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Abstract We consider a certain family of Kudla–Rapoport cycles on an integral model of a Shimura

variety attached to a unitary group of signature (1, 1), and prove that the arithmetic degrees of these

cycles are Fourier coefficients of the central derivative of an Eisenstein series of genus 2. The integral
model in question parameterizes abelian surfaces equipped with a non-principal polarization and an

action of an imaginary quadratic number ring, and in this setting the cycles are degenerate: they may

contain components of positive dimension. This result can be viewed as confirmation, in the degenerate
setting and for dimension 2, of conjectures of Kudla and Kudla–Rapoport that predict relations between

the intersection numbers of special cycles and the Fourier coefficients of automorphic forms.
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1. Introduction

In their article [8], Kudla and Rapoport investigate integral models of Shimura varieties

attached to unitary groups of signature (n− 1, 1). These models are defined as moduli

spaces of abelian varieties equipped with an action of the maximal order ok in a fixed

imaginary quadratic field, together with a compatible principal polarization. Kudla and

Rapoport go on to construct a family of ‘special’ cycles, and prove that when such

a cycle is zero dimensional and is supported in the fibre of an unramified prime, its

degree can be identified with a Fourier coefficient of the derivative of an incoherent

Eisenstein series for U (n, n) at its centre of symmetry. This result is in line with a deep

conjectural programme, initiated by Kudla and supported by his collaborators, that

aims to establish systematic relations between arithmetic cycles on Shimura varieties

and Fourier coefficients of automorphic forms; see the survey article [5].

In this paper, we study an extension of the problem of Kudla and Rapoport in the case

when n = 2, where we allow the polarizations to be non-principal in a controlled way.

Though the cycles in this setting might not be zero dimensional, our main result asserts
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that their degrees, suitably defined, are again identified with the Fourier coefficients of

the central derivative of a (non-standard) Eisenstein series for U (2, 2).
We now give a more precise account of this result. Let k be an imaginary quadratic field,

with ring of integers ok , and fix an odd squarefree integer d ∈ Z>0, all of whose factors

are inert primes in k. We define Md
(1,1) to be the moduli stack of triples A = (A, i, λ),

where A is an abelian surface equipped with an action

i : ok → End(A)

that satisfies a signature (1, 1) condition, see Definition 4.1 below, and λ is a polarization

such that

(i) the corresponding Rosati involution induces Galois conjugation on the image i(ok);

and

(ii) ker(λ) ⊂ A[d] is contained in the d-torsion of A with | ker(λ)| = d2.

This moduli problem is representable by a Deligne–Mumford (DM) stack that is flat over

Spec(ok).

Next, we let E be the DM stack parameterizing triples E = (E, iE , λE ) consisting of

an elliptic curve E with an ok-action iE : ok → End(E) satisfying the signature (1, 0)
condition, and a principal polarization λE whose Rosati involution again induces Galois

conjugation on the image iE (ok).

Following [8], we define the Kudla–Rapoport cycles on the product M := E ×ok Md
(1,1)

as follows. Suppose that we are given points E ∈ E(S) and A ∈ Md
(1,1)(S) valued in some

connected base scheme S over Spec(ok). Then the space

HomS,ok (E, A)

of ok-linear morphisms admits a positive-definite ok-Hermitian form defined by the

formula

(x, y) := λ−1
E ◦ y∨ ◦ λA ◦ x ∈ Endok (E) ' ok .

Given an integer m ∈ Z, we define Z(m) to be the moduli space of tuples

Z(m)(S) = {(E, A, x) | (E, A) ∈M(S), x ∈ HomS,ok (E, A) with (x, x) = m}.

This moduli problem is representable by a DM stack, and the natural forgetful map

Z(m)→M is finite and unramified. We thereby obtain a cycle on M, which, abusing

notation, we denote by the same symbol Z(m).
Similarly, for any matrix T ∈ Herm2(ok), we define Z(T ) to be the moduli space of

tuples

Z(T )(S) = {(E, A, x)},

where (E, A) ∈M(S) as before, and x = [x1, x2] ∈ HomS,ok (E, A)2 is a pair of maps such

that

(x, x) :=
(
(x1, x1) (x1, x2)

(x2, x1) (x2, x2)

)
= T .

As before, the forgetful map Z(T )→M defines a cycle, denoted by the same symbol.
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Let T =
(t1 ∗
∗ t2

)
. Then there is a decomposition

Z(t1) ×M Z(t2) =
∐

T ′=
(t1 ∗
∗ t2

)Z(T ′)

over all cycles Z(T ′) corresponding to matrices T ′ with the same diagonal entries as T .

When T is non-singular, it turns out that the generic fibre Z(T )k is empty, and so the

support of Z(T ) is concentrated in finitely many fibres of non-zero characteristic. In this

case, we define

d̂egZ(T ) :=
∑
p⊂ok

χ(Z(T )p,OZ(t1)⊗
LOZ(t2)) log(N (p))

as the sum of the contributions to the Serre intersection multiplicity of Z(t1) and Z(t2)
that appear within the support of Z(T ), weighted by the factors log N (p).

Our main result relates this degree to the T th Fourier coefficient of the derivative at

the centre of symmetry (s = 0) of an Eisenstein series E(z, s), constructed in § 4.3, on

the Hermitian upper half-space H2 of genus 2; here, the derivative

E ′(z, s) =
d
ds

E(z, s)

is taken with respect to the variable s ∈ C.

Main Theorem. Suppose that T ∈ Herm2(ok) is positive definite, and define

Diff(T ) := {` inert, ` - d, ord` det T odd}
⋃
{`|d, ord` det T even}.

If |Diff(T )| > 1 and Diff(T ) 6= {2}, then

d̂egZ(T )qT
=

2h(k)
|o×k |

E ′T (z, 0),

where h(k) is the class number of k, and, for z ∈ H2, we set qT
:= e(tr(T z)).

The novel aspects of this theorem emerge when Diff(T ) = {p} is a single inert prime p
dividing d. In this case, the cycle Z(T ) is supported in the fibre Mp. This fibre in turn

bears a close relationship to the Drinfeld upper half-plane D which, as we recall in § 2,
admits an interpretation as a moduli space of p-divisible groups.

Our first task, carried out in § 2, is therefore to consider a family of local

Kudla–Rapoport divisors on D defined in terms of deformations of p-divisible groups,

and study their intersection behaviour. Explicit equations for these divisors were found

in [14]; by combining that information with a combinatorial description of the reduced

locus Dred in terms of the Bruhat–Tits building for SL2(Qp), we arrive at an explicit,

and surprisingly simple, formula for the intersection number of two local Kudla–Rapoport

divisors; see Corollary 2.17.

In § 3, we show that one can express the same formula in terms of local representation

densities and their derivatives, which play an essential role in the determination of the
Fourier coefficients of Eisenstein series. The key tool is the development of a closed-form
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expression, in the particular case that we need, of Hironaka’s general formula [2] for

Hermitian representation densities in the unramified setting; see Proposition 3.1.

Finally, we connect the local calculations with the global setting and prove the main

theorem; our approach here follows [8, §§ 7–10] quite closely.

The first half of § 4 concerns structural results regarding the geometry of M and

the special cycles Z(T ); in particular, a p-adic uniformization result allows us to

express d̂egZ(T ) as a product of a local factor, corresponding to a local intersection

number as calculated in § 2, and a global factor that is essentially a lattice point count.

We then turn to calculating the right-hand side of our main theorem; after recalling

some general facts about Siegel–Weil Eisenstein series and their Fourier coefficients, we

describe the particular choice of parameters that give rise to the Eisenstein series that

figures in our main theorem, and compute the T th Fourier coefficient of its derivative in

Theorem 4.13. The formula we derive also decomposes as the product of a local factor,

expressed in terms of representation densities, with a global lattice point count. A direct

comparison of the two formulae yields the proof of the main theorem; see Corollary 4.15.

Notation. Throughout this paper, k will be a fixed imaginary quadratic field, with ring

of integers ok and discriminant 1 < 0. We denote the non-trivial Galois operator on k by

a 7→ a′.
Let Ẑ :=

∏
` Z`, and, for any prime p, we put Ẑp

=
∏
` 6=p Z`. If M is a Z-module, we

set

M̂ := M ⊗Z Ẑ, and M̂ p
:= M ⊗Z Ẑp.

2. Local Kudla–Rapoport cycles on the Drinfeld upper half-plane

In this section, we fix an inert prime p 6= 2. Let kp denote the completion of k at p, and

ok,p ⊂ kp the ring of integers. Fix an algebraic closure F = Fp and an embedding

τ0 : ok,p/(p) ↪→ F.
Denote the non-trivial Galois operator on kp by a 7→ a′, and let τ1(a) := τ0(a′) be the

conjugate embedding; if W = W (F) is the ring of Witt vectors, then τ0 and τ1 lift uniquely

to embeddings

τi : ok,p → W.
Finally, we let Nilp denote the category of W -schemes such that p is locally nilpotent,

and, for S ∈ Nilp, we set S := S×W F.

We begin by recalling the construction of the Drinfeld upper half-plane as a moduli

space for p-divisible groups, following [9].

Definition 2.1. Let S ∈ Nilp. An almost-principally polarized p-divisible group over S is

a triple (X, i, λ) consisting of

(i) a p-divisible group X over S of height 4 and dimension 2;

(ii) an action i : ok,p → End(X) satisfying the following signature (1, 1) condition: for

every a ∈ ok,p, the characteristic polynomial of i(a) on the Lie algebra Lie(X) is

det(T − i(a)|Lie(X)) = (T − a)(T − a′) ∈ OS[T ]; and
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(iii) a polarization λ such that

p · ker(λ) = 0, |ker(λ)| = p2,

and such that the induced Rosati involution ∗ satisfies

i(a)∗ = i(a′) for all a ∈ ok,p.

The following lemma asserts that there is a single isogeny class of such tuples over F.

Lemma 2.2. Suppose that (X, iX, λX) is a triple over F = Fp as above. Then X is

supersingular (i.e., its Dieudonné module is isoclinic of slope 1/2). Moreover, the data

(X, iX, λX) is unique up to isogeny; that is, given another triple (X′, iX′ , λX′), there exists

an ok,p-linear isogeny X→ X′ such that the pullback of λX′ is λX.

Proof. As X has height 4, dimension 2, and is polarizable, its rational Dieudonné module

MQ := M(X)⊗ZQ is isomorphic to one of the following three possibilities:

MQ '


D1/2⊕D1/2

(D0⊕D0)⊕ (D1⊕D1)

D0⊕D1/2⊕D1.

Here, Dµ is the simple isoclinic rational Dieudonné module of slope µ. Since there are

no non-zero maps between isoclinic Dieudonné modules of different slopes, the action of

ok,p decomposes into an action on each isoclinic component. In particular, the third case

is impossible: there is no action of ok,p on either D0 or D1, as End(D0) = End(D1) = Qp.

We exclude the second possibility by contradiction. Suppose that MQ = (D0⊕D0)⊕

(D1⊕D1). Upon identifying D∨0 ' D1, the polarization λ = (λ0, λ1) decomposes as a pair

of endomorphisms, where

λ0 : (D0)
2
→ (D∨1 )

2
' (D0)

2 and λ1 : (D1)
2
→ (D∨0 )

2
' (D1)

2,

and such that λ∨0 = λ1. By the assumptions on the kernel of λ, we must have

ordp det λ1 = ordp det λ2 = 1.

On the other hand, both maps anti-commute with the corresponding ok,p action; since

End((D0)
2) ' End((D1)

2) ' M2(Qp), this implies that the determinants of the maps λi lie

in N (k×p ), and in particular have even valuations. This contradiction establishes the fact

that M(X)Q ' (D1/2)
2, i.e., that X is supersingular.

For the second part of the lemma, note that the slopes of the operator pV−2 on M(X)
are 0, and so

M(X) = 3⊗Zp2 W, where 3 := M(X)pV−2
.

The embedding τ0 : ok,p → W makes 3 into an ok,p-module of rank 4. We define a pairing

h(·, ·) on M(X) by the formula

h(x, y) := τ0(δ)
−1
〈x, Fy〉λ,
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where 〈·, ·〉λ is the alternating form on M(X) corresponding to λ, and δ ∈ o×k,p is any

element such that δ′ = −δ. The form h restricts to an ok,p-Hermitian form on 3, which we

also denote by h(·, ·). Furthermore, the action iX : ok,p → End(X) induces an orthogonal

splitting 3 = 30⊕31 into rank-2 Hermitian ok,p modules, where

3i := {x ∈ 3 | iX(a) · x = τi (a)x for all a ∈ ok,p}.

Note that one can recover the pair {iX, λX} from the data of the Hermitian form h on

3 together with the splitting 3 = 30⊕31. In particular, the isogeny class of (X, iX, λX)
depends only on the isometry classes of

C0 := 30⊗Zp Qp and C1 := 31⊗Zp Qp

as kp-Hermitian spaces of dimension 2. As V restricts to an ok,p-antilinear isomorphism

V : C1
∼
−→ C0 of vector spaces with

h(V x, V y) = ph(x, y)σ ,

and the isometry class of a local vector space V is determined by its local invariant

det(V) ∈ Q×p /N (k×p ), we find that C1 ' C0. To conclude the proof, we now show C0 is

always split.

