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Generalized two-phase fluid flows in a Hele-Shaw cell are considered. It is assumed that the

flow is driven by the fluid pressure gradient and an external potential field, for example,

an electric field. Both the pressure field and the external field may have singularities in the

flow domain. Therefore, combined action of these two fields brings into existence some new

features, such as non-trivial equilibrium shapes of boundaries between the two fluids, which

can be studied analytically. Some examples are presented. It is argued, that the approach and

results may find some applications in the theory of fluids flow through porous media and

microfluidic devices controlled by electric field.

1 Introduction

Analysis of displacement in a Hele-Shaw cell and porous media is a source of a multitude

of mathematical problems which provide some insight into general features of nonlinear

boundary dynamics [4, 8, 12]. Here, we consider a slightly modified version of the classical

problem of flow in a potential external field which displays some new features related to

existence of singularities of the external field. The study was prompted by the interest in

coupled flow phenomena in saturated porous media in the presence of electric current

(“electrokinetic phenomena”). This specific case will be briefly discussed later. However,

eventually it became clear that the topic deserves study per se. Throughout the text we will

use expressions ‘Hele-Shaw flow’ and ‘flow through a porous medium’ interchangeably

due to the well known analogy between the Darcy law for a porous medium and the flow

rule in a thin gap between two parallel walls.

2 The problem statement

We assume that fluid occupies a finite domain D(t) in the plane (x, y) of a Hele-Shaw cell

of gap thickness b. The flow velocity w is determined by the flow rule

w = −k

η
∇p+

k

η
g. (2.1)

Here, p is the fluid pressure, η is the fluid viscosity, k = b2/12 is the gap “permeability”,

g = {gx, gy} is the body force due to an external field. We assume the body force to be
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potential,

g = −∇Ψ (x, y). (2.2)

Two familiar examples are the gravity force and the centrifugal force, corresponding to

Ψ = ρgh, and Ψ = −1

2
ρω2r2, (2.3)

respectively. Here, ρ is the fluid density, h is the height above a datum, g is the acceleration

due to gravity, r is the distance from the rotation axis normal to the cell plane; ω is

the rotation rate. These cases allow thorough study; they are considered in particular in

Entov et al. [4, 3]. Here, we are going to study the case when the external potential Ψ

has singularities within and/or outside the domain D(t).

The flow field satisfies the continuity equation

∇ · w =

N∑
j=1

qjδ(x− xj, y − yj). (2.4)

Here, qj are strengths (flow rates) of the point sources (sinks) within the flow domain.

We assume that at the boundary Γ = ∂D(t) the pressure vanishes,

p(x, y) = 0, (x, y) ∈ Γ . (2.5)

The boundary dynamics is governed by the relation

vn = wn = w · n, (2.6)

n being the outward normal to Γ , and vn the velocity of propagation of the boundary in

the normal direction.

We assume now that the external potential field satisfies the equation

∆G =

M∑
m=1

Qmδ(x− x′
m, y − y′

m), G = −k

η
Ψ, (2.7)

in the entire plane (x, y) with boundary condition

|∇G| → 0, (x2 + y2) → ∞. (2.8)

Therefore,

G = ReF(z), F =

M∑
m=1

Qm

2π
ln(z − z′

m),

z = x+ iy; z′
m = x′

m + iy′
m. (2.9)

Let us introduce the velocity potential

Φ(x, y) = −k

η
(p+Ψ ). (2.10)
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It satisfies the following problem:

∆Φ =

N∑
j=1

qjδ(x− xj, y − yj), (xj, yj) ∈ D(t); (2.11)

Φ(x, y) = −k

η
Ψ (x, y) = G(x, y), (x, y) ∈ Γ (t); (2.12)

vn =
∂Φ

∂n
, (x, y) ∈ Γ (t). (2.13)

The last equation serves to describe the moving boundary dynamics.

The only difference with the usual Hele-Shaw problem is that the velocity potential does

not vanish at the boundary, but should be equal to a specified function of the boundary

point.

Now let u(x, y) be a harmonic function in a domain D∗ such, that D(t) remains within D∗.

Then as a straightforward generalization of the Richardson Theorem [10, 11, 4] we find:

d

dt

∫
D(t)

udA =

N∑
j=1

qju(zj) +

∫
D(t)

∇G · ∇udA. (2.14)

The following chain of equalities proves statement (2.14):

d

dt

∫
D(t)

udA =

∫
∂D(t)

u
∂Φ

∂n
dl

=

∫
∂D(t)

Φ
∂u

∂n
dl +

∫
D(t)

(u∆Φ− Φ∆u) dA

=

∫
∂D(t)

G
∂u

∂n
dl +

N∑
j=1

u(zj)qj =

∫
D(t)

∇ · (G∇u)dA+

N∑
j=1

u(zj)qj

=

N∑
j=1

qju(zj) +

∫
D(t)

∇G · ∇udA.

The left-hand side of (2.14) is a time derivative of a harmonic moment of the domain D(t).

This equation leads to explicit analytic techniques of predicting domain evolution

provided that the operator ∇G · ∇ maps harmonic functions to harmonic ones (and the

domain initially belongs to a certain class of domains). It can be shown that this is

possible only if

G = ax+ by + c(x2 + y2) + d, (2.15)

with constant a, b, c, d. Indeed, assume that the function G is twice continuously differen-

tiable in a neighborhood of zero, and the operator ∇G∇ maps harmonic functions on this

neighborhood to harmonic ones. This operator can be written as 2(∂G∂ + ∂G∂). Thus,

applying this operator to the function z̄2, we get that the function ∂G · z̄ is harmonic.

