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Subdivision schemes are efficient computational methods for the design and
representation of 3D surfaces of arbitrary topology. They are also a tool for
the generation of refinable functions, which are instrumental in the construc-
tion of wavelets. This paper presents various flavours of subdivision, seasoned
by the personal viewpoint of the authors, which is mainly concerned with
geometric modelling. Our starting point is the general setting of scalar mul-
tivariate nonstationary schemes on regular grids. We also briefly review other
classes of schemes, such as schemes on general nets, matrix schemes, non-
uniform schemes and nonlinear schemes. Different representations of subdi-
vision schemes, and several tools for the analysis of convergence, smoothness
and approximation order are discussed, followed by explanatory examples.
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74 N. Dyn and D. Levin

1. Introduction

The first work on a subdivision scheme was by de Rahm (1956). He showed
that the scheme he presented produces limit functions with a first deriv-
ative everywhere and a second derivative nowhere. The pioneering work
of Chaikin (1974) introduced subdivision as a practical algorithm for curve
design. His algorithm served as a starting point for extensions into subdi-
vision algorithms generating any spline functions. The importance of sub-
division to applications in computer-aided geometric design became clear
with the generalizations of the tensor product spline rules to control nets of
arbitrary topology. This important step has been introduced in two papers,
by Doo and Sabin (1978) and by Catmull and Clark (1978). The surfaces
generated by their subdivision schemes are no longer restricted to represent-
ing bivariate functions, and they can easily represent surfaces of arbitrary
topology.

In recent years the subject of subdivision has gained popularity because
of many new applications, such as 3D computer graphics, and its close re-
lationship to wavelet analysis. Subdivision algorithms are ideally suited to
computer applications: they are simple to grasp, easy to implement, highly
flexible, and very attractive to users and to researchers. In free-form surface
design applications, such as in the 3D animation industry, subdivision meth-
ods are already in extensive use, and the next venture is to introduce these
methods to the more conservative, and more demanding, world of geometric
modelling in the industry.

Important steps in subdivision analysis have been made in the last two
decades, and the subject has expanded into new directions owing to various
generalizations and applications. This review does not claim to cover all
aspects of subdivision schemes, their analysis and their applications. It
is, rather, a personal view of the authors on the subject. For example,
the convergence analysis is not presented in its greatest generality and is
restricted to uniform convergence, which is relevant to geometric modelling.
On the other hand, the review deals with the analysis and applications of
nonstationary subdivision schemes, which the authors view as important
for future developments. While most of the analysis presented deals with
convergence and regularity, it also relates the results to practical issues such
as attaining optimal approximation order and computing limit values.

The presentation starts with the basic notions of nonstationary subdi-
vision: definitions of limit functions and basic limit functions and the re-
finement relations they satisfy. Different forms of representation of sub-
division schemes, and their basic convolution property, are also presen-
ted in Section 2. These are later used throughout the review for stating
and proving the main results. In the next section we present a gallery
of examples of different types of subdivision schemes: interpolatory and
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non-interpolatory, linear and nonlinear, stationary and nonstationary, mat-
rix subdivision, Hermite-type subdivision, and bivariate subdivision on reg-
ular and irregular nets. In the same section we also sketch some extensions
of subdivision schemes that are not studied in this review. The material in
Sections 2 and 3 is intended to provide a broad map of the subdivision area
for tourists and new potential users.

In Section 4, the convergence analysis of univariate and bivariate station-
ary subdivision schemes, and the smoothness analysis of their limit func-
tions, are presented via the related difference schemes. Analogous analysis
is also presented for nonstationary schemes, relating the results to the ana-
lysis of stationary subdivision and using smoothing factors and convolutions
as main tools. The central results are given, some with full proofs and others
with only sketches. The special analysis of convergence and smoothness at
extraordinary points, of subdivision schemes on nets of general topology, is
reviewed in Section 6. In Section 7 we discuss two issues in the practical
application of subdivision schemes. One is the computation of exact limit
values of the function (surface), and the limit derivatives, at dyadic points.
The other is the approximation order of subdivision schemes, and how to
attain it.

For other reviews and tutorials on subdivision schemes and their applic-
ations, the reader may turn to Cavaretta, Dahmen and Micchelli (1991),
Schröder (2001), Zorin and Schröder (2000) and Warren (1995b)

2. Basic notions

This review presents subdivision schemes mainly as a tool for geometric
modelling, starting from the general perspective of nonstationary schemes.

2.1. Nonstationary schemes

A subdivision scheme is defined as a set of refinement rules relative to a set
of nested meshes of isolated points (nets)

N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ R
s.

Each refinement rule maps real values defined on Nk to real values defined
on a refined net Nk+1. The subdivision scheme is the repeated refinement
of initial data defined on N0 by these rules.

Let us first consider the regular grid case, namely the net N0 = Z
s for

s ∈ Z+\0 and its binary refinements, namely the refined nets Nk = 2−kZs,
k ∈ Z+\0. Let fk be the values attached to the net Nk = 2−kZs,

fk = {fkα : α ∈ Z
s} (2.1)

with fkα attached to 2−kα.
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76 N. Dyn and D. Levin

The refinement rule at refinement level k is of the form

fk+1
α =

∑
β∈Zs

akα−2βf
k
β , α ∈ Z

s, (2.2)

which we write formally as

fk+1 = Rakf
k. (2.3)

The set of coefficients ak = {akα : α ∈ Z
s} determines the refinement rule

at level k and is termed the kth level mask. Let σ(ak) = {γ | akγ 6= 0} be

the support of the mask ak. Here we restrict the discussion to the case that
the origin is in the convex hull of σ(ak), and that σ(ak) are finite sets, for
k ∈ Z+. A more general form of refinement, corresponding to a dilation
matrix M , is

fk+1
α =

∑
β∈Zs

akα−Mβf
k
β , (2.4)

where M is an s×s matrix of integers with |det(M)| > 1 (see, e.g., Dahmen
and Micchelli (1997) and Han and Jia (1998)). In this case the refined nets
are M−k

Z
s, k ∈ Z+. We restrict our discussion to binary refinements

corresponding to M = 2I, with I the s× s identity matrix, namely to (2.2).
If the masks {ak} are independent of the refinement level, namely if ak =

a, k ∈ Z+, the subdivision scheme is termed stationary, and is denoted
by Sa. In the nonstationary case, the subdivision scheme is determined by
{ak : k ∈ Z+}, and is denoted as a collection of refinement rules {Rak}, or
by the shortened notation S{ak}.

2.2. Notions of convergence

A continuous function f ∈ C(Rs) is termed the limit function of the sub-
division scheme S{ak}, from the initial data sequence f0, and is denoted by

S∞{ak}f
0, if

lim
k→∞

max
α∈Zs∩K

|fka − f(2−kα)| = 0, (2.5)

where fk is defined recursively by (2.2), and K is any compact set in R
s.

This is equivalent (Cavaretta et al. 1991) to f being the uniform limit on
compact sets of R

s of the sequence {Fk : k ∈ Z+} of s-linear spline functions
interpolating the data at each refinement level, namely

Fk(2
−kα) = fkα, Fk

∣∣
2−k(α+[0,1]s)

∈ πT1 , α ∈ Z
s, (2.6)

where πT1 is the tensor product space of the spaces of linear polynomials in
each of the variables.
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From this equivalence we get

lim
k→∞

‖f(t)− Fk(t)‖∞,K = 0. (2.7)

If we do not insist on the continuity of f in (2.5) or on the L∞-norm in
(2.7), we get weaker notions of convergence: for instance, Lp-convergence is
defined by requiring the existence of f ∈ Lp(Rs) satisfying limk→∞ ‖f(t) −
Fk(t)‖p = 0 (Villemoes 1994, Jia 1995). The case p = 2 is important in
the theory of wavelets (Daubechies 1992). In this paper we consider mainly
the notion of uniform convergence, corresponding to (2.7), which is relev-
ant to geometric modelling. We also mention here the weakest notion of
convergence (Derfel, Dyn and Levin 1995), termed weak convergence or dis-
tributional convergence. A subdivision scheme S{ak}, generating the values

fk+1 = Rakf
k, for k ∈ Z+, converges weakly to an integrable function f if,

for any g ∈ C∞
0 (infinitely smooth and of compact support),

lim
k→∞

2−k
∑
α∈Zs

g(2−kα)fkα =

∫ s

R

f(x)g(x) dx.

Definition 1. A subdivision scheme is termed uniformly convergent if,
for any initial data, there exists a limit function in the sense of (2.7) (or
equivalently, if, for any initial data, there exists a continuous limit function
in the sense of (2.5)) and if the limit function is nontrivial for at least
one initial data sequence. A uniformly convergent subdivision scheme is
termed Cm, or Cm-convergent if, for any initial data, the limit function has
continuous derivatives up to order m.

In the following we use the term convergence for uniform convergence,
since this notion of convergence is central to the review.

An important initial data sequence is f0 = δ = {f0
α = δα,0 : α ∈ Z

s}.
If S{ak} is convergent, then there exists a nontrivial limit function starting
from this initial data sequence:

φ{ak} = S∞{ak}δ.

By the uniformity of the refinement rules (each refinement rule operates
in the same way at all locations), and by their linearity,

S∞{ak}f
0 =

∑
α∈Zs

f0
αφ{ak}(· − α), (2.8)

for any initial f0. Thus, if φak ∈ Cm(Rs) for some m ≥ 0, so is any limit
function generated by Sak , and the scheme is Cm.

When the initial data consist of a sequence of vectors

P0 = {P 0
α ∈ R

d : α ∈ Z
s} ∈ (`∞(Zs))d,

the limit of the subdivision, given by (2.8) with f0 replaced by P0, is a
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parametric representation of a manifold in R
d. In geometric modelling s = 1

corresponds to curves in R
d for d = 2, 3 and s = 2, d = 3 to surfaces in R

3.
The set of refined points Pk, for k ∈ Z+, is termed the control points at
level k.

2.3. The refinement equations

The function φ{ak} = S∞{ak}δ, termed the basic limit function of the subdi-

vision scheme S{ak}, is the first in the family of functions {φ` : ` ∈ Z+},
defined by

φ` = S∞` δ, (2.9)

where S` = {Rak : k ≥ `, k ∈ Z+}. Each function in this family is a basic
limit function of a subdivision scheme defined in terms of a subset of the
masks {ak}. If S0 = S{ak} is convergent so is any S` for ` ∈ Z+ (Dyn and
Levin 1995) (see Section 4.1). Thus all the functions {φ` : ` ∈ Z+} are well
defined, if S0 is convergent. Moreover, by (2.9),

S∞` f0 =
∑
α∈Zs

f0
αφ`(· − α). (2.10)

The support of φ` can be determined by the the supports of the masks
{ak}. Recalling that σ(ak) denotes the support of the mask ak, which is a
finite set of points in Z

s, then, by the refinement rules (2.2) and by (2.9),
the support σ(φ`) of φ` is given by

σ(φ`) =

∞∑
k=`

2`−k−1σ(ak), (2.11)

where the sum denotes the Minkowski sum of sets (that is, A+B = {a+ b :
a ∈ A, b ∈ B}). In the stationary case and in the univariate case, (2.11) can
be further elaborated.

In the univariate case, s = 1, let [`k, uk] =
〈
σ(ak)

〉
be the convex hull of

σ(ak), and let

`k =

∞∑
j=k

2k−j−1`j , uk =

∞∑
j=k

2k−j−1uj .

Then
σ(φk) ⊆ [`k, uk]. (2.12)

In the stationary case (Cavaretta et al. 1991), (2.11) yields

σ(φa) ⊆
〈
σ(a)

〉
. (2.13)

The functions {φk : k ∈ Z+} are related by a system of functional equa-
tions, termed refinement equations. To see this, observe that (Rakδ)α = akα,
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α ∈ Z
s and, by the linearity of the refinement rules,

φk =
∑
α

akαφk+1(2 · −α), k ∈ Z+. (2.14)

In the stationary case, namely when ak = a, k ∈ Z+, this system of equa-
tions reduces to a single functional equation

φa =
∑
α

aαφa(2 · −α), (2.15)

with a = {aα : α ∈ Z
s}, and φa = S∞a δ.

The refinement equation (2.15) is the key to the generation of multiresol-
ution analysis and wavelets (Daubechies 1992, Mallat 1989). When the
scheme Sa converges, the unique compactly supported solution of the refine-
ment equation (2.15) coincides with S∞a δ. The refinement equation (2.15)
suggests another way to compute its unique compactly supported solution.
This method is termed the ‘cascade algorithm’ (see, e.g., Daubechies and
Lagarias (1992a)). It involves repeated use of the operator

Tag =
∑
α

aαg(2 · −α).

defined on continuous compactly supported functions. The cascade al-
gorithm is as follows.

(1) Choose a continuous compactly supported function, ψ0, as a ‘good’
initial guess (e.g., H as in (2.20)).

(2) Iterate: ψk+1 = Taψk.

It is easy to verify that the operator Ta is the adjoint of the refinement rule
Ra, in the following sense: for any ψ continuous and of compact support,
(Cavaretta et al. 1991)∑

α

(Raf)αψ(2 · −α) =
∑
α

fα(Taψ)(· − α). (2.16)

Note that, while the refinement rule Ra is defined on sequences, the operator
Ta is defined on functions. A similar operator to Ta, defined on sequences, is

(T̃af)α =
∑
β

aβf2α−β =
∑
γ

a2α−γfγ . (2.17)

This operator is the adjoint of the operator Ra on the space of sequences
defined on Z

s. The operator T̃a in (2.17) is termed the transfer operator
(Daubechies 1992), and plays a major role in the analysis of the solutions
of refinement equations of the form (2.15) (see, e.g., Jia (1996), Han (2001),
Han and Jia (1998) and Jia and Zhang (1999)).
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2.4. Representations of subdivision schemes

The notions introduced above regard a subdivision scheme S{ak} = {Rak}
as a set of operators defined on sequences in `∞(Zs). Each refinement rule
can be represented as a bi-infinite matrix with each element indexed by two
index vectors from Z

s,

fk+1
α =

∑
β∈Zs

Ak
α,βf

k
β , α ∈ Z

s, (2.18)

where the bi-infinite matrix Ak has elements

Ak
α,β = akα−2β. (2.19)

Finite sections of these matrices are used in the analysis of the subdivision
scheme S{ak} (see Section 5).

One may also regard a subdivision scheme as a set of operators {Rk :
k ∈ Z+} defined on a function space (Dyn and Levin 1995), if one considers
the functions {Fk} introduced in (2.6). The set of operators {Rk} has the
property that Rk maps Fk into Fk+1. More specifically, let H be defined by

H(α) = δ0,α, H
∣∣
(α+[0,1]s)

∈ πT1 , α ∈ Z
s. (2.20)

Define the operators {Rk} on C(Rs) as

Rkg =
∑
α∈Zs

H(2k+1 · −α)
∑
β∈Zs

akα−2βg(2
−kβ), k ∈ Z+, (2.21)

for any g ∈ C(Rs). Then the subdivision scheme S{ak} is related to the set
of operators {Rk} in several ways, for example,

(Rkg)
∣∣
2−k−1Zs

= Rak(g
∣∣
2−kZs

),

and the more significant relation

S∞{ak}f
0 = lim

k→∞
RkRk−1 · · ·R0g, (2.22)

where g ∈ C(Rs) is any interpolant to f0 on Z
s, namely

g(α) = f0
α, α ∈ Z

s.

In particular, g can be

g =
∑
α∈Zs

H(· − α)f0
α.

Another important relation is

‖Rk‖ = ‖Rak‖∞ = max
α∈Es

{∑
β∈Zs

|akα−2β|
}
, (2.23)
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where Es is the set of extreme points of [0, 1]s. The representation of sub-
division schemes in terms of sequences of operators on C(Rs) facilitates the
application of standard operator-theory tools to the analysis of subdivision
schemes, for instance, to deduce convergence properties of nonstationary
schemes from those of related stationary ones (Dyn and Levin 1995) (see
Section 4.1).

A representation of the refinement rule (2.2), which is a central tool in
the convergence and smoothness analysis of stationary schemes, is in terms
of z-transforms (Laurent series). Let the symbol of the mask ak be defined
as the Laurent polynomial

ak(z) =
∑
α∈Zs

akαz
α. (2.24)

Here we use the multi-index notation zn = zn1
1 · · · znss , for z ∈ R

s, n ∈ Z
s,

and zn = zn1 · · ·zns , for z ∈ R
s, n ∈ Z. Obviously, a subdivision scheme S{ak}

is identified with the set of its symbols {ak(z)}. In our notation we exchange
freely between the mask and its symbol, for instance, φ{ak(z)} denotes the
basic limit function of S{ak(z)} = S{ak}.

Let the z-transform of the sequence f = {fα : α ∈ Z
s} be denoted by

L(f ; z), namely

L(f ; z) =
∑
α∈Zs

fαz
α.

Then the refinement rule (2.2) can be written in the form

L(fk+1; z) = ak(z)L(fk; z2), (2.25)

with the formal meaning of the equality above being that corresponding
powers of z on both sides of the equality have equal coefficients. Iterating
the relation (2.25), we obtain

L(fk+`; z) = ak+`−1(z)ak+`−2(z2) · · · ak(z2`−1
)L(fk; z2`). (2.26)

Thus, the `-iterated symbol from level k to level k + ` is

a[k;`](z) =
∑
α∈Zs

a[k;`]
α zα =

∏̀
j=1

ak+`−j(z2j−1
). (2.27)

In the stationary case we denote the `-iterated symbol by a[`]:

a[`](z) =
∏̀
j=1

a(z2j−1
). (2.28)
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2.5. The convolution property

Here we present an important property of schemes, which is easily expressed
in terms of the Laurent polynomial representation. This property is presen-
ted in three different forms, depending on the notion of convergence used.

(1) Let S{ak} and S{bk} each be either (uniformly) convergent or convergent
in the sense of (2.5), with corresponding basic limit functions φ{ak} and
φ{bk} continuous in their support. Then the scheme S{ck} defined by
the symbols

ck(z) = 2−sak(z)bk(z) (2.29)

is also convergent, and its basic limit function is

φ{ck} = φ{ak} ∗ φ{bk}. (2.30)

Here the symbol ∗ stands for the s-dimensional convolution (Cavaretta
et al. 1991, Dyn and Levin 1995).

The convolution property which is repeatedly used in this paper for s > 1,
is of a different form.

(2) Let S{bk} be a convergent s-variate subdivision scheme, and let S{ak}
be a univariate scheme, which is convergent in the sense of (2.5) to
integrable limit functions. Then the symbols

ck(z) = 2−1ak(zλ)bk(z), (2.31)

with λ ∈ Z
s, define a convergent scheme S{ck}. Moreover,

φ{ck}(x) = φ{ak} ∗λ φ{bk}(x) ≡
∫

R

φ{ak}(x− λt)φ{bk}(t) dt. (2.32)

The convolution property is also valid in the case of weak convergence of
Sa. This property is used in only one example in the paper.

(3) Let S{bk} be an s-variate subdivision scheme convergent in the sense
of (2.5), with φ{bk} continuous in its support, and let S{ak} be a
weakly convergent s-variate scheme, with φ{ak} continuous in its sup-
port. Then the scheme S{ck} defined by the symbols in (2.29) is con-
vergent, and φ{ck} is given by (2.30).