Let M∨ = M(X)∨ denote the W−linear dual of M = M(X) with respect to the

polarization λ, and set Mi = 3i ⊗ok,p W . Then, by the assumptions on λ and the signature

condition,

M0 ( M∨1 ( p−1 M0 and M0 ( V−1 M1 ( p−1 M0.

On the other hand, an easy calculation gives

V (3]1)⊗ok,p W = M∨1 ,

where 3
]
1 = {x ∈ 31⊗Zp Qp | h(x,3) ⊂ ok,p}. Thus

30 ( L ⊂ p−130, where L := V (3]1)+ V−1(31).

Since dimFp2 (p
−130/30) = 2, either (i) L = V (3]1) = V−1(31); or (ii) L = p−130. One

easily checks that the lattice L is self-dual in the first case, or satisfies L] = pL in the

second. Since p is inert, the existence of a lattice L ⊂ C0 satisfying one of these two

properties implies that C0 is split.

We fix a triple (X, iX, λX) over F once and for all, which will serve as a base point for

the following moduli problem.

Definition 2.3. Let D denote the following moduli problem over Nilp: for a base scheme

S ∈ Nilp, the points D(S) parameterize isomorphism classes of tuples

D(S) := {X = (X, iX , λX , ρX )}/',

where (X, iX , λX ) is an almost-principally polarized p-divisible group over S, and

ρX : X ×S S→ X×F S
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is a height-0 quasi-isogeny of p-divisible groups over S := S×W F that is equivariant with

respect to the action of ok , and such that

ρ∗X (λX,S) = λX,S . (2.1)

Two such tuples X = (X, iX , λX , ρX ) and X ′ = (X ′, iX ′ , λX ′ , ρX ′) are isomorphic if there

is an ok,p-linear isomorphism ϕ : X → X ′ such that ρX = ρX ′ ◦ (ϕS) and ϕ∗λX ′ = λX .

This moduli problem is representable by (a formal model of) the Drinfeld upper

half-plane; see [9]. In particular, it is a regular formal scheme over Spf(W ).

Remark 2.4. The moduli problem considered in [9] is a priori more general. There, the

authors consider the moduli space Nk whose points valued in a connected base scheme S ∈
Nilp parameterize isomorphism classes of tuples X = (X/S, iX , λX , ρX ) as above, except

they impose the condition that

ρ∗XλX,S = cλX,S for some c ∈ Z×p ,

instead of the equality imposed in (2.1). Two such tuples X and X ′ are deemed isomorphic

in Nk(S) if there is an ok,p linear isomorphism of p-divisible groups φ : X → X ′ such that

ρX = ρX ′ ◦ (φS) and φ∗λX ′ ∈ Z×p λX .

As ok,p is an unramified extension of Zp, the norm map N : o×k,p → Z×p is surjective,

and so every isomorphism class contains a representative for which we have c = 1. To

be precise, given a point (X, i, λ, ρ) ∈ Nk(S) as above with c−1
= N (u), the map φ =

i(u−1) gives rise to an isomorphic tuple X ′ = (X, i, λ, ρ′), where ρ′ = ρ ◦ i(u) satisfies

(ρ′)∗λX,S = λX,S .

Thus, in the unramified setting, the moduli problem D coincides with Nk , and so the

representability follows from [9, Theorem 1.2]. �

Let Y be supersingular p-divisible group Y over F of dimension 1 and height 2 (i.e.,

the p-divisible group of a supersingular elliptic curve). We also fix an action iY : ok,p →

End(Y), and a principal polarization λY such that the induced Rosati involution acts by

Galois conjugation on the image iY(ok,p).

Following [7], we define the space of special local homomorphisms:

V := Homok,p (Y,X)⊗Zp Qp. (2.2)

This space comes equipped with a natural Hermitian form: for b1, b2 ∈ V, put

(b1, b2) := λ
−1
Y ◦ b∨2 ◦ λX ◦ b1 ∈ Endok,p (Y)⊗Qp ' kp.

It turns out that with this Hermitian form, V is split; see [14, Remark 3.4].

Definition 2.5.

(i) Suppose that 3 ⊂ V is an ok,p-lattice, and let 3] denote the dual lattice. We say

that 3 is a ‘vertex lattice’ of type 0 (respectively, type 2) if 3] = 3 (respectively,

3] = p3). In what follows, we shall use the term ‘lattice’ to mean a vertex lattice

of type 0 or 2.

https://doi.org/10.1017/S1474748015000109 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000109


906 S. Sankaran

Figure 1. A portion of Dred for p = 3 as a union of projective lines indexed by vertex lattices.

(ii) Let B denote the Bruhat–Tits tree for SU (V), which is a graph with the following

description. The vertices are the vertex lattices, and edges only occur between

lattices of differing type. Two lattices 3 and 3′ of type 0 and 2 respectively are

connected by an edge if and only if

p3′ ⊂ 3 ⊂ 3′,

where the successive quotients are Fp2 -vector spaces of dimension 1. In particular,

this graph is a (p+ 1)-regular tree.

The reduced locus Dred can be described by the Bruhat–Tits tree B as follows. Each

irreducible component of Dred is a projective line P3 over F indexed by a vertex lattice.

Two such lines P3 and P3′ intersect at at most one point, which we call a ‘superspecial’

point, and this happens if and only if 3 and 3′ are neighbours in B. On a given

component P3, the superspecial points are precisely the Fp-rational points, of which

there are p+ 1; see Figure 1.

Definition 2.6. Let D0 be the moduli space on Nilp that, for a scheme S ∈ Nilp,

parameterizes isomorphism classes of tuples

D0(S) := {Y = (Y, iY , λY , ρY )}/';

here, Y is a p-divisible group over S of dimension 1 equipped with an action iY : ok,p →

End(Y ), and λY is a compatible principal polarization. Finally,

ρY : Y ×S S→ Y×F S

is an ok,p-linear quasi-isogeny of height 0.

Note that the moduli functor D0 is trivial; i.e., it is represented by Spf(W ). Indeed, by

using Gross’ theory of (quasi-)canonical liftings for example, see [1], one may show that,

for any S ∈ Nilp, there is a unique lift YS of Y that is determined by the action iY.
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We turn now to the local Kudla–Rapoport cycles, which are parameterized by elements

in V.

Definition 2.7. Let b ∈ V. We define the local Kudla–Rapoport cycle Z(b) as the closed

formal subscheme of D0×W D defined by the following moduli problem: for S ∈ Nilp,

the set of S-points Z(b)(S) is the locus of pairs (Y , X) ∈ (D0×W D)(S) such that the

quasi-morphism

ρ−1
X ◦ b ◦ ρY : Y ×S S→ X ×S S

lifts to a morphism Y → X over S.

Similarly, if b = [b1, b2] ∈ V2, then we define the cycle Z(b) to be the locus (Y , X)
where ρ−1

X ◦ bi ◦ ρY lifts for i = 1, 2.

These cycles were studied in detail in [14], where it was shown that the cycles Z(b)
corresponding to a single element b ∈ V are in fact divisors; i.e., they are locally cut

out by a single non-zero equation. There is an explicit decomposition of these divisors

into irreducible components as described below; note that, since D0 ' Spf W , we shall

henceforth implicitly identify the formal schemes

D0×Spf(W )D ' D

over Spf(W ).

Definition 2.8. Let b ∈ V with ordp(b, b) = m > 0. Set t = bm+1
2 c and β := p−t b, so

ordp(β, β) is either 0 or −1. Then by [14, Lemma 3.8], there exists a unique vertex

lattice 3 such that β ∈ 3 \ p3, and moreover 3 is of type 0 (respectively, type 2) if m
is even (respectively, odd). We call this lattice the central lattice for b.

Theorem 2.9 [14, Theorem 3.14]. Let b ∈ V, such that m := ordp(b, b) > 0. Then, as a

cycle on D,

Z(b) = Z(b)h +
∑

3∈B(b)
m(b,3)P3 =: Z(b)h + Z(b)v,

where

(i) Z(b)h is a horizontal divisor isomorphic to Spf(W ) that meets the special fibre of

D at a single non-superspecial point on the component P30 corresponding to the

central lattice 30;

(ii) B(b) := {3 vertex lattice | b ∈ 3}; and

(iii) the multiplicities m(b,3) are given by the formula

m(b,3) =

 t −bd(3,30)/2c, if m = 2t is even

t −b(d(3,30)+ 1)/2c, if m = 2t − 1 is odd;

here, d(3,30) is the distance between the two vertex lattices in the Bruhat–Tits

tree.
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Remark 2.10.

(i) For notational consistency, if b ∈ V with ordp(b, b) < 0, we define Z(b) = 0 and

B(b) = ∅.
(ii) By [14, Lemma 3.12], 3 ∈ B(b) ⇐⇒ d(3,30) 6 m. In other words, B(b) is simply

the ball of radius m in the Bruhat–Tits tree, centred at 30.

(iii) Note that, for vertex lattices that lie on the boundary of B(b), i.e., those 3 for

which d(3,30) = m, we have m(b,3) = 0. While such vertices contribute nothing

to Z(b), it will make our formulae somewhat neater if we include them in B(b).
(iv) The following reformulation of the multiplicities will also be useful:

m(b,3) =
1
2
·

m− d(3,30), if m ≡ d(3,30) (mod 2)

m− d(3,30)+ 1, if m 6≡ d(3,30) (mod 2).
(2.3)

2.1. Local intersection numbers

Given two formal closed subschemes Z and Z ′ of D such that the sum of their defining

ideals is open in OD, we define their intersection number to be

〈Z , Z ′〉 := χ(OZ ⊗
LOZ ′),

where the tensor product is taken in the derived sense, and χ is the Euler characteristic

of the resulting complex; see [6, § 4].

If Z(b) is a cycle corresponding to a pair b = [b1, b2] ∈ V2, we set

deg Z(b) := 〈Z(b1), Z(b2)〉.

The aim of this section is to compute the intersection 〈Z(b1), Z(b2)〉 of two local

cycles attached to linearly independent vectors b1, b2 ∈ V, where ordp(bi , bi ) > 0. Via

Theorem 2.9, the intersection pairing 〈Z(b1), Z(b2)〉 can be expanded as

〈Z(b1), Z(b2)〉 = 〈Z(b1)
h, Z(b2)〉+

∑
3∈B(b1)∩B(b2)

m(b1,3)〈P3, Z(b2)〉 (2.4)

= 〈Z(b1)
h, Z(b2)

h
〉+ 〈Z(b1)

h, Z(b2)
v
〉+

∑
3∈B(b1)∩B(b2)

m(b1,3)〈P3, Z(b2)〉.

Lemma 2.11. Let 31 and 32 denote the central lattices for b1 and b2, respectively, in the

notation of Theorem 2.9. Then

〈Z(b1)
h, Z(b2)

v
〉 =

m(b2,31), if 31 ∈ B(b2),

0, otherwise.

For any vertex lattice 3, we also have

〈P3, Z(b2)〉 =


1, if 3 ∈ B(b2) and d(3,32) ≡ ordp(b2, b2) (mod 2)

−p, if 3 ∈ B(b2) and d(3,32) 6≡ ordp(b2, b2) (mod 2)

0 if 3 /∈ B(b2).
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Proof. By [6, Equation (4.7)], we have that, for any vertex lattice 3,

〈Z(b1)
h,P3〉 =

 1, if 3 = 31

0, otherwise.

The first statement in the proposition follows immediately.

Next, we recall the following formula; see [6, Lemma 4.7]: if 3 and 3′ are any two

vertex lattices, then

〈P3,P3′〉 =


−(p+ 1), if 3 = 3′

1, if d(3,3′) = 1

0, otherwise.

Now suppose that 3 is any vertex lattice, so that

〈P3, Z(b2)〉 = 〈P3, Z(b2)
h
〉+

∑
3′∈B(b2)

d(3′,3)61

m(b2,3
′)〈P3,P3′〉.

When 3 /∈ B(b2), it follows immediately that 〈P3, Z(b2)〉 = 0; see Remark 2.10 for the

case when 3 is of distance 1 from the boundary.

Suppose next that 3 ∈ B(b2) and 3 6= 32. Then 3 has one neighbour, say 3], that is

strictly closer to 32 than 3 is. Suppose further that d(3,32) ≡ m (mod 2). Then (2.3)

implies that

m(b2,3
]) = m(b2,3)+ 1.

For any other neighbour 3[ of 3, of which there are p,

m(b2,3
[) = m(b2,3).

Therefore, we obtain

〈P3, Z(b2)〉 = m(b2,3
#)〈P3,P3]〉+m(b2,3)〈P3,P3〉+

∑
3[

m(b2,3
[)〈P3,P3[〉

= (m(b2,3)+ 1)+m(b2,3)(−p− 1)+ pm(b2,3)

= 1.

The case where d(3,32) 6≡ m (mod 2) follows from similar considerations.