Hence, the function f(z) = ∂2G · z̄ is holomorphic. But then the function f(z)/z̄ cannot be

continuous near zero unless f = 0. Thus, ∂2G = 0, which implies that G = g(z̄)z + h(z̄),

where g, h are holomorphic. Similarly, ∂
2
G = 0, which implies g′′ = h′′ = 0, so g and h are

linear functions, as desired. Essentially, this is a combination of uniform (“gravity”) and

https://doi.org/10.1017/S0956792507006869 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006869


106 V. M. Entov and P. Etingof

axisymmetrical (“centrifugal force”) fields treated previously [3, 4]. Of course, for c� 0,

it can be reduced to pure rotation about a shifted axis.

Here, we will be interested primarily in equilibrium shapes of the flow domain under

combined action of the flow and the external potential. In this case, one can derive

effective solutions for a much wider class of the external potentials.

3 Steady-state shapes

For the steady state (equilibrium) domain D we arrive at the following moment problem:

∀u : ∆u = 0 in D, (3.1)∫
D

∇G · ∇udA = −
N∑
j=1

qju(zj). (3.2)

(Of course, equilibrium domain can exist only if the net fluid flux vanishes,
∑N

j=1 qj = 0.)

Now we assume that the external field has the form

G(z) =

M∑
m=1

Qm

2π
ln |z − z′

m|. (3.3)

In other words, it can be considered as an electric field generated by a finite array of point

charges in a plane. For brevity’s sake, we will refer to it as an “electric potential” field.

Note that z′
m can be both inside and outside D. Let us now introduce the corresponding

complex potential F(z) and ‘complex current’ ω(z):

F(z) = G(z) + iΞ(z) =

M∑
m=1

Qm

2π
ln(z − z′

m); (3.4)

ω(z) = F ′(z) =
∂G

∂x
− i

∂G

∂y
=

M∑
m=1

Qm

2π(z − z′
m)
. (3.5)

(The complex potential F(z) is, generally speaking, multivalued, unless all the ‘electric

sources’ are outside D.) Then the moment equation (3.2) can be written as

JD =

∫
D

ω(z)U ′(z)dA = −
N∑
i=1

qiU(zi), (3.6)

for an analytic function U on a neighborhood of D, since we have ∇U = (U ′, iU ′).

The integral JD in the left-hand side of (3.6) converges even if some z′
m belong to D as

ω(z) has simple poles at these points. We write the integral as

JD =

∫
D

ω(z)U ′(z)dxdy =
1

2i

∮
∂D

ω(z)U(z)dz +
∑

m: z′
m∈D

Qm

2
U(z′

m). (3.7)

The last transformation follows from Green’s Theorem; the sum in the right-hand side

accounts for the contributions of poles of ω in D.

Let us now choose

U(z) =
1

π(w − z)
,
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w being a point outside D. Then (3.6) becomes

1

2πi

∮
∂D

ω(z)dz

w − z
= −

N∑
i=1

qi

π(w − zi)
−

∑
m: z′

m∈D

Qm

2π

1

w − z′
m

. (3.8)

We denote the primitive of the function in the r.h.s. of Eq. (3.8) by h(w):

h(w) = −
N∑
i=1

qi

π
ln(w − zi) −

∑
m: z′

m∈D

Qm

2π
ln(w − z′

m). (3.9)

The following Theorem due to Richardson [10] plays a crucial role in solving the problem

of finding the domain D:

Theorem 3.1 Let f : K → D be a conformal mapping that maps the unit disk K of the

ζ-plane onto D. Then the function

d

dζ

(
F

(
f

(
1

ζ

))
− h(f(ζ))

)
, (3.10)

initially defined in a vicinity of the unit circle, extends analytically to a holomorphic function

in K .

Proof On the unit circle ζ = eiϕ, ζ = 1/ζ and thus it suffices to show that the differential

d(F(z) − h(z)) on ∂D extends to a holomorphic differential in D.

So according to the Cauchy Theorem it is necessary to check that∮
∂D

d(F(z) − h(z))

t− z
= 0, for t � D. (3.11)

However, this follows directly from Eqs. (3.8), (3.9) and the fact that dh is holomorphic

outside D. �

This implies the following important corollary:

Corollary 1 The function d
dζ
F(f(ζ)) is rational.

Proof For any function f(z) denote

f∗(z) = f(z).

This implies immediately that

F(f(z)) = F∗(f∗(z)).

Then according to the Theorem (3.10) the differential

d(F∗(f∗(1/ζ)) − h(f(ζ)))

is analytic in the unit disc.
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Therefore, the differential

D(ζ) := d

(
F∗

(
f∗

(
1

ζ

))
has the same singularities as dh(f(ζ)) in the unit disk K , i.e. simple poles at the points

ζ = f−1(z′
m), z′

m ∈ D and ζ = f−1(zj), j = 1, . . . , N.

Therefore dF(f(ζ)) has poles at the points

1/f−1(zj), 1/f−1(z′
m), z′

m ∈ D

outside the unit disk. On the other hand, dF(f(ζ)) has poles at the points

ζ = f−1(z′
m), z′

m ∈ D

within the unit disk.

Therefore, D(ζ) has a finite number of poles, and hence it is rational. Then determination

of the precise form of f(ζ) can be reduced to a set of nonlinear algebraic equations. �

Note that this analysis can be extended in a standard way to the limiting case of

coalescence of hydrodynamic sources and sinks corresponding to multipoles. In such a

case, the terms
qj

π(z − zj)

have to be replaced with terms

µj

π(z − zj)n
, n > 1, etc.

4 Examples of equilibrium domains: harmonic potential

In this section we present several examples of effective construction of the equilibrium

domains starting from specified singularities of the hydrodynamic and ‘electric’ fields. We

first start from a comparatively simple case when all singularities of the external field are

located outside the equilibrium domain, and the field is univalent within the equilibrium

domain. In this case, the problem can be reduced to that of equilibrium in a uniform

(’gravity’) field. The second part of the section deals with harmonic external potential

having singularities within the flow domain.