Here we indicate how to verify convolution property (2) ((2.31) and (2.32)).
The verification of the convolution property in its other two forms is based
on the same reasoning. Observe that, for fk = Rak−1 · · · Ra0δ, we have
L(fk; z) = a[0,`](z), and that in polynomial multiplication the coefficients
are computed by convolutions of the coefficients of the factors. Thus, the
relations (2.31) and (2.27) yield

c[0,`](z) = 2−`a[0,`](zλ)b[0,`](z),
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or equivalently

L(g`; z) = 2−`L(f `; zλ)L(h`; z), (2.33)

with g` = Rc`−1 · · ·Rc0δ, and h` = Rb`−1 · · ·Rb0δ.
Now, (2.32) can be concluded by equating coefficients of equal powers of

z on both sides of (2.33), taking into account the convergence of {fk}k∈Z+

and of {hk}k∈Z+ to the compactly supported limit functions φ{ak} and φ{bk},
respectively.

3. The variety of subdivision schemes

Subdivision schemes were first studied as a tool for generating spline func-
tions (Chaikin 1974, Riesenfeld 1975, Cohen, Lyche and Riesenfeld 1980).
The renewed interest in this subject in geometric modelling has evolved
as subdivision processes were extended to general topologies (Catmull and
Clark 1978, Doo and Sabin 1978). In recent years interesting applications
have emerged, such as wavelet theory, and some very challenging theoretical
issues have arisen. In the following we discuss the major different types of
subdivision schemes, most of them relevant to geometric modelling:

• B-spline and box-spline schemes
• the up-function scheme
• exponential spline and exponential box-spline schemes
• interpolatory schemes
• shape-preserving schemes
• general matrix schemes
• Hermite-type and moment interpolatory schemes
• tensor product schemes
• different topologies for surface subdivision.

While assessing the various types we incorporate the notions of local support
and support size, smoothness and approximation order. These issues will be
further developed and investigated in the next sections. Here we take the
liberty of using these properties in a heuristic manner.

3.1. Elementary schemes and their convolutions

The simplest elementary univariate uniform stationary scheme is the scheme
defined by the symbol

ak(z) = a(z) = 1 + z. (3.1)

The corresponding basic limit function is the characteristic function of [0, 1],
where the convergence is in the sense of (2.5):

φ1+z = B0(·) = χ[0,1]. (3.2)
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By convolution property (1),

φ2−m(1+z)m+1 = B0(·) ∗B0(·) ∗ · · · ∗B0(·) = Bm(·). (3.3)

Thus, the scheme with symbol a(z) = 2−m(1 + z)m+1 has as a basic limit
function the mth-degree B-spline function with integer knots, supported in
[0,m + 1], which is in Cm−1(R). As shown in Section 4.2, the symbol of a
Cm univariate uniform stationary binary scheme, under an additional mild
condition, must contain the factor (1 + z)m+1. The earliest example of a
spline subdivision is Chaikin’s algorithm (Chaikin 1974)

fk+1
2i =

3

4
fki +

1

4
fki+1, fk+1

2i+1 =
1

4
fki +

3

4
fki+1, (3.4)

which converges to the quadratic spline
∑
f0
i B2(· − i). Chaikin’s algorithm

is also the basic example of a ‘corner cutting’ algorithm, which served as
a starting point to various generalizations, for instance in de Boor (1987)
and Gregory and Qu (1996). The application of three iterations on a simple
control polygon (the polygonal line joining the control points) is presented
in Figure 3.1.

original iteration #1

iteration #2 iteration #3

Figure 3.1. Chaikin’s algorithm
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Another interesting scheme that is constructed by convolutions of the
elementary scheme is defined by

ak(z) = 2−k+1(1 + z)k. (3.5)

The corresponding basic limit function is Rvachev’s up-function (Rvachev
1990, Derfel et al. 1995) which is in C∞(R) and is supported in [0, 2] (see
Example 5). The spaces Vk = span{φk(2k · −α) : α ∈ Z

s}, k ∈ Z+, with
{φk} defined as (2.9) with respect to the symbols at (3.5), provide spectral
approximation order (Dyn and Ron 1995).

Products of the elementary univariate factors in directions in Z
s generate

box-splines in R
s as basis limit functions. Let Λ = {λ1, . . . , λ`} ⊂ Z

s, and
define the stationary scheme with the symbol

a(z) = 2s−`
∏̀
j=1

(1 + zλj ). (3.6)

This scheme is related to the box-spline when directions Λ (de Boor, Höllig
and Riemenschneider 1993, Dahmen and Micchelli 1984). Convergence is
guaranteed if there is a subset of s directions {λi1λi2 , . . . , λis} ∈ Λ such that
det(λi1λi2 · · · λis) = 1. Furthermore, if any subset of ` −m − 1 directions
spans R

s, then φa is in Cm (de Boor et al. 1993).
An important example here is the scheme generating the C2 quartic 3-

directional box-spline, namely, the scheme with the symbol

a(z) = 2−4(1 + z(1,0))2(1 + z(0,1))2(1 + z(1,1))2. (3.7)

It is easy to check that the above conditions are satisfied with m = 2, and
thus the basic limit function is a box-spline in C2.

The uniform nonstationary elementary scheme is again a scheme defined
by symbols that are linear polynomials in z, namely

ak(z) = 1 + rkz, k ∈ Z+. (3.8)

The parameters {rk}k∈Z+ are free parameters which determine the conver-
gence of the subdivision scheme and the regularity of the limit function (Dyn
and Levin 1995). To examine these issues we write the scheme explicitly as

fk+1
2i = fki , fk+1

2i+1 = rkf
k
i , i ∈ Z. (3.9)

Starting the subdivision with initial data sequence f0 = δ, the limit at a
dyadic point x =

∑k
i=1 di2

−i ∈ [0, 1), di ∈ {0, 1}, is determined at level k of
the subdivision. It is easy to verify that the value of the basic limit function
φ at a dyadic point is given by

φ(x) =

k∏
i=1

rdii−1. (3.10)
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Let us define φ(x) at nondyadic points by

φ(x) =

∞∏
i=1

rdii−1, x =
∞∑
i=1

di2
−i ∈ [0, 1), (3.11)

and φ(x) = 0 for all x /∈ [0, 1). If we assume that the parameters {rk} satisfy∑
k∈Z+

|1 − rk| < ∞, then all the above infinite products converge, and we
find out that φ is continuous at all nondyadic points. At dyadic points in
[0, 1) φ is right-continuous; hence, it is integrable. As proved in Dyn and
Levin (1995), φ is also left-continuous at all dyadic points in (0, 1) if and

only if rk = ec2
−k

for some constant c.

Exponential B-splines. The univariate elementary nonstationary scheme
defined by

ak(z) = 1 + ec2
−k−1

z, k ∈ Z+, (3.12)

generates the exponential B-spline

φ{ak}(x) = ecxχ[0,1](x). (3.13)

Consequently, by convolution property (1), the scheme generating the mth-
order exponential B-spline with exponents c1, . . . , cm is

ak(z) = 2−m+1
m∏
j=1

(1 + ecj2
−k−1

z). (3.14)

Similarly, one can derive symbols of schemes generating exponential box-
splines and exponential up-functions (Dyn and Levin 1995).

Generating circumscribed circles. A special example of a scheme that
is obtained by convolution of elementary schemes is given by the symbol

ak(z) =
1

2(1 + cos(αk))
(1 + z)(1 + eiαkz)(1 + e−iαkz),

αk = 2−k−1α0, k ∈ Z+. (3.15)

This is a C1 ‘corner cutting’ scheme which reproduces constants and also
sin(α0x), cos(α0x). If the initial control polygon is a regular n-gon and
α0 = 2π/n, then the limit curve is the circle circumscribed in the n-gon
(Dyn and Levin 1992). The tensor product of the above scheme with any
other stationary scheme generates surfaces of revolution (Morin, Warren
and Weimer 2001). It seems that a circle cannot be generated by a linear
stationary scheme.

3.2. Interpolatory schemes

A class of subdivision schemes with many specific features is that of ‘inter-
polatory subdivision schemes’ (Dyn and Levin 1990). The schemes in this
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class generate the refined values by retaining the values at the vertices of the
current net, and defining new values at the new vertices of the refined net.

Among the B-spline schemes, only those generating B0 and B1 are inter-
polatory schemes, that is, satisfying

fk+1
2j = fkj , j ∈ Z, k ∈ Z+, (3.16)

together with insertion rules for new points {fk+1
2j+1}j∈Z. The interpolatory

refinement rules on Nk = 2−kZs have the form

fk+1
2α = fkα, fk+1

γ+2α =
∑
β∈Zs

akγ+2βf
k
α−β, γ ∈ Es\0, α ∈ Z

s. (3.17)

The masks corresponding to an interpolatory subdivision scheme have the
feature

ak2α = δα,0, α ∈ Z
s, k ∈ Z+.

It is easy to realize that, in case of a convergent scheme, all the points

(2−kα, fkα), α ∈ Z
s, k ∈ Z+,

are on the graph of the limit function. In this setting there is (uniform)
convergence if the values generated at the dyadic points {fkα : α ∈ Z

s, k ∈
Z+} are continuous.

The basic limit functions {φk : k ∈ Z+} satisfy

φk(α) = δα,0, α ∈ Z
s, k ∈ Z+,

thus their integer shifts {φk(· − α) : α ∈ Z
s} are linearly independent for

any k ∈ Z+.
The following examples are univariate stationary schemes. Nonstationary

univariate interpolatory schemes are discussed in Example 2. A bivariate
interpolatory scheme is presented in Section 3.5.

The 4-point scheme. The first stationary interpolatory schemes were the
4-point schemes presented in Dubuc (1986) and Dyn, Gregory and Levin
(1987). The 4-point scheme is the univariate scheme defined by (3.16) and
the insertion rule

fk+1
2j+1 = −wfkj−1 +

(
1

2
+ w

)
fkj +

(
1

2
+ w

)
fkj+1 − wfkj+2, (3.18)

for j ∈ Z, and k ∈ Z+, where w is a shape parameter of the scheme. The
symbol of the 4-point scheme is

aw(z) =
1

2z
(z + 1)2(1 + wb(z)), (3.19)

where

b(z) = −2z−2(z − 1)2(z2 + 1). (3.20)
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w = 0 

w = 1/64 

w = 1/32 

w = 1/16 

Figure 3.2. Curves generated by the 4-point scheme

For w = 0 the limit is the piecewise linear interpolant to the data. As
w increases, the limit function is less tight. The symbol contains the ele-
mentary factor (z + 1)2 necessary for C1 convergence, and the challenge in
Dyn et al. (1987) was to determine the range of values of the shape parameter
w for which the scheme is C1. The particular value w = 1

16 is also analysed
in Dubuc (1986). In this case the symbol contains the factor (z+1)4, which
means that the scheme reproduces cubic polynomials (see Section 4.2). Yet
the limit function is not even C2. It is shown in Dyn, Gregory and Levin

(1991) that the 4-point scheme is C1 for any w ∈ (0,
√

5−1
8 ), and in Des-

lauriers and Dubuc (1989) that, for w = 1
16 , the first derivative is Hölder-

continuous for any Hölder exponent 0 < ν < 1, yet the second derivative
does not exist at dyadic points (Dyn et al. 1987). The application of four it-
erations of the 4-point scheme, with different shape parameters, on a square
control polygon is presented in Figure 3.2.

Dubuc–Deslauriers interpolatory schemes. The 4-point scheme of
Dubuc (1986) has been generalized to symmetric 2n-point interpolatory
schemes by Deslauriers and Dubuc (1989). The insertion rule for fk+1

2j+1
is defined by the value of the interpolation polynomial of degree 2n − 1 at
2−k−1(2j + 1), interpolating the 2n values fkj−n+1, . . . , f

k
j+n. Let us denote

the resulting symbol by d(2n)(z). These schemes are studied in Deslauriers
and Dubuc (1989) by Fourier analysis, and their convergence is proved. The
smoothness of Sd(2n)

grows linearly, but slowly, with n (Daubechies 1992).
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Generalizations to multidimensional interpolatory schemes are presented in
Dyn, Gregory and Levin (1990a) and Riemenschneider and Shen (1997).

In analogy to the up-function, it is possible to get C∞
0 interpolatory ba-

sic limit functions using the symbols of Dubuc–Deslauriers interpolatory
schemes. This is achieved in Cohen and Dyn (1996) by defining the non-
stationary subdivision symbols as ak(z) = d(2k)(z).

Nonlinear, shape-preserving 4-point schemes. A significant drawback
of linear interpolatory schemes is the lack of shape-preservation properties.
If one is interested in both interpolation and shape preservation, then lin-
earity has to be given up. A beautiful example of a nonlinear, stationary,
shape-preserving interpolatory scheme is the following 4-point C1 convexity-
preserving scheme due to Kuijt and van Damme (1998), where the rule
replacing (3.18) is

fk+1
2j+1 =

1

2
(fkj + fkj+1)−

1

4
(

1
dkj

+ 1
dkj+1

) ; dkj = fkj+1 − 2fkj + fkj−1. (3.21)

Starting with strictly convex initial functional data, it is shown in Kuijt and
van Damme (1998) that the limit function is a strictly convex C1 function.
Kuijt and van Damme (1999) have also developed nonlinear schemes pre-
serving monotonicity. It is also possible to use the linear 4-point scheme
and to generate a convex limit function from initial strictly convex data, by
choosing w ∈ (0, w∗), where w∗ depends on the initial data (Dyn, Kuijt,
Levin and van Damme 1999a).

3.3. Matrix schemes and Hermite-type schemes

While interpolatory schemes preserve function data at points of the previ-
ous level, it is sometimes desirable to preserve other quantities. Two related
families of schemes of this kind are Hermite-type schemes and moment-
interpolating schemes. We may view interpolatory schemes as schemes gen-
erating limit functions with specified values at the integers. Hermite-type
schemes generate limit functions with specified function values and certain
derivatives’ values at the integers. Moment-interpolating schemes produce
limit functions with specified moments on the intervals [i, i+1], i∈Z. In both
cases, the data attached to the vertices of the nets form a vector of values,
and the subdivision operator is defined by a mask with matrix elements.

A univariate uniform stationary matrix subdivision scheme, operating on
sequences of vectors in R

n, is defined by a set of real n×n matrix coefficients
{Aj : j ∈ Z}, with a finite number of nonzero Ajs, generating sequences of
control points in R

n, vk = {vkj ∈ R
n : j ∈ Z}, k ≥ 0, recursively, by

vk+1
i =

∑
j∈Z

Ai−2jv
k
j , i ∈ Z. (3.22)
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As an example of such a scheme, we consider the scheme generating the
double-knot cubic splines. The matrix mask is defined by its matrix symbol,

A(z) =
1

16

(
2 + 6z + z2 2z + 5z2

5 + 2z 1 + 6z + 2z2

)
=
∑
i∈Z

Aiz
i. (3.23)

Here there are two basic sets of initial data, namely v1,0 = (1, 0)tδ and
v2,0 = (0, 1)tδ. The two basic limit vector functions are

S∞A v1,0 = (φ1, φ1)
t, S∞A v2,0 = (φ2, φ2)

t, (3.24)

where φ1 and φ2 are the two different cubic B-splines spanning the space of
cubic splines with double knots at the integers (Plonka 1997).

Let us now return to the Hermite-type and moment-interpolating schemes.
In the Hermite case we start with Hermite-type data, {v0

j = (f0
j , g

0
j )
t}j∈Z

where the values {g0
j } represent derivative data. We now consider the scheme

vk+1
2i = vkv , vk+1

2i+1 =
∑

A
(k)
1−2jv

k
i+j , k ≥ 0, (3.25)

or, equivalently,

vk+1
i =

∑
j

A
(k)
i−2jv

k
j , k ≥ 0, (3.26)

where {A(k)
i } are 2×2 matrices, possibly depending upon the refinement level

k, and A
(k)
2j = δj,0I2×2. The Hermite-type scheme recursively defines values

{vkj = (fkj , g
k
j )

t}j∈Z attached respectively to the dyadic points {j2−k}j∈Z.
We say that the scheme is Cr if there exists a function f ∈ Cr(R) such that

vkj = (fkj , g
k
j )

t = (f(j2−k), f ′(j2−k))t, j ∈ Z, k ∈ Z+. (3.27)

The first interesting example, presented in Merrien (1992), is an extension
of the interpolatory Hermite-cubic rule. The nonzero matrices of its mask are

A
(k)
1 =

(
1
2 α2−k

−β2k 1−β
2

)
, A

(k)
−1 =

(
1
2 −α2−k

β2k 1−β
2

)
. (3.28)

This scheme with α = 1/8 and β = 3/2 produces the piecewise Hermite-
cubic interpolant to the given initial data, and thus it is a C1-scheme. We
note that the matrices depend upon k, and they are even unbounded as
k →∞. However, as shown in Dyn and Levin (1999), if we consider in this
case the scheme for transforming the vector of values ukj = (gkj , df

k
j )t, with

dfkj = 2k(fkj −fkj−1), this scheme becomes stationary, that is, with a constant

matrix mask. Here, if the original scheme is C1, then both elements of {ukj }
should converge to the same limit function f ′.

The moment interpolation problem for m moments is defined as fol-

lows. Let b`(x) = (m−1)!
`!(m−1−`)!x

l(1− x)m−1−l · χ[0,1] denotes the `th Bernstein

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


Subdivision schemes in geometric modelling 91

polynomial of degree m− 1 for the interval [0, 1], truncated to [0, 1]. Define

b`j(x) = b`(x− j),

the translate of b` that ‘lives’ on [j, j + 1] and has L1-norm 1.
Given the local moments of a function f ,

β`j = 〈f, b`j〉, j ∈ Z, 0 ≤ ` < m, (3.29)

the problem is to construct a ‘smooth’ function f̃ matching those mo-
ments. A solution of this problem by a subdivision process is presented
in Donoho, Dyn, Levin and Yu (2000). Also shown there is the close re-
lationship between the moment-interpolating subdivision schemes and the
Hermite interpolatory subdivision schemes. In the sections on the analysis
of subdivision schemes, we consider only schemes with scalar masks. The
analysis of schemes with a matrix mask is not reviewed here. The interested
reader may consult Plonka (1997), Cohen, Daubechies and Plonka (1997),
Cohen, Dyn and Levin (1996), Micchelli and Sauer (1998) and Dyn and
Levin (2002).

3.4. Tensor product schemes and related ones

The simplest subdivision schemes on Z
2 are the stationary tensor product

schemes, obtained by applying one stationary univariate scheme in the x-
direction and then a second (or the same) stationary univariate scheme
in the y-direction. Let us denote the symbols of the stationary univari-
ate schemes by x(z) and y(z), respectively; then the symbol of the tensor
product scheme St is t(z1, z2) = x(z1)y(z2). Obviously, the tensor product
subdivision scheme inherits the convergence and smoothness properties of
the univariate schemes. Tensor products of univariate spline schemes are
special cases of box-splines, using only two directions in (3.6). For example,
the mask generating the biquadratic and the bicubic B-spline functions are,
respectively, defined by the symbols

a(z1, z2) = 2−4(1 + z1)
3(1 + z2)

3, (3.30)

a(z1, z2) = 2−6(1 + z1)
4(1 + z2)

4. (3.31)

Yet tensor product schemes have masks of relatively large support for given
smoothness. For box-splines, the same smoothness may be achieved by using
more directions in (3.6), and fewer linear factors (see Section 4.3).