Finally, suppose that 3 = 32. If ordp(b2, b2) = 2t is even; then we see by (2.3) that 32
and all of its neighbours occur in Z(b2) with the same multiplicity t , so that

〈P32 , Z(b2)〉 = 〈P32 , Z(b2)
h
〉+ t · 〈P32 ,P32〉+

∑
d(3[,32)=1

t〈P32 ,P3[〉

= 1+ t (−p− 1)+ t · (p+ 1) = 1.

On the other hand, if ordp(b2, b2) = 2t − 1 is odd, then

m(b2,32) = t = m(b2,3
[)+ 1
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for every neighbour 3[. Thus

〈P32 , Z(b2)〉 = 〈P32 , Z(b2)
h
〉+ t · 〈P32 ,P32〉+

∑
d(3[,32)=1

(t − 1)〈P32 ,P3[〉

= 1+ t (−p− 1)+ (t − 1) · (p+ 1) = −p.

Lemma 2.12. Let b1, b2 ∈ V, with corresponding central lattices 31 and 32, respectively,

and assume that

m1 := ordp(b1, b1) 6 ordp(b2, b2) =: m2.

Suppose further that B(b1)∩B(b2) is non-empty, and let A denote the unique shortest

path between 31 and 32. Then the intersection B(b1)∩B(b2) is the ball of radius

r := min
(

m1+m2− d(31,32)

2
,m1

)
(2.5)

around the unique vertex lattice 0 ∈ A such that

d(31, 0) = m1− r, and d(32, 0) = d(31,32)− (m1− r). (2.6)

Proof. This follows easily from the fact that B is a tree, and that B(b1) and B(b2) are

balls of radius m1 and m2, respectively.

Remark 2.13. Recall that the type of the central lattice 3 attached to b ∈ V is determined

by the parity of ordp(b, b), as in Definition 2.8. As lattices of differing type are always at

an odd distance apart,

m1+m2 ≡ d(31,32) (mod 2), (2.7)

and so r ∈ Z. �

We now come to the main theorem of this section.

Theorem 2.14. Suppose that b1, b2 ∈ V are linearly independent vectors, with m1 :=

ordp(b1, b1) and m2 := ordp(b2, b2) and central lattices 31 and 32, respectively. Assume

that 0 6 m1 6 m2.

(i) If B(b1)∩B(b2) = ∅, then 〈Z(b1), Z(b2)〉 = 0.

(ii) If B(b1) ⊂ B(b2), then

〈Z(b1), Z(b2)〉 =
m1+m2− d(31,32)

2
− p

(
pm1 − 1
p− 1

)
+〈Z(b1)

h, Z(b2)
h
〉.

(See Proposition 2.15 below for the calculation of the final ‘h–h’ term.)

(iii) Suppose that B(b1)∩B(b2) 6= ∅ but B(b1) 6⊂ B(b2), and let r be as in (2.5). Then

〈Z(b1), Z(b2)〉 = r − p
(

pr
− 1

p− 1

)
.
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Proof. (i) When B(b1)∩B(b2) = ∅, one sees immediately from (2.4) that the intersection

pairing vanishes.

Case (ii): B(b1) ⊂ B(b2)

In this case, we have B(b1)∩B(b2) = B(b1), which is the ball of radius m1 centred

at 31. Let

Z(b1)
v
=

∑
3∈B(b1)

m(b1,3)P3

denote the ‘vertical’ part of Z(b1). We may express its contribution to the intersection

by expanding radially from 31:

〈Z(b1)
v, Z(b2)〉 = m(b1,31) · 〈P31 , Z(b2)〉+

∑
3

d(31,3)=1

m(b1,3) · 〈P3, Z(b2)〉

+ · · · +

∑
3

d(31,3)=m1

m(b1,3) · 〈P3, Z(b2)〉.

Suppose first that m1 is even. Then

m(b1,3) =
m1

2
−bd(31,3)/2c

and, by (2.7), we have that d(31,32) ≡ m2 (mod 2). Therefore, applying (2.3),

〈Z(b1)
v, Z(b2)〉 =

m1

2
· (1)+ (p+ 1)

m1

2
· (−p)+ p(p+ 1)

(m1

2
− 1

)
· (1)

+ · · ·+ pm1−2(p+ 1)
(m1

2
− [(m1− 1)/2]

)
(−p)

+ pm1−1(p+ 1)
(m1

2
− [m1/2]

)
=

m1

2
+ (p+ 1)(−p− p3

− · · ·− pm1−1)

=
m1

2
− p

(
pm1 − 1
p− 1

)
On the other hand, using (2.3) and Lemma 2.11,

〈Z(b1)
h, Z(b2)

v
〉 = m(b2,31) =

m2− d(31,32)

2
,

and so

〈Z(b1), Z(b2)〉 = 〈Z(b1)
h, Z(b2)

h
〉+ 〈Z(b1)

h, Z(b2)
v
〉+ 〈Z(b1)

v, Z(b2)〉

=
m1+m2− d(31,32)

2
− p

(
pm1 − 1
p− 1

)
+〈Z(b1)

h, Z(b2)
h
〉,

as required.

Next, if m1 is odd, then setting t1 = (m1+ 1)/2 gives

m(b1,3) = t1−
⌊

d(31,3)+ 1
2

⌋
, for any 3 ∈ B(b1).
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Since d(31,32) 6≡ m2 (mod 2),

〈Z(b1)
v, Z(b2)〉 = m(b1,31) · 〈P31 , Z(b2)〉+

∑
3

d(31,3)=1

m(b1,3) · 〈P3, Z(b2)〉

+ · · · +

∑
3

d(31,3)=m1−2

m(b1,3) · 〈P3, Z(b2)〉

= t1 · (−p)+ (p+ 1)(t1− 1) · (1)+ p(p+ 1)(t1− 1) · (−p)

+ · · ·+ pm1−3(p+ 1)(t1− [(m1− 1)/2])

+ pm1−2(p+ 1)(t1− [m1/2])(−p)

= t1− (p+ 1)(1+ p2
+ p4
+ · · ·+ pm1−1)

=
m1+ 1

2
−

(
pm1+1

− 1
p− 1

)
.

By (2.3), we have

〈Z(b1)
h, Z(b2)

v
〉 = m(b2,31) =

m2− d(31,32)+ 1
2

,

so that

〈Z(b1), Z(b2)〉 =
m1+m2− d(31,32)

2
+ 1−

(
pm1+1

− 1
p− 1

)
+〈Z(b1)

h, Z(b2)
h
〉

=
m1+m2− d(31,32)

2
− p

(
pm1 − 1
p− 1

)
+〈Z(b1)

h, Z(b2)
h
〉,

as required.

Case (iii): B(b1) 6⊂ B(b2)

Recall that the intersection B(b1)∩B(b2) is a ball of radius

r =
m1+m2− d(31,32)

2
,

centred at a vertex 0 along the geodesic A connecting 31 and 32. We start by calculating

(Z(b1)
v, Z(b2))

as follows. Consider taking a walk along A, starting from 0 towards 31. We stop walking

either after a distance of r units, or when we arrive at 31, whichever comes first; i.e., we

travel a distance of min(r, d(31, 0)). For each vertex we encounter, say after k steps, we

add up the contributions of all the lattices branching off of that vertex away from A, and

call that sum F(k). More precisely, let 0(k) denote the vertex in A which is a distance of

d(31, 0)− k away from 31 and a distance of k away from 0. Then the sum

F(k) =
∑

3∈F(k)
m(b1,3)〈P3, Z(b2)〉
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is taken over the set F(k) consisting of lattices 3 ∈ B(b1)∩B(b2) such that the unique

shortest path between 3 and 31 first meets A at 0(k). The points 0 = 0(0) and 31 (if

indeed we end up walking that far, as the vertex 31 contributes if and only if d(31, 0) 6
r) are different from the rest, because at these points there are p directions leading away

from the path A, whereas at all the intermediate vertices there are p− 1.

For convenience, set µk := m(b1, 0
(k)) and dk = d(31, 0

(k)). Our first step is to prove

the following calculation for F(0):

F(0) =


µ0− p2

(
pr
− 1

p2− 1

)
, if r is even,

−p

(
pr+1
− 1

p2− 1

)
, if r is odd.

To prove this, first suppose that r is even. Then d0 = m1− r has the same parity as m1.

By (2.3), a vertex 3 contributing in F(0) that is s units away from 0 appears in Z(b1)

with multiplicity m(b1,3) = µ0−bs/2c. Therefore,

F(0) = µ0 · 〈P0, Z(b2)〉+
∑

3∈F(0)
d(3,0)=1

µ0 · 〈P3, Z(b2)〉+
∑

3∈F(0)
d(3,0)=2

(µ0− 1) · 〈P3, Z(b2)〉

+ · · · +

∑
3∈F(0)

d(3,0)=r

(µ0− (r/2)) · 〈P3, Z(b2)〉.

From (2.6) and (2.7), it follows that d(32, 0
(0)) ≡ m2 (mod 2), and so, applying

Lemma 2.11,

F(0) = µ0 · (1)+
∑

3∈F(0)
d(3,0)=1

µ0 · (−p)+
∑

3∈F(0)
d(3,0)=2

(µ0− 1) · (1)+ · · ·+
∑

3∈F(0)
d(3,0)=r

(µ0− (r/2)) · (1)

= µ0+ p ·µ0(−p)+ p2
· (µ0− 1)+ p3

· (µ0− 1)(−p)+ · · ·+ pr
· (µ0− r/2)

= µ0− p2
− p4
· · · − pr

= µ0− p2
(

pr
− 1

p2− 1

)
,

as required.

Similarly, when r is odd,

F(0) = µ0 · (−p)+
∑

3∈F(0)
d(3,0)=1

(µ0− 1) · (1)+
∑

3∈F(0)
d(3,0)=2

(µ0− 1)(−p)

+ · · ·

∑
3∈F(0)

d(3,0)=r

(µ0− (r + 1)/2) · (1)

= µ0 · (−p)+ p(µ0− 1)+ p2(µ0− 1) · (−p)+ p3(µ0− 2)+ · · ·+ pr (µ0− (r + 1)/2)

= −p− p3
− · · · pr
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= −p

(
pr+1
− 1

p2− 1

)
,

as required.

Next, when 0 < k < d0 = d(31, 0
(0)) and k 6 r , we have the following calculation:

F(k) =


µk − (p− 1)(p)

(
pr−k
− 1

p2− 1

)
, if r ≡ k (mod 2)

−µk − (p− 1)

(
pr−k+1

− 1
p2− 1

)
, if r 6≡ k (mod 2).

To prove this claim, we first consider the case r ≡ k (mod 2). Then

d(31, 0
(k)) = d(31, 0

(0))− k = m1− r − k ≡ m1 (mod 2),

and

d(32, 0
(k)) = d(32, 0

(0))+ k ≡ m2− r + k ≡ m2 (mod 2),

as well. Hence, for µk = m(b1, 0
(k)), we have

F(k) = µk · (1)+
∑

3∈F(k)
d(3,0)=1

µk · (−p)+
∑

3∈F(k)
d(3,0)=2

(µk − 1) · (1)

+ · · ·+

∑
3∈F(k)

d(3,0)=r−k

(
µk −

r − k
2

)
· (1)

= µk + (p− 1)µk · (−p)+ p(p− 1)(µk − 1)+ p2(p− 1)(µk − 1) · (−p)

+ · · ·+ pr−k−1(p− 1)
(
µk −

r − k
2

)
· (1)

= µk + (p− 1)(−p− p3
− · · ·− pr−k−1)

= µk − p(p− 1)
pr−k
− 1

p2− 1
.

The case when r 6≡ k (mod 2) follows from similar considerations, and we omit the proof.

Finally, we consider the case k = d0 = d(31, 0
(0)), which only arises when r > d0. The

calculation is almost identical to the case k = 0, and so we omit it; the result is

F(d0) =


µd0 − p2

(
pr−d0 − 1

p2− 1

)
, if r ≡ d0 (mod 2)

−p

(
pr−d0+1

− 1
p2− 1

)
, if r 6≡ d0 (mod 2).

Now, we consider the sum over all the contributions F(k). Observe that, if k > 0 and

k ≡ r (mod 2), then

F(k)+ F(k+ 1) = µk −µk+1− (pr−k
− 1). (2.8)
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We first assume that r < d0 and r is even. The first assumption implies that 31 /∈

B(b1)∩B(b2), and so 〈Z(b1)
h, Z(b2)〉 = 0 in this case. Thus

〈Z(b1), Z(b2)〉 = 〈Z(b1)
v, Z(b2)〉 =

r∑
k=0

F(k)

= F(0)+ F(1)+

r/2−1∑
n=1

F(2n)+ F(2n+ 1)

+ F(r)

=

r∑
k=0

(−1)kµk − (p2
+ p− 1)

(
pr
− 1

p2− 1

)
−

r/2∑
n=1

(pr−2n
− 1)

=

r∑
k=0

(−1)kµk − (p2
+ p)

(
pr
− 1

p2− 1

)
+

r
2
.

