

m,

−ρ − log α − 1

2
log

(
mπ

2

)
, R > 1

2α
√

m,

and the proof is complete. �

Appendix F

Proof of Lemma 4.2. Since, for all n, K̂n ∈ C2(Rn), Parseval’s theorem implies that

E[|Xn|2] = 1

‖Kn‖2
2

∫
Rn

|x|2Kn(x)2 dx = 1

‖K̂n‖2
2

∫
Rn

−�K̂n(ξ)

(2π)2 K̂n(ξ) dξ. (F.1)

To compute the Laplacian of K̂ , we first note that for each i,

∂2

∂x2
i

e−|αx|ν = ∂

∂xi

(−νανxi |x|ν−2e−|αx|ν )

= −ναν |x|ν−2e−|αx|ν − νανxi

(
∂

∂xi

|x|ν−2
)

e−|αx|ν + (νανxi |x|ν−2)2e−|αx|ν

= e−|αx|ν (−ναν |x|ν−2 − ν(ν − 2)ανx2
i |x|ν−4 + ν2α2νx2

i |x|2ν−4)

= e−|αx|ν (x2
i (ν2α2ν |x|2ν−4 − ν(ν − 2)αν |x|ν−4) − ναν |x|ν−2).

Then

�e−|αx|ν =
n∑

i=1

∂2

∂x2
i

e−|αx|ν

=
n∑

i=1

e−|αx|ν (x2
i (ν2α2ν |x|2ν−4 − ν(ν − 2)αν |x|ν−4) − ναν |x|ν−2)

= e−|αx|ν (|x|2(ν2α2ν |x|2ν−4 − ν(ν − 2)αν |x|ν−4) − nναν |x|ν−2)

= e−|αx|ν (ν2α2ν |x|2ν−2 − (ν(ν − 2)αν + nναν)|x|ν−2).

Thus, from (4.6) and (F.1),

E[|Xn|2] = �(n/2 + 1)αn
n2n/ν

4π2πn/2�(n/ν + 1)

×
∫

Rn

e−2|αnx|ν ((ν(ν − 2)αν
n + nναν

n)|x|ν−2 − ν2α2ν
n |x|2ν−2) dx

= �(n/2 + 1)αn+ν
n 2n/νν

4π2πn/2�(n/ν + 1)

×
[
(ν − 2 + n)

∫
Rn

|x|ν−2e−2|αnx|ν dx − ναν
n

∫
Rn

e−2|αnx|ν |x|2ν−2 dx

]
.
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Then, using (D.1),

E[|Xn|2] = n
αn+ν

n 2n/νν

4π2�(n/ν + 1)

[
−ναν

n�((n + 2ν − 2)/ν)

ν2(n+2ν−2)/ναn+2ν−2
n

+ (ν − 2 + n)�((n + ν − 2)/ν)

ν2(n+ν−2)/ναn+ν−2
n

]

= n
22/να2

n

4π2�(n/ν + 1)

[
(ν − 2 + n)

2
�

(
n − 2

ν
+ 1

)
− ν

4
�

(
n − 2

ν
+ 2

)]

= n
22/να2

n�((n − 2)/ν + 1)

4π2�(n/ν + 1)

[
n

4
+ ν

4
− 1

2

]
.

From the asymptotic formula for the gamma function, as n → ∞,

E[|Xn|2] ∼ n
α2

n22/ν

4π2

(√
ν

2πn

(
νe

n

)n/ν)(√
2π(n − 2)

ν

(
n − 2

νe

)(n−2)/ν)[
n

4
+ ν

4
− 1

2

]

= n
α2

n22/ν

4π2

√
n − 2√

n

(
1 − 2

n

)n/ν(
n − 2

νe

)−2/ν[
n

4
+ ν

4
− 1

2

]

∼ n2−2/να2
n

(2ν)2/ν

16π2 .

By assumption, αn ∼ αn1/ν−1/2 for some constant α ∈ (0, ∞). Thus,

lim
n→∞

E[|Xn|2]
n

= α2 (2ν)2/ν

16π2 .

For the second moment of |Xn|2, Parseval’s theorem is applied again and we obtain

E[(|Xn|2)2] = 1

‖Kn‖2
2

∫
Rn

(|x|2Kn(x))2 dx = 1

‖Kn‖2
2

∫
Rn

(�K̂n(ξ))2

(2π)4 dξ.