Considering the case of interpolatory schemes, the tensor product of two
4-point schemes (3.18) has the mask tw(z1.z2) = aw(z1)aw(z2), with an
insertion rule based on 16 points. Yet, as shown in Dyn, Hed and Levin
(1993), an interpolatory scheme with insertion rule of smaller support size
(12 points) and with the same polynomial precision and smoothness exists.
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Figure 3.3. The two stencils of the truncated tensor product scheme Scw

The suggested scheme is obtained by removing all the w2 terms in tw. The
resulting symbol is

cw(z1, z2) =
1

4
(1 + z1)

2(1 + z2)
2z−1

1 z−1
2 (1− w[b(z1) + b(z2)]), (3.32)

where b is given in (3.20).
The stencils (see Section 3.5) of the insertion rule of this truncated tensor

product scheme are shown in Figure 3.3.
The scheme Scw reproduces cubic polynomials for w = 1

16 , and it reduces
to the 4-point scheme in one direction, when the data values are constant
along the other direction (Dyn et al. 1993). An interpolatory subdivision
on quadrilateral nets (see Section 3.5), with arbitrary topology based on the
4-point scheme, is proposed by Kobbelt (1996a).

3.5. Subdivision on nets

We consider control nets for generating surfaces in R
3, a control net con-

sists of control points in R
3 with topological relations between them. The

refinement rules are defined with respect to a control net, and generate a
refined control net with new control points. The topological relations in the
refined net are determined by the type of net, while the control points are
determined by the subdivision scheme as weighted averages of topologically
neighbouring control points.

In this section we present subdivision schemes that are defined over nets
of arbitrary topology in 3D space. Such nets are valuable for the design of
free-form surfaces. The surfaces generated by subdivision schemes on such
nets are no longer restricted to bivariate functions, and they can represent
surfaces of arbitrary topology. We describe three types of nets: triangular,
Catmull–Clark type (primal type) and Doo–Sabin type (dual type), which
are the most commonly used.
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In addition to the above types of nets, there are hexagonal nets. Very few
subdivision schemes with respect to hexagonal nets are available (see, e.g.,
Dyn, Levin and Liu (1992) and Dyn, Levin and Simoens (2001b)), and they
are not considered here.

Nets of general topology

A net N(V,E, F ), as shown in Figure 3.4, is a configuration of a finite set V
of points in R

3 called vertices, with two sets of topological relations between
them E and F , called edges and faces. (A similar description of nets can be
found in Kobbelt, Hesse, Prautzsch and Schweizerhof (1996).)

face
edge

vertex

Figure 3.4. A net

An edge denotes a connection between two vertices. A face is a cyclic
list of vertices where every pair of consecutive vertices shares an edge. The
valency of a vertex, or a face, is the number of edges that share that ver-
tex, or that face. While edges can always be represented by straight line
segments, the vertices of a face are not necessarily co-planar; therefore a
face is not associated with any geometric shape (in contrast to the faces of
a polyhedron, which are planar pieces).

An edge e is called a boundary edge of N(V,E, F ) if it is not shared by
two faces. A vertex v is called a boundary vertex if it belongs to a boundary
edge.

We restrict our attention to nets N(V,E, F ) that satisfy the following
properties:

(1) any two vertices share at most one edge;

(2) the valency of each vertex is at least 2.;

(3) the valency of each face is at least 3;

(4) every boundary edge belongs to exactly one face;

(5) three boundary edges cannot share a vertex.
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N(V,E, F ) is said to be closed if it has no boundary edges. Otherwise,
N(V,E, F ) is an open net. A triangular net is a net whose faces all have
valency 3. A closed triangular net is termed regular, or a regular triangu-
lation, if the valency of each vertex is 6. A regular triangular net is locally
topologically equivalent to a portion of the 3-directional grid, that is, the
grid Z

2 with edges connecting (i, j) with (i+1, j), (i, j+1) and (i+1, j+1),
for (i, j) ∈ Z

2. A quad-mesh is a net whose faces all have valency 4. A quad-
mesh (quadrilateral net) is termed regular if it is topologically equivalent to
Z

2, that is, the valency of each vertex is 4.
The subdivision process transforms the net N(V,E, F ) into a refined net

N(V ′, E′, F ′), where each new vertex in V ′ is associated with an element or
a configuration c of elements from N(V,E, F ). The method for calculating
a new vertex v′ ∈ V ′ can be described as a weighted average (with possibly
negative weights) of vertices of V . The weight given to every vertex v ∈ V
depends only on its topological relation to c. The set of weights, together
with their topological location in V relative to c, constitute the stencil which
is determined by the subdivision scheme. There are different stencils for
different topological configurations.

1

1

1

1

1

Figure 3.5. A stencil

For example, suppose that a vertex v′ is associated with a face f ∈ F
that has valency 5. The stencil in Figure 3.5 represents the rule: v′ is the
average of the vertices of f . The set of vertices with nonzero weights, the
support of the stencil, is topologically related to c, but does not necessarily
coincide with c, as occurs in the last example. Together with the definition
of V ′, there is a definition of the new edges E′ and faces F ′, and these are
described later for the different types of nets.

Let S denote a subdivision operator for nets. Let N0 = N(V,E, F ) be a
given initial net. A sequence of finer nets Nk = N

(
V k, Ek, F k

)
is defined by

Nk+1 = SNk, k = 0, 1, . . . . (3.33)

Ideally, the convergence of the sequence of nets {Nk : k ∈ Z+} to a limit
surface X should be defined independently of any parametrization of the
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surface. In the following definition, a surface X is considered as a closed
subset of R

3. We say that X is the limit surface of the subdivision scheme
(3.33) if

lim
k→∞

dist
(
V k, X

)
= 0. (3.34)

where dist(X,Y ) = max{supy∈Y infx∈X ‖x − y‖2, supx∈X infy∈Y ‖x − y‖2},
is the Euclidean Hausdorff distance between two closed subsets X,Y ⊂ R

3.
When a limit surface X exists we denote it by S∞N0 = X. In practice,
however, the convergence is studied with respect to appropriate local para-
metrizations of the limit surface.

Triangular subdivision

Triangular subdivision schemes are defined over triangular nets, that is,
nets whose faces all have valency 3 and therefore can be regarded as planar
triangles. The new vertices are divided to v-vertices, and e-vertices. Each
v-vertex in V ′ is associated with a vertex in V . Every e-vertex in V ′ is
associated with an edge in E. For each type of vertex there is a different
stencil. The new edges E′ are defined between a new v-vertex and all the
e-vertices such that their ‘parents’ in E share the parent of the v-vertex in
V , and between any two e-vertices such that their parent edges share a face
in F . Thus every triangle in the original net N(V,E, F ) is replaced by four
triangles in the new net N(V ′, E′, F ′). The topology of the new triangular
net is shown in Figure 3.6.

e e

e

v

v v

N N'

Figure 3.6. Triangular subdivision

A regular vertex in a triangular net is a vertex with valency 6. In a closed
net, every new e-vertex has valency 6, and every new v-vertex inherits the
valency of its parent vertex. Therefore, the number of irregular vertices in
a net remains constant, and most of the net is a regular triangular net.

One of the commonly used triangular subdivision schemes is the Loop
subdivision scheme (Loop 1987) defined for closed triangular nets. The
stencils for the new e-vertices and v-vertices are depicted in Figure 3.7.
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1

1
1

1

1

w

1

1

3
3

K

Figure 3.7. Loop scheme: stencils for
e-vertex (left) and for v vertex (right)

The weight wn given to the original vertex, in the stencil for its corres-
ponding new v-vertex, depends on the valency K of that vertex. It is given
by the following formula:

wK =
64K

40− (3 + 2 cos
(

2π
K

))2 −K, K = 3, 4, . . . . (3.35)

The Loop scheme generalizes the 3-directional box-spline scheme (3.7),
in the sense that it coincides with it in the regular parts of the net. This
implies that the limit surface is C2 almost everywhere, and this is achieved
with stencils of very small support. Near irregular vertices of the original net,
the surface is C1 (Loop 1987). Another property of this scheme, important
for geometric modelling, is shape preservation, which is due to the positivity
of the weights in the stencils of the Loop scheme.

Figure 3.8. Head: initial control net (left),
four butterfly iterations (right)
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Figure 3.9. Modified Butterfly scheme: stencils corresponding
to a ‘regular’ edge (left) and an ‘irregular’ edge (right)

An interpolatory triangular subdivision scheme with stencil of small sup-
port is the butterfly scheme (Dyn et al. 1990a). This scheme is defined over
closed triangular nets. The application of four iterations of the butterfly in-
sertion rule to an initial closed triangulation is depicted in Figure 3.8. There
are modified stencils in the vicinity of irregular vertices (Zorin, Schröder and
Sweldens 1996), which produce better-looking and smoother surfaces in the
presence of irregular vertices.

As an interpolatory scheme, the new v-vertices inherit their location from
their parent vertices. Figure 3.9 shows the stencils for new e-vertices. The
butterfly stencil is used to calculate new e-vertices whose parent edge is
‘regular’, namely, has two regular vertices. A different stencil is used when
the parent edge is ‘irregular’, namely, has one vertex which is regular and
one which has valency K 6= 6. The weights {sj}j=0,...,K−1 depend on the
valency of the irregular vertex, and are given by

sj =
1

K

(
1
4 + cos

(
2πj
K

)
+ 1

2 cos
(

4πj
K

))
, j = 0, . . . ,K − 1.

The case where both of the vertices of the parent edge are irregular can
occur only in the initial net. In such a case, in the first refinement step the
calculation of the new e-vertex may be done in any reasonable way. The limit
surfaces generated by the butterfly scheme are C1 continuous everywhere,
a property valuable for computer graphics applications (Zorin et al. 1996).
An extended butterfly interpolatory subdivision scheme for the generation
of C2 surfaces on regular grids is presented in Labkovsky (1996).

Subdivision on an arbitrary net

The two types of refinements of nets of arbitrary topological structure are
the Catmull–Clark type, also called ‘primal’, and the Doo–Sabin type, also
called ‘dual’.
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In primal-type refinement, every face of valency n in the original net
N(V,E, F ) is replaced by n quadrilateral faces in the new net N ′(V ′, E′, F ′),
as shown in Figure 3.10.

The new vertices are divided into v-vertices, e-vertices and f -vertices.
Each v-vertex in V ′ is associated with a vertex in V . Each e-vertex in V ′
is associated with an edge in E. Each f -vertex in V ′ is associated with a
face in F .

Figure 3.10 indicates the topological relations in N(V ′, E′, F ′), with the
points v, e, and f indicating v-vertices, e-vertices and f -vertices, respect-
ively. The new edges are marked by line segments and the faces by the
quadrilaterals formed.

e

e

v

v

v

vv

e

e

e

f

N N'

Figure 3.10. Primal-type refinement

A regular vertex in this setting is a vertex with valency 4, and a regular
face is also of valency 4, namely, a quadrilateral face. Vertices or faces with
valency 6= 4 are termed irregular or ‘extraordinary’. In a closed net, every
new e-vertex has valency 4. Every new v-vertex inherits the valency of its
parent vertex, and every new f -vertex inherits the valency of its parent face.
Therefore, the number of irregularities in a net remains constant throughout
the subdivision process. Note that, after one subdivision iteration, all the
faces are quadrilateral. The actual locations in R

3 of the vertices V ′ are
determined by the stencils of the subdivision scheme.

Catmull–Clark scheme. The first example of a primal-type scheme is
the Catmull–Clark scheme (Catmull and Clark 1978, Doo and Sabin 1978),
defined as an extension of the bicubic B-spline scheme (3.31) to closed nets
of arbitrary topology. Its stencils are depicted in Figure 3.11.

The stencils for the new e-vertices and v-vertices involve the neighbouring
new f -vertices (depicted as empty circles). The weight WK in the stencil
for the new v-vertex depends on the valency K of that vertex. Different
formulae for WK produce different limit surface behaviour near irregular
vertices. A commonly used formula for WK is

WK = K(K − 2), K = 3, 4, . . . .
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Figure 3.11. Catmull–Clark scheme:
f -stencil (left), e-stencil (middle) and v-stencil (right)

As long as W4 = 8, the limit surfaces of this scheme are C2 away from
irregular points. Different variants of this scheme were investigated by Ball
and Storry (1988, 1989). It is observed there that, for every choice of WK ,
the surface curvature near an irregular point either tends to zero, or is
unbounded. Applications of the Catmull–Clark scheme can be found in
DeRose, Kass and Truong (1998) and Halstead, Kass and DeRose (1993).

Here we present an example (see Figure 3.12) of two surfaces generated
from an initial triangulation, one by the Loop scheme and the other by the
Catmull–Clark scheme, which regards the triangulation as a general net.
Note that, in the latter case, most of the initial control points are irregular.

Figure 3.12. Head: initial control net (left),
two iterations with the Loop scheme (middle)
and with the Catmull–Clark scheme (right)
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Dual-type refinement is depicted in Figure 3.13. Every new vertex in
v′ ∈ V ′ corresponds to a pair (v ∈ V, f ∈ F ) such that v is a vertex of f
in the original net N . It is considered a dual scheme, since vertices and
edges in the original net N = N(V,E, F ) correspond to faces in the new net
N ′ = N(V ′, E′, F ′). A regular vertex in this setting is a vertex with valency
4, and a regular face is a quadrilateral face.

Figure 3.13. Dual-type refinement

Doo–Sabin scheme. The dual scheme due to Doo and Sabin generalizes
the biquadratic B-spline scheme to subdivision of closed nets of arbitrary
topological type.

The vertex v′ is calculated by a weighted average of the vertices of f , with
the stencils shown in Figure 3.14. The weights {Sj}j=0,...,K−1 depend on the
valency K of the face in the original net, and are given by

s0 =
K + 5

4K
, sj =

3 + 2 cos
(

2πj
K

)
4K

, j = 1, . . . ,K − 1.

Figure 3.14. Doo–Sabin scheme: stencil for an f vertex
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Almost everywhere the new nets are regular quadrilateral nets and the
scheme reduces to the scheme defined by the symbol (3.30), giving the C1

biquadratic spline surface.

In both examples, the Catmull–Clark scheme and the Doo–Sabin scheme,
the mask parameters near an extraordinary vertex are chosen to achieve
an overall C1 limit surface. In Section 6 we describe the main results on
the analysis of smoothness of stationary subdivision schemes near irregular
vertices. Another dual-type subdivision scheme is ‘the simplest scheme for
smoothing polyhedra’ presented in Peters and Reif (1997). In this scheme,
given a polyhedron, a new polyhedron is constructed by connecting every
edge-midpoint to its four neighbouring edge-midpoints. The limit surface is
piecewise quadratic C1 surface except at some extraordinary vertices. For
additional material about subdivision schemes on general nets and their
applications in computer graphics see Hoppe, DeRose, Duchamp, Halstead,
Jin, McDonald, Schweitzer and Stuetzle (1994), Zorin et al. (1996), Zorin,
Schröder and Sweldens (1997) and Zorin and Schröder (2000).

3.6. Further extensions

The inspiring iterative refinement idea, which is the basic concept in subdi-
vision and in wavelets, has motivated many new research directions. In this
section we briefly mention several extensions and generalizations of the uni-
form binary subdivision that are not discussed in this review. These include
extensions to:

• non-uniform subdivision

• quasi-uniform and combined subdivision

• Lie group valued subdivision

• set-valued subdivision

• polyscale subdivision

• variational subdivision

• quasi-linear subdivision.

Non-uniform schemes. In many applications the data may be given on
an irregular mesh and a scheme for iterative refinement of such data should
be different from the standard uniform subdivision schemes. Also, conver-
gence and smoothness analysis cannot be performed using the standard tools
such as the z-transform or the Fourier transform. The tools that are being
used for subdivision schemes over irregular grids are generalizations of the
local matrix analysis (Section 5) and of the divided difference schemes (Sec-
tion 4.2). See, for instance, Warren (1995a), Guskov (1998) and Daubechies,
Guskov and Sweldens (1999). Another type of non-uniform scheme is still on
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uniform grids, but the subdivision refinement rules may differ from one point
to the other. Here again it seems that the divided difference tools are the
only way to analyse convergence and smoothness, as is done by Gregory and
Qu (1996) for general corner cutting schemes. A systematic method for de-
riving the difference schemes, using a variation of the z-transform method, is
presented in Levin (1999e). A general analysis of shape-preserving schemes
for non-uniform data is done in Kuijt and van Damme (2002).

Quasi-uniform and combined subdivision. The analysis presented in
this review is restricted to the case of closed nets, that is, there are no bound-
ary edges. In real applications, there are boundaries of surface patches and
boundaries may occur inside a patch if the patch should pass through a
curve or a system of curves. For a subdivision scheme, a boundary treat-
ment requires the definition of special rules in the vicinity of the boundary,
and consequently, a special smoothness analysis. A subdivision scheme, to-
gether with special boundary rules, is called a combined subdivision scheme
in A. Levin (1999b, 1999c). In these works, analysis tools for combined sub-
division schemes are developed, and combined schemes, based on some of the
most ‘popular’ bivariate schemes, are designed. The problem of matching
boundary conditions or curve interpolation by subdivision surfaces is also
treated in Nasri (1997a, 1997b) and A. Levin (1999d). A boundary may also
be the border between two regions, or two patches, where in each patch a dif-
ferent uniform subdivision scheme is applied. This is termed quasi-uniform
or piecewise uniform, and here also a special smoothness analysis is required,
as presented in Dyn, Gregory and Levin (1995) for the univariate case and
in A. Levin (1999a, 1999c) and Zorin, Biermann and A. Levin (2000) for
surfaces.

Lie group valued subdivision. In some applications the data must lie
on a manifold W in R

d, and the limit function is also expected to be a
function from R

s into W . The usual subdivision schemes are defined via
linear averaging refinement rules that do not necessarily give points in W .
In a recent work (Donoho and Stodden 2001), the general case of Lie group
valued data is considered. The main approach is based on the fact that each
Lie group has its associated Lie algebra, related through the exponential
map, and the subdivision operations are performed in the Lie algebra and
mapped back to the group by the exponential map.

Set-valued subdivision. For these schemes the initial data and the refined
data generated by the scheme are sequences of sets in R

d, and the limit
function is a set-valued function. This is motivated by the problem of the
reconstruction of 3D objects from their 2D cross-sections. The given data
form a sequence of 2D cross-sections and the set-valued function describes a
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3D object. Subdivision schemes for set-valued data require the definition of
operations on sets and the study of notions of convergence and smoothness of
set-valued functions. These issues, for convex sets using Minkowski averages,
and for general compact sets using the ‘metric average’, are studied in Dyn
and Farkhi (2000, 2001a, 2001b).