4.1 Univalent F(z)

Assume that F(z) is univalent in D. Then we can solve the problem in a more straightfor-

ward way. Let us consider an auxiliary plane of the complex potential z̃ = F(z) (further

referred to as potential plane, or F-plane), and let a domain D̃ = F(D) corresponds to D

in this plane. Then (3.6) becomes∫
D̃

U ′(z̃)dx̃dỹ = −
∑

qjU(Fj); z̃ = F(z); Fj = F(zj). (4.1)
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Indeed, Eq. (3.6) is transformed into Eq. (4.1) using

U ′(z) = U ′(z̃)
dz̃

dz
= U ′(z̃)ω(z); |ω(z)|2dxdy = dx̃dỹ.

However, this is exactly the form of the moment equation that corresponds to a uniform

external field with G(z̃) = x̃ (the Hele-Shaw flow in the presence of gravity) [4]. If we take

u(z) = zn, Equation (4.1) becomes

M̃n−1 ≡
∫
D̃

z̃n−1dx̃dỹ = −
∑

qjF
n
j /n, (4.2)

so that all the moments are specified for a given F(z).

Letting n = 1 we have

S̃ = −
∑

qjFj > 0. (4.3)

This is a necessary condition for the existence of a steady-state solution. In particular,

if the flow is generated by a dipole (a source-sink doublet of strength ±q = ±µ/(2ε) at

z = ±ε) then as ε → 0 the rhs of Eq. (4.3) tends to µF ′(0), and (4.2) becomes

M0 ≡ S̃ =

∫
D̃

dx̃dỹ = µ; Mn = 0, n = 1, 2, 3, . . . (4.4)

Obviously, in the F-plane the equilibrium domain is a circle of radius R0 =
√
µ/π.

Thus, there is a fixed value of the area of the equilibrium domain in the potential plane

for which such a domain exists. Obviously, the equilibrium in this case is due to a fine

balance between hydrodynamic and external forces, and is unstable.

The above elementary example is generic in the sense that for given set of hydrodynamic

and electric sources the area of the equilibrium domain, provided such a domain exists,

can assume only a discrete set of values, if the electric sources are outside the domain, so

that F(z) is analytic in D.

It is reasonable to ask about the fate of a domain that evolves under combined action of

the balanced hydrodynamic sources and the external field starting from a non-equilibrium

shape. While in general case the answer is beyond our capacities, some insight can be

derived from the simple case of “gravity”, i.e. uniform potential field,

F(z) = −gρz. (4.5)

(In this case, it is convenient to consider the x-axis to be directed upward.)

Then the moment dynamics equation (2.14) becomes

d

dt

∫
D(t)

udA =

N∑
i=1

qiu(zi) − C

∫
D(t)

∂u

∂x
dA; C =

ρgk

η
. (4.6)

If we now take

u(z) =
1

π(w − z)
, w ∈ Z \ D;

and introduce the Cauchy transform of the domain D:

χ(w) =

∫
D

dA

π(w − z)
,
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then Eq. (4.6) can be written as ([4], see also [1])

∂χ(z, t)

∂t
− C

∂χ(z, t)

∂x
=

N∑
i=1

qi

π(z − zi)
. (4.7)

This first order p.d.e. is readily solved explicitly. The solution has the form

χ(z, t) = χ0(z + Ct) +

∫ t

0

N∑
i=1

qidτ

π(z + C(t− τ) − zi)
. (4.8)

For the dipole, χ0(z) = A/z, and the integrand becomes µ/[π(z+C(t− τ))2], and therefore

χ(z, t) =
µ

Cz
+

AC − µ

C(z + Ct)
.

The first term is the Cauchy transform for a circle of area A0 = µ/C centered at the

origin; the second term corresponds to the circle of the area A−A0 centered at z = −Ct.
It means that at large t the solution is a combination of the stationary circle of area A0

at the origin corresponding to the limiting steady-state solution, and the circle of the area

A− A0 “sinking” in the gravity field.

As general solution (4.8) is valid for any function h, it is tempting to state, that an

arbitrary initial domain of sufficiently large area under the combined action of gravity

and a dipole at the origin (z = 0) eventually splits into two parts, namely, a stationary

disk of area A0 = µ/C centered at z = 0, and a “sinking” domain with the Cauchy

transform of the form

χ1 = χ0(z + tC) − µ/[C(z + tC)]. (4.9)

At t = 0 the shape of the “sinking” domain is specified by the Cauchy transform

h1(z, 0) = h0(z) − µ/(Cz).

This can be derived from the initial domain in the absence of gravity by placing a sink

at the origin and sucking the amount of fluid corresponding to the equilibrium domain

area A0. If we now allow this new domain to slide far enough in the gravity field, and

then inject back the same amount of fluid at the origin, we will get exactly the Cauchy

transform specified by (4.9). Now we see, that this conjectured form of evolution will

indeed occur, if the initial domain will evolve smoothly during the initial sucking of fluid.

It will be certainly so, if the initial domain itself can be produced from a simply connected

domain by injecting the amount of fluid A0 without violating the simply-connectedness

condition.

This argument allows one to develop a number of explicit solutions for domains

evolving in gravity field in the presence of a dipole at the origin.