Since r is even, we have d0 ≡ m1 (mod 2), and so µk = µ0+b(k+ 1)/2c. Thus

r∑
k=0

(−1)kµk = µ0− (µ0+ 1)+ (µ0+ 1)− (µ0+ 2) · · · + (µ0+ r/2)− (µ0+ r/2) = µ0

and, recalling (2.6) and (2.3), we have µ0 = r/2. Therefore

〈Z(b1), Z(b2)〉 = r − p
(

pr
− 1

p− 1

)
,

which proves the proposition for r < d0 with r even. A similar calculation gives the same

result when r < d0 and r is odd.

Next, we consider the case that r > d0. Then we have

〈Z(b1), Z(b2)〉 = 〈Z(b1)
h, Z(b2)〉+ 〈Z(b1)

v, Z(b2)〉.

The proof proceeds by a further case-by-case analysis, depending on the parity of r
and d0. Suppose that both are even. Then

〈Z(b1)
v, Z(b2)〉 = F(0)+ F(1)+

d0/2−1∑
n=1

F(2n)+ F(2n+ 1)

+ F(d0)

= µ0− p2
(

pr
− 1

p2− 1

)
−µ1− (p− 1)

(
pr
− 1

p2− 1

)

+

d0/2−1∑
n=1

µ2n −µ2n+1− (pr−2n
− 1)+µd0 − p2

(
pr−d0 − 1

p2− 1

)

=
d0

2
− 1+

d0∑
k=0

(−1)kµk − (p2
+ p− 1)

(
pr
− 1

p2− 1

)
−

pr
− pr−d0+2

p2− 1

− p2
(

pr−d0 − 1
p2− 1

)
.
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Using the fact that in this case
∑

k(−1)kµk = µ0 = r/2 and simplifying the above

expression, we obtain

〈Z(b1)
v, Z(b2)〉 =

d0

2
+

r
2
− p

(
pr
− 1

p2− 1

)
=

m1

2
− p

(
pr
− 1

p2− 1

)
.

On the other hand, we note that

〈Z(b1)
h, Z(b2)〉 = m(b2,30).

Combining (2.6) with the assumptions that r and d0 are even, we have d(31,32) ≡ m2
(mod 2), and so, by (2.3),

m(b2,31) =
m2− d(31,32)

2
= r −

m1

2
.

Therefore

〈Z(b1), Z(b2)〉 = r − p
(

pr
− 1

p− 1

)
,

as desired, in the case r ≡ d0 ≡ 0 (mod 2). Again, the remaining cases are entirely

analogous, and so we omit the proofs.

We turn to the ‘horizontal–horizontal’ terms appearing in Theorem 2.14(ii). As usual,

let b1, b2 ∈ V be linearly independent, with

m1 = ordp(b1, b1) 6 m2 := ordp(b2, b2)

and central lattices 31 and 32, respectively. For i = 1, 2, set

ti := b
mi + 1

2
c, and βi := p−ti bi ,

so that βi ∈ 3i \ p3i by the property characterizing central lattices.

Proposition 2.15. With notation as in the previous paragraph,

〈Z(b1)
h, Z(b2)

h
〉 =

 0, if 31 6= 32

ordp(β2, β
′

1), if 31 = 32,

where β ′1 ∈ 31 is any vector such that {β1, β
′

1} forms an orthogonal basis for 31.

Proof. Recall from Theorem 2.9 that Z(bi )
h meets the special fibre at a single

non-superspecial point in the component P3i . Hence, if 31 6= 32, the pairing clearly

vanishes.

Thus we may assume that 31 = 32 = 3, and we suppose further that 3 is self-dual,

so that m1 = 2t1 and m2 = 2t2 are even. We may fix a basis {e, f } for 3 with respect to

which the Hermitian form is

h ∼
(

δ

−δ

)
,

where δ ∈ o×k,p is a generator for kp/Qp with δ′ = −δ. Writing

β1 = p−t1b1 = r1e+ s1 f, β2 = p−t2b2 = r2e+ s2 f,
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we note that

(βi , βi ) = δ(ri s′i − r ′i si ) ∈ Z×p ,

and so ri , si , and ri s′i − r ′i si are all units in ok,p.

Set β ′1 = r ′1e+ s′1 f , so that {β1, β
′

1} forms an orthogonal basis for 3. Then we may write

β2 = µβ1+ εβ
′

1, for some µ, ε ∈ ok, ε 6= 0.

The local equations for these cycles are described explicitly in [14, § 3]; in particular, by

Proposition 3.7 there,

Z(b1)
h(F) = Z(b2)

h(F) ⇐⇒ β1 and β2 are collinear mod p3

⇐⇒ µ ∈ o×k and ε ∈ (p).

If ε ∈ o×k,p, then Z(b1)
h and Z(b2)

h do not intersect, and so

〈Z(b1)
h, Z(b2)

h
〉 = 0 = ordp ε = ordp(β2, β

′

1),

as required.

Finally, we consider the situation Z(b1)
h(F) = {x} = Z(b2)

h(F). As described in [14,

Proposition 3.10], the point x has a formal affine neighbourhood

Spf W [T, (T p
− T )−1

]
∨
=: Spf R (2.9)

such that the two cycles Z(b1)
h and Z(b2)

h are given by

Spf R/(r1T − s1) and Spf R/(r2T − s2),

respectively. As ε ∈ o×k,p, we may write

r2T − s2 = µ · (r1T − s1+ εµ
−1(r ′1T − s′1)),

and, since the cycles intersect properly, it follows immediately that

χ(OZ(b1)h
⊗

LOZ(b2)h
) = length(R/(r1T − s1)⊗R R/(r2T − s2))x

= length W/(εµ−1(r ′1s1− r1s′1))

= ordp(ε),

as required.

When 3 is a type-2 vertex lattice, we may fix a basis {e, f } such that h ∼ p−1 ( δ
−δ

)
.

Writing

βi = ri e+ si f

as before, Proposition 3.11 of [14] tells us that the local equation for Z(bi )
h is given by

s′i T + r ′i = 0

for i = 1, 2. The result follows from similar considerations to the previous case.

We have now completed the computation of the pairing 〈Z(b1), Z(b2)〉. The next step

is to show that this pairing depends only the matrix of inner products, as in the following

lemma.
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Lemma 2.16. Suppose that b = [b1, b2] ∈ V is a linearly independent pair of vectors, and

let

T = (b,b) =
(
(b1, b1) (b1, b2)

(b2, b1) (b2, b2)

)
denote the matrix of inner products. Set mi = ordp(bi , bi ), and let 31,32 denote

the central lattices of b1 and b2, respectively, with d := d(31,32). Replacing T by

a GL2(ok,p)-conjugate if necessary, we may further assume that m1 6 m2. Then the

following hold.

(i) T ∈ Herm2(ok,p) if and only if B(b1)∩B(b2) 6= ∅.

(ii) If B(b1) ⊂ B(b2) and 31 6= 32, then T is GL2(ok,p)-conjugate to the matrix

diag(pa, pb) with

a = m2− d, b = m1.

(iii) If B(b1) 6⊂ B(b2) and B(b1)∩B(b2) 6= ∅, then T ∼ diag(pr , pr ), where

r =
m1+m2− d

2
.

(iv) If 31 = 32, then T ∼ diag(pa, pb), where

a = m2+ 2 ordp(β2, β
′

1), b = m1;

here, β2 and β ′1 are as in Proposition 2.15.

Proof. If m1 < 0, then clearly T /∈ Herm2(ok,p), and, by definition B(b1) = ∅, so the

lemma holds trivially in this case. Hence we assume that 0 6 m1 6 m2.

Case 1: 31 6= 32

First suppose that 31 is self-dual, and so m1 is even. We can assume that 31 and 32
lie on the ‘standard lattice chain’. In other words, there exists a basis {e1, f1} for 31 such

that

(a) with respect to this basis, h ∼
(

δ
−δ

)
, where δ ∈ o×k,p with δ′ = −δ, and

(b) the lattice 32 has basis {e2, f2}, where

{e2, f2} =

 {p−ke1, pk f1}, if d = 2k is even

{p−k−1e1, pk f1}, if d = 2k+ 1 is odd.

For a proof of the existence of such a basis, see [15, Proposition 4.10].

Set t1 =
m1
2 and t2 =

⌊
m2+1

2

⌋
. Then T has the form

T =
(

pm1 · (unit) ps
· (unit)

ps
· (unit) pm2 · (unit)

)
, (2.10)

where

s :=

 t1+ t2− k if d = 2k > 0 is even,

t1+ t2− k− 1 if d = 2k+ 1 is odd.
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Since m1 is even, we have m2 ≡ d (mod 2), and so in fact

s =
m1+m2− d

2

in both cases. Hence

T ∈ Herm2(ok) ⇐⇒ d 6 m1+m2 ⇐⇒ B(b1)∩B(b2) 6= ∅,

which proves (i), at least when 31 6= 32 (on the other hand, if 31 = 32, then (i) is

trivial).

Note that, in general, if T ∼ diag(pa, pb) with a > b > 0, the numbers a and b are

characterized by the facts that

• b is the lowest valuation appearing among the entries of T ; and

• a+ b = ordp det T .

We also observe that

B(b1) ⊂ B(b2) ⇐⇒ m1 6 m2− d ⇐⇒ m1 6 s.

Thus statements (ii) and (iii) of the lemma follow from a moment’s contemplation of

(2.10), and, begging the reader’s forbearance for yet another instance of this refrain, the

proof when 31 is a type-2 lattice is entirely analogous.

Case 2: 31 = 32

Abbreviate 31 = 32 = 3. Recall that we defined ti = b
mi+1

2 c and βi = p−ti bi as in

Proposition 2.15, so that βi ∈ 3− p3 and ordp(βi , βi ) is equal to 0 or −1, depending on

whether or not m1 and m2 are both even or both odd.

We may choose an element β ′1 ∈ 3− p3 such that (β1, β
′

1) = 0 and (β ′1, β
′

1) = (β1, β1)

with {β1, β
′

1} forming a basis for 3. Write

β2 = µ ·β1+ ε ·β
′

1,

where µ, ε ∈ ok,p with at least one of them being a unit. Then

T = (β1, β1) ·

(
p2t1 pt1+t2µ′

pt1+t2µ p2t2(n(µ)+ n(ε))

)
.

The smallest valuation appearing is

2t1+ ordp(β1, β1) = m1,

and the determinant of T has valuation

ordp det(T ) = 2 ordp(β1, β1)+ 2(t1+ t2)+ ordp n(ε) = m1+m2+ 2 ordp(β2, β
′

1).

This proves (iv).
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Corollary 2.17. Suppose that b = [b1, b2] ∈ V2 is a linearly independent pair of vectors

with T = (b,b) as above. Then the pairing deg Z(b) := 〈Z(b1), Z(b2)〉 depends only on the

GL2(ok,p)-conjugacy class of T . More precisely, if T ∈ Herm2(ok) and T ∼ diag(pa, pb)

with a > b, then

deg Z(b) = 〈Z(b1), Z(b2)〉 =
a+ b

2
− p

(
pb
− 1

p− 1

)
=: µp(T ). (2.11)

Proof. This follows immediately from Theorem 2.14 and Lemma 2.16.

3. A closed-form formula for certain representation densities

Suppose that S ∈ Hermm(ok,p) and T ∈ Hermn(ok,p) for some integers m and n, where

we continue to work with the localization ok,p at an unramified prime p. Then we may

consider the representation density

α(S, T ) := lim
k→∞

p−kn(2m−n) #{x ∈ Mm,n(ok,p/pk) | t (x ′)Sx ≡ T (mod pk)}, (3.1)

which will play a crucial role in our determination of the Fourier coefficients of Eisenstein

series. As this quantity depends only on the GLn(ok,p)-conjugacy classes (respectively,

GLm(ok,p)-conjugacy classes) of T and S, respectively, we may suppose that they are

diagonal. Moreover, for a fixed S ∈ Hermm(ok,p), we write

Sr :=

(
S
Idr

)
∈ Hermm+r (ok,p).

As we will see shortly, there is a polynomial F(S, T ; X) ∈ Q[X ] such that

α(Sr , T ) = F(S, T ; (−p)−r ).

The aim of this section is to prove the following closed-form expression for F(S, T, X)
when T ∈ Herm2(ok,p) such that ordp det(T ) is even, and S = diag(p, 1). This can be seen

as the counterpart to Nagaoka’s result [12], which considers the case S = Id2.

Proposition 3.1. Set S = diag(p, 1). Then

(i)

F(S,Id2; X) =
(1− X)(X + p)

p
and

F
(
S,
(p

p
)
; X
)
=
(1− X)(X + p)

p
(X2
− (p2

− p)X + 1).

(ii) Let T = diag(pa, pb), where a > b > 0 and a+ b is even. Set

ε =

 0, if b is even,

1, if b is odd,
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and define

Fε(X) := F(S, pε ·Id2; X) =
(1− X)(X + p)

p
(X2
− (p2

− p)X + 1)ε .