Then, by the above computation of the Laplacian of K̂ , (4.6), and (D.1),

E[(|Xn|2)2] = �(n/2 + 1)αn
n2n/νν2α2ν

n

(2π)4πn/2�(n/ν + 1)

×
∫

Rn

e−2|αnx|ν (ναν
n|x|2ν−2 − (ν − 2 + n)|x|ν−2)2 dx

= �(n/2 + 1)αn
n2n/νν2α2ν

n

(2π)4πn/2�(n/ν + 1)

×
[
(ναν

n)2
∫

Rn

e−2|αnx|ν |x|4ν−4 dx

− 2ναν
n(ν − 2 + n)

∫
Rn

e−2|αnx|ν |x|3ν−4 dx

+ (ν − 2 + n)2
∫

Rn

e−2|αnx|ν |x|2ν−4 dx

]
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= n
αn

n2n/νν2α2ν
n

(2π)4�(n/ν + 1)

[
(ναν

n)2�((n + 4ν − 4)/ν)

ν2(n+4ν−4)/ναn+4ν−4
n

− 2ναν
n(ν − 2 + n)�((n + 3ν − 4)/ν)

ν2(n+3ν−4)/ναn+3ν−4
n

+ (ν − 2 + n)2�((n + 2ν − 4)/ν)

ν2(n+2ν−4)/ναn+2ν−4
n

]

= n24/νν2α4
n

(2π)4�(n/ν + 1)

[
ν�((n − 4)/ν + 4)

24 − 2(ν − 2 + n)�((n − 4)/ν + 3)

23

+ (ν − 2 + n)2�((n − 4)/ν + 2)

ν22

]

= n
24/να4

n�((n − 4)/ν + 1)

(2π)4�(n/ν + 1)

[
ν3

24

(
n − 4

ν
+ 3

)(
n − 4

ν
+ 2

)(
n − 4

ν
+ 1

)

− ν2(n + ν − 2)

22

(
n − 4

ν
+ 2

)(
n − 4

ν
+ 1

)

+ ν(n + ν − 2)2

22

(
n − 4

ν
+ 1

)]

= n
24/να4

n

(2π)4

�((n − 4)/ν + 1)

�(n/ν + 1)

(
n3

24 − n3

22 + n3

22 + o(n3)

)

= n4 24/να4
n

(2π)4

�((n − 4)/ν + 1)

�(n/ν + 1)

(
1

16
+ o(1)

)

∼ n4 24/να4
n

16(2π)4

√
ν

2πn

(
νe

n

)n/ν
√

2π(n − 4)

ν

(
n − 4

νe

)(n−4)/ν

= n4

√
n − 4

n

(
1 − 4

n

)n/ν(
n − 4

νe

)−4/ν
α4

n24/ν

16(2π)4

∼ n4(n − 4)−4/ν α4
n(2ν)4/ν

16(2π)4 .

Again, since αn ∼ αn1/ν−1/2,

E[(|Xn|2)2] = O(n2) and lim
n→∞

E[(|Xn|2)2]
n2 = α4 (2ν)4/ν

16(2π)4 .

Note that this limit is exactly the square of the limit of the expectation of |Xn|2/n, implying that

var

( |Xn|2
n2

)
= E[(|Xn|2)2]

n2 −
(

E[|Xn|2]
n

)2

→ 0 as n → ∞.

Thus, by Chebychev’s inequality,

|Xn|√
n

P−→ α
(2ν)1/ν

4π
. �
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Appendix G

Proof of Proposition 4.3. First, for k ≥ 0, we see that∫
Rn

|x|kK(x)2 dx

=
∫

Rn

|x|k
(

enρ2(σ+n)/2�

(
σ + n + 2

2

)
J(σ+n)/2(2|x/α|√(σ + n)/2)

(2|x/α|√(σ + n)/2)(σ+n)/2

)2

dx

= e2nρ2(σ+n)�

(
σ + n + 2

2

)2 ∫
Rn

|x|k J(σ+n)/2(2|x/α|√(σ + n)/2)2

(2|x/α|√(σ + n)/2)(σ+n)
dx

= e2nρ2(σ+n)�

(
σ + n + 2

2

)2 2πn/2

�(n/2)

×
∫ ∞

0
rn−1rk J(σ+n)/2(2(r/α)

√
(σ + n)/2)2

(2(r/α)
√

(σ + n)/2)(σ+n)
dx,

and by the change of variables y = ((2/α)
√

(σ + n)/2)r , we have

e2nρ2σ+n 2πn/2�((σ + n + 2)/2)2

�(n/2)

×
∫ ∞

0

(
2

α

√
σ + n

2

)−k−n+1 J(σ+n)/2(y)2

yσ+1−k

(
2

α

√
σ + n

2

)−1

dy

= e2nρ2σ+n 2πn/2�((σ + n + 2)/2)2αk+n

�(n/2)(2(σ + n))(k+n)/2

∫ ∞

0

J(σ+n)/2(y)2

yσ+1−k
dy.