Now we are going to consider some less trivial examples of equilibrium domains. It is

worth noting that such domains can exist only for special combinations of hydrodynamic

sources and the external potential. Indeed, if in the moment equation (3.6) we let U = F(z),

it results in ∫
D

|ω(z)|2dA = −
N∑
j=1

qjF(zj)
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and since the l.h.s. of this equation is positive, the (complex) electric potential should

satisfy the condition

−
N∑
j=1

qjF(zj) > 0. (4.10)

A priori the sum in the rhs can be any complex number, but for the equilibrium shape

to exist, the r.h.s. should be real and positive. Obviously, this inequality can hold only

for special forms of the potential. For example, in the case of a doublet source-sink

of equal strength both of them should lie on the same force line of the electric field

(ImF(z1) = ImF(z2)).

As we will see later, if some electric field sources (“charges”) are within the flow domain

D, there is a continuous spectrum of the equilibrium domain areas. For example, in the

simplest case of absence of hydrodynamic sources, qj = 0, there is no flow within the equi-

librium domain, the potential Φ = const in D, and boundary condition (2.12) implies

that G = const along ∂D, so the boundary should be a level curve of the electric potential.

For example, in the case of a single electric source the equilibrium domains are circles

of arbitrary radius centered at the source. Notice that, since the boundary of the equilib-

rium domain in the absence of hydrodynamic sources is just a level curve of the electric

potential the analytic continuation procedure reduces to the reflection principle of elec-

trostatics applied in the ζ-plane.

Example 1 Let us have two hydrodynamic sources of strengths q1 = −q2 = q at z1 = a > 0,

z2 = b respectively, and an electric “charge” Q at z = 0. Then

F(z) =
Q

2π
ln z, (4.11)

Inequality (4.10) implies that qQ ln(b/a) > 0, so that b > a for positive Q.

Using the reduction to the “gravity” case technique, we have in the potential plane

z̃ = (Q/2π) ln z the Cauchy transform for the transformed domain D̃ = F(D)1

hD̃ =
q

π
ln

(
z̃ − Q

2π
ln a

z̃ − Q
2π

ln b

)
. (4.12)

Then the conformal map f̃ of the unit disk K on D̃ is given by the expression [3]

f̃(ζ) =
q

π
ln

1 + αζ

1 − αζ
+
Q

2π
ln

√
ab, (4.13)

1 Let in equation (4.1)

U(z̃) =
1

π
ln(w − z̃);

then

hD̃(w) =

∫
D̃

dÃ

π(w − z̃)
=
q

π
[U(w − F(a)) −U(w − F(b))] =

q

π
ln

(
w − Q

2π
ln a

w − Q

2π
ln b

)
.
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with α determined from the equation

q

π
ln

1 + α2

1 − α2
=

Q

2π
ln

√
b

a
, 0 < α < 2. (4.14)

Therefore,

α =

√
(b/a)λ/2 − 1

(b/a)λ/2 + 1
; λ =

Q

2q
,

and

f(ζ) = e
2π
Q
f̃(ζ) =

√
ab

(
1 + αζ

1 − αζ

)1/λ

. (4.15)

The solution is a circle for λ = 1, i.e. Q = 2q. The solution remains physically sensible only

for not too large b/a; otherwise overlapping of different parts of the predicted domain

occurs.

Consider the condition for non-overlapping of the mapping (4.15). The condition of

overlapping is

f(ζ) = f(ζ) = f(1/ζ); ζ = eiφ

In our case it implies (
1 + αζ

1 − αζ

)1/λ

=

(
1 + αζ−1

1 − αζ−1

)1/λ

In the plane

ζ1 =
1 + αζ

1 − αζ

the boundary is a circle of radius r1 = 2α/(1 − α2) centered at (1 + α2)/(1 − α2). As

z = Cζ
1/λ
1 ,

the overlapping occurs at the point of maximum arg(ζ1). But

β = max(arg(ζ1)) = sin−1(2α/(1 + α2)).

So overlapping occurs at

β = πλ; 2α/(1 + α2) = sin πλ

or

α = tan
πQ

4q
;

(b/a)λ/2 − 1

(b/a)λ/2 + 1
= tan2 πQ

4q

(a/b) =

(
cos

πQ

2q

)4q/Q

. (4.16)

Therefore, non-overlapping equilibrium domain exists in the range of parameters

1 � a/b � (cos πλ)(2/λ); λ = Q/(2q).

For small λ non-overlapping equilibrium domains exist only in a narrow range of b/a

close to unity. If we let the ratio b/a tend to the critical value (cos πλ)−2/λ, the area of
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Figure 1. Equilibrium domains. Flow is driven by a source at z = a, and sink at z = b, an

electric charge Q is located at z = 0; plots correspond to q = 1; a = 1; b = 4; and Q =

0.2734, 0.2959, 0.3189, 0.3424, 0.3664, 0.3909. for curves 1-6 respectively (a). Figure (b) shows blow-up

of the upper figure illustrating that the electric charge is outside the equilibrium domain.

the equilibrium domain increases rapidly, and the domain acquires horseshoe shape. For

λ = 1/2 the equilibrium domain remains simply connected for any a/b. In the limiting

case

f(ζ) =

(
1 − ζ

1 + ζ

)2

the critical domain is the entire z plane with a cut along the negative real axis.

An example is presented in Fig. 1.

For curve 1 the ratio Q/2q is quite close to the critical value. Consider now a limiting

case when the hydrodynamic source and sink collide, and form a dipole of the moment
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µ. Formally, this corresponds to

b/a = eε; q =
µ

εa
, ε → 0.

Then (4.15) becomes

fε(ζ) = aeε/2
(

1 + αεζ

1 − αεζ

)1/λε

, λε =
Q

2q
=
εaQ

2µ
. (4.17)

αε =

(
eε

2aQ/4µ − 1

eε
2aQ/4µ + 1

)1/2

≈ ε

√
aQ

8µ
. (4.18)

So we find

f0(ζ) = lim
ε→0

fε(ζ) = lim
ε→0

a

(
1 + ε

√
aQ

2µ
ζ

) 2µ
εaQ

= a exp

(
ζ

√
2µ

aQ

)
. (4.19)

This mapping corresponds to a non-overlapping domain iff√
2µ/aQ � π; µ/aQ � π2/2. (4.20)

At greater values of µ/aQ, there is no simply connected equilibrium domain. It can be

conjectured that in this case the electric field is too weak to prevent breakthrough caused

by the hydrodynamic dipole.