Polyscale subdivision. A subdivision scheme is a two-scale process, using
data at one refinement level to compute the values at the next refinement
level. In Dekel and Dyn (2001), poly-scale subdivision schemes are intro-
duced. Such schemes compute the next refinement level from several previ-
ous levels, using several masks. This new idea is also related to the notion
of poly-scale refinable functions, and opens up new theoretical convergence
and smoothness issues. These issues, several interesting examples, and the
relation of poly-scale subdivision schemes to matrix subdivision schemes,
are presented in Dekel and Dyn (2001).

Variational subdivision. A variational approach to interpolatory subdi-
vision is presented in Kobbelt (1996b). The resulting schemes are global,
that is, every new point depends on all the points of the control polygon
to be refined. The refinement is defined by minimizing a quadratic ‘energy’
functional, resulting in a ‘fair’ limit surface.

Quasi-linear subdivision. Quasi-linear schemes are nonlinear binary in-
terpolatory schemes defined on a regular grid, with linear insertion rules
which are data-dependent. In Cohen, Dyn and Matei (2001) a specific class
based upon the weighted-ENO interpolation technique is analysed.

4. Convergence and smoothness analysis on regular grids

In this section, analysis of the (uniform) convergence of subdivision schemes
on regular grids is presented, together with analysis of the smoothness of
the limit functions.

First we present a method which relates the convergence and smoothness
of nonstationary schemes to the convergence and smoothness of related sta-
tionary schemes (Dyn and Levin 1995); then we present a method for the
analysis of stationary schemes, based on difference schemes (see Dyn (1992)
and references therein). This method is also applied directly to certain non-
stationary schemes.

The other main approaches to the convergence and smoothness analysis
are in terms of Fourier transforms, and in terms of the joint spectral radius
of a finite set of finite-dimensional matrices. The latter approach is briefly
reviewed in Section 5.2. The Fourier analysis approach is not surveyed here:
interested readers may consult Cohen and Conze (1992), Deslauriers and
Dubuc (1989), Daubechies (1992) and Daubechies and Lagarias (1992a).
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4.1. Analysis of nonstationary schemes via relations to stationary schemes

The analysis of the convergence of nonstationary schemes presented here,
relies on the representation of a subdivision scheme S{ak} in terms of a
sequence of operators {Rk : k ∈ Z+} as in (2.22), where each Rk is defined
by (2.21).

The main results are based on several properties of sequences of bounded
linear operators in a Banach space. From now on all operators considered
are bounded and linear. A sequence of operators {Ak : k ∈ Z+} in a Banach
space {X, ‖ · ‖} defines the iterated process xk+1 = Akxk, k ∈ Z+, with
x0 ∈ X. Such a sequence is termed convergent if, for any m ∈ Z+ and
any x ∈ X, limk→∞ xm,k exists, where xm,k = Am+k · · ·Am+1Amx. The
sequence {Ak} is termed stable if

‖Am+k · · ·Am+1Am‖ ≤M <∞, ∀m, k ∈ Z+. (4.1)

Two sequences of bounded operators {Ak} and {Bk} are called asymptotic-
ally equivalent if there exists L ∈ Z, such that

∞∑
k=max{0,−L}

‖Ak+L −Bk‖ <∞. (4.2)

Proposition 4.1. Let {Ak} and {Bk} be asymptotically equivalent. Then
{Ak} is stable if and only if {Bk} is stable.

The proof of this proposition (Dyn and Levin 1995) introduces the {Ak}-
norms

‖x‖m = sup
k
‖Am+k · · ·Amx‖, m ∈ Z+,

which are equivalent to the norm of the Banach space when {Ak} is stable.
It also introduces the Banach spaces Xm = {X, ‖ ·‖m}. The key observation
is that Am, as an operator from Xm to Xm+1, is bounded in norm by 1.
From this observation follows Proposition 4.1. By similar reasoning we get
the following.

Proposition 4.2. Let {Ak} and {Bk} be asymptotically equivalent. Then
{Ak} is stable and convergent if and only if so is {Bk}.

This analysis of sequences of operators in a Banach space leads to the im-
portant notion of ‘asymptotic equivalence’ between two subdivision schemes.
Here we use the representation of subdivision schemes as operators on X =
C(Rs), with the maximum norm. Two schemes S{ak}, S{bk} are defined to
be ‘asymptotically equivalent’ if, for some fixed L ∈ Z,

∞∑
k=max{0,−L}

‖ak+L − bk‖∞ <∞, (4.3)
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where ‖ak − bj‖∞ = maxα∈Es

∑
β∈Zs

|akα−2β − bjα−2β|.
A scheme S{ak} is termed stable if there exists M > 0 such that, for all

k, j ∈ Z+,

‖Rj+k · · ·Rj+1Rj‖∞ < M, (4.4)

with {Rj} the operators corresponding to S{ak} as in (2.21). It is easy to
conclude from (2.10) that a convergent scheme S{ak} is stable, if and only if
the functions Φk =

∑
α∈Zs

|φk(· − α)| are uniformly bounded for k ∈ Z+.
Two stable asymptotically equivalent schemes have similar convergence

properties. This is easily concluded from Proposition 4.2.

Theorem 4.3. Let S{ak} and S{bk} be asymptotically equivalent. Then
S{ak} is stable and convergent if and only if S{bk} is stable and convergent.

If S{bk} = Sb is stationary, namely bk = b for k ∈ Z+, and Sb is conver-
gent, then by (2.8) Sb is stable. Thus we have the following.

Corollary 4.4. Let S{ak} and Sb be asymptotically equivalent. If Sb is
convergent then S{ak} is stable and convergent.

Example 1. As an example of convergence implied by Corollary 4.4, we
consider the nonstationary subdivision scheme given by the symbols

ak(z) = 2

m∏
i=1

1

2

(
1 + eηi2

−k
z
)
, k ∈ Z+, (4.5)

with η1, . . . , ηm distinct complex constants.
It is easy to verify that S{ak} is asymptotically equivalent to Sb, whose

symbol is

b(z) = 2−m+1(1 + z)m. (4.6)

Thus Sb is a convergent stationary subdivision scheme with basic limit func-
tion the polynomial B-spline of order m (degree m − 1) with integer knots
and support [0,m] (see Section 3.1).

Thus the nonstationary scheme (4.5) is convergent. In fact its basic limit

function is the exponential B-spline in span{e ηi2 x : 1 ≤ i ≤ m} with integer
knots and support [0,m]. (For more about exponential B-splines, see, for
example, Schumaker (1980).)

One way to analyse the smoothness of the basic limit function of a non-
stationary scheme S{ak} (and therefore all limit functions generated by S{ak},
as implied by (2.8)), is in terms of smoothing factors (Dyn and Levin 1995).

Theorem 4.5. Let the symbols of S{ak} be of the form

ak(z) =
1

2
(1 + rkz

λ)bk(z), k ≥ K ∈ Z+, (4.7)

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


106 N. Dyn and D. Levin

with λ ∈ Z
s, where S{bk} is a stable and convergent subdivision scheme with

φ{bk} of compact support and in Cm(Rs). If

rk = eη2
−k

(1 + εk),

∞∑
k=K

|εk|2k <∞, (4.8)

then φ{ak} and ∂λφ{ak} are in Cm(Rs)

The factors 1
2(1+rkz

λ) in (4.7) are termed smoothing factors and, for εk =
0 in (4.8), are related to the univariate elementary nonstationary scheme of
(3.12),

Sketch of proof. The key to the proof is convolution property (2), which in
this case has the form

φ{ak} =

∫
R

φ{bk}(· − λt)φ{1+rkz}(t) dt.

Since φ{1+rkz} is supported on [0, 1] and is integrable (as discussed in Sec-
tion 3.1), φ{ak} ∈ Cm. The result ∂λφ{ak} ∈ Cm follows from the general
observation that, for a univariate integrable function h with σ(h) = [0, 1],
and for a bounded continuous function g ∈ C(R),

(g ∗ h)(x) =

∫ x

x−1
g(t)h(x− t) dt ∈ C1(R).

For a multivariate function, the conditions ∂λf ∈ Cm for λ ∈ Λ, where
Λ is a basis for R

s, imply that f ∈ Cm+1(Rs). Hence Theorem 4.5 and
convolution property (2) give us the following result.

Corollary 4.6. Let

ak(z) =

s∏
i=1

1

2
(1 + ri,kz

λi)bk(z), k ≥ K ∈ Z+,

where S{bk} satisfies the conditions of Theorem 4.5.
If, for i = 1, . . . ,m,

ri,k = eηi2
−k

(1 + εi,k),

∞∑
k=K

|εi,k|2k <∞,

and if λ1, . . . , λs ∈ Z
s are linearly independent, then φ{ak} ∈ Cm+1.

A good example where smoothness is deduced via Theorem 4.5 is provided
by the nonstationary, univariate interpolatory schemes that reproduce finite-
dimensional spaces of exponential polynomials (Dyn, Levin and Luzzatto
2001a).

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


Subdivision schemes in geometric modelling 107

Example 2. Consider finite-dimensional spaces of univariate exponential
polynomials of the form

Vγ,µ = span{xjeγ`t, j = 0, . . . , µ`−1, ` = 1, . . . , ν},
where γ = {γ1, . . . , γν} are the roots with multiplicities µ = {µ1, . . . , µν} of
a real polynomial of degree N =

∑ν
i=1 µi.

A scheme S{ak} is termed a reproducing scheme of Vγ,µ, if, for any k ∈ Z+

and fk = {fkj = f(2−kj) : j ∈ Z}, with f ∈ Vγ,µ,

Sakf
k = fk+1.

It is proved in Dyn et al. (2001a) that an interpolatory scheme S{ak}
with supports σ(ak) fixed for k ∈ Z+, which reproduces Vγ,µ and does not
reproduce any bigger space of exponential polynomials containing Vγ,µ, has
the property that its symbols {ak(z) : k ∈ Z+} are Laurent polynomials of
degree 2(N − 1) satisfying

dr

dzr
ak(zkn) = 2δ0,r,

dr

dzr
ak(−zkn) = 0,

r = 0, 1, . . . , µn − 1, n = 1, . . . , ν, (4.9)

where zkn = exp(2−(k+1)γn), n = 1, . . . , ν, k ∈ Z+.
For the case N = 2n, it can be concluded from (4.9) that the masks

{ak : k ∈ Z+} with σ(ak) = [−n, n], tend as k → ∞ to the mask a with
σ(a) = [−n, n] of the interpolatory scheme, introduced in Deslauriers and
Dubuc (1989), which reproduces the space πn of all polynomials of degree
not exceeding n (see Section 3.2). More specifically,

‖ak − a‖∞ < 2−kB, 0 < B <∞,

and a(z) is divisible by (1 + z)n, as follows from (4.9). Thus S{ak} is
asymptotically equivalent to Sa, and since Sa is convergent (Deslauriers and
Dubuc 1989) so is S{ak}. To conclude the smoothness of φ0 = φ{ak} from
the smoothness of φa, Theorem 4.5 is invoked. Assume φa ∈ Cm. Then, by
the theory of smoothness of stationary schemes (see Section 4.2), m ≤ n.
Consider, for each k ∈ Z+, the m linear factors of ak(z),

∏m
i=1(1+(zkni)

−1z),
where n1, . . . nm are fixed integers in {1, . . . , ν}, such that #{ni : ni =
j} ≤ µj . The existence of these factors is guaranteed by (4.9). Each
of the m factors divided by 2 is a smoothing factor. Now, the symbols
{ck(z) : k ∈ Z+}, given by

ck(z) =
ak(z)2m∏m

i=1(1 + (zkni)
−1z)

, k ∈ Z+,
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define a scheme S{ck} which is asymptotically equivalent to the scheme Sc

with symbol

c(z) =
a(z)2m

(1 + z)m
.

Since φa ∈ Cm, it follows from the analysis of stationary schemes (see Sec-
tion 4.2) that Sc is convergent. Thus S{ck} is convergent, and by Theorem
4.5 and Corollary 4.6, φ{ak} ∈ Cm.

A specific example of this type is the following interpolatory 4-point
scheme generating circles. In this scheme the insertion rule is construc-
ted by interpolation with a function from the span of the four functions
H = span{1, t, cos t, sin t}.

The insertion rule turns out to be

fk+1
2j+1 =

−1

16 cos2(θ2−k−2) cos(θ2−k−1)
(fkj−1 + fkj+2)

+
(1 + 2 cos(2θ2−k))2

16 cos2(θ2−k−2) cos(θ2−k−1)
(fkj + fkj+1).

Note that this insertion rule tends to the 4-point Dubuc–Deslauriers inser-
tion rule as k tends to infinity, at the rate O(2−k).

The above insertion rule together with fk+1
2j = fkj , when applied to the

equidistributed points on the circle, {f0
j = R(cos(jθ), sin(jθ))}Nj=1, with

θ = 2π/N , generates denser sets of points on the circle.
Next we consider a similar example, but in the multivariate setting with

general smoothing factors.

Example 3. Let

ak(z) = 2s−`
∏̀
j=1

(
1 + r

(j)
k zλ

(j))
, k ∈ Z+,

be symbols with directions Λ = {λ(1), . . . , λ(`)} ⊂ Z
s. If r

(1)
k , . . . , r

(`)
k satisfy

(4.8), if the set Λ contains a subset of s directions with determinant ±1, and
if any subset of `−m− 1 directions spans R

s, then φ{ak} is in Cm.
To see this, observe that, under the conditions of the example, S{ak} is

asymptotically equivalent to Sa with

a(z) = 2s
∏

λ(j)∈Λ

(1 + zλ
(j)

)/2.

By the conditions on Λ, Sa is convergent and φa is the polynomial box-
spline with directions Λ, which is Cm (see Section 3.1). Let Λ0 ⊂ Λ be the

smallest subset of Λ for which Sb with b(z) = 2s
∏

λ(j)∈Λ0
(1+ zλ

(j)
)/2 is C0.
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The scheme S{bk} with bk(z) = 2s
∏

λ(j)∈Λ0
(1+r

(j)
k zλ

(j)
)/2 is asymptotically

equivalent to Sb. Hence, by Corollary 4.4, it follows that φ{bk} ∈ C(R). The
maximal m for which Sa is Cm is determined by repeated convolutions with
respect to appropriate directions in Λ \ Λ0. The same procedure of adding
directions, in view of Theorem 4.5, proves that S{ak} is also Cm.

4.2. Analysis of univariate schemes via difference schemes

The case s = 1 is the simpler to analyse, and the theory for the stationary
case is almost complete. This theory provides a method of analysis based
on necessary and sufficient conditions for convergence, and in the most in-
teresting cases, also necessary and sufficient conditions for smoothness.

The method presented here is general in the sense that it also applies to
nonstationary schemes with symbols that are all divisible by the elementary
factor (1+z) and its powers, as in the stationary case. Yet, in the stationary
case this divisibility is necessary and sufficient, while in the nonstationary
case it is only sufficient.

A necessary condition for convergence (for any s ∈ Z+\0) (Cavaretta
et al. 1991, Dyn 1992), which is the key to this analysis in the univariate
case, is easily derived from the stationary refinement step

fk+1
α =

∑
β∈Zs

aα−2βf
k
β , α ∈ Z

s.

Considering large k such that |f jα − (S∞a f0)(2−jα)| < ε, j = k, k + 1 for
sufficiently small ε, and taking into account that σ(a) is finite, so that 2−kβ
in the above sum is close to 2−k−1α, we conclude the following.

Theorem 4.7. If Sa is (uniformly) convergent, then∑
β∈Zs

aα+2β = 1, α ∈ Es, (4.10)

where Es are the extreme points of [0, 1]s.

Analysis of stationary schemes

For a stationary scheme Sa we identify the insertion rule Ra with the scheme.
In the univariate case (s = 1) conditions (4.10) imply that a(−1) = 0,
a(1) = 2. Thus a(z) is divisible by (1 + z), the elementary univariate factor
of (3.1). As will become clear hereafter, (1+z)/2 is the stationary univariate
smoothing factor.

Let the mask a satisfy (4.10). Then, a(z) = (1+z)b(z), with Sb a scheme
related to Sa by

Sb∆f = ∆(Saf), (4.11)
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where ∆f = {(∆f)j = fj − fj−1 : j ∈ Z}. The verification of (4.11) is
easily done in terms of the z-transform representation of subdivision schemes
(2.25). Since

L(∆f ; z) =
∑
j∈Z

(∆f)j z
j = (1− z)L(f ; z),

it follows from (2.25) and from the factorization of a(z) that

L(∆fk+1; z) = (1− z)a(z)L(fk; z2)

= b(z)(1− z2)L(fk; z)

= b(z)L(∆fk; z2),

which proves (4.11).
From now on we consider only masks that satisfy (4.10). It is clear that,

if Sa is convergent, then limk→∞ supj∈Z |∆fkj | = 0 with fk = Skaf
0, or ∆fk =

Skb∆f0. Thus, if Sa is convergent, then Sb maps any initial data to zero; in
brief, it is contractive. The converse also holds.

Theorem 4.8. Let a(z) = (1 + z)b(z). Sa is convergent if and only if Sb

is contractive.

Proof. It remains to prove that if Sb is contractive then Sa is convergent.
Consider the sequence {Fk(t)}k∈Z+ defined by (2.6). To show convergence
of Sa it is sufficient to show that {Fk(t)}k∈Z+ is a Cauchy sequence with
respect to the sup-norm. Now by definition, and by the observation that a
piecewise linear function attains its extreme values at its breakpoints

sup
t∈R

|Fk+1(t)−Fk(t)| = max

{
| sup
i∈Z

|fk+1
2i −gk+1

2i |, sup
i∈Z

|fk+1
2i+1−gk+1

2i+1|
}
, (4.12)

where

gk+1
2i = fki and gk+1

2i+1 =
1

2
(fki + fki+1). (4.13)

It is easy to verify that (4.13) is represented in terms of the z-transform, by

L(gk+1; z) =
(1 + z)2

2z
L(fk; z2).