Then

F(S, T ; X) = Fε(X)+
(X − 1)(X + p)

X − p

{
(pX)(1− p)

(pX)b− (pX)ε

pX − 1

+ X2(p− p−1 X)
X2b
− X2ε

X2− 1

+ (−pb+1(X − 1)+ pXb+1
− p−1 Xb+2) ·

Xa+1
− Xb+1

X2− 1

}
.

The proof of this proposition, which appears at the end of this subsection, amounts

to specializing Hironaka’s explicit formula [2, Theorem II] to the case at hand. We shall

briefly review Hironaka’s notation in the general case. First, given integers u > v > 0, we

define a symbol [
u
v

]
:=

∏u
i=1(1− (−p)−i )∏v

i=1(1− (−p)−i )
∏u−v

i=1 (1− (−p)−i )
.

Let

Zk
�0 := {a = (a1, . . . ak) ∈ Zk

| a1 > a2 > · · · ak > 0}

denote the set of non-increasing non-negative vectors in Zk . Given a = (a1, . . . , ak) ∈ Zk
�0,

we set

ã := (a1+ 1, . . . , ak + 1) ∈ Zk
�0,

and, for any i > 1, we let

a′i := #{ j | a j > i}.

Next, suppose that λ,µ ∈ Zk
�0. For an integer j > 1, we define1

I j (µ, λ) :=

min((λ̃)′j+1,µ
′
j )∑

i=µ′j+1

(−p)i(2(λ̃)
′

j+1+1−i)/2
·

(λ̃)′j+1−µ
′

j+1

(λ̃)′j+1− i

 ·
 (λ̃)′j − i

(λ̃)′j −µ
′

j

 .
We also define a partial order on Zk

�0 by declaring

a 6 b ⇐⇒ ai 6 bi for all i = 1, . . . , k.

Finally, we put

|a| :=
k∑

i=1

ai , and n(a) :=
k∑

i=1

(i − 1)ai .

With all of this notation in place, we can state Hironaka’s formula.

1There is a typographical error in the statement of Theorem II of [2]: the corresponding formula in
appears without the necessary tilde in the exponent of (−p).
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Theorem 3.2 ([2, Theorem II]). Let λ ∈ Zn
�0 and ξ ∈ Zm

�0 with m > n. Suppose that

Tλ ∈ Hermn(ok) is GLn(ok)-equivalent to diag(pλ1 , . . . , pλn ), and that Sξ is equivalent

to diag(pξ1 , . . . , pξm ). Then

α(Sξ , Tλ) =
∑
µ∈Zn

�0
µ6λ̃

(−1)|µ|(−p)−n(µ)+(n−m−1)|µ|+〈ξ ′,µ′〉
·

∏
j>1

I j (µ, λ),

where 〈ξ ′, µ′〉 =
∑

i>1 ξ
′

iµ
′

i .

We now specialize this formula to our case of interest: take n = 2, m = r + 2, λ = (a, b)
with a+ b even, and ξ = (1, 0, . . . , 0) ∈ Zr+2

�0 . If we put

T = Tλ := diag(pa, pb), and S = diag(p, 1),

then in particular Sr = S⊕ 1r = Sξ . Taking X := (−p)−r in Hironaka’s theorem gives us

the expression

F(S, T ; X) =
a+1∑
c=0

min(c,b+1)∑
d=0

(−1)d p−2d−c X c+d(−p)εc+εd ·

∏
j>1

I j
((c

d
)
, λ
)
, (3.2)

where εc is equal to 0 if c = 0, and is equal to 1 if c > 1; we define εd likewise.

Our first step towards giving a closed-form expression for (3.2) is the following table

of values for I j (·, ·), which is easily proven by explicit computation.

Lemma 3.3. Suppose that ` = (α, β), and (c, d) 6 (α+ 1, β + 1) are integers with c > d.

(i) If c > β + 1 > d, then

I j

((
c
d

)
, `

)
=



−p3, 1 6 j < d

p2
− p3, j = d, d < β + 1

p2, d + 1 6 j < β + 1

−p, β + 1 6 j < c (including d = β + 1)

1− p, j = c < α+ 1

1, j = c = α+ 1 or j > c.

(ii) If β > c > d, then

I j

((
c
d

)
, `

)
=



−p3, 1 6 j < d

p2
− p3, j = d

p2, d + 1 6 j < c

(1+ p2)(1− p−1), j = c

1, j > c.
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(iii) If c = d 6 β, then

I j

((
d
d

)
, `

)
=


−p3, 1 6 j < d

(1+ p2)(1− p), j = d

1, j > d.

(iv) If c = β + 1, d 6 β, then

I j

((
β + 1

d

)
, `

)
=



−p3, 1 6 j < d

p2
− p3, j = d

p2, d + 1 6 j < β + 1

−p−1
+ 1− p, j = β + 1 < α+ 1

1− p−1, j = β + 1 = α+ 1

1, j > β + 1.

(v) If c = d = β + 1, then

I j

((
β + 1
β + 1

)
, `

)
=


−p3, 1 6 j < β + 1

1− p, j = β + 1 < α+ 1

1, j > β + 1 or j = β + 1 = α+ 1.

Next, we give a pair of lemmas describing inductive formulae for the representation

densities.

Lemma 3.4. Suppose that T+ = diag(pa+2, pb) and T = diag(pa, pb) for a pair of

integers a, b such that a+ b is even. Then

F(S, T+; X)− F(S, T ; X) =
Xa+1(X + p)(X − 1)

X − p
(−pb+1(X − 1)+ pXb+1

− p−1 Xb+2),

where S = diag(p, 1).

Proof. Let 3 = (a+ 2, b) and λ = (a, b), and abbreviate

F(3) := F(S, T+, X) and F(λ) := F(S, T, X).

Note that, if c 6 a, then I j
((c

d
)
,3
)
= I j

((c
d
)
, λ
)
, and so

F(3)− F(λ) = −p−a Xa+1
b+1∑
d=0

(−1)d p−2d Xd(−p)εd

·

∏
j

I j

((
a+ 1

d

)
,3

)
−

∏
j

I j

((
a+ 1

d

)
, λ

)
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− p−(a+1)Xa+2
b+1∑
d=0

(−1)d p−2d Xd(−p)εd
∏

j

I j

((
a+ 2

d

)
,3

)

− p−(a+2)Xa+3
b+1∑
d=0

(−1)d p−2d Xd(−p)εd
∏

j

I j

((
a+ 3

d

)
,3

)

= −p−a Xa+1
b+1∑
d=0

(−1)d(−p)−2d+εd Xd

×

∏
j

I j

((
a+ 1

d

)
,3

)
−

∏
j

I j

((
a+ 1

d

)
, λ

)

+
X
p

∏
j

I j

((
a+ 2

d

)
,3

)
+

X2

p2

∏
j

I j

((
a+ 3

d

)
,3

).
The term in curly braces can be computed explicitly using Lemma 3.3, and the result

readily follows.

Lemma 3.5. Suppose that T+ = diag(pb+2, pb+2) and T = diag(pb+2, pb), and set S =
diag(p, 1). Then

F(S, T+; X)− F(S, T ; X) =
Xb+1(X + p)(X − 1)

X − p

×

[
((1+ p− p2)X − p)pb+1

+
p2
− X
p

Xb+3

]
.

Proof. Set 3 := (b+ 2, b+ 2) and λ = (b+ 2, b), and abbreviate

F(3) := F(S, T+; X), F(λ) := F(S, T ; X).

Note that, for c 6 b and any j , we have I j
((c

d
)
,3
)
= I j

((c
d
)
, λ
)
, and so

F(3)− F(λ) =
b+1∑
d=0

(−1)d(−p)−2d+1+ed Xd

×


b+3∑

c=b+1

p−c X c

 c∏
j=1

I j

((
c
d

)
,3

)
−

c∏
j=1

I j

((
c
d

)
, λ

)
+ (−1)b+2(−p)−2b−2 Xb+2


b+3∑

c=b+2

p−c X c
c∏

j=1

I j

((
c

b+ 2

)
,3

)
+ (−1)b+3(−p)−2b−4 Xb+3

p−(b+3)Xb+3
b+3∏
j=1

I j

((
b+ 3
b+ 3

)
,3

) ,
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where

ed :=

 0, if d = 0,

1, if d > 0.

The terms in curly braces can again be computed via Lemma 3.3, and the proposition

follows after straightforward algebraic manipulations.

Proof of Proposition 3.1. First, we note that the formulae for F(S,Id2; X) and

F(S, pId2; X), which correspond to the cases (a, b) = (0, 0) and (a, b) = (1, 1),
respectively, can be verified directly via (3.2), proving (i).

Next, for notational convenience, set

F(r, s) := F
(

S,
(

pr

ps

)
; X
)
,

where, as usual, r > s > 0, and r + s is even. By applying Lemmas 3.4 and 3.5 in sequence,

we have that, for any r > 0,

F(r + 2, r + 2)− F(r, r) =
Xr+1(X + p)(X − 1)

X − p

×{pr+1(1− p)(pX + 1)+ Xr+1(1+ X2)(p− p−1 X)},

which upon repeated application yields the formula

F(b, b) = F(ε, ε)+
(b−ε)/2∑

i=1

F(2i + ε, 2i + ε)− F(2i − 2+ ε, 2i − 2+ ε)

= F(ε, ε)+
(X + p)(X − 1)

X − p

[
(pX)(1− p)

(pX)b− (pX)ε

pX − 1

+ X2(p− p−1 X)
X2b
− X2ε

X2− 1

]
.

On the other hand, for a > b > 0 with a+ b even, the repeated application of Lemma 3.4

yields the relation

F(a, b) = F(b, b)+
(X + p)(X − 1)

X − p

[
−pb+1(X − 1)+ pXb+1

− p−1 Xb+2
]
·

Xa+1
− Xb+1

X2− 1
,

which then implies the proposition after a little straightforward algebra.

The motivation for our calculations so far is to facilitate computing the derivative

α′(S, T ) := −
[
∂

∂X
F(S, T ; X)

]
X=1

.

Corollary 3.6. Let T ∈ Herm2(ok,p) such that T ∼ diag(pa, pb), where a > b > 0 and a+
b is even. Then

p
(p+ 1)2

[
α′
(( p

1
)
, T
)
+

p2

1− p2α(Id2, T )

]
=

a+ b
2
− p

(
pb
− 1

p− 1

)
=: µp(T ).
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Proof. We recall Nagaoka’s formula [12] for the representation density for S = Id2:

F(Id2, T ; X) = (1+ p−1 X)(1− p−2 X)
b∑
`=0

(pX)`
a+b−2`∑

k=0

(−X)k .

Thus

α(Id2, T ) = F(Id2, T ; X)X=1 = (1+ p−1)(1− p−2)
pb+1
− 1

p− 1
.

On the other hand, the derivative α′
((1

p
)
, T
)

can be computed directly

from Proposition 3.1, and the proposition follows via straightforward algebraic

manipulation.

4. Global cycles and Eisenstein series

In this section, we turn to global aspects: we describe the Shimura varieties of interest

and their global cycles, the construction of the relevant Eisenstein series, and prove our

main theorem relating the two. Our presentation and approach is closely modelled on the

account given by Kudla and Rapoport in [8]: we shall refer freely to the results therein

and content ourselves in the present work to describing the necessary modifications to

their arguments as the need arises.

4.1. Preliminaries on Hermitian spaces

Here we recall some basic notions about Hermitian spaces. Let V be a Hermitian space

over k of signature (r, s). To every rational place ` 6∞, there is an associated invariant

inv`(V ) := (det(V ),1)` =

 1, if det(V ) ∈ N (k×` ),

−1, if det(V ) /∈ N (k×` ),

where det(V ) = det((v, v)) ∈ Q×` /N (k×` ) is the determinant of the matrix of inner products

of any basis v = {v1, . . . , vr+s} of V . In particular, inv∞(V ) = (−1)s , and, if ` is split, then

inv`(V ) = 1. These invariants satisfy the product formula

1 =
∏
`6∞

inv`(V ).

Using the same definition, we may also define the local invariant inv`(V`) = (det V`,1)`
for a Hermitian space V` over k`. When ` is a finite prime, two local Hermitian vector

spaces are isometric if and only if they have the same dimension and their invariants are

equal. If ` = ∞, there is a unique isometry class for each signature.

Suppose that we are given a collection of signs (ap)p6∞, almost all of which are equal

to 1, satisfying the product formula
∏

p6∞ ap = 1. Then, for any pair of integers (r, s)
such that (−1)s = a∞, there exists a Hermitian space V over k of signature (r, s) such

that inv`(V ) = a` for all `, and furthermore V is unique up to isometry; in other words,

the Hasse principle holds for Hermitian vector spaces.
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Finally, let L be an ok-Hermitian lattice, i.e., a projective ok-module of finite rank

equipped with an ok-Hermitian form, and set V = L ⊗ZQ. The genus [L] is the set of

isomorphism classes of lattices M ⊂ V such that

M ⊗Z Ẑ ' L ⊗Z Ẑ

as Hermitian ôk-modules. In other words, M ∈ [L] if and only if MQ = V , and, for every

finite prime `, there exists an element g` ∈ U (V`) such that g`(M`) = L`.
Suppose that either ` 6= 2 or ` = 2 is unramified in k, and that 3 is a self-dual

ok,`-lattice. Then, by [4], the set of self-dual lattices in V` = 3Q` forms a single

U (V`)-orbit. Furthermore, if ` is inert, then the existence of a self-dual lattice forces

inv`(V`) = 1.