Figure 2 shows shapes of the equilibrium domain for µ = 1, a = 1; Q= 0.2026; 0.2410;

0.2866; 0.3408; 0.4053.

4.2 Singular points technique

Example 2 Consider now the equilibrium domains corresponding to a hydrodynamic

dipole of the moment µ and an electric source of the strength Q both located at z = 0. In

this case, the differential d[F(f(ζ))] has singularities only at 0 and ∞. The general method

described above implies that

d[F(f(ζ))] =

(
P

ζ
+ R

)
dζ, (4.21)

F(f(ζ)) = P ln ζ + Rζ + C, (4.22)

f(ζ) = Ae2πF/Q = Aζ2πP/Qe(2πR/Q)ζ . (4.23)

Since f(ζ) is a conformal map, f′(0)� 0,∞. Therefore,

P =
Q

2π
; f(ζ) = AζeBζ. (4.24)

In order to find B, we use the moment relation∫
D

ω(z)U ′(z)dS = µU ′(0). (4.25)
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Figure 2. Equilibrium domains. Flow is driven by a dipole of moment µ at z = a, an electric charge

Q is located at z = 0; plots correspond to µ = 1; a = 1; and Q= 0.2026; 0.2410; 0.2866; 0.3408;

0.4053. for curves 1–5 respectively (a). Figure (b) shows blow-up of the upper figure illustrating that

the electric charge is outside the equilibrium domain.

In our case it assumes the form ∫
D

Q

2πz
U ′(z)dS = µU ′(0). (4.26)

Choosing U = z, we get ∫
D

dS

z
=

2πµ

Q
. (4.27)

Substituting

z = AζeBζ,

https://doi.org/10.1017/S0956792507006869 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006869


116 V. M. Entov and P. Etingof

we get ∫
K

|A+ ABζ|2|eBζ |2

ζAeBζ
dσ =

∫
K

(A+ ABζ)(A+ ABζ)eBζ

Aζ
dσ =

2πµ

Q
. (4.28)

Evaluating the integral on the l.h.s. of (4.28) we find

B =
2µ

QA
; f(ζ) = Aζe

2µζ
QA . (4.29)

The parameter A, still indeterminate, is a size parameter. It should satisfy the condition

that f(ζ) is single-valued. Therefore the critical values of the parameter correspond to

(1) f′(ζ) = 0, ζ ∈ ∂K , or

(2) f(ζ) = f(ζ) = f(ζ−1), ζ ∈ ∂K .

The first condition results in:

f′(ζ) = A(1 + Bζ)eBζ = 0, ζ ∈ ∂K, ⇒ B = 1, or
2µ

AQ
= 2. (4.30)

The second condition implies

1 = f(ζ)/f(ζ−1) = ζ2e
2µ
QA

(ζ−ζ−1) = e2iφ+2i 2µ
QA

sinφ. (4.31)

Then the critical condition becomes

L(φ) = φ+
2µ

QA
sinφ = πk, 0 < φ < π. (4.32)

As L(π) = π, a root in the segment (0, π) appears as the derivative

L′(π) = 1 +
2µ

QA
cos π = 1 − 2µ

QA

becomes negative, or at

2µ

AQ
= 1. (4.33)

This condition coincides with (4.30). Hence a simply connected equilibrium domain exists

for
2µ

AQ
� 1, A �

2µ

Q
. (4.34)

Thus there exists a continuous spectrum of sizes of equilibrium domains that is bounded

from below.

This result can be interpreted as inability of a given “charge” to prevent breakup due to

action of hydrodynamic dipole, if the domain area is too small, or the domain boundary

is too close to the dipole.

Figure 3 shows boundaries of the equilibrium domains desribed by the mapping of

the unit disk given by (4.29) for Q = 1, µ = 1, A = 1,
√

2, 2, 2
√

2, and 4 for curves 1–5

respectively.
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Figure 3. Equilibrium domains. Flow is driven by a dipole of moment µ and an electric charge Q

located at z = 0; plots correspond to µ = 1; Q = 1; and A = 1,
√

2, 2, 2
√

2, and 4 for curves 1–5

respectively. Self-intersecting boundaries 1 and 2 correspond to non-physical domains.

Example 3. Now we consider interaction of a hydrodynamic quadrupole at the origin

with two “charges” of strength Q at z = ±a outside the equilibrium domain D. We fix

the conformal mapping of K on D by conditions f(0) = 0; f′(0) > 0. In this case F(f(ζ))

has a pole of second order at infinity, and hence

F(f(ζ)) = −αζ2, (4.35)

and

F(z) =
Q

2π
ln

(
1 − z2

a2

)
. (4.36)

Therefore

f(ζ) = z = a

√
1 − e− 2πα

Q
ζ2

, α > 0. (4.37)

The parameter α depends on the strength β of the hydrodynamic quadrupole, namely, the

pole coefficient of F(f(ζ)) at ∞ is the same as that of h(f(ζ)) at ζ = 0 by the Theorem of

§ 3. As

h =
β

2πz2
, (4.38)

the requirement implies

β

2πa2 2πα
Q

= α; α2 =
βQ

4π2a2
.
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Therefore the solution exists for β > 0, and

α =

√
βQ

2πa
,

Thus,

f(ζ) = a

√√√√1 − exp

(
−

√
β

a2Q
ζ2

)
= aζ

√√√√1 − exp
(

−
√

β
a2Q
ζ2

)
ζ2

. (4.39)

This mapping remains univalent while

exp

(
−

√
β

a2Q
ζ

)

remains single-valued, so that

1

a

√
β

Q
� π;

β

a2Q
� π2. (4.40)

Figure 4 shows mapping of the unit disk given by (4.39) for β = 1, Q = 1, a =

0.2677, 0.3183 = 1/π, 0.3785, 0.4502 (curves 1–4 respectively).