Thus

L(fk+1; z)− L(gk+1; z) =

(
a(z)− (1 + z)2

2z

)
L(fk; z2)

= (1 + z)

(
b(z)− 1 + z

2z

)
L(fk; z2)

= (1 + z)d(z)L(fk; z2)
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with d(z) = b(z)− 1+z
2z . Since, by (4.10), a(1) = 2, d(1) = b(1)− 1 = 0 and

hence d(z) = (1− z)e(z). This leads finally to

L(fk+1 − gk+1; z) = e(z)(1− z2)L(fk; z2) = e(z)L(∆fk; z2). (4.14)

Recalling that, by (4.12), ‖Fk+1 − Fk‖∞ = supj∈Z |fk+1
j − gk+1

j | = ‖fk+1 −
gk+1‖∞, and that, by (4.14) and (4.11),

fk+1 − gk+1 = Se∆fk = SeS
k
b∆f0,

we finally get

‖Fk+1 − Fk‖∞ = ‖fk+1 − gk+1‖∞ ≤ ‖Se‖∞‖Skb∆f0‖∞. (4.15)

Now, if Sb is contractive, namely if Skbf tends to zero for all f , then there
exists M ∈ Z+\0 such that ‖SMb ‖∞ = µ < 1. Thus (4.15) leads to

‖Fk+1−Fk‖∞ = ‖fk+1−gk+1‖∞ ≤ ‖Se‖∞µ[ k
M

] max
0≤j<M

‖∆f j‖ ≤ Cηk, (4.16)

where η = (µ)
1
M < 1 and C is a generic constant. Thus {Fk : k ∈ Z+} is

uniformly convergent. �

With the analysis presented, we can design an algorithm for checking
the convergence of Sa given the mask a. Consider the iterated scheme S`b,
transforming data at level k to data at level `+k. Recall that the symbol of
S`b can be computed by (2.28) as b[`](z) =

∏`
j=1 b(z

2j−1
), and thus, to check

the contractivity of Sb, the norms of S`b, ` = 1, 2, . . . , have to be evaluated

in terms of b[`](z) =
∑

j∈Z
b
[`]
j z

k, according to

‖S`b‖∞ = max

{∑
j∈Z

|b[`]
i−2`j

| : 0 ≤ i < 2`

}
. (4.17)

The norm in (4.17) reflects the fact that there are 2` different rules in the
iterated scheme S`b:

gk+` = S`bg
k ⇔ gk+`

i =
∑
j∈Z

b
[`]

i−2`j
gkj , i ∈ Z.

Schemes for which Sb is contractive, but ‖S`b‖∞ ≥ 1 for large ` (` > 5), are
of no practical value, since a large number of iterations is required to observe
convergence (small ‖∆fk‖∞). Thus the algorithm has an input parameter
M0, such that if ‖S`b‖∞ ≥ 1 for 1 ≤ ` ≤ M0, the scheme is declared to
be practically ‘not convergent’. A reasonable choice of M0 is in the range
5 < M0 ≤ 10.
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Algorithm for verifying convergence given the symbol.

Let a(z) be the symbol of the scheme.

If a(−1) 6= 0, or a(1) 6= 2, then the scheme does not converge. Stop!

Compute b[1](z) = a(z)/(1 + z) =
∑

j b
[1]
j z

j .

For ` = 1, . . . ,M0

{
Compute N` = max0≤i<2`

∑
j∈Z

|b[`]
i−2`j

|.
If N` < 1, the scheme is convergent. Stop!

If N` ≥ 1, compute b[`+1](z) = b[1](z)b[`](z2) =
∑

j∈Z
b
[`+1]
j zj .}

End loop.

Sb is not contractive after M0 iterations. Stop!

The parameters µ,M from the proof of Theorem 4.8 corresponding to a
mask a, also determine the Hölder exponent of φa (or any S∞a f0), and the
rate of convergence of the subdivision scheme.

Theorem 4.9. Let a, µ,M, η, be as in the proof of Theorem 4.8, and define
ν = −(log2 µ)/M . Then

|φa(y)− φa(x)| ≤ C|x− y|ν .
Moreover, the rate of convergence of the sequence {Fk(t)}k∈Z+ defined in
(2.6) is

‖Fk(t)− S∞a f0‖∞ ≤ Cηk.

Here C is a generic constant.

Proof. Both claims of the theorem follow from (4.16). The second follows
directly with the aid of the observation

|(S∞a f0 − Fk)(x)| = lim
`→∞

|F`(x)− Fk(x)| ≤
∞∑
j=k

|Fj+1(x)− Fj(x)|.

To verify the first claim, we use the second claim in the bound

|φa(x)− φa(y)| ≤ |φa(x)− Fk(x)|+ |φa(y)− Fk(y)|+ |Fk(x)− Fk(y)|,
and the obvious bound

|Fk(x)− Fk(y)| ≤ 2‖∆fk‖∞,
both holding for any k. The first claim now follows by estimating ∆fk =
Skb∆δ in terms of ‖SMb ‖∞ < µ, and by the observation that, for 2−k ≤
|x− y| ≤ 2−k+1,

µ[ k
M

] ≤ Cµ
k
M = C2−kν ≤ C|x− y|ν . �
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The tools for the analysis of smoothness are similar to the tools for the
convergence analysis. The analysis of smoothness is based on the observation
that in the stationary case (1 + z)/2 is a smoothing factor.

Theorem 4.10. Let a(z) = 1+z
2 q(z). If Sq is convergent and C`, then Sa

is convergent and C`+1.

Sketch of proof. By convolution property (2) and by (3.2), Sa is convergent,
and

φa(x) =

∫ x

x−1
φq(t) dt. (4.18)

Thus

φ′a(x) = φq(x)− φq(x− 1). (4.19)

Theorem 4.10 supplies a sufficient condition for smoothness. A repeated
use of Theorem 4.10 together with Theorem 4.8 leads to

Corollary 4.11. Let a(z) = (1+z)m+1

2m b(z) with Sb contractive. Then φa ∈
Cm(R). Moreover

φ
(`)
a = S∞a(z)(1+z)−`2`∆

`δ, ` = 0, 1, . . . ,m,

where ∆` = ∆∆`−1 is defined recursively.

For a scheme with symbol a(z) = 2−m(1 + z)m+1b(z), instead of finding
the maximal ` such that Sa(z)2`−1(1+z)−` is contractive, Rioul (1992) suggests

computing the numbers ‖S`b‖∞ = µ` and ν` = −(log2 µ`)/`. If m− ν` > 0,

then φa ∈ C [m−ν`]. Defining ν = sup`≥1 ν`, if m− ν > 0, then φa ∈ C [m−ν],
and φ

([m−ν])
a has Hölder exponent n−ε for any ε > 0 with n = m−ν−[m−ν].

Example 4. Consider the stationary interpolatory 4-point scheme with
symbol (3.19)

aw(z) =
1

2z
(1 + z)2[1− 2wz−2(1− z)2(z2 + 1)].

By Theorem 4.8, the range of w for which Saw is convergent is the range for
which Sbw , with symbol

bw(z) =
1

2z
(1 + z)[1− 2wz−2(1− z)2(z2 + 1)],

is contractive. The condition ‖Sbw‖∞ < 1 yields the range

−3

8
< w <

−1 +
√

13

8
,
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while the condition ‖S2
bw
‖∞ < 1 yields the range

−1

4
< w <

−1 +
√

17

8
.

Thus a range of w for which Saw is convergent is (Dyn et al. 1991)

−3

8
< w <

−1 +
√

17

8
∼= 0.39.

By Corollary 4.11, it is sufficient to show that Scw , with symbol

cw(z) =
1

z
[1− 2wz−2(z − 1)2(z2 + 1)],

is contractive, in order to prove that Saw is C1. Now, ‖Rcw‖∞ ≥ 1, while

‖R2
cw‖∞ < 1 for 0 < w <

√
5−1
8 , as is shown in Dyn et al. (1991).

The fact that φaw 6∈ C2(R) can be deduced from necessary conditions
that are violated (see Section 5.2). In Daubechies and Lagarias (1992a), it
is shown, by methods as in Section 5.2, that φ′aw is differentiable except at
all the dyadic points in its support.

After deriving similar results to the above for a class of nonstationary
schemes, we return to the stationary case, and show that, in most interesting
cases, if φa ∈ Cm(R) then necessarily the symbol a(z) is divisible by (1 +
z)m+1. In this sense the form of a(z) in Corollary 4.11 is necessary for Sa

with Cm limit functions. This result holds if φa is L∞-stable, namely if for
any bounded bi-infinite sequence f = {fi : i ∈ Z},

C2 sup
i∈Z

|fi| ≤
∥∥∥∥∥∑
i∈Z

fiφ(x− i)

∥∥∥∥∥
∞
≤ C1 sup

i∈Z

|fi|, (4.20)

with 0 < C2 ≤ C1 < ∞. For most interesting schemes the basic limit
function is L∞-stable, for example, for interpolatory schemes and for spline
schemes. We also study the related property that, for Sa with φa ∈ Cm and
L∞-stable, πm is invariant under a.

Analysis of nonstationary schemes with symbols divisible by stationary
smoothing factors
In this section the tools of analysis of Section 4.2 are extended to a class of
nonstationary schemes. Theorem 4.10 also holds for a nonstationary scheme
with symbols

ak(z) =
(1 + z)

2
qk(z), k ∈ Z+, k ≥ K,

with K some positive integer, and such that S{qk} is convergent. A version
of Theorem 4.8 also holds in the nonstationary case. It supplies only a
sufficient condition for convergence.
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Theorem 4.12. Let a nonstationary scheme be given by the symbols

ak(z) = (1 + z)bk(z), k ∈ Z+, k ≥ K ∈ Z+.

If S{bk} is contractive then S{ak} is convergent.

This theorem holds since Rak and Rbk , defined by (2.2) and (2.3), are re-
lated by

∆Rakf = Rbk∆f , k ∈ Z+, k ≥ K, (4.21)

and therefore, by the same arguments as in the stationary case, the con-
tractivity of S{bk} implies the convergence of S{ak}. A simple sufficient
condition for the contractivity of S{bk} is

‖Rbk‖∞ = max

(∑
j∈Z

|bki−2j | : i ∈ {0, 1}
)
≤ µ < 1, k ∈ Z+, k ≥ K,

(4.22)
since then, for gk = Rbk−1Rbk−2 · · ·Rb0g0, we have ‖gk‖∞ ≤ µk‖g0‖∞.

From Theorem 4.12 and the remark above it, we conclude the following.

Corollary 4.13. Let a nonstationary scheme be given by the symbols

ak(z) =
(1 + z)m+1

2m
bk(z), k ∈ Z+, k ≥ K ∈ Z+.

If S{bk} is contractive then S{ak} is Cm.

Example 5. In this example we study properties of the up-function intro-
duced in Section 3.1, by applying the analysis tools of this section.

Let a nonstationary scheme be given by the symbols, as in (3.5),

ak(z) =
(1 + z)k

2k−1
, k ∈ Z+.

To show that φ{ak} ∈ C∞(R), we show that φ{ak} ∈ Cm(R), for any m ∈ Z+.
Now, for k ≥ m+ 2,

ak(z) =
(1 + z)m+1

2m
· (1 + z)k−m−1

2k−m−1
,

and, by Corollary 4.13, φ{ak} ∈ Cm if S{bk} is contractive, with

bk(z) =
(1 + z)k−m−1

2k−m−1
, k ∈ Z+, k ≥ m+ 2.

But ‖Rbk‖∞ = 1
2 for k ∈ Z+, k ≥ m + 2, which proves that S{bk} is

contractive.
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Next we show that σ(φ{ak}) = [0, 2]. Using (2.11) we get, from (3.5),

σ(φ{ak}) =

∞∑
j=0

2−j−1σ(aj) =

∞∑
j=0

2−j−1[0, j + 1] = [0, 2].

Polynomials generated by stationary schemes

For stationary interpolatory schemes in R
s it is easy to show (Dyn and

Levin 1990) that φa ∈ Cm implies that πm is reproduced by the scheme,
namely

Rap|Zs = p

( ·
2

)
|Zs , and S∞a p|Zs = p, for p ∈ πm(Rs). (4.23)

For a subdivision scheme with a stable basic limit function, the proof
is more involved. It was first proved in Cavaretta et al. (1991). Here we
present a proof for s = 1, which is extendable to univariate matrix subdivison
schemes (Dyn and Levin 2002) and to multivariate schemes.

The proof is based on the following important observation in Warren
(1995a).

Theorem 4.14. Let Sa be a Cm-convergent univariate, stationary sub-
division scheme. Let B denote the set of bi-infinite sequences, and let
v = {vj : j ∈ Z} ∈ B be an eigenvector of Ra with eigenvalue λ, that is,

Rav = λv. (4.24)

Then the following hold.

(1) If |λ| ≥ 2−m, either S∞a v ≡ 0 or S∞a v = xi for some 0 ≤ i ≤ m,
and λ = 2−i. Also λ = 2−i, 0 ≤ i ≤ m, cannot have a generalized
eigenvector u ∈ B, satisfying

Rau = λu + v. (4.25)

(2) If |λ| < 2−m then (S∞a v)(`)(0) = 0, ` = 0, . . . ,m.

(3) If λ 6= 2−i, 0 ≤ i ≤ m, and u is a corresponding generalized eigenvector
satisfying (4.25), then (S∞a u)(`)(0) = 0, ` = 0, . . . ,m.

The proof of Theorem 4.14 is based on the relations

(S∞a v)(x) = λ(S∞a v)(2x), (S∞a u)(x) = λ(S∞a u)(2x) + (S∞a v)(2x)

for v,u satisfying (4.24) and (4.25) respectively, and on the continuity at
x = 0 of the derivatives of order up to m of S∞a u, S∞a v.

A direct consequence of Theorem 4.14 deals with polynomials generated
by a univariate stationary subdivision scheme with smooth limit functions
(Dyn et al. 1995).
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Theorem 4.15. Let Sa be a Cm-subdivision scheme. Then there exist
v[i] ∈ B, i = 0, . . . ,m, such that

Rav
[i] = 2iv[i], S∞a v[i] = xi, i = 0, . . . ,m. (4.26)

The argument leading to (4.26) is that 2−i must be an eigenvalue of Ra for
i = 0, . . . ,m, otherwise there exists ` ∈ {0, 1, . . . ,m} such that 2−` is not an

eigenvalue of Ra, implying that φ
(`)
a ≡ 0, in view of Theorem 4.14. But φa

is of compact support, φa 6≡ 0, which contradicts φ
(`)
a ≡ 0. Next we show

that v[i] in Theorem 4.15 is of the form v[i] = xi|Z + pi|Z with pi ∈ πi−1,
i = 0, . . . ,m (here p0 ≡ 0). For this proof the L∞-stability of φa is needed.
We term a scheme L∞-stable if its basic limit function is L∞-stable.

Theorem 4.16. Let Sa be Cm and L∞-stable. Then there exist polyno-
mials pi ∈ πi−1, i = 0, . . . ,m, with p0 ≡ 0, such that

S∞a (xi + pi)|Z = xi, i = 0, . . . ,m. (4.27)

Sketch of proof. The case i = 0 follows directly from (4.10), because Ra

maps the constant sequence 1 = u = {uj = 1 : j ∈ Z} on itself.
In the following we indicate the proof for i = 1. For i = 2, . . . ,m, the

proof is similar. Let v = v[1] satisfy S∞a v = x, and for r ∈ Z+\0 let
∆(r)v = {vj+r − vj : j ∈ Z}. Then the linearity and uniformity of Sa leads

to S∞a ∆(1)v = x+ 1− x = 1 or

S∞a (∆(1)v − 1) ≡ 0. (4.28)

If ∆(1)v − 1 ∈ B is bounded, then by the L∞-stability of φa, ∆(1)v = 1,
which is equivalent to v = x|Z + c1 for some c ∈ R. Thus the claim of
the theorem for i = 1 follows. To show the boundedness of ∆(1)v − 1 we
consider (4.28) at the integers, which in view of (2.8) has the form∑

j∈Z

(
(∆(1)v)j − 1

)
φa(n− j) = 0, n ∈ Z. (4.29)

Equation (4.29) can be regarded as a finite difference equation for ∆(1)v−1,
since φa|Z is finitely supported, and is not identically equal to zero (otherwise
φa ≡ 0 by (2.15)). As a solution of (4.29), ∆(1)v− 1 is either bounded or it
grows at least polynomially as j →∞ or j → −∞. For the latter possibility,
v would have faster than linear growth. This possibility is eliminated, since

(Ra∆
(r)v)α =

∑
j∈Z

aα−2j(vj+r − vr) =
1

2
vα+2r − 1

2
vα =

1

2
(∆(2r)v)α,

from which it is concluded, in view of (4.28), that

S∞a ∆(1)v = lim
`→∞

2−`∆(2`)v = 1,
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or that v±2` = v0 ± 2` + o(1), which is in contradiction to faster than linear
growth.

As a direct consequence of Theorem 4.16 we get the following result.

Corollary 4.17. Let Sa be Cm and L∞-stable. Then πm|Z is invariant
under Ra and, for p ∈ πi, 0 ≤ i ≤ m,

Rap|Z = q

( ·
2

)
|Z,

with q ∈ πi and p− q ∈ πi−1, while p = q for i = 0.

In the following subsection we derive the factorization of the symbol of a
scheme satisfying the requirements of Corollary 4.17.

Factorization of symbols of stationary, smooth, L∞-stable schemes, and
related necessary conditions

First we show that, if Sa is Cm and L∞-stable, then its symbol has the factor
(1+ z)m+1. Later we show that, necessarily, S2ma(z)(1+z)−m−1 is contractive.
A similar result holds for Lp-stability and convergence in the Lp-norm, 1 ≤
p ≤ ∞ (Jia 1995). These results are important in the analysis of smoothness
of univariate stationary schemes (see Section 4.2).

Theorem 4.18. Let Sa be Cm and L∞-stable. Then

a(z) = (1 + z)m+1b(z) (4.30)

with b(z) a Laurent polynomial.

Proof. We use a recursive construction of ‘divided difference’ schemes with
symbols

a[i](z) = 2i(z + 1)−ia(z), i = 1, . . . ,m+ 1.

If a[i](z) is a Laurent polynomial, then, in view of (4.11), Sa[i] is related to
Sa by

Sa[i]dikf = dik+1Saf , f ∈ B,

where dikf = (2k)i∆if is the sequence of divided differences of order i on
refinement level k. Since, by Corollary 4.17, Ra maps 1 ∈ B to itself,∑

i∈Z
a2i =

∑
i∈Z

a2i+1 = 1 and a(z) is divisible by (1 + z). This guarantees

that a[1] exists. Now, Ra maps v = x|Z, to Rav = 1
2x|Z + c1 for some c ∈ R,

so Ra[1] maps 1 ∈ B into itself. Thus a[1](z) is divisible by (1 + z), and a[2]

exists. The general argument is similar.
By applying (2k)i∆if to f = xi|Z we get a constant sequence. This se-

quence is mapped by Ra[i] to (2k+1)i∆iRaf , which is the same constant
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sequence. This is the case since Raf = ( ·2)i + q( ·2) with q ∈ πi−1 by

Corollary 4.17, and ∆iq( ·2) = 0. Again, if Ra[i] maps the constant sequence

on itself, then a[i](z) is divisible by (1 + z).
Using this argument for i = 0, 1, . . . ,m we conclude that a[i] exists for

i = 1, . . . ,m+ 1, and thus (4.30) holds. �

Example 6. Consider the symbol

a(z) =
1

4
(1 + z)(1 + z2)2 =

1

4
(1 + z + 2z2 + 2z3 + z4 + z5). (4.31)

It is easy to see that (4.10) holds, since a(1) = 2, a(−1) = 0. To verify that
Sa is convergent, we show that Sb with b(z) = 1

4(1 + z2)2 is contractive.

Now, b(z) = 1
4(1 + 2z2 + z4) and therefore ‖Sb‖∞ = 1. Yet from (2.28) and

(4.17) we get

b[2](z) =
1

16
(1 + z4)2(1 + z2)2

=
1

16
(1 + 2z2 + 3z4 + 4z6 + 3z8 + 2z10 + z12),

and therefore ‖S2
b‖∞ = 1

2 .
Since the symbol c(z) = 1 + z2 satisfies c(1) = 2, Sc converges weakly

(Derfel et al. 1995). It is easy to verify that S∞c δ = 1
2χ[0,1] in the sense of

weak convergence. By convolution property (3)

φa = 1
4χ[0,1] ∗ χ[0,1] ∗ χ[0,1].