When ` 6= 2 is an inert prime, we say that an ok,` lattice 3 is almost self-dual if

3#/3 ' F`2 , where 3# is the dual lattice. In this case, inv(3Q`) = −1, and the set of

almost self-dual lattices in 3Q` again forms a single orbit under the action of U (3Q`).

4.2. Global moduli problems and p-adic uniformizations

Fix an odd squarefree integer d whose prime factors are all inert in k. We define the

moduli space of almost-principally polarized abelian surfaces as follows.

Definition 4.1. Let Md
(1,1) denote the Deligne–Mumford stack over Spec(ok) defined by the

following moduli problem: for a scheme S over Spec(ok), the points Md
(1,1)(S) parametrize

the category of tuples A = (A, i A, λA), where

(i) A is an abelian surface over S;

(ii) i A : ok → End(A) is an ok-action satisfying the following signature (1, 1) condition:

on (the locally free OS-module) Lie(A), the induced action has characteristic

polynomial

det(T − i A(a)|Lie(A)) = (T − a)(T − a′) ∈ OS[T ] for all a ∈ ok; and (4.1)

(iii) λA is a polarization such that the induced Rosati involution ∗ satisfies

i A(a)∗ = i A(a′).

In addition, we require that

ker(λA) ⊂ A[d], and |ker(λA)| = d2.

Proposition 4.2. Md
(1,1) is flat over Spec(ok) and smooth over Spec ok[(d ·1)−1

].

Proof. This follows from combining the results of [8, § 2], for primes away from d, with [9]

for those primes dividing d.

We also set E to be the DM stack over Spec(ok) that parameterizes principally polarized

elliptic curves with multiplication by ok . More precisely, for a scheme S/ok , the points

E(S) parameterize tuples E = (E, iE , λE ), where

(i) E/S is an elliptic curve;
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(ii) iE : ok → End(E) satisfies the signature (1, 0) condition: concretely, this means that

on Lie(E),
iE (a)|Lie(E) = τS(a) for all a ∈ ok,

where τS : ok → OS is the structural morphism; and

(iii) λE is a principal polarization whose corresponding Rosati involution induces Galois

conjugation on iE (ok).

This is the stack denoted by M(1, 0)naive in the notation of [8]; in particular, it is proper

over Spec(ok) of relative dimension 0.

Finally, we set

M := E ×Spec ok Md
(1,1).

Next, we describe the Kudla–Rapoport cycles on M, as introduced in [8, § 2]. Given

a scheme S/ok and a point (E, A) = (E, iE , λE , A, i A, λA) ∈M(S), the space of special

homomorphisms

Homok ,S(E, A)

can be equipped with a positive-definite Hermitian form, defined by the formula

(x, y) := λ−1
E ◦ y∨ ◦ λA ◦ x ∈ Endok (E) ' ok . (4.2)

Definition 4.3. (i) Let m ∈ Z>0. We define the special cycle Z(m) to be the moduli space

over Spec ok whose S points parameterize triples

Z(m)(S) = {(E, A; y) | (E, A) ∈M(S) and y ∈ Homok ,S(E, A) with (y, y) = m}.

(ii) Suppose that T ∈ Herm2(ok). We define Z(T ) to be the moduli space over Spec ok
whose S points parameterize tuples

Z(T )(S) = {(E, A; y) | (E, A) ∈M(S) and y ∈ Homok ,S(E, A)2 with (y, y) = T },

where, for y = (y1, y2), the matrix (y, y) is the matrix of inner products

(y, y) :=
(
(y1, y1) (y1, y2)

(y2, y1) (y2, y2)

)
∈ Herm2(ok).

Both moduli problems are represented by DM stacks. Furthermore, the natural forgetful

maps to M are finite and unramified, see [8, Proposition 2.9], and so their images can

be viewed as cycles on M. In what follows, we shall abuse notation and use the symbols

Z(m) and Z(T ) to denote both the representing stacks and the corresponding cycles on

M, and hope that the intended meaning can be inferred from the context.

The aim of this section is to compute the arithmetic degree of a cycle Z(T ), which we

define as follows: suppose that

T =
(

m1 a
a′ m2

)
∈ Herm2(ok),

where m1,m2 ∈ Z>0. A glance at the definitions above reveals that

Z(m1) ×M Z(m2) =
∐

T ′=
(m1 ∗
∗ m2

)Z(T ′) ⊃ Z(T ).
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Suppose that T is positive definite. As we shall shortly see (see Lemma 4.9), we have

Z(T )Q = ∅, and so Z(T ) is supported in the fibres of finitely many finite primes. We then

define the arithmetic degree in this setting to be the Serre intersection multiplicity

d̂egZ(T ) :=
∑
p⊂ok

χ(Z(T )p,OZ(m1) ⊗
L
OM

OZ(m2)) log(N (p))

of Z(m1)×Z(m2) in Z(T ).
We begin by describing convenient decompositions of the space M and the special

cycles, in terms of genera of Hermitian lattices.

Definition 4.4.

1. Let Rd denote the set of isomorphism classes of genera [L], where L is a Hermitian

ok-lattice such that

(i) V := L ⊗ZQ is a Hermitian space of signature (1, 1);

(ii) L` := L ⊗Z Z` is a self-dual ok,`-lattice for all ` - d; and

(iii) for every `|d, we require that L` is an almost self-dual lattice; equivalently,

we require that L` is a maximal lattice in a non-split Hermitian space of

dimension 2 over k`.

2. Let R0 denote the set of isomorphism classes of genera [L0], where L is a self-dual

Hermitian ok-lattice and V0 = L0,Q is of signature (1, 0).

Here, we consider two genera [L] and [L ′] to be isomorphic if and only if there are

representatives L ∈ [L] and L ′ ∈ [L ′] such that L ' L ′ as Hermitian ok-modules.

Suppose that p is a prime, let Fp denote an algebraic closure of Fp, and fix a

trivialization

Ẑp(1) :=
∏
6̀=p

µ`∞(Fp) ' Ẑp

of the prime-to-p roots of unity over Fp. Given a geometric point A = (A, i A, λA) ∈

Md
(1,1)(Fp), the prime-to-p Tate module

Tap(A) :=
∏
` 6=p

Ta`(A)

is an ôk
p-module via the action induced by i A. The polarization λA determines a Weil

pairing

eλA : Ta
p(A)×Tap(A)→ Ẑp(1) ' Ẑp,

which in turn induces a Hermitian form (·, ·)λA by the formula

(x, y)λA =
1
2 (eλA (i(

√
1)(x), y)+

√
1 · eλA (x, y)).

Lemma 4.5. Suppose that p 6= 2.

(i) For every A ∈ Md
(1,1)(Fp), there is a unique genus [L(A)] ∈ Rd such that

Tap(A) ' L̂(A)p
:= L(A)⊗Z Ẑp

as Hermitian ôk
p-modules.
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(ii) The genus [L(A)] depends only on the connected component of Md
(1,1) that contains

the point A.

(iii) For each [L] ∈ Rd , there exists a point A ∈ Md
(1,1)(Fp) with [L(A)] ' [L].

Proof. (i) To prove uniqueness, suppose that L , L ′ ∈ Rd with L̂ p
' L̂ ′ p. Since L and L ′

have the same signature, the completions L ⊗R and L ′⊗R are also isomorphic, and so

the Hasse principle implies that

L ⊗ZQp ' L ′⊗ZQp.

By definition of Rd , the localizations L p and L ′p are self-dual lattices when p - d, and are

identified with the unique maximal lattice in the two-dimensional non-split Hermitian

space over kp when p|d. In either case, they are isometric, and so L and L ′ lie in the

same genus.

The existence claim is proved in [8, Proposition 2.12] when p - d. When p|d, the claim

follows from [10, Proposition 3.5]; see also the proof of Theorem 6.1 of [10]. The idea is

roughly as follows: one shows that there exists a point A′ ∈ Md
(1,1)(C) such that

Tap(A)⊗ZQ ' Tap(A′)⊗ZQ

as Hermitian k⊗Ap
f -modules. Note that the homology group V = H1(A′,Q) is a

Hermitian space of signature (1, 1). We may then find a lattice L ⊂ V by identifying

L ⊗Z Ẑp with Tap(A), and insisting that L p is self-dual (respectively, almost self-dual)

when p - d (respectively, p|d). One then needs to verify that the genus [L] is independent

of all choices, and that [L] ∈ Rd .

(ii) This follows immediately from the proof of [8, Proposition 2.12].

(iii) This follows from a straightforward modification of the proof of [8, Lemma 5.1].

Similar assertions hold for the stack E : for each geometric point E ∈ E(Fp), there is a

unique [L0(E)] ∈ R0 such that

Tap(E) ' L̂0(E)p,

which depends only on the connected component containing E , and every element of R0
appears in this way.

Our next task is to apply the p-adic uniformizations of Rapoport and Zink, which

relate M = E ×Md
(1,1) and the special cycles to the moduli spaces of p-divisible groups

that appeared in § 2. In the following, we fix an odd prime p. Let M̂ denote the formal

completion of Md
(1,1) along its fibre at p. By Lemma 4.5, we have a decomposition

M̂ =
∐
[L]∈Rd

M̂[L] (4.3)

into components that are characterized by the property that, for any geometric point

A ∈ M̂ [L](Fp), there exists an isomorphism Tap(A) ' L̂ p of ôk
p-Hermitian modules.

Fix a lattice L ∈ Rd as above, and set V = L ⊗ZQ. Let K p
= Stab(L̂ p) ⊂ U (V )(Ap

f )

denote the stabilizer of L̂ p.
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Next, we let V ′ be the Hermitian space of dimension 2 over k whose invariants differ

from those of V at exactly p and ∞. Fixing an isomorphism

V ′⊗QAp
f ' V ⊗QAp

f

induces an embedding

U (V ′)(Q) ↪→ U (V ′)(Ap
f ) ' U (V )(Ap

f ),

and U (V ′)(Q) acts on U (V )(Ap
f )/K p by left multiplication.

Finally, fix a geometric point A ∈ Md
(1,1)(Fp) with [L(A)] = [L]. When p|d, the

corresponding p-divisible group

X := A[p∞],

together with the induced polarization and ok,p-action, serves as a base point for the

Drinfeld upper half-plane D; see Definition 2.3. Noting that V ′p is split by construction,

the proof of Lemma 2.2 gives an identification

U (V ′)(Qp) ' {φ ∈ (Endok,p (X)⊗Zp Qp)
×
| φ∗λX = λX},

and consequently U (V ′)(Qp) acts on D by the formula φ · (X, i, λ, ρ) 7→ (X, i, λ, φ ◦ ρ).
With this notation in place, we obtain the following p-adic uniformization theorem,

which is a special case of the general results of [13]; details regarding this particular case

can be found in [10, Theorem 6.11].

Theorem 4.6. Suppose that p|d, so in particular p 6= 2, and let W = W (Fp) denote the

ring of Witt vectors. Then there is an isomorphism of formal stacks

M̂ [L]×ok,p Spf W ' [U (V ′)(Q)\D× (U (V )(Ap
f )/K p)]. (4.4)

Completely analogous results hold for the stack E at an odd inert prime p: let L0 ∈ R0
be a lattice, and let Ê [L0] be the corresponding component of the formal completion
Ê , in analogy with (4.3). Fixing a geometric point E = (E, iE, λE) ∈ E(F), we have

isomorphisms

{φ ∈ Endok (E)
×

Q | φ
∗λE = λE} ' k1

' U (V0)(Q),

where k1 is the group of norm-1 elements of k, and V0 := L0⊗ZQ.

Let Y = E[p∞] denote the p-divisible group attached to E, which comes equipped with

the induced ok,p-action and principal polarization, and which serves as the base point for

the moduli space D0; see Definition 2.6. The reader is reminded that D0 ' Spf W .

By [8, Theorem 5.5], and in analogy with Theorem 4.6,

Ê [L0]×ok,p Spf W ' [U (V0)(Q)\D0×U (V0)(A
p
f )/K p

0 ], (4.5)

where K p
0 ⊂ U (V0)(A

p
f ) is the stabilizer of L̂0

p.

Remark 4.7. Fix an isomorphism V0 ' k, under which the lattice L0 is identified with a

fractional ideal a, and such that the Hermitian form is given by

(x, y) 7→
1

N (a)
xy′, x, y ∈ k;
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note that L0 determines the class of a in the ideal class group Cl(k). Under this

identification, we have U (V0)(A
p
f ) ' (A

p
k, f )

1, and the stabilizer K p
0 of L̂0

p is identified

with ôk
p,1. Recalling that D0 ' Spf W ,

Ê [L0]×ok,p Spf W ' [k1
\Ap,1

k, f /ôk
p,1
]. �

Let M̂ denote the formal completion of M = E ×ok Md
(1,1) along its fibre at p. We have

a decomposition
M̂ =

∐
[L0]∈R0
[L]∈Rd

M̂ [L0],[L],

where M̂ [L0],[L] := Ê [L0]× M̂ [L]. Combining (4.4) and (4.5) yields the p-adic

uniformization

M̂ [L0],[L]×Spf W

' [U (V0)(Q)×U (V ′)(Q)\(D0×U (V0)(A
p
f )/K p

0 )× (D×U (V )(Ap
f )/K p)].