For σ + 1 − k > 0, from [19, Equation (10.22.57)],∫ ∞

0

J(σ+n)/2(y)2

yσ+1−k
dy = �(n/2 + k/2)�(σ + 1 − k)

2σ−k+1�((σ − k)/2 + 1)2�(σ − k/2 + n/2 + 1)
,

and, thus, ∫
Rn

|x|kK(x)2 dx = e2nρ2σ+n 2πn/2�((σ + n + 2)/2)2αk+n

�(n/2)(2(σ + n))(k+n)/2

× �(n/2 + k/2)�(σ + 1 − k)

2σ−k+1�((σ − k/2 + 1)2�(σ − k/2 + n/2 + 1)

= e2nρ (2π)n/2αk+n2k/2�((σ + n + 2)/2)2

(σ + n)(k+n)/2�(n/2)

× �(n/2 + k/2)�(σ + 1 − k)

�((σ − k)/2 + 1)2�(σ − k/2 + n/2 + 1)
.

Then, for σ > 0,

E[|Xn|] = 1

‖Kn‖2
2

∫
Rn

|x|Kn(x)2 dx

= (2π)n/2α1+n21/2�((σ + n + 2)/2)2�(n/2 + 1/2)�(σ )

(σ + n)(1+n)/2�(n/2)�((σ + 1)/2)2�(σ − 1/2 + n/2 + 1)

× (σ + n)n/2�(σ/2 + 1)2�(σ + n/2 + 1)

(2π)n/2αn�(σ + 1)�(σ/2 + n/2 + 1)2
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= α21/2

(σ + n)1/2�(n/2)

�(n/2 + 1/2)�(σ )�(σ/2 + 1)2�(σ + n/2 + 1)

�(σ/2 + 1/2)2�(σ + n/2 + 1/2)�(σ + 1)

∼ α21/2

(σ + n)1/2�(n/2)

�(n/2)(n/2)1/2�(σ)�(σ/2 + 1)2�(n/2)(n/2)σ+1

�((σ + 1)/2)2�(n/2)(n/2)σ+1/2�(σ + 1)

= α21/2

(σ + n)1/2

(n/2)�(σ )�(σ/2 + 1)2

�((σ + 1)/2)2�(σ + 1)

∼ n1/2 α

21/2

�(σ)�(σ/2 + 1)2

�((σ + 1)/2)2�(σ + 1)

= O(n1/2).

Now, let β > 1
2 . By Markov’s inequality,

lim
n→∞

E[ηn(Bn(Rnβ)c)]
E[ηn(Rn)] = lim

n→∞ P(|Xn| ≥ Rnβ) ≤ lim
n→∞

E[|Xn|]
Rnβ

= 0. �

Appendix H

Proof of Proposition 4.4. First, from [8, Equation (6.576.3)], we have, for all ν > 0 and
k > 2ν − 1,∫ ∞

0
rk

Kν

(
r

α

)2

dr = 2−2+kαk+1

�(1 + k)
�

(
1 + k

2
+ ν

)
�

(
k + 1

2

)2

�

(
1 + k

2
− ν

)
, (H.1)

where Kν is the modified Bessel function of the second kind.
For the Whittle–Matérn kernel (4.10),∫

Rn

Kn(x)2 dx =
∫

Rn

e2nρ 22−2ν

�(ν)2

|x|2ν

α2ν
Kν

( |x|
α

)2

dx

= 2πn/2

�(n/2)
e2nρ 22−2ν

�(ν)2α2ν

∫ ∞

0
rn−1r2ν

Kν

(
r

α

)2

dr

= e2nρ 2πn/2

�(n/2)

22−2ν

�(ν)2α2ν

∫ ∞

0
rn−1+2ν

Kν

(
r

α

)2

dr.

Then, from (H.1),∫ ∞

0
rn−1+2ν

Kν

(
r

α

)2

dr = 2−3+n+2ναn+2ν

�(n + 2ν)
�

(
n + 2ν

2
+ ν

)
�

(
n + 2ν

2

)2

�

(
n + 2ν

2
− ν

)

= 2−3+n+2ναn+2ν

�(n + 2ν)
�

(
n

2
+ 2ν

)
�

(
n

2
+ ν

)2

�

(
n

2

)
.