Thus φa ∈ C1, while a(z) is not divisible by (1 + z)2. This indicates,
in view of Theorem 4.18, that φa is not L∞-stable. Indeed, consider the
sequence u = {ui = (−1)i : i ∈ Z}. Clearly u is bounded. Now in view of
(4.31), Rau = 0 ∈ B, and therefore S∞a u =

∑
i∈Z

(−1)iφa(· − i) ≡ 0, and φa

is not L∞-stable.

Once we have the factorization of the symbol of a stationary Cm, L∞-
stable scheme,

a(z) = (1 + z)m+1b(z),

we can show that 2ma(z)
(1+z)m+1 is the symbol of a contractive scheme. For that

we need two results, which are of importance beyond their current use.

Theorem 4.19. Let φ be a solution of the functional equation

φ(x) =
∑
α∈Z

aαφ(2x− α), (4.32)

with a mask a satisfying (4.10). If φ is compactly supported, continuous
and L∞-stable, then Sa is convergent.
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This theorem was first proved in Cavaretta et al. (1991). Here we give a
sketch of a different proof (Dyn and Levin 2002).

Sketch of proof. Recalling the relation in (2.16), we observe that, since
φ = Taφ, and a = Raδ,

φ(x) =
∑
α∈Zs

(Raδ)αφ(2x− α) =
∑
α∈Zs

(Rk
aδ)αφ(2kx− α), (4.33)

and that for all k ∈ Z+∑
α∈Z

φ(x− α) =
∑
α∈Z

(Rk
a1)αφ(2kx− α) =

∑
α∈Z

φ(2kx− α). (4.34)

The continuity and L∞-stability of φ together with (4.34) leads, after proper
normalization, to ∑

α∈Z

φ(· − α) ≡ 1. (4.35)

Combining (4.33) and (4.35) we get

0 =
∑
α∈Z

φ(2kx− α)
[
(Rk

aδ)α − φ(x)
]
,

which, together with the continuity, compact support and L∞-stability of
φ, yields

lim
k→∞

sup
α∈Z∩K

|(Rk
aδ)α − φ(2−kα)| = 0,

for any compact set K ⊂ R. This is the convergence of Sa in the sense of
(2.5) to a continuous limit function φ, hence uniform convergence.

The second theorem is taken from Dyn and Levin (2002), where it is
proved for matrix masks.

Theorem 4.20. Let a(z) = 1+z
2 q(z), with Sa L∞-stable and C1. Then

ϕ =
∑
α∈Z

φ′a(· − α)

is a continuous, L∞-stable solution of

ϕ(x) = Tqϕ(x) =
∑
α∈Z

qαϕ(2x− α). (4.36)

Sketch of proof. The function ϕ is well defined, continuous and of compact
support. It is related to φa by

φa(x) =

∫ x

x−1
ϕ(t) dt = ϕ ∗ χ[0,1]. (4.37)
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Suppose ϕ is not L∞-stable; then there exists a bounded nonzero sequence
u ∈ B such that ∑

α∈Z

uαϕ(· − α) ≡ 0.

By integrating this relation from x− 1 to x we obtain∑
α∈Z

uαφa(x− α) ≡ 0.

This last relation contradicts the L∞-stability of φa. Thus ϕ is also L∞-
stable. To verify that ϕ = Tqϕ, we observe that φa = Taφa, and after taking
the Fourier transform, it is equivalent to

φ̂a(w) =
1

2
â

(
w

2

)
φ̂a

(
w

2

)
(4.38)

with â(w) =
∑

α∈Z
aαe

−iwα. Now by (4.37) ϕ̂(w)1−e−iw
w = φ̂a(w). Multiply-

ing (4.38) by w
1−e−iw , we obtain

ϕ̂(w) =
1

2

2â(w2 )

1 + e−i
w
2

ϕ̂

(
w

2

)
=

1

2
q̂

(
w

2

)
ϕ̂

(
w

2

)
,

proving (4.36).
From Theorems 4.19, 4.20, 4.18 and 4.8 we conclude the following.

Corollary 4.21. Let Sa be C1 and L∞-stable. Then b(z) = 2a(z)
(1+z)2

is a

Laurent polynomial and Sb is contractive.

This corollary together with Corollary 4.11 implies the following.

Corollary 4.22. Let Sa be convergent and L∞-stable. Then the con-
tractivity of S2ma(z)(1+z)−(m+1) is necessary and sufficient for Sa to be Cm.

4.3. Analysis of bivariate stationary schemes via difference schemes

The analysis of convergence and smoothness of multivariate subdivision
schemes defined on regular grids, which is of interest to geometric modelling
in R

3, is in the case s = 2. Thus, for the sake of simplicity of presenta-
tion, we limit the discussion to this case. The results are easily extended to
s > 2. Here we present similar analysis tools to those in the univariate, sta-
tionary case for bivariate, stationary subdivision schemes defined on regular
quad-meshes and on regular triangulations. When the symbol factorizes into
sufficiently many linear factors (each a univariate smoothing factor in some
direction in Z

2), the analysis is almost as simple as in the univariate case
(Cavaretta et al. 1991, Dyn 1992). This factorization is not the result of
(4.10) or of the smoothness of the limit functions, as in the univariate case,
but is an additional assumption, which holds for many of the schemes in use.
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In fact the same factorization of nonstationary symbols leads to similar res-
ults, even for nonstationary schemes. When the symbol is not factorizable
to univariate smoothing factors, (4.10) leads to non-unique matrix difference
schemes, and the theory of the univariate case can be extended to this case
(Cavaretta et al. 1991, Dyn 1992, Hed 1990); see Section 4.3.

Analysis of schemes with factorizable symbols

The necessary conditions for convergence of a bivariate scheme Sa defined
on Z

2, which are obtained from (4.10), are∑
β∈Z2

aα−2β = 1, α ∈ {(0, 0), (0, 1), (1, 0), (1, 1)
}
. (4.39)

These conditions imply

a(1, 1) = 4, a(−1, 1) = 0, a(1,−1) = 0, a(−1,−1) = 0. (4.40)

In contrast to the univariate case (s = 1), in the bivariate case (s = 2), the
necessary conditions (4.39) and the derived conditions on a(z), (4.40), do
not imply a factorization of the mask to linear factors.

If the factorization

a(z) = (1 + z1)
m(1 + z2)

mb(z), z = (z1, z2), (4.41)

is imposed, then, with m = 1, the convergence can be analysed almost as in
the univariate case, and similarly the smoothness if m > 1.

Theorem 4.23. Let Sa have a symbol of the form (4.41) with m = 1. If

the schemes with the symbols a1(z) = a(z)
1+z1

= (1 + z2)b(z), a2(z) = a(z)
1+z2

=

(1+ z1)b(z) are both contractive, then Sa is convergent. Conversely, if Sa is
convergent then Sa1 and Sa2 are contractive.

The proof of this theorem is similar to the proof of Theorem 4.8, due
to the observation that for ∆1f = {fi,j − fi−1,j : i, j ∈ Z}, and ∆2f =
{fi,j − fi,j−1 : i, j ∈ Z},

Sa`∆`f = ∆`Saf , ` = 1, 2.

Thus convergence is checked in this case as contractivity of two subdivision
schemes Sa1 , Sa2 . For schemes having the symmetry of the square grid
(topologically equivalent rules for the computation of vertices corresponding
to edges), then a1(z1, z2) = a2(z2, z1), and the contractivity of only one
scheme has to be checked. Note that the factorization in (4.41) has then the
symmetry of Z

2.
For the smoothness result, we introduce the inductive definition of differ-

ences: ∆[i,j] = ∆1∆
[i−1,j], ∆[i,j] = ∆2∆

[i,j−1], ∆[1,0] = ∆1, ∆[0,1] = ∆2.
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Theorem 4.24. Let a(z) be factorizable as in (4.41). If the schemes with
the masks

ai,j(z) =
2i+ja(z)

(1 + z1)i(1 + z2)j
, i, j = 0, . . . ,m (4.42)

are convergent, then

∂i+j

∂ti1∂t
j
2

(S∞a f0)(t) = (S∞ai,j
∆i

1∆
j
2f

0)(t), i, j = 0, . . . ,m. (4.43)

In particular, Sa is Cm.

In geometric modelling the required smoothness of surfaces is at least C1

and at most C2. To verify that a scheme Sa generates C1 limit functions,
with the aid of the last two theorems, we have to assume a symbol of the form

a(z) = (1 + z1)
2(1 + z2)

2b(z),

and to check the contractivity of the three schemes with symbols

2(1 + z1)(1 + z2)b(z), 2(1 + z2)
2b(z), 2(1 + z1)

2b(z).

This analysis applies also to tensor product schemes, but is not needed,
since if a(z) = a1(z1)a2(z2) is the symbol of a tensor product scheme, then
φa(t1, t2) = φa1(t1) ·φa2(t2), and its smoothness properties are derived from
those of φa1 , φa2 .

Similar results hold for schemes defined on regular triangulations. For
the topology of a regular triangulation, we regard the subdivision scheme
as operating on the 3-directional grid. (The vertices of Z

2 with edges in the
directions (1, 0), (0, 1), (1, 1).)

Since the 3-directional grid can be regarded also as Z
2, (4.39) and (4.40)

hold for convergent schemes on this grid.
A scheme for regular triangulations treats each edge in the 3-directional

grid in the same way with respect to the topology of the grid. The symbol
of such a scheme, when factorizable, has the form

a(z) = (1 + z1)
m(1 + z2)

m(1 + z1z2)
mb(z). (4.44)

Example 7. The symbol of the butterfly scheme on the 3-directional grid
has the form (Dyn, Levin and Micchelli 1990b)

a(z) =
1

2
(1 + z1)(1 + z2)(1 + z1z2)(1− wc(z1, z2))(z1z2)

−1 (4.45)

with

c(z1, z2) = 2z−2
1 z−1

2 + 2z−1
1 z−2

2 − 4z−1
1 z−1

2 − 4z−1
1 − 4z−1

2

+ 2z−1
1 z2 + 2z1z

−1
2 + 12− 4z1 − 4z2 − 4z1z2 + 2z2

1z2 + 2z1z
2
2 . (4.46)
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Convergence analysis for schemes with factorizable symbols of the form
(4.44) is similar to that for schemes with symbols of the form (4.41).

Theorem 4.25. Let Sa have the symbol

a(z) = (1 + z1)(1 + z2)(1 + z1z2)b(z). (4.47)

Then Sa is convergent if and only if the schemes with symbols

a1(z) =
a(z)

1 + z1
, a2(z) =

a(z)

1 + z2
, a3(z) =

a(z)

1 + z1z2
(4.48)

are contractive. If any two of these schemes are contractive, then the third
is also contractive.

Note that

Sa3∆3f = ∆3Saf ,

with (∆3f)i,j = fi,j − fi−1,j−1. Thus, if two of the schemes Sai
, i = 1, 2, 3

are contractive then the differences in two linearly independent directions
tend to zero as k → ∞, which implies, as in the proof of Theorem 4.8, the
uniform convergence of the bilinear interpolants to {fk}k∈Z+ .

The smoothness analysis for a scheme with a symbol (4.47) is different
from that for schemes with symbols as in (4.41).

Theorem 4.26. Let Sa have the symbol (4.47), and let ai(z), i = 1, 2, 3
be as in (4.48). Then Sa generates C1 limit functions, if the schemes with
the symbols 2ai(z), i = 1, 2, 3, are convergent. If any two of these schemes
are convergent then the third is also convergent. Moreover,

∂

∂ti
(S∞a f0)(t) = (S2ai

∆if
0)(t), i = 1, 2,(

∂

∂t1
+

∂

∂t2

)
(S∞a f0)(t) = (S2a3∆3f

0)(t).

The verification, based on Theorems 4.25 and 4.26, that the scheme Sa

with symbol (4.47) is C1, requires us to check the contractivity of the three
schemes with symbols

2(1 + z1)b(z), 2(1 + z2)b(z), 2(1 + z1z2)b(z).

If these three schemes are contractive, then Sa generates C1-limit functions.
For a(z) with the symmetries of the 3-directional grid, it is sufficient to check
the contractivity of only one of the three schemes, as is easily observed in
the next example.

Example 8. To verify that the butterfly scheme generates C1-limit func-
tions, we use the fact that the symbol a(z) of the butterfly scheme, given
in (4.45), is of the form (4.47). In view of the observation following

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


Subdivision schemes in geometric modelling 125

Theorem 4.26, we have to check the contractivity of the three schemes with
symbols

qi(z) = (1 + zi)
(
1− wc(z1, z2)

)
(z1z2)

−1, i = 1, 2,

q3(z) = (1 + z1z2)
(
1− wc(z1, z2)

)
(z1z2)

−1.

Noting that

c(z1, z2) = c(z2, z1) = c(z1z2, z
−1
1 ),

and that the factor (z1z2)
−1 in a symbol does not affect the norm of the

corresponding subdivision operator, it is sufficient to verify the contractivity
of Sr, where

r(z) = (1 + z1)
(
1− wc(z1, z2)

)
=
∑
α∈Z2

rαz
α.

Now

‖Sr‖∞ = max
`,k∈{0,1}

( ∑
i,j∈Z

|rk+2i,`+2j |
)
,

and since ∑
i,j∈Z

|r2i,2j | = |1− 8w|+ |8w|,

‖Sr‖∞ ≥ 1 for all values of w.
Next, we show that for sufficiently small w > 0, ‖S2

r‖∞ < 1 (Dyn et al.
1990b). Ignoring coefficients of r[2](z) that are not O(1), and computing the
others up to order O(w), we get

r[2](z) = r(z)r(z2)

= (1 + z1 + z2
1 + z3

1)
(
1− wc(z1, z2)− wc(z2

1 , z
2
2) +O(w2)

)
=
∑
i,j∈Z

r
[2]
ij z

i
1z

j
2.

Thus, for j 6= 0, r
[2]
i,j = O(w) while r

[2]
i,0 = 1 + O(w), i = 0, 1, 2, 3. From this

we conclude that it is sufficient to show that, for sufficiently small w,∑
i,j∈Z

∣∣r[2]
`+4i,4j

∣∣ < 1, ` = 0, 1, 2, 3.

When ` = 0, all the nonzero coefficients {r[2]4i,4j} are

r
[2]
0.0 = 1− 16w +O(w2),

r
[2]
4,0 = 8w +O(w2),

r
[2]
4,4 = r

[2]
0,−4 = −2w +O(w2).
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Hence, for sufficiently small w > 0,∑
i,j∈Z

∣∣r[2]
4i,4j

∣∣ = |1− 16w|+ 12|w|+O(w2) < 1.

When ` = 1, the relevant coefficients are

r
[2]
1,0 = 1− 12w +O(w2),

r
[2]
5,0 = 4w +O(w2),

r
[2]
5,4 = r

[2]
1,−4 = −2w +O(w2),

and, for sufficiently small w > 0,∑
i,j∈Z

|r1+4i,4j | = |1− 12w|+ 8|w|+O(w2) < 1.

The cases ` = 2 and ` = 3 are similar to the cases ` = 1 and ` = 0,
respectively. Thus, for sufficiently small w > 0, the limit surfaces/functions
generated by the butterfly scheme on regular triangulations are C1.

An explicit value of w0, such that for w ∈ (0, w0) the butterfly scheme gen-
erates C1 limit functions on regular triangulations, is computed in Gregory
(1991). The computation shows that w0 > 1

16 . The value w = 1
16 is of

special importance, since for this value the butterfly scheme on Z
2 repro-

duces cubic polynomials, while for w 6= 1
16 the scheme reproduces only linear

polynomials. These properties are related to the approximation properties
of the scheme (see Section 7).

Analysis of general schemes defined on Z
2

The necessary conditions in the bivariate case (4.39) imply four conditions
on the symbol (4.40).

These four conditions lead to a subdivision scheme with a matrix mask,
for the vector of first differences

∆f =

{
(∆f) =

((
∆1

∆2

)
f

)
ij

=

(
fij − fi−1,j

fij − fi,j−1

)
: (i, j) ∈ Z

2

}
. (4.49)

Contrary to the univariate case, this matrix mask is not uniquely determ-
ined. The matrix mask can be derived with the help of the following lemma.

Lemma 4.27. Let p(z) = p(z1, z2) be a Laurent polynomial satisfying

p(1, 1) = p(−1, 1) = p(1,−1) = p(−1,−1) = 0. (4.50)

Then there exist Laurent polynomials, p1, p2, such that

p(z) = (1− z2
1)p1(z) + (1− z2

2)p2(z). (4.51)
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The ‘factorization’ in (4.51) is not unique, since the term (1−z2
1)(1−z2

2)q(z),
with q a Laurent polynomial, can be added to the first term on the right-
hand side of (4.51) and subtracted from the second.

The proof of the lemma is based on the following two observations.

(a) The Laurent polynomial

P (z) =
1

2

[
(1 + z2)p(z1, 1) + (1− z2)p(z1,−1)

]
coincides with p(z) for z2 = 1 and z2 = −1, and therefore there exists
a Laurent polynomial r(z) such that

p(z)− P (z) = (1− z2
2)r(z).

(b) P (z) is a Laurent polynomial that is divisible by (1−z2
1), since, in view

of (4.50), P (±1, z2) ≡ 0.

The last lemma guarantees the ‘factorization’ assumed in (4.52).

Theorem 4.28. Let a(z) = a(z1, z2) satisfy (4.40), and let

(1− z1)a(z) = b11(z)(1− z2
1) + b12(z)(1− z2

2),

(1− z2)a(z) = b11(z)(1− z2
1) + b22(z)(1− z2

2),
(4.52)

where bij , i, j = 1, 2, are Laurent polynomials. Then

∆Raf = RB∆f , (4.53)

where RB is the refinement rule

(RBv)α =
∑
β∈Z2

Bα−2βvβ , α ∈ Z
2, (4.54)

with the matrix symbol

B(z) =
∑
α∈Z2

Bαz
α =

(
b11(z) b12(z)
b21(z) b22(z)

)
, (4.55)

and with v a bi-infinite sequence of vectors in R
2, that is,

v = {vα : vα ∈ R
2, α ∈ Z

2}.

Sketch of proof. The formalism of the z-transform is the tool for proving
the theorem. Observing that

L(∆f ; z) =

(
1− z1
1− z2

)
L(f ; z),

and recalling the basic relation in (2.25),

L(Raf ; z) = a(z)L(f ; z2),
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we obtain from (4.52)(
1− z1
1− z2

)
L(Raf ; z) =

(
b11(z) b12(z)
b21(z) b22(z)

)(
1− z2

1

1− z2
2

)
L(f ; z2),

which is equivalent to (4.53) and (4.54). In the following we let SB denote
the stationary scheme with the refinement rule RB in (4.54). Theorem 4.28
leads, as in the univariate case, to the following result.

Corollary 4.29. Let Sa be a bivariate subdivision scheme satisfying (4.39).
Then Sa is convergent if and only if SB is contractive for all initial data of
the form ∆f .