We now turn to the p-adic uniformization of the special cycles. Suppose that T ∈
Herm2(ok), let Ẑ(T ) be the formal completion along its fibre at p, and let

Ẑ(T )[L0],[L] := Ẑ(T ) ×M̂ M̂ [L0],[L]

denote the component corresponding to the pair of genera ([L0], [L]). As before, we fix a

pair of base points (E,A) ∈ M̂ [L0],[L](F), with corresponding p-divisible groups (Y,X).
By considering local invariants, one can check that there is an isomorphism of Hermitian

spaces

V ′ ' Homok (E,A)Q, (4.6)

where V ′ is the Hermitian space whose invariants differ from those of V = LQ at exactly

p and ∞, and the Hermitian form on Homok (E,A)Q is given by (4.2).

Given an element x ∈ V ′, we may use (4.6) and take the corresponding completions to

obtain elements

Tap(x) ∈ Homk⊗Ap
f
(Tap(E)Q,Tap(A)Q) and x p ∈ Homok,p (Y,X)Qp = V.

The following proposition is proved in the same way as [8, Proposition 6.3].

Proposition 4.8. Let T ∈ Herm2(ok), and as usual, suppose that p|d. Then there is an

isomorphism

Ẑ(T )[L0],[L]×ok,p Spf W '

U (V ′)(Q)×U (V0)(Q)
∖∐

g

∐
g0

∐
x∈�(T,g,g0)

Z(xp)

 ,
where g and g0 range over U (V )(Ap

f )/K p and U (V0)(A
p
f )/K p

0 , respectively,

�(T, g, g0)

:= {x = [x1, x2] ∈ (V ′)2 | (x, x) = T and g−1
◦Tap(xi ) ◦ g0 ∈ Hom(L0, L)⊗ Ẑp

},

and Z(xp) is the local cycle corresponding to xp = [x1,p, x2,p] as in Definition 2.7.
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Next, we collect some information regarding the support of a special cycle Z(T ).

Lemma 4.9. Suppose that T ∈ Herm2(ok) is positive definite, and set

Diff(T ) := {` - d inert, ord` det T odd}
∐
{` | d, ord` det T even}.

Also, let VT denote the vector space k2 with Hermitian form given by the matrix T .

(i) The generic fibre Z(T )Q is empty.

(ii) Suppose that Z(T )(Fv) 6= ∅. Then, for all inert ` 6= v, we have inv` VT = −1 if `|d
and inv` VT = 1 if ` - d.

(iii) If #Diff(T ) > 1, then Z(T ) = ∅.

(iv) If Diff(T ) = {`} is a single odd inert prime, then (a) the support of Z(T ) is contained

in the fibre M` at `; and (b) we have a decomposition

Ẑ(T ) =
∐
[L0]∈R0

∐
[L]∈Rd

L⊗A`f'VT⊗A`f

Ẑ(T )[L0],[L]. (4.7)

Proof. We argue as in [8, Proposition 2.22]. Suppose that F is an algebraically closed

field, and that (E, A, x) ∈ Z(T )(F) is a geometric point. Since T is non-degenerate, the

pair x = [x1, x2] determines an isomorphism

VT ' Homok (E, A)Q

of Hermitian spaces.

If F = C, then we have an embedding

VT ' Homok (E, A)Q ↪→ Homok (H1(E,Q), H1(A,Q)) ' H1(A,Q),

where H1(A,Q) is endowed with the unique Hermitian form (·, ·) such that the Riemann

form 〈·, ·〉λA induced by λA satisfies〈
i(
√
1)x, y

〉
λA
=

1
2 trk/Q(x, y).

The signature of H1(A,Q) is (1, 1) by the signature condition (2.7), while the signature

of VT is (2, 0) by assumption; hence we obtain a contradiction that proves (i).
Suppose next that F has characteristic v > 0, so that

VT (Avf ) ' HomAvk, f
(Tav(E)Q,Tav(A)Q). (4.8)

Let ` 6= v be an inert prime. Then, if ` - d, the space VT,` contains a self-dual lattice,

and hence inv` VT = 1; if `|d, then VT,` is the non-split Hermitian space over k`, and so

inv` VT = −1. This proves (ii), from which (iii) and the statement regarding the support

of Z(T ) in (iv) follow easily.

Finally, it follows from (4.8) and the definition of the component Ẑ(T )[L0],[L] that there

is a decomposition

Ẑ(T ) =
∐
[L0],[L]

Ẑ(T )[L0],[L],
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where the union is over genera [L0] and [L] in R0 and Rd , respectively, such that

Hom(L0, L)⊗ZA`f ' VT ⊗QA`f .

However, note that there is an isomorphism of k-Hermitian spaces

Hom(L0, L)Q ' LQ,

since

det(Hom(L0, L)Q) = det(L0,Q)
2 det(LQ) ≡ det(LQ) mod N (k×).

Thus

Hom(L0, L)⊗ZA`f ' VT ⊗Q A`f ⇐⇒ L ⊗ZA`f ' VT ⊗Q A`f ,
and the second part of (iv) follows immediately.

Let T ∈ Herm2(ok) be positive definite with Diff(T ) = {p}, where p|d. By the previous

lemma, we may restrict our attention to lattices L such that L ⊗ZAp
f ' VT ⊗Q Ap

f .

Viewing L̂ p
= L ⊗Z Ẑp as an adèlic lattice in VT ⊗Ap

f , we define the Schwarz function

ϕ
′p
L ∈ S ((VT ⊗Ap

f )
2) := characteristic function of (L̂ p)2.

Let K ′p ⊂ U (VT )(A
p
f ) be the stabilizer of L̂ p, and write

U (VT )(A
p
f ) =

∐
j

U (VT )(Q)h j K ′p, h j ∈ U (VT )(A
p
f ). (4.9)

Finally, we define 0′j := U (VT )(Q)∩ h j K ′ph−1
j .

Theorem 4.10. Suppose that T ∈ Herm2(ok) is positive definite with Diff(T ) = {p} for p|d.

Let [L] ∈ Rd with L ⊗Ap
f ' VT ⊗Ap

f , and fix any [L0] ∈ R0. Then, with notation as in

the previous paragraph,

d̂egZ(T )[L0],[L] =
h(k)

|o×k |2
o(1)−1

·µp(T ) ·


∑

j

∑
x∈(VT )

2

h(x)=T
mod 0′j

ϕ
′p
L (h

−1
j x)

 · log p2,

where o(1) is the number of prime factors of the discriminant 1 of k, and µp(T ) is the

quantity defined in (2.11).

Proof. We may fix isomorphisms:

Hom(L0, L)⊗Ap
f ' L ⊗Ap

f ' VT ⊗Ap
f . (4.10)

In particular, the invariants of VT differ from those of V := L ⊗Q at exactly p and ∞.

Thus V ′ = VT in the notation of Proposition 4.8, and so

Ẑ(T )[L0],[L]×Spf W '

U (VT )(Q)×U (V0)(Q)
∖∐

g,g0

∐
x∈�(T,g,g0)

Z(xp)

 ,
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where, for x ∈ VT , we let x p denote the image of x in Hom(L0, L)⊗Ap
f in (4.10) above,

and

�(T, g, g0) := {x = [x1, x2] ∈ (VT )
2
| (x, x) = T and g−1

◦ (xi )
p
◦ g0 ∈ Hom(L0, L)⊗ Ẑp

}.

For a given pair x = [x1, x2] ∈ �(T, g, g0), we have already computed the degree of the

local cycle Z(xp); indeed, Corollary 2.17 tells us that

χ(Z(T )p,OZ(x1,p)⊗
LOZ(x2,p)) = 〈Z(x1,p), Z(x2,p)〉 = µp(T ),

which in particular depends only on T . Thus

d̂egZ(T )[L0],[L] = µp(T ) · #

[
U (VT )(Q)×U (V0)(Q)

∖∐
g,g0

�(T, g, g0)

]
· log p2,

where, on the right, we need to compute the ‘stacky cardinality’.

Fixing momentarily an element g0 ∈ U (V0)(A
p
f ) = (A

p
k, f )
×,1, we first compute the

cardinality

#

[
U (VT )(Q)

∖ ∐
g∈U (V )(Ap

f )/K p

�(T, g, g0)

]
(4.11)

where, as we recall, K p
⊂ U (V )(Ap

f ) is the stabilizer of L̂ p
= L ⊗ Ẑp, and hence is

identified with K ′p ⊂ U (VT )(A
p
f ). Without loss of generality, we may normalize (4.10) so

that L̂ p is identified with

g0 ·Hom(L0, L)⊗Z Ẑp,

and so the quantity in (4.11) then becomes

#

[
U (VT )(Q)

∖ ∐
g∈U (VT )(Ap

f )/K ′p

{x ∈ (VT )
2
| (x, x) = T and x ∈ (g · L̂ p)2}

]
. (4.12)

Since T is non-degenerate, the stabilizer of any x appearing in (4.12) is trivial, and so

(4.12) =
∑

j

∑
x∈(VT )

2

(x,x)=T
mod 0′j

ϕ
′p
L (h

−1
j x).

Note that this quantity is independent of g0, L0, the choice of representative L in its

genus [L], and the choices of isomorphisms in (4.10).

On the other hand,

U (V0)(Q)\U (V0)(A
p
f )/K p

0 ' k×,1\(Ap
k, f )

1/ôk
p,1,

and the latter double quotient is easily seen to be isomorphic to Cl(k)2, where Cl(k) is

the class group. Since the 2-torsion in Cl(k) has order 2o(1)−1, the order of Cl(k)2 is

h(k)/2o(1)−1, and so (taking automorphisms into account)

#[U (V0)(Q)\U (V0)(A
p
f )/K p

] = #[k×,1\Ap,1
k, f /ôk

p,1
] =

h(k)
|o×k | 2o(1)−1

.

Combining these calculations yields the proposition.
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4.3. Non-degenerate Fourier coefficients of Siegel Eisenstein series

In this section, we recall some general definitions and formulae for the Eisenstein series

attached to unitary groups that are of interest for our main theorem. Let G = U (n, n) be

the quasi-split unitary group, and let P be the standard Siegel parabolic; we view both

as algebraic groups defined over Q.

Fix a multiplicative character η : A×k → C× whose restriction to A×Q corresponds to the

quadratic character χk attached to the field extension k/Q. We also let ψ : A = AQ→ C×
denote the standard additive character that is trivial on Ẑ and Q.

Central to our investigation is a family of degenerate principal series representations,

parameterized by a variable s ∈ C, and defined via smooth normalized induction:

I (s, η) := IndG(A)
P(A)(η ◦ det)|det|sA.

A holomorphic section is a family of vectors 8(s, ·) ∈ I (s, η) parameterized by s ∈ C such

that, for each g ∈ G(A), the assignment

s 7→ 8(s, g)

is holomorphic as a function of s; for such a section 8, we form the Eisenstein series

E(g, s,8) :=
∑

γ∈P(Q)\G(Q)
8(s, γ g), (4.13)

at least for Re(s) sufficiently large.

The aim of this section is to collect information about the Fourier coefficient ET (g, s,8)
for a non-degenerate matrix T ∈ Hermn(ok). When Re(s) is sufficiently large and 8 =

⊗8v is factorizable, there is a product expansion

ET (g, s,8) =
∏
v6∞

WT,v(gv, s,8v) (4.14)

in terms of the local Whittaker functions

WT,v(gv, s,8v) :=
∫

Hermn(kv)
8v

((
1n

−1n

)
· b · gv, s

)
ψv(−tr(T b)) db,

where db is the additive Haar measure on Hermn(kv) normalized to be self-dual with

respect to the pairing (n1, n2) 7→ ψv(tr(n1n2)). Each Whittaker function is entire in s.

Furthermore, for any sufficiently large finite set Σ of places, there is an L-function LΣ (s)
such that the expression

ET (g, s,8) = LΣ (s)−1
·

∏
v∈Σ

WT,v(gv, s,8v) (4.15)

furnishes a meromorphic continuation of (4.14) to all s ∈ C that is holomorphic for

Re(s) > 0; see [8, § 8] or [16].