Similarly, ∫
Rn

|x|2Kn(x)2 dx = e2nρ 2πn/2

�(n/2)

22−2ν

�(ν)2α2ν

∫ ∞

0
rn+1+2ν

Kν

(
r

α

)2

dr.

and also from (H.1),∫ ∞

0
rn+1+2ν

Kn

(
r

α

)2

dr = 2−1+n+2ναn+2+2ν

�(n + 2 + 2ν)
�

(
n

2
+ 2ν + 1

)
�

(
n

2
+ ν + 1

)2

�

(
n

2
+ 1

)
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Then

E[|Xn|2] =
∫

Rn |x|2Kn(x)2 dx∫
Rn Kn(x)2 dx

= (2α)2�(n + 2ν)�(n/2 + 2ν + 1)�(n/2 + ν + 1)2�(n/2 + 1)

�(n + 2 + 2ν)�(n/2 + 2ν)�(n/2 + ν)2�(n/2)

= (2α)2(n/2 + 2ν)(n/2 + ν)2(n/2)

(n + 1 + 2ν)(n + 2ν)

∼
(

α

2

)2

n as n → ∞,

and this implies
E[|Xn|2]1/2

√
n

→ α

2
as n → ∞.

Thus, since the Whittle–Matérn kernel is log-concave, the conclusion holds by Theorem 3.2
and the proof is complete. �

Appendix I

Proof of Proposition 4.5. First, recall that the beta function satisfies

B(x, y) :=
∫ 1

0
tx−1(1 − t)y−1 dt =

∫ ∞

0
tx−1(1 + t)−(x+y) dt = �(x)�(y)

�(x + y)
.

Then, for any k ≥ 0,∫
Rn

|x|kKn(x)2 dx =
∫

Rn

|x|k e2nρ

(1 + |x/αn|2)2ν+n
dx

= e2nρ 2πn/2

�(n/2)

∫ ∞

0
rn−1+k

(
1 + r2

α2
n

)−2ν−n

dr

= e2nρ πn/2

�(n/2)
αn+k

n

∫ ∞

0
tn/2−1+k/2(1 + t)−(2ν+n) dt

= e2nρ πn/2

�(n/2)
αn+k

n B

(
n

2
+ k

2
, 2ν + n

2
− k

2

)
.

Thus, the expectation of |Xn|2 is

E[|Xn|2] = 1

‖Kn‖2
2

∫
Rn

|x|2Kn(x)2 dx

= α2
n

B(n/2 + 1, 2ν + n/2 − 1)

B(n/2, 2ν + n/2)

= α2
n

�(n/2 + 1)�(2ν + n/2 − 1)�(n + 2ν)

�(n + 2ν)�(n/2)�(2ν + n/2)

= α2
n

n

2(n/2 + 2ν − 1)

= α2
n

n

n + 4ν − 2
,
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and

E[|Xn|4] = α4
n

B(n/2 + 2, 2ν + n/2 − 2)

B(n/2, 2ν + n/2)

= α4
n

�(n/2 + 2)�(2ν + n/2 − 2)�(n + 2ν)

�(n + 2ν)�(n/2)�(2ν + n/2)

= α4
n

(n/2 + 1)n/2

(2ν + n/2 − 2)(2ν + n/2 − 1)

= α4
n

n(n + 2)

(n + 4ν − 4)(n + 4ν − 2)
.

Thus, by the assumption that αn ∼ αn1/2 as n → ∞ for some α > 0,

lim
n→∞

E[|Xn|2]
n

= α2 and lim
n→∞

var(|Xn|2)
n2 = 0.

Thus, by Chebychev’s inequality, |Xn|/√n
P−→ α. �

Appendix J

Proof of Proposition 5.1. By Proposition 4.1,

lim
n→∞ −1

n
ln E[ηn(Bn(

√
nR))] =

⎧⎪⎪⎨
⎪⎪⎩

−ρ − 1

2
log 2πe + 2R2

α2m
− log R, 0 < R < 1

2α
√

m,

−ρ − log α − 1

2
log

mπ

2
, R > 1

2α
√

m.

Recall that limn→∞(1/n) ln E[�n(Bn(
√

nR))] = ρ + 1
2 log 2πe + log R. Thus,

lim
n→∞ −1

n
ln

E[ηn(Bn(
√

nR))]
E[�n(Bn(

√
nR))]

= lim
n→∞ −1

n
ln E[ηn(Bn(

√
nR))] + 1

n
ln E[�n(Bn(

√
nR))]

=

⎧⎪⎪⎨
⎪⎪⎩

−ρ − 1

2
log 2πe + 2R2

α2m
− log R + ρ + 1

2
log 2πe + log R, 0 < R < 1

2α
√

m,

−ρ − log α − 1

2
log

mπ

2
+ ρ + 1

2
log 2πe + log R, R > 1

2α
√

m,

=

⎧⎪⎨
⎪⎩

2R2

α2m
, 0 < R < 1

2α
√

m,

1
2 + log 2 − log α − 1

2 log m + log R, R > 1
2α

√
m,

and the proof is complete. �
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