A sufficient condition for convergence is thus the contractivity of the
scheme SB. This can be verified by considering the numbers ‖SMB ‖∞ for
M = 1, 2, . . . . Here again the formalism of the z-transform leads to the
symbol

B[M ](z) = B(z)B[M−1](z2) = B(z)B(z2) · · ·B(z2M−1
)

of SMB , where the order of the factors in the matrix product is significant.
The norm of SMB is given by (Hed 1990, Dyn 1992)

‖SMB ‖∞ = max
α∈EM

2

∥∥∥∥∥ ∑
β∈Z2

|B[M ]

α−2Mβ
|
∥∥∥∥∥
∞

where |A| denotes the matrix whose elements are the absolute values of the
corresponding elements in the matrix A, ‖A‖∞ denotes the L∞-norm of
the matrix A, and where EM

2 =
{
α = (α1, α2) : 0 ≤ α1 < 2M , 0 ≤ α2 <

2M
}
. Thus a similar algorithm to the one given in the univariate case (see

Section 4.2), applies also in the bivariate case, although it is based only on
a sufficient condition and on a non-unique ‘factorization’. It is possible to
use optimization techniques to find, among all possible ‘factorizations’, the
one that minimizes min{‖SMB ‖∞ : 1 ≤M ≤ 10} (Kasas 1990).

The C1 analysis is based on the following result.

Theorem 4.30. Let Sa be a convergent subdivision scheme. If 2SB with
B given by (4.55) and (4.52) is convergent for initial data of the form ∆f ,
then Sa is C1.

This result is analogous to Theorem 4.10 in the univariate case. Further-
more, (

2SB

)∞
∆f0 =

(
∂1

∂2

)
S∞a f0. (4.56)

Equation (4.56) only holds if∑
α∈Z2

Bγ−2α = I2×2, γ ∈ {(0, 0), (0, 1), (1, 0), (1, 1)
}
, (4.57)
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which follows from the linear independence of the two components of(
2SB

)∞
∆f = (∂1S

∞
a f , ∂2S

∞
a f)T

for generic f . From (4.57) and Lemma 4.27 follows the existence of a matrix
subdivision scheme SC, for the vectors 2−k∆2fk,

∆2f =

(
∆1

∆2

)
∆f ∈ R

4,

with C a mask of matrices of order 4× 4 with symbol(
C(1,1)(z) C(1,2)(z)

C(2,1)(z) C(2,2)(z)

)
,

where C(i,j)(z) is a matrix of order 2× 2 defined by the ‘factorization’(
1− z1
1− z2

)
2bij(z) = C(i,j)(z)

(
1− z2

1

1− z2
2

)
.

If SC is contractive then S2B is convergent and Sa is C1. The same ideas
can be further extended to deal with higher orders of smoothness (Hed 1990,
Dyn 1992).

5. Analysis by local matrix operators

Given masks {ak} of the same finite support, the corresponding refinement
rules (2.2) and their representations in matrix form (2.18) are local. For
the subdivision scheme S{ak}, this locality is also expressed by the compact
supports of the corresponding basic limit functions {φk : k ∈ Z+}, and the
representations (2.10) of the limit functions S∞k f0.

5.1. The local matrix operators in the univariate setting

To simplify the presentation we deal here with the case s = 1. The results
extend to s > 1.

The locality of Rak can be more emphatically expressed in terms of two
finite-dimensional matrices, which are both sections of the bi-infinite matrix
Ak in (2.18). First we obtain the two finite-dimensional matrices. Consider

S∞0 f0 = S∞{ak}f
0 =

∑
α∈Z

f0
αφ0(· − α) =

∑
α∈Z

fkαφk(2
k · −α), (5.1)

and its restriction to a unit interval. Due to the finite support of φ0, there
exists a finite set I ⊂ Z, such that

S∞{ak}f
0
∣∣∣
[j,j+1]

=
∑

α−j∈I
f0
αφ0(· − α). (5.2)
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Thus the vector {f0
α : α − j ∈ I} completely determines the limit function

in [j, j + 1]. By the same reasoning, and since σ(φk) = σ(φ0), k ∈ Z+,
we deduce, in view of (5.1), that the vector {fkα : α − j ∈ I}, with fk =
Rak−1 · · ·Ra0f0, determines the limit function in [j, j+1]2−k. Again, by the
linearity of {Rak : k ∈ Z+}, there exists a linear map from {fk−1

α : α ∈ I}
to {fkα : α ∈ I}, which is a square matrix of dimension |I|. We denote it
by Ak

0. Similarly there is a linear transformation from {fk−1
a : α ∈ I} to

{fkα : α − 1 ∈ I}, denoted by Ak
1. Note that, by the uniformity of Rak , A

k
ε

maps the vector {fk−1
α : α − j ∈ I} to {fkα : α − j − ε ∈ I}, ε = 0, 1. It

is easy to conclude from the definition of Ak
0, A

k
1 as linear operators, that

the matrices Ak
0, A

k
1 are finite sections of the bi-infinite matrix Ak in (2.19),

that is,

(Ak
0)αβ = akα−2β, α, β ∈ I,

(Ak
1)αβ = akα+1−2β, α, β ∈ I. (5.3)

In the following we show how to get the value (S{ak}f0)(x) for x ∈ R in

terms of the matrices {Ak
0, A

k
1 : k ∈ Z+}. It is sufficient to consider the

interval [0, 1).
For x ∈ [0, 1), we use the dyadic representation x =

∑∞
i=1 di2

−i, di ∈
{0, 1}, and obtain(

S∞{ak}f
0
)
(x) = lim

k→∞
Ak
dk+1

Ak−1
dk

· · ·A0
d1

f0
[0,1] (5.4)

where f0
[0,1) = {f0

α : α ∈ I}. Note that the finite product Ak
dk+1

· · ·A0
d1

f0
[0,1)

is a vector which determines the limit function in an interval of the form
[j, j + 1]2−k−1 containing x. Thus the convergence and smoothness of the
limit function generated by S{ak} can be deduced from the set of finite
matrices

{Ak
0, A

k
1 : k ∈ Z+} (5.5)

and their infinite products of the form appearing in (5.4). In the stationary
case there are only two matrices A0, A1, and all possible infinite products of
them have to be considered (Micchelli and Prautzsch 1989).

5.2. Convergence and smoothness of univariate stationary schemes in
terms of finite matrices

In the stationary case the value (S∞a f0)(x) for x =
∑∞

j=1 dj2
−j ∈ [0, 1),

dj ∈ {0, 1} is given by

(S∞a f0)(x) = lim
k→∞

Adk · · ·Ad1f
0
[0,1) (5.6)

with f0
[0,1) = {f0

α : α ∈ I}.
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Note that Sa is contractive if and only if the joint spectral radius of A0, A1,
ρ∞(A0, A1), is less than 1, where

ρ∞(A0, A1) =

sup
k∈Z+\0

(
sup

{‖AεkAεk−1
· · ·Aε1‖∞ : εi ∈ {0, 1}, i = 1, . . . , k

}) 1
k . (5.7)

Thus the conditions for convergence and smoothness of a stationary scheme
given in Section 4.2, which can be expressed as the contractivity of a related
scheme, can be formulated in terms of the joint spectral radius of two finite
matrices. (See, for instance, Daubechies and Lagarias (1992b).) It is easy to
conclude that ρ∞(A0, A1) ≥ max{ρ(A0), ρ(A1)}, where ρ(A) is the spectral
radius of the matrix A. From this inequality and from the necessity of the
contractivity condition, we obtain necessary conditions for convergence and
smoothness (for the latter only in case of L∞-stability), which are easy to
check.

Such necessary conditions are important in the design of new schemes,
in the sense that ‘bad’ schemes can easily be excluded. For example, if

a(z) = (1+z)2

2 b(z), and Sa is an interpolatory scheme, then ρ(B0) < 1, and
ρ(B1) < 1 (with B0 and B1 the local matrix operators corresponding to Sb)
are necessary for Sa to be C1.

Here we formulate an open problem: What are the conditions for the
contractivity of S{ak} in terms of the matrices {Ak

0, A
k
1 : k ∈ Z+}?

5.3. Lp-convergence and p-smoothness of univariate stationary schemes in
terms of finite matrices

There is a vast literature (see, e.g., Villemoes (1994), Jia (1995, 1999), Ron
and Shen (2000), Han (1998), Han and Jia (1998) and Han (2001), and ref-
erences therein) on the convergence in the Lp-norm of subdivision schemes,
and on the p-smoothness of refinable functions. One central method of ana-
lysis is in terms of the p-norm joint spectral radius of two operators restricted
to a finite-dimensional space.

Let A0, A1, be matrices of order n×n. Their p-norm joint spectral radius is

ρp(A0, A1) = sup
k∈Z+\0

(( ∑
ε1,...,εk∈{0,1}

‖Aεk · · ·Aε1‖pp
) 1

p
) 1

k

, 1 ≤ p <∞.

For φ ∈ Lp(R) of compact support, the p-smoothness exponent is defined as

νp(φ) = sup{v ≥ 0 : ‖∆n
hφ‖p ≤ Chv}

for some constant C > 0 and for sufficiently large n, where ∆hφ = φ−φ(·−h)
and ∆n

h = ∆h∆
n−1
h .
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Here we bring one result from Jia (1995), which is in some sense an ex-
tension of Theorem 4.9 in Section 4.2.

Theorem 5.1. Let a be a finitely supported mask such that
∑

i∈Z
ai = 2.

Let φa be a nontrivial solution of the refinement equation

φa =
∑
i∈Z

aiφa(2 · −i).

If there exists C > 0 such that ‖∆Rn
aδ‖1/n

p ≤ C21/p−µ for 0 < µ ≤ 1 and
1 ≤ p ≤ ∞, then vp(φa) = µ.

Since ‖∆Rn
aδ‖1/n

p = ρp(A0|V , A1|V ) with V = {u ∈ R
|I| :

∑
i∈I ui = 0}

(Jia 1995), the condition of the above theorem can be formulated in terms
of two finite-dimensional matrices, which are the restrictions of two op-
erators to a finite-dimensional subspace. In Han (2001), an algorithm is
presented for computing v2(φa) efficiently, for φa a multivariate refinable
function corresponding to a dilation matrix M and a mask a, both with
the same symmetries. For symmetric interpolatory masks there is also an
algorithm for the computation of ν∞(φa). The situation in the multivariate
case is much more complex: there are |detM | operators, and the finite-
dimensional univariate subspace to which these operators are restricted is
quite complicated.

6. Extraordinary point analysis

For all the types of subdivision schemes that are defined over nets of arbit-
rary topology, as described in Section 3.5, the refined nets are regular nets,
excluding a fixed number of extraordinary (irregular) points of valency 6= 6,
in the case of triangular nets, and of valency 6= 4, in the case of quadri-
lateral nets. The smoothness analysis of subdivision schemes over nets of
arbitrary topology is thus decomposed into two stages. First, the analysis
over the regular part is completed, using the tools described in Sections 4
and 5. After verifying the smoothness over the regular part, we are left with
a finite number of isolated points of unknown regularity. The regularity
analysis at the extraordinary points has been studied by several authors,
starting with the pioneering eigenvalue analysis work by Doo and Sabin
(1978), through the works by Ball and Storry (1988, 1989), and completed
by Prautzsch (1998), Reif (1995) and Zorin (2000). It is based on the ob-
servation that the regularity of the surface is known over a ring of patches
Qk encircling the extraordinary point, and there is a linear transformation
T mapping the ring of patches Qk onto a refined ring of patches, Qk+1.
Figure 6.1 displays a graphical description of three rings of patches around
a vertex of valency five. The rings, each composed of 15 quadrilaterals, are
self-similar, of reducing sizes.
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The closure of the union of these rings defines an extraordinary patch
covering a ‘hole’ in the regular part of the surface, and the smoothness of
such a patch is completely characterized by the transformation T . In the
following we present the key ingredients of the smoothness analysis of such
patches and the main results.

Let us denote the basic limit function of the subdivision on a regular net
by φ. The ring of patches Qk may be expressed in terms of the control points
P k influencing this ring. Let P k = {P k

1 , P
k
2 , . . . , P

k
N} ⊂ R

3 be the control
points generating Qk, and let the transformation T be the square matrix
such that P k+1 = TP k.

Each patch in the ring Qk
` ∈ Qk is a parametric patch, triangular or quad-

rilateral, which is a linear combination of translations of φ(2k·) multiplying
control points {P k

r }r∈I` ⊂ P k. In other words,

Qk =
⋃
Qk
` , (6.1)

where

Qk
` =

{
qk` (u, v) ≡

∑
r∈I`

P k
r φ(2ku− ir, 2

kv − jr) | (u, v) ∈ Ω

}
(6.2)

for appropriate {ir, jr}r∈I` . Ω = {(u, v) | 0 ≤ u, v ≤ 1} for quad-meshes and
Ω = {(u, v) | 0 ≤ u, v ∧ u+ v ≤ 1} for triangular meshes.

Since the regularity of φ is assumed to be already known, it is clear that
the behaviour at the extraordinary vertex is completely characterized by the
matrix T . It is important to note that the conditions for regularity at the
extraordinary vertex do not require the knowledge of the explicit formula
of φ. Using a proper ordering of the points P k (Doo and Sabin 1978), the
matrix T is a block-circulant matrix. The eigenvalue analysis of this matrix

Figure 6.1. Three rings of patches
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plays a crucial role in the smoothness analysis, as described in Doo and
Sabin (1978), Reif (1995), Zorin (2000) and Prautzsch (1998). The results
include necessary and sufficient conditions for geometric continuity, that
is, existence of continuous limit normals at the extraordinary vertex and
necessary and sufficient conditions for Cm-continuity at an extraordinary
vertex – under some assumptions.

Let the eigenvalues λ0, . . . , λN−1 of T be ordered by modulus, that is,

|λ0| ≥ |λ1| ≥ · · · ≥ |λN−1|, (6.3)

and let V0, V1, . . . , VN−1 ∈ R
N denote the corresponding generalized real

eigenvectors, assuming they exist.
As first shown in Doo and Sabin (1978), a necessary condition for the

continuity of the normal at an extraordinary point is

λ0 = 1 > |λ1| = |λ2| > |λ3|, V0 = {1, 1, . . . , 1}. (6.4)

Assuming (6.4) holds, let us consider the particular initial data vector

P 0 = {P 0
1 , P

0
2 , . . . , P

0
N}

with
P 0
j = (V1,j , V2,j , 0)t, (6.5)

and let us examine the corresponding rings of patches defined by (6.2).

Injectivity and regularity assumption. We assume that each mapping
q0` in (6.2) is regular and injective, and that⋂

`

int{Q0
`} = ∅. (6.6)

In Reif (1995), the collection of mappings {q0` } is termed the ‘characteristic
map’ and the above assumption is thus referred to as the regularity and
injectivity of the characteristic map. The importance of this map is that it
defines the natural parametric domain for analysing the smoothness of the
surface at the extraordinary vertex. For a discussion and analysis of the
characteristic map see Peters and Reif (1998). Under the above assumption
sufficient conditions for C1 regularity are presented in the following result
from Reif (1995).

Theorem 6.1. Let (6.3) hold with λ1 = λ2 being a real eigenvalue of T
with geometric multiplicity 2, and let the characteristic map be regular and
injective. Then the limit surface of the subdivision is a regular C1-manifold
in a neighbourhood of the extraordinary vertex for almost any initial data.

The necessary and sufficient conditions for Cm-continuity at an extraordin-
ary vertex were derived independently by Prautzsch (1998) and Zorin (2000).
These results are equivalent to the polynomial reproduction result for uni-
form stationary Cm-schemes on regular meshes.
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Theorem 6.2. (Cm-conditions) Let the conditions of Theorem 6.1 hold.
Then the limit surface of the subdivision is a regular Cm manifold in a
neighbourhood of the extraordinary vertex for almost any initial data, if
and only if the following condition holds.

For any eigenvalue λ of T satisfying |λ| > λm1 :

(a) |λ| = λi1 for some integer 0 ≤ i ≤ m;

(b) for the initial data vector P 0 = {P 0
1 , P

0
2 , . . . , P

0
N} with

P 0
j = (V1,j , V2,j , Vj)

t ∈ R
3, (6.7)

and V an eigenvector corresponding to λ, all the patches Q0
` lie on

a polynomial surface z = p(x, y) in R
3, where p is a homogeneous

polynomial of total degree i.

Theorem 6.2 does not give explicit constructive conditions that can help
us to build a Cm-scheme. The translation of the conditions in Theorem 6.2
into algebraic conditions on the mask coefficients is rather complicated, and
even in the C2 case is not fully resolved. The partial results in this direc-
tion include the construction of schemes with bounded curvatures, in Loop
(2001), and the special patch construction by Prautzsch and Umlauf (1998).
For some applications it is enough to have curvature integrability of the
subdivision surface. Reif and Schröder (2000) show that the Catmull–Clark
and Loop schemes (among many others) have square integrable principal
curvatures.

7. Limit values and approximation order

In this section we discuss two practical issues in the implementation of sub-
division algorithms in geometric modelling. One issue is the computation
of limit values and limit derivatives of the subdivision process at the dy-
adic points of any refinement level. The other important issue, though not
yet widely appreciated, is how to actually attain the optimal approxima-
tion order for a given scheme: in other words, how to choose the initial
control points so that the limit curve/surface will approximate a desired
curve/surface with the highest possible approximation power.

7.1. Limit values and derivative values

We consider here only the stationary case, namely when ak = a, k ∈ Z+,
and assume that the basic limit function φ ≡ φa is Cm. The support of φ
is contained in the convex hull of the support of the mask, σ(a), by (2.13).
Furthermore, by (2.10) we can express the limit function of Sa as

f ≡ S∞a f0 =
∑
α∈Zs

f0
αφ(· − α). (7.1)
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Thus, the limit values at the integer points β ∈ Z
s are given by

f(β) =
∑
α∈Zs

f0
αφ(β − α). (7.2)

By (7.2), knowledge of the values of φ at integer points gives one the possib-
ility of computing the limit values of the subdivision process on the integer
grid Z

s, using only the initial control points f0. Similarly, the limit values
on the dyadic grid 2−kZs are defined by the control points fk at level k. In
the same way we note that the values of a derivative of f at the integers are
linear combinations of the values of the same derivative of φ at the integers.
The vector of values of φ, or of one of its derivatives, at the integer points
may each be computed as the eigenvector of a finite matrix.