5 Non-harmonic external field: reduction to a Riemann-Hilbert problem

Up to now, we considered equilibrium fluid domains in harmonic external field, and

based our analysis on the the general moment dynamics equation (2.14) which becomes

(3.2) for equilibrium domains. In other words, the equilibrium is considered as a limiting

case of dynamics. However, the requirement of harmonicity of the external field can

sometime be lifted, if we consider only equilibrium domains in an external field. Some

examples are presented in this section. The problem of finding stationary shapes of the

flow domain in an external field can be approached in a different way that allows extension

to non-harmonic external field potential of special form.

Let D be an equilibrium domain for a specified set of hydrodynamic sources and

multipoles corresponding to logarithmic singularities and poles of the complex velocity

potential W (z), Φ = ReW (cf. (2.10)–(2.12)) in the field of the external force potential

G(x, y).

Then W (z) is an analytic (but may be multivalued) function in D having a prescribed

set of singularities; its differential dW (z) is a meromorphic function in D and

W (z)|z∈∂D = Ĝ(z, z), (5.1)

there,

Ĝ(z, z) ≡ G

(
1

2
(z + z),

1

2i
(z − z)

)
. (5.2)

We show that in a number of cases due to the special form of the potential G(x, y) it

proves to be possible to find the domain D explicitly. Consider once more the conformal
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Figure 4. Equilibrium domains. Flow is driven by a quadrupole of moment β and two electric

charges Q located at z = ±a; plots correspond to β = 1; Q = 1; and A = 0.2677; 0.3183 =

1/π; 0.3785; 0.4502 for curves 1–4 respectively (a). Blowup of Figure 4,a (b). The charge re-

mains outside the equilibrium domain; only non-intersecting boundaries correspond to physically

admissible equilibrium domains.

map f : K → D and define

Θ(ζ) = W (f(ζ)), ζ ∈ K. (5.3)

This function is analytic up to singularities of the specified type (poles and logarithmic

singular points) in K and assumes real values along the boundary ∂K . Then it can be

analytically continued into the entire complex plane ζ using the symmetry principle:

Θ(ζ) = Θ

(
1

ζ

)
, |ζ| > 1. (5.4)
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Then

Θ(ζ) =

N∑
j=1

qj

2π
[ln(ζ − ζj) + ln(ζ − ζ

−1

j )]. (5.5)

Hence Θ(ζ) is known in the entire complex plane ζ up to locations of the singularities ζj .

At the boundary of the unit disk

Θ(ζ) = Ĝ(z, z). (5.6)

For given ζj , this equation for the conformal mapping f(ζ) can be written as

Ĝ(f(ζ), f∗(1/ζ)) = Θ(ζ). (5.7)

In general, it is not clear how to determine the conformal map f(ζ) from this equation.

However, it proves to be possible under some additional assumptions on G.

Some of these particular cases are presented below.

5.1 Harmonic external potential

Suppose that G is a harmonic function with maybe a finite set of logarithmic singular

points within D, and let F(z) be respective complex potential. Then

G(z, z) =
1

2
(F(z) + F(z)) =

1

2
(F(z) + F∗(z)). (5.8)

Introducing this expression into (5.7), we get

F∗(f∗(1/ζ)) = 2Θ(ζ) − F(f(ζ)). (5.9)

Therefore F∗(f∗(1/ζ)) has finitely many singularities within K . Those inside K correspond

to singularities of Θ(ζ) and F(f(ζ)) inside K [i.e both “hydrodynamic” and “electric”

singularities], those outside K are explicitly determined by the singularities of χ(ζ) =

F(f(ζ)). Therefore the derivative

d

dζ
F(f(ζ))

is meromorphic in the entire ζ plane, and hence it is rational with number and order of

singular points known beforehand. This allows one to write down its explicit expression

up to a number of indetermined coefficients. Then the conformal mapping is expressed as

f(ζ) = F−1(χ(ζ)), (5.10)

and it remains to write and solve a set of equations for location and strength of singular-

ities. It is the case considered previously.

5.2 Unidirectional external field

Suppose now that

G = H(x) = H

(
1

2
(z + z)

)
, H ′(x) > 0. (5.11)
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This means that the external “force” has only an x-component, which is independent of

y. Then

Θ(ζ) = H

(
1

2
(f(ζ) + f∗(1/ζ))

)
, (5.12)

f(ζ) + f∗(1/ζ) = 2H−1(Θ(ζ)), ζ ∈ ∂K. (5.13)

The functions f(ζ) and f∗(1/ζ) are analytic respectively inside and outside the unit circle.

This Riemann-Hilbert problem is solved using the Cauchy-type integral [7, 5]:

f(ζ) =
1

πi

∮
∂K

H−1(Θ(u))

u− ζ
du− 1

2πi

∮
∂K

H−1(Θ(u))

u
du. (5.14)

Example 5.1 Let H(x) = x2, and the flow be generated by a dipole at a location z = x0 > 0.