To see this we recall that φ satisfies the refinement equation (2.15), and
thus

∂λφ = 2|λ|
∑
α

aα∂λφ(2 · −α), (7.3)

where λ ∈ Z
s
+, |λ| =

∑s
i=1 λi ≤ m. At integer points β ∈ Z

s we have the
linear relations

∂λφ(β) = 2|λ|
∑
α

aα∂λφ(2β − α) = 2|λ|
∑
γ

a2β−γ∂λφ(γ). (7.4)

Now, since φ is of compact support, there is only a finite number Nφ of
grid points where φ is nonzero. Let Ω ≡ Z

s
⋂
σ(φ); then Nφ = #Ω. The

system of equations (7.4), with β ∈ Ω, is a square Nφ × Nφ eigensystem
for the values {∂λφ(β)}β∈Ω, and it has a unique solution if we add the side
conditions∑
−β∈Ω

βλ∂λφ(−β) = λ!,
∑
−β∈Ω

βµ∂λφ(−β) = 0, µ 6= λ, |µ| = |λ|. (7.5)

These side conditions, in view of (7.2), guarantee that the |λ| order deriv-
atives of S∞a xµ|Zs are correctly obtained, for |µ| = |λ|. For example, in the
univariate case, the vector of values {φ(β)} is an eigenvector of the matrix U
with elements Ui,j = a2i−j , corresponding to the eigenvalue 1, and with the
normalization

∑
φ(β) = 1. The vector of values {φ′(β)} is an eigenvector

of U with eigenvalue 2. Implementing this, the rule for computing the limit
derivatives of a curve defined by the 4-point scheme (3.18) turns out to be
(Dyn et al. 1987):

f ′(2−ki) =
2k

1− 4w

[
1

2
(fki+1 − fki−1)− w(fki+2 − fki−2)

]
. (7.6)

The method for computing limit values is actually applied to non-inter-
polatory subdivision surfaces, so that at all refinement levels the rendered
points are on the limit surface. The shading of the surface at each level
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is done with normals which are the actual normals of the limit surface. A
detailed example of computing limit normals at regular points and at ex-
traordinary points for the case of the butterfly scheme is given in Shenkman
(1996) and Dyn, Levin and Shenkman (1999b).

7.2. Attaining the optimal approximation order

The term approximation order of a subdivision scheme Sa refers to the rate
by which the limit functions generated by Sa, from initial data sampled from
a sufficiently smooth function f , get closer to f : in other words, the largest
exponent r such that

‖f − S∞a f |hZs‖∞ ≤ chr.

Yet this order may be improved (for non-interpolatory schemes) by replacing
the initial data f |hZs by Qf |hZs with Q a Toeplitz operator of finite support.
Our aim is to find the operator Q that yields the largest approximation rate.

Let us start with an example.

Example 9. Let us consider the case of univariate cubic B-splines with
integer knots. It is known that the integer shifts of this cubic B-spline, B3,
span π3, and this implies that the space generated by the integer shifts of the
cubic B-spline has potential approximation order 4. If f ∈ C4(R), then the
use of function values as control points gives a second-order approximation,
by the corresponding subdivision scheme∣∣∣∣f(x)−

∑
j∈Z

f(jh)B3

(
x

h
− j

)∣∣∣∣ ≤ c2h
2. (7.7)

However, using as control points the values

f̃j = (Qhf)(jh) ≡ −1

6
f((j − 1)h) +

4

3
f(jh)− 1

6
f((j + 1)h), (7.8)

we get the optimal fourth-order approximation:∣∣∣∣f(x)−
∑
j∈Z

f̃jB3

(
x

h
− j

)∣∣∣∣ ≤ c4h
4. (7.9)

This special choice of Qh is made so that the approximation scheme in (7.9)
reproduces all polynomials in π3(R), namely,

∑
(Qhp)(jh)B3(

x
h − j) = p(x)

for any p ∈ π3(R). Therefore, to approximate a curve c(t) by a cubic spline
subdivision, given a sequence of points {Pj} ordered on it, then it is better
to start the subdivision process with the control points

P̃j = −1

6
Pj−1 +

4

3
Pj − 1

6
Pj+1. (7.10)
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The above idea is extended for general subdivision schemes in A. Levin
(1999c).

For a given uniform stationary scheme Sa we identify the maximal m such
that πm(Rs) is invariant under Sa in the sense that S∞a p|Zs ∈ πm(Rs) for any
p ∈ πm(Rs). Then, the potential approximation order is m+ 1. To achieve
this approximation power we look for a Toeplitz operator Q, of minimal
support Σ, of the form

(Qf0)α =
∑
σ∈Σ

qσf
0
α−σ, (7.11)

such that

S∞a Q(p|Zs) = p, ∀p ∈ πm(Rs). (7.12)

In other words, Q is the inverse of S∞a on πm(Rs). If Q exists then it com-
mutes with S∞a on πm. Therefore, we look for Q such that QS∞a p|Zs =
p, ∀p ∈ πm(Rs). Using the results of Section 7.1 we can define the poly-
nomials

rγ ≡ S∞a {xγ |Zs} =
∑
α∈Zs

φ(α)(· − α)γ , γ ∈ Z
s, |γ| ≤ m,

which constitute a basis of πm. Now we look for an operator Q such that
on πm it is the inverse of S∞a , namely,

Qrγ = xγ , γ ∈ Z
s, |γ| ≤ m. (7.13)

This can be formulated as a system of linear equations in the finite-dimen-
sional space πm, ∑

σ∈Σ

qσrγ(x− σ) = xγ , |γ| ≤ m. (7.14)

In the above example of the cubic B-splines, the operator Q may also be
chosen to be Qf = f − 1

6f
′′, or to be the difference operator given in (7.8).

The two options act in the same way on π3, yet, for the purpose of applying
Q on the given data points we need the discrete form (7.8). For further
examples and applications see A. Levin (1999c).
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A. Cohen and Conze (1992), ‘Regularité des bases d’ondelettes et mesures er-
godiques’, Rev. Math. Iberoamer 8, 351–366.

A. Cohen and N. Dyn (1996), ‘Nonstationary subdivision schemes and multiresol-
ution analysis’, SIAM J. Math. Anal. 26, 1745–1769.

A. Cohen, I. Daubechies and G. Plonka (1997), ‘Regularity of refinable function
vectors’, J. Fourier Anal. Appl. 3, 295–324.

A. Cohen, N. Dyn and D. Levin (1996), Stability and inter-dependence of mat-
rix subdivision schemes, in Advanced Topics in Multivariate Approximation
(F. Fontanella, K. Jetter and P. J. Laurent, eds), World Scientific, pp. 33–45.

A. Cohen, N. Dyn and B. Matei (2001), Quasilinear subdivision schemes with
applications to ENO interpolation. Submitted.

E. Cohen, T. Lyche and R. F. Riesenfeld (1980), ‘Discrete B-splines and subdivi-
sion techniques in computer-aided geometric design and computer graphics’,
Computer Graphics and Image Processing 14, 87–111.

W. Dahmen and C. A. Micchelli (1984), ‘Subdivision algorithms for the generation
of box spline surfaces’, Computer Aided Geometric Design 1, 115–129.

W. Dahmen and C. A. Micchelli (1997), ‘Biorthogonal wavelet expansion’, Constr.
Approx. 13, 294–328.

I. Daubechies (1992), Ten Lectures on Wavelets, SIAM, Philadelphia.

I. Daubechies and J. C. Lagarias (1992a), ‘Two-scale difference equations, I: Exist-
ence and global regularity of solutions’, SIAM J. Math. Anal. 22, 1388–1410.

I. Daubechies and J. C. Lagarias (1992b), ‘Two-scale difference equations, II: Local
regularity, infinite products of matrices and fractals’, SIAM J. Math. Anal.
23, 1031–1079.

I. Daubechies, I. Guskov and W. Sweldens (1999), ‘Regularity of irregular subdivi-
sion’, Constr. Approx. 15, 381–426.

S. Dekel and N. Dyn (2001), ‘Polyscale subdivision schemes and refinability’, Appl.
Comput. Harm. Anal. To appear.

G. Derfel, N. Dyn and D. Levin (1995), ‘Generalized refinement equations and
subdivision processes’, J. Approx. Theory 80, 272–297.

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


140 N. Dyn and D. Levin

T. DeRose, M. Kass and T. Truong (1998), Subdivision surfaces in character anima-
tion, in Proc. SIGGRAPH 98, Annual Conference Series, ACM–SIGGRAPH,
pp. 85–94.

G. Deslauriers and S. Dubuc (1989), ‘Symmetric iterative interpolation’, Constr.
Approx. 5, 49–68.

D. Donoho and V. Stodden (2001), Multiplicative multiresolution analysis for lie-
group valued data indexed by Euclidean parameter. In preparation.

D. Donoho, N. Dyn, D. Levin and T. Yu (2000), ‘Smooth multiwavelet duals of Alp-
ert bases by moment-interpolating refinement’, Appl. Comput. Harm. Anal.
9, 166–203.

D. Doo and M. Sabin (1978), ‘Behaviour of recursive division surface near ex-
traordinary points’, Computer Aided Design 10, 356–360.

S. Dubuc (1986), ‘Interpolation through an iterative scheme’, J. Math. Anal. Appl.
114, 185–204.

N. Dyn (1992), Subdivision schemes in computer aided geometric design, in Ad-
vances in Numerical Analysis II: Subdivision Algorithms and Radial Functions
(W. A. Light, ed.), Oxford University Press, pp. 36–104.

N. Dyn and E. Farkhi (2000), ‘Spline subdivision schemes for convex compact sets’,
J. Comput. Appl. Math. 119, 133–144.

N. Dyn and E. Farkhi (2001a), Convexification rates in Minkowski averaging pro-
cesses. Submitted.

N. Dyn and E. Farkhi (2001b), Spline subdivision schemes for compact sets with
metric averages, in Trends in Approximation Theory (T. L. K. Kopotun and
M. Neamtu, eds), Vanderbilt University Press, pp. 93–102.

N. Dyn and D. Levin (1990), Interpolatory subdivision schemes for the genera-
tion of curves and surfaces, in Multivariate Approximation and Interpolation
(W. Haussmann and K. Jetter, eds), Birkhäuser, Basel, pp. 91–106.
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Recherches Mathématiques, pp. 105–113.

N. Dyn and D. Levin (2002), Matrix subdivision: Analysis by factorization, in Ap-
proximation Theory: A Volume Dedicated to Blagovest Sendov (B. Bojanov,
ed.), Darba, Sofia, pp 187–211.

N. Dyn and A. Ron (1995), ‘Multiresolution analysis by infinitely differentiable
compactly supported functions’, Appl. Comput. Harm. Anal. 2, 15–20.

N. Dyn, J. A. Gregory and D. Levin (1987), ‘A four-point interpolatory subdivision
scheme for curve design’, Computer Aided Geometric Design 4, 257–268.

N. Dyn, J. A. Gregory and D. Levin (1990a), ‘A butterfly subdivision scheme for
surface interpolation with tension control’, ACM Trans. Graphics 9, 160–169.

N. Dyn, J. A. Gregory and D. Levin (1991), ‘Analysis of uniform binary subdivision
schemes for curve design’, Constr. Approx. 7, 127–147.

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


Subdivision schemes in geometric modelling 141

N. Dyn, J. A. Gregory and D. Levin (1995), Piecewise uniform subdivision schemes,
in Mathematical Methods for Curves and Surfaces (M. Dahlen, T. Lyche and
L. L. Schumaker, eds), Vanderbilt University Press, Nashville, pp. 111–120.

N. Dyn, S. Hed and D. Levin (1993), Subdivision schemes for surface interpola-
tion, in Workshop on Computational Geometry (A. Conte et al., eds), World
Scientific, pp. 97–118.

N. Dyn, F. Kuijt, D. Levin and R. van Damme (1999a), ‘Convexity preservation of
the four-point interpolatory subdivision scheme’, Computer Aided Geometric
Design 16, 789–792.

N. Dyn, D. Levin and D. Liu (1992), ‘Interpolatory convexity preserving subdivision
schemes for curves and surfaces’, Computer Aided Design 24, 211–216.

N. Dyn, D. Levin and A. Luzzatto (2001a), Non-stationary interpolatory subdivi-
sion schemes reproducing spaces of exponential polynomials. Submitted.

N. Dyn, D. Levin and C. A. Micchelli (1990b), ‘Using parameters to increase
smoothness of curves and surfaces generated by subdivision’, Computer Aided
Geometric Design 7, 129–140.

N. Dyn, D. Levin and P. Shenkman (1999b), ‘Normals of the butterfly scheme
surfaces and their applications’, J. Comput. Appl. Math. 102, 157–180.

N. Dyn, D. Levin and J. Simoens (2001b), Face value subdivision schemes on tri-
angulations by repeated averaging. Preprint.

J. Gregory (1991), An introduction to bivariate uniform subdivision, in Numerical
Analysis 1991 (D. Griffiths and G. Watson, eds), Pitman Research Notes in
Mathematics, Longman Scientific and Technical, pp. 103–117.

J. A. Gregory and R. Qu (1996), ‘Non-uniform corner cutting’, Computer Aided
Geometric Design 13, 763–772.

I. Guskov (1998), Multivariate subdivision schemes and divided differences. Tech-
nical report, Princeton University.

M. Halstead, M. Kass and T. DeRose (1993), Efficient, fair interpolation using
Catmull–Clark surfaces, in Proc. SIGGRAPH 93, Annual Conference Series,
ACM–SIGGRAPH, pp. 35–44.

B. Han (1998), ‘Symmetric orthonormal scaling functions and wavelets with dilation
factor 4’, Adv. Comput. Math. 8, 221–247.

B. Han (2001), Computing the smoothness exponent of a symmetric multivariate
refinable function. Preprint.

B. Han and R. Q. Jia (1998), ‘Multivariate refinement equations and convergence
of subdivision schemes’, SIAM J. Math. Anal. 29, 1177–1199.

S. Hed (1990), Analysis of subdivision schemes for surfaces. Master’s thesis, Tel
Aviv University.

H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Sch-
weitzer and W. Stuetzle (1994), ‘Piecewise smooth surface reconstruction’,
Computer Graphics 28, 295–302.

R. Q. Jia (1995), ‘Subdivision schemes in lp spaces’, Adv. Comput. Math. 3, 309–
341.

R. Q. Jia (1996), The subdivision and transition operators associated with a
refinement equation, in Advanced Topics in Multivariate Approximation
(K. J. F. Fontanella and L. Schumaker, eds), World Scientific, pp. 1–13.

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


142 N. Dyn and D. Levin

R. Q. Jia (1999), ‘Characterization of smoothness of multivariate refinable functions
in Sobolev spaces’, Trans. Amer. Math. Soc. 351, 4089–4112.

R. Q. Jia and S. Zhang (1999), ‘Spectral properties of the transition operator
associated to a multivariate refinement equation’, Lin. Alg. Appl. 292, 155–
178.

Y. Kasas (1990), A subdivision-based algorithm for surface/surface intersection.
Master’s thesis, Tel Aviv University.

L. Kobbelt (1996a), ‘Interpolatory subdivision on open quadrilateral nets with
arbitrary topology’, Computer Graphics Forum 15, 409–420.

L. Kobbelt (1996b), ‘A variational approach to subdivision’, Computer Aided Geo-
metric Design 13, 743–761.

L. Kobbelt, T. Hesse, H. Prautzsch and K. Schweizerhof (1996), ‘Interpolatory
subdivision on open quadrilateral nets with arbitrary topology’, Computer
Graphics Forum 15, 409–420. Eurographics ’96 issue.

F. Kuijt and R. van Damme (1998), ‘Convexity preserving interpolatory subdivision
schemes’, Constr. Approx. 14, 609–630.

F. Kuijt and R. van Damme (1999), ‘Monotonicity preserving interpolatory subdi-
vision schemes’, J. Comput. Appl. Math. 101, 203–229.

F. Kuijt and R. van Damme (2002), ‘Shape preserving interpolatory subdivision
schemes for nonuniform data’, J. Approx. Theory. To appear.

O. Labkovsky (1996), The extended butterfly interpolatory subdivision scheme for
the generation of C2 surfaces. Master’s thesis, Tel Aviv University.

A. Levin (1999a), Analysis of quasi-uniform subdivision schemes. In preparation.
A. Levin (1999b), ‘Combined subdivision schemes for the design of surfaces satis-

fying boundary conditions’, Computer Aided Geometric Design 16, 345–354.
A. Levin (1999c), Combined subdivision schemes with applications to surface

design. PhD thesis, Tel Aviv University.
A. Levin (1999d), Interpolating nets of curves by smooth subdivision surfaces, in

Proc. SIGGRAPH 99, Annual Conference Series, ACM–SIGGRAPH, pp. 57–
64.

D. Levin (1999e), ‘Using Laurent polynomial representation for the analysis of
non-uniform binary subdivision schemes’, Adv. Comput. Math. 11, 41–54.

C. Loop (1987), Smooth spline surfaces based on triangles. Master’s thesis, Univer-
sity of Utah, Department of Mathematics.

C. Loop (2001), Triangle mesh subdivision with bounded curvature and the convex
hull property. Technical Report MSR-TR-2001-24, Microsoft Research.

S. Mallat (1989), ‘Theory for multiresolution signal decomposition: The wavelet
representation’, IEEE Trans. Pattern Anal. Mach. Intel. 11, 674–693.

J. L. Merrien (1992), ‘A family of Hermite interpolants by bisection algorithms’,
Numer. Alg. 2, 187–200.

C. A. Micchelli and H. Prautzsch (1989), ‘Uniform refinement of curves’, Lin. Alg.
Appl. 114/115, 841–870.

C. A. Micchelli and T. Sauer (1998), ‘On vector subdivision’, Math. Z. 229, 621–
674.

G. Morin, J. Warren and H. Weimer (2001), ‘A subdivision scheme for surfaces of
revolution’, Computer Aided Geometric Design 18, 483–502.

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


Subdivision schemes in geometric modelling 143

A. H. Nasri (1997a), ‘Curve interpolation in recursively generated B-spline surfaces
over arbitrary topology’, Computer Aided Geometric Design 14, 13–30.

A. H. Nasri (1997b), Interpolation of open curves by recursive subdivision surface,
in The Mathematics of Surfaces VII (T. Goodman and R. Martin, eds), In-
formation Geometers, pp. 173–188.

J. Peters and U. Reif (1997), ‘The simplest subdivision scheme for smoothing poly-
hedra’, ACM Trans. Graphics 16, 420–431.

J. Peters and U. Reif (1998), ‘Analysis of algorithms generating B-spline subdivi-
sion’, SIAM J. Numer. Anal. 35, 728–748.

G. Plonka (1997), Approximation order provided by refinable function vectors,
Constr. Approx. 13 221–244.

H. Prautzsch (1998), ‘Smoothness of subdivision surfaces at extraordinary points’,
Adv. Comput. Math. 9, 377–389.

H. Prautzsch and G. Umlauf (1998), Improved triangular subdivision schemes, in
Computer Graphics International 1998 (F. E. Wolter and N. M. Patrikalakis,
eds), IEEE Computer Society, pp. 626–632.

G. de Rahm (1956), ‘Sur une courbe plane’, J. Math. Pures Appl. 35, 25–42.
U. Reif (1995), ‘A unified approach to subdivision algorithms near extraordinary

points’, Computer Aided Geometric Design 12, 153–174.
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D. Zorin and P. Schröder (2000), Subdivision for Modeling and Animation, Course

Notes, ACM–SIGGRAPH.

https://doi.org/10.1017/S0962492902000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492902000028


144 N. Dyn and D. Levin

D. Zorin, H. Biermann and A. Levin (2000), Piecewise smooth subdivision surfaces
with normal control, in Proc. SIGGRAPH 2000, Annual Conference Series,
pp. 113–120.
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