Then

W (z) ∼ µ

z − x0
, z → x0. (5.15)

We assume that x0 = f(0). Then Θ(ζ) should have poles at ζ = 0 and ζ = ∞, and,

therefore,

Θ(ζ) = α

(
ζ +

1

ζ

)
+ β. (5.16)

Introducing these expressions into (5.14), we get

f(ζ) =
1

πi

∮
∂K

√
α(u+ u−1) + β

u− ζ
du− 1

2πi

∮
∂K

√
α(u+ u−1) + β

u
du. (5.17)

Then the dipole location is given by the expression

x0 =
1

2πi

∮
∂K

√
α(u+ u−1) + β

u
du, (5.18)

while for its strength µ we find

µ

f′(0)
= α; f′(0) =

µ

α
=

1

πi

∮
∂K

√
α(u+ u−1) + β

u2
du. (5.19)

Equations (5.18) and (5.19) serve to find α and β for given x0 and µ. They can be reduced

to the equations

x0 =
1

π

∫ π

0

√
2α cosϕ+ βdϕ;

µ

α
=

2

π

∫ π

0

√
2α cosϕ+ β cosϕdϕ. (5.20)

Relations (5.20) are shown in Figure 5,a. Using these relations, we can construct expli-

citly the equilibrium domains predicted by conformal mapping (5.18). Some results are

presented in Figure 5,b.

5.3 Axially-symmetric external field

We assume now that the external potential has the form

G = H(x2 + y2) = H(zz), H ′(r) > 0, r� 0 in D, r = (zz)1/2. (5.21)
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Figure 5. a: Relation between geometric parameters of the equilibrium domain and relative

strength of the dipole; b: Shape of equilibrium domains for B = 2.00; 2.02; 2.06; 2.12; 2.20 (curves

1–5, respectively).

that corresponds to a radially-symmetric external field with the symmetry axis outside the

equilibrium domain D. Equation (5.4) implies

f(ζ)f∗(1/ζ) = H−1(Θ(ζ)), (5.22)

or

ln f(ζ) + ln f∗(1/ζ) = lnH−1(Θ(ζ)). (5.23)

As by assumption f(ζ) � 0, ζ ∈ D, the logarithms in the l.h.s. of this equation are

analytic functions respectively in the unit disk and outside it, and therefore we once more

have a Riemann-Hilbert problem. Its solution is

f(ζ) = exp

(
1

2πi

∮
∂K

lnH−1(Θ(u))

u− ζ
du− 1

4πi

∮
∂K

lnH−1(Θ(u))

u
du

)
. (5.24)
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These expressions allow us to restore the shape of the equilibrium domain provided the

expression for Θ(ζ) can be guessed using properties of the hydrodynamic singularities.

Example 5.2 Let H(x2 + y2) = r2, and the flow be generated by a dipole at a location

z = r0. Then

W (z) ∼ µ

z − r0
, z → r0. (5.25)

We assume that r0 = f(0). Then repeating the argument of the previous subsection, we find

the same expression (5.16) for Θ(ζ), and keeping in mind that in our case H−1(X) = X,

we have, upon introducing this expression into (5.24),

f(ζ) = exp

(
1

2πi

∮
∂K

ln(Θ(u))

u− ζ
du− 1

4πi

∮
∂K

ln(Θ(u))

u
du

)

=
exp

(
1

2πi

∮
∂K

(ln[α(u+1/u)+β]
u−ζ du

)
exp

(
1

4πi

∮
∂K

(ln[α(u+1/u)+β]
u

du
) . (5.26)

Characteristic shapes of the equilibrium domains predicted by the mapping (5.26) are

shown in Figure 6.

5.4 External field depending on a harmonic function

Let the external potential depend on a function harmonic up to specified logarithmic

singularities,

G = H(T (x, y)),

∆T =

M∑
m=1

Qmδ(x− x′
m, y − y′

m). (5.27)

Then T (x, y) is the real part of an analytic function Ξ(z) having specified logarithmic

singularities, and

G = H

(
1

2
(Ξ(z) + Ξ∗(z))

)
. (5.28)

Let function H−1 be rational and all “hydrodynamic singularities” correspond to multi-

poles (there are no logarithmic singularities corresponding to sources). Then from (5.28)

Ξ(f(ζ)) + Ξ∗(f∗(1/ζ)) = 2H−1(Θ(ζ)), ζ ∈ ∂K, (5.29)

or, denoting

Z(ζ) = Ξ(f(ζ)),

Z(ζ) + Z∗(1/ζ) = H−1(Θ(ζ)), ζ ∈ ∂K. (5.30)

This is essentially the same equation as (5.13), and it can be solved using the same

technique. Then the conformal mapping is given by the expression

f(ζ) = Ξ−1(Z(ζ)). (5.31)
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Figure 6. Equilibrium domains for flow driven by a dipole in quadratic axisymmetric external

potential field for B = 2.0; 2.021; 2.061; 2.121; 2.201 (curves 1–5, respectively), (a); blow-up of

Figure 6,a, (b).

Example 5.3 Let

T = x2 − y2; H(T ) =
√
x2 − y2; Ξ(z) =

1

2
z2; (5.32)

and let the flow be generated by a single dipole of strength µ at z = a > 0,

W (z) ∼ µ

z − a
, z → a. (5.33)

Then Θ(ζ) is expressed by (5.16), and

Z(ζ) =
1

πi

∮
∂K

√
α(u+ u−1) + β

u− ζ
du− 1

2πi

∮
∂K

√
α(u+ u−1) + β

u
du, (5.34)
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Figure 7. Equilibrium domains for flow driven by a dipole in external potential field of the form

Eq. (5.32) for B = 2.0001; 2.0201; 2.0601; 2.1201; 2.2001 (curves 1–5, respectively).

f(ζ) =
√

2Z. (5.35)

Then for α and β we have the equations

a = f(0) =

√
2
√
α

π

∫ π

0

√
2 cosϕ+ β/αdϕ; (5.36)

µ

f′(0)
= α; f′(0) =

µ

α
= (2/Z(0))1/2Z ′(0)

=
4
√
α

aπ

∫ π

0

√
2 cosϕ+ β/α cosϕdϕ. (5.37)

Shapes of the equilibrium domains for flow driven by a dipole at z = 1 in the external

field corresponding to (5.32) are shown in Figure 7.

5.5 Non-planar Hele-Shaw cell

Consider a non-planar Hele-Shaw cell in constant gravity field. Let (x, y) be coordinates

in the horizontal plane, and h(x, y) be the elevation of a cell point over the horizontal

plane. Then assuming h = h(x) it is possible to introduce the conformal coordinate

z = s(x) + iy, s(x) =

∫ x

0

√
1 + h′(t)2dt, (5.38)

so that the problem reduces to that of planar Hele-Shaw cell with effective potential

H(z) = h(x) = h(s−1(Rez)). (5.39)

Similarly, if

h(x, y) = K(r); r =
√
x2 + y2, (5.40)
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then the conformal coordinate is

z = eiϕR(r); R(r) = exp

∫ r

1

√
1 +K ′(ρ)2

dρ

ρ
, (5.41)

and the effective potential is

H(z, z) = h(R−1(|z|)). (5.42)

6 Possible applications

In this section we show that the mathematical model considered above can be used

to model electro-osmotically-driven flow in a thin gap between two infinite parallel

walls provided that the gap is filled with two immiscible fluids having equal electric

conductivities, the viscosity of the fluid in the exterior of the domain D(t) is negligible,

and the electro-osmotic coefficients of the two fluids are different. Therefore, there exists

at least one non-trivial physical situation corresponding to the mathematical problem

considered in this paper.

6.1 Electrokinetic effect: physics, available data

The electrokinetic effect consists in the generation of electric current by fluid flow through

porous media or thin gaps between solid walls, and in the reverse effect of inducing flow

by application of electric field. It is the last case, usually referred as electro-osmosis that

serves as the primary motivation of the theory presented here. Electrokinetic phenomena

are caused by difference in mobility of ions, some of which are fixed at the surface of

the solid skeleton (matrix) of the porous medium, or the solid walls, while dissolved

counterions can move with the fluid within the gap or porespace, or force it to move, if

an electric field is applied.

Macroscopically, the flow and electric current are governed by the equations

u = −k

η
(∇p− ξ∇ψ), (6.1)

I = −S(∇ψ − C∇p), ξ = CSη/k. (6.2)

Here, k is the medium permeability, η is the fluid viscosity, S is the fluid electric conductivity

C is the electrokinetic coupling coefficient (see elsewhere for details [9, 2, 6]).

“Electro-osmotic flow”, the flow driven by electric potential differential, has important

applications. It is used in soil remediation and prevention of moisture penetration in

underground structures. Recently, electroosmotic flow is also actively studied as an element

of microfluidic devices, when flow in narrow gaps or channels is driven by electric potential

[13]. Presumably, it is this class of flows, to which the presented above theory can find

some applications.

Namely, we consider flow driven both by pressure gradient and external electric field

in a narrow plane gap between two solid non-conducting walls. We assume, that due to

significant fluid conductivity the flow effect on the electric current is negligible. In this
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case, (6.1) and (6.2) become

u = −k

η
(∇p− ξ∇ψ), (6.3)

I = −S∇ψ. (6.4)

here, u(x, y) and I(x, y) are the flow velocity and electric current averaged over the gap

thickness; they satisfy the continuity equations (conservation laws)

∇ · u = qu(x, y); ∇ · I = QI (x, y); (6.5)

k = h2/12; the pressure and the electric potential are functions of the in-plane coordinates

(x, y).

Now we assume that the gap is filled by two fluids, one of them, within time-dependent

plane domain D(t), is characterized by the viscosity η, conductivity S and electrokinetic

coupling coefficients C and ξ; while exterior of D(t) is filled with another fluid of viscosity

η1 and conductivity S1, and electrokinetic coupling coefficients C1 and ξ1. Then at the

boundary Γ (t) = ∂D(t) we have

p+ = p−; ψ+ = ψ−; u+
n = u−

n ; I+
n = I−

n . (6.6)

For given densities of the volume (qu) and electric (QI ) sources (6.3)–(6.6) define a free

boundary problem of coupled pressure/electro-osmotically driven flow in the gap.

Now we consider a particular case when both fluids have the same conductivity, S1 = S .

Then ψ(x, y) satisfies the equation

∆ψ(x, y) =
QI

S
(6.7)

in the entire plane, so it can be considered as known. Let now the viscosity of the external

fluid outside D(t) be negligible. Then, assuming that there is no net flux to infinity, we

have

p+(x, y) = ξ1ψ(x, y, t) + const1, (x, y) ∈ Z \ D(t). (6.8)

Now we define the “effective pressure” as

P (x, y) = p(x, y) − ξ1ψ(x, y) − const1. (6.9)

Then we have

∇ · u = 0, u = −k

η
(∇P − (ξ − ξ1)∇ψ); x ∈ D(t); P (x) = 0, x ∈ ∂D(t) (6.10)

It is, up to notations, the problem considered in this paper. The above examples show

that external electric field can be used to confine the flow to a finite domain D.

7 Conclusion

In this paper, it is shown that the moment approach can be extended on dynamics of free

boundaries in Hele-Shaw flows driven by a system of sources and sinks in an external

https://doi.org/10.1017/S0956792507006869 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507006869


128 V. M. Entov and P. Etingof

potential field. For several cases, when the external field is generated by a simple set of

singularities, or belongs to a certain particular class, it proves to be possible to develop

analytic techniques for finding equilibrium shapes of the fluid domains in the external

field. Some simple examples are presented. Combined pressure-driven and electro-osmotic

flows are discussed as a possible application of the presented theory.
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