Note that any standard section 8 is determined by its value 8(0, ·) ∈ I (0, η), and so

we would like to understand this latter space as a representation of G(A). We begin by
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describing the local case: let Vv be an n-dimensional Hermitian space over the local field

kv, for some place v, and let S(V n
v ) denote the space of Schwarz functions on V n

v . We

obtain a map

Rv : S(V n
v )→ Iv(0, ηv) = IndG(kv)

P(kv)(ηv(det)), where Rv(ϕv)(gv) = (ωv(gv)ϕv)(0),

and ωv is the local Weil representation. If Rv(Vv) is the image of this map, there is a

decomposition

Iv(0, ηv) =
⊕
Vv

Rv(Vv)

into irreducible components; see [11]. Here, the sum is over isomorphism classes of

Hermitian space Vv of dimension n, and so there are either 1, 2, or n+ 1 summands,

corresponding to the cases v split, v non-split, and v = ∞, respectively. Given a Schwarz

function ϕv ∈ S(V n
v ), we let 8ϕv (s) denote the unique standard section of Iv(s, ηv)

such that 8ϕv (0, ·) = Rv(ϕv); the section 8ϕv is called the Siegel–Weil standard section

attached to ϕv.

Proposition 4.11 [8, Proposition 10.1]. Suppose that v is a finite prime, ϕv is the

characteristic function of (Lv)n for an ok,v Hermitian lattice Lv of rank n, and 8v(s)
is the associated Siegel–Weil standard section. Then, for r ∈ Z>0,

WT,v(e, r,8v) = γv(Vv)n |N (det S)|n/2v |1|
e
vαv(Sr , T ),

where

(i) S is any matrix representing the Hermitian form on Lv;

(ii) αv(Sr , T ) is the representation density as in (3.1);

(iii) 1 is the discriminant of k and e := 1
4 n(3n+ 4r − 1); and

(iv) γv(Vv) is an eighth root of unity depending only on Vv = Lv ⊗ZQ; see [8,

Equation 10.3].

In particular,

W ′T,v(e, 0,8v) = γv(Vv)n|N (det S)|n/2v |1|
e
vα
′
v(S, T ) · log v.

Passing to the global picture, we observe that I (0, η) = ⊗′ Iv(0, ηv) can be decomposed

as a restricted tensor product: a pure tensor 8 = ⊗8v lies in I (0, η) if and only if, for

almost all v, the local component 8v is the indicator function of G(Zv). As a consequence,

we may write

I (0, η) =
⊕
C

R(C),

where the sum on C is over isomorphism classes of Hermitian spaces over Ak of rank

n, such that invv(C⊗Ak kv) = 1 for almost all v. If
∏
v invv(Cv) = 1, then there exists

a Hermitian space V over k such that C = V ⊗k Ak , and in this case we say that C is

coherent.
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Theorem 4.12 (Extended Siegel–Weil formula, [3, Theorem 4.2]). Suppose that V is

an n-dimensional positive-definite Hermitian space over k, and let H = U (V). If ϕ ∈

S (V(A)n) is an adelic Schwarz function, we define

I(g, ϕ) :=
∫

H(Q)\H(A)

 ∑
x∈V(Q)n

ω(g)ϕ(h−1x)

 dh, g ∈ G(A). (4.16)

Here, the measure dh is the Haar measure normalized so that vol(H(Q)\H(A), dh) = 1.

Then
E(g, 0,8ϕ) = 2 I(g, ϕ),

where 8ϕ is the Siegel–Weil standard section corresponding to ϕ.

Specializing to the case n = 2, we now describe the Eisenstein series that figures in our

main theorem. Let L ∈ Rd be a lattice. We define a (non-standard) section 8∗L = ⊗8
∗

L ,`
as follows.

• If ` - d is a finite prime, set 8∗L ,`(s) to be the standard Siegel–Weil section attached to

the characteristic function ϕL ,` of (L`)2.

• If ` = ∞, take 8∗L ,∞(s) to be the Siegel–Weil section attached to the standard Gaussian

on the positive-definite Hermitian space (Cn)2.

• Suppose that `|d, so that in particular ` is odd. Let 8L ,` denote the Siegel–Weil

section attached to the characteristic function of (L`)2, and recall that inv` V` = −1.

Let V+` be the Hermitian space with inv` V+` = 1, and fix a self-dual lattice L+` inside it.

Denote its characteristic function of (L+` )
2 by ϕL+`

, and let 8L+`
(s) be the corresponding

Siegel–Weil section. We then define

8∗`(s) := 8L`(s)+ A`(s)8L+`
(s),

where2

A`(s) :=
1

2(1− `2)
(`s
− `−s).

Next, let
E(g, s, [L]) := E(g, s,8∗L)

be the corresponding Eisenstein series, which only depends on the genus [L]. We also

consider the ‘classicalized’ Eisenstein series, as follows. Let

H2 :=

{
z ∈ M2(C) | v(z) :=

1
2i
(z− t z̄) > 0

}
denote the Hermitian upper half-space; for z ∈ H2, we may write v(z) = a · t ā for some

a ∈ GL2(C), and we set u(z) := 1
2 (z+

t z̄). Define elements

gz,∞ =

(
Id2 u(z)

Id2

)(
a

t ā−1

)
∈ G(R), and gz = (gz,∞, 1, 1, . . .) ∈ G(A),

and set
E(z, s, [L]) := η∞(det a)−1 det(v)−1E(gz, s, [L]).

2It will turn out that for our purposes, only the values A`(0) = 0 and A′
`
(0) = log `

1−`2 will be relevant, and

so one may instead take any other function that yields the same values when it and its derivative are
evaluated at s = 0; we have chosen this particular function only for the sake of concreteness.
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This normalization ensures that E(z, s, [L]) transforms as a Hermitian modular form of

weight 2 on H2.

Let T ∈ Herm2(ok) be a positive-definite matrix. As was the case in the previous section,

it turns out that we are most interested in genera [L] ∈ Rd such that L ⊗ZAp
f ' VT ⊗Q

Ap
f ; we fix such a lattice L and an isomorphism in the following discussion.

Let V := L ⊗Q; i.e. V is, up to isomorphism, the unique Hermitian space of signature

(1, 1) whose invariants differ from those of VT at exactly p and∞. Fix a non-zero element

b ∈
∧4

Q Herm2(k)∗, and non-zero elements

aV ∈

8∧
Q
(V 2)∗ and aVT ∈

8∧
Q
(V 2

T )
∗.

As explained in, for example, [8, § 10], these elements determine gauge forms ωV =

ω(aV ,b) on V and ωVT = ω(aVT ,b) on VT , which in turn induce factorizations

dh =
1
2

L(1, χk)
−1
∏
v

dvh and dhT =
1
2

L(1, χk)
−1
∏
v

dvhT (4.17)

of the Haar measures dh and dhT on U (V )(A) and U (VT )(A), respectively, in terms of

Tamagawa measures; for example, each term dvh is a measure on U (V )(Qv) determined

by ωV . We say that the gauge forms (or the respective decompositions of Haar measures)

are matched if ωVT = γ
∗ωV for some isomorphism γ : VT ⊗QQ ∼

−→ V ⊗QQ.

We briefly recall the notation that we had set up in the previous section: we view L̂ p

as an adelic lattice in VT ⊗Ap
f , and define a Schwarz function

ϕ
′p
L ∈ S ((VT ⊗Ap

f )
2) (4.18)

as the characteristic function of (L̂ p)2. Put

K ′p := StabU (VT )(Ap
f )
(L̂ p) ⊂ U (VT )(A

p
f ),

and, writing

U (VT )(A
p
f ) =

∐
j

U (VT )(Q)h j K ′p, (4.19)

set 0′j = h j K ′ph−1
j ∩U (VT )(Q).

Theorem 4.13. Let [L] ∈ Rd , and suppose that T ∈ Herm2(ok) is positive definite. Set

Diff(T ) := {` - d inert, ord` det T odd}
⋃
{` | d, ord` det T even}.

(i) Suppose that p ∈ Diff(T ), but L ⊗ZAp
f 6' VT ⊗Q Ap

f . Then E ′T (z, 0, [L]) = 0.

Moreover, this is the case whenever # Diff(T ) > 2.

(ii) If Diff(T ) = {p} is an inert prime with p|d, and L ⊗ZAp
f ' VT ⊗Q Ap

f , then

E ′T (z, 0, [L]) = C[L]
∑

j

∑
x∈V 2

T
(x,x)=T
mod 0′j

ϕ
′p
L (h

−1
j x) ·µp(T ) log(p)qT , (4.20)
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where qT
:= e2π i Tr(T z) and

C[L] = L(1, χk)
−1 vol(U (VT )(R), d∞hT ) vol(KL , d∞h).

Here, KL ⊂ U (V )(A f ) is the stabilizer of L̂ = L ⊗ Ẑ, and the measures d∞hT
and d∞h =

∏
v 6=∞ dvh are components of a matched decomposition as in (4.17).

Moreover, the constant C[L] is independent of T and all choices appearing in the

decompositions of Haar measures.

Proof. Taking g = gz ∈ G(A) as above, let Σ be a sufficiently large finite set of primes

containing all the primes in Diff(T ) so that, upon taking the derivative in (4.15), we

obtain

E′T (g, 0, [L]) = −
LΣ,

′

(0)
LΣ (0)2

∏
v∈Σ

WT,v(gv, 0,8∗v)

+ LΣ (0)−1
·

∑
v∈Σ

W ′T,v(gv, 0,8∗v)
∏
v′∈Σ
v′ 6=v

WT,v′(gv′ , 0,8∗v′)

 (4.21)

for [L] ∈ Rd and 8∗ = 8∗L . If v is a finite prime such that L ⊗ZQv 6' VT ⊗QQv, then

Lv does not represent T , and so the representation density αv(S, T ) vanishes, where S is

any matrix representing the Hermitian form on L. By Proposition 4.11,

WT,v(gz,v, 0,8∗v) = WT,v(e, 0,8∗v) = 0

as well. Thus, if there are at least two such primes, then E′T (g, 0, [L]) = 0, as each term

in (4.21) vanishes.

By the definition of Rd , we have that L ⊗ZQ` 6' VT ⊗QQ` for any prime ` ∈ Diff(T ),
since inv`(L ⊗Q) = 1 when ` - d, and inv`(L ⊗Q) = −1 when ` | d. This proves the first

statement.

Thus, from this point on, we suppose that Diff(T ) = {p} for some p|d, and we fix a

lattice [L] ∈ Rd with an isomorphism L ⊗ZAp
f ' VT ⊗Q Ap

f . Then (4.21) gives

E′T (g, 0, [L]) = W ′T,p(e, 0,8∗p) · L
Σ (0)−1

∏
v∈Σ
v 6=p

WT,v(gv, 0,8∗v). (4.22)

By using Proposition 4.11 and the definition of 8∗p,

W ′T,p(e, 0,8∗p) = γp(V−p )
2
|p2
|pα
′
p
(( 1

p
)
, T
)

log p+ γp(V+p )
2 A′p(0)αp

((
1

1

)
, T
)

= log p ·

(
γp(V−p )

2

p2 α′p
(( 1

p
)
, T
)
+
γp(V+p )

2

1− p2 αp
((

1
1

)
, T
))
.
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It is easily seen that γp(V+p ) = −γp(V−p ); see [8, Equation (10.3)]. By Corollary 3.6,

W ′T,p(e, 0,8∗L ,p) = γp(V+p )
2
·
(p+ 1)2

p3 ·µp(T ) · log p. (4.23)

We may compute the remaining terms in (4.22) via the Siegel–Weil formula. Let

L ⊂ VT (4.24)

be a lattice such that L⊗ Ẑp is identified with L ⊗ Ẑp and Lp is self-dual. We then have

a Schwarz function

ϕ′ = ϕ′∞⊗ϕ
′

f ∈ S (VT (A)2),

where ϕ′f is the indicator function of (L⊗ Ẑ)2 in (VT ⊗A f )
2, and ϕ′∞ is the standard

Gaussian on the positive-definite space (VT ⊗R)2 ' C4. Note that ϕ
′p
f = ϕ

′p
L as before.

Let 8′ = ⊗8′v be the corresponding standard Siegel–Weil section. It follows

immediately from definitions that

WT,v(gv, 0,8′v) = WT,v(gv, 0,8∗v) for all v 6= p.

Combining this fact with the extended Siegel–Weil formula (Theorem 4.12) and the

product expansion (4.15), we have, for any g ∈ G(A),

2IT (g, ϕ′) = ET (g, 0,8′) = LΣ (0)−1

∏
v∈Σ
v 6=p

WT,v(gv, 0,8∗v)

WT,p(gp, 0,8′p),

where

IT (g, ϕ′) =
∫

HT (Q)\HT (A)

 ∑
x∈(VT )

2

(x,x)=T

ω(g)ϕ′(h−1
T x)

 dhT

is the T th Fourier coefficient of the theta integral (4.16), and, for ease of notation, we

have abbreviated U (VT ) = HT . Writing

HT (A) =
∐

j

HT (Q) · h j · K ′p · HT (R) · HT (Qp)

for a collection of elements h j ∈ HT (A
p
f ) appearing in (4.19), we then have

IT (g, ϕT ) =
∑

j

∑
x∈(VT )

2

(x,x)=T
mod 0′j

 ∫
K ′p HT (R)HT (Qp)

ω(g)ϕ′(h−1
T h−1

j x) dhT

 .

We again specialize to the case

g = gz = (gz,∞, 1, 1, . . .) ∈ G(A).
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Recall that we had chosen matched factorizations

d hT =
1
2

L(1, χk)
−1
∏
v

dvhT and d h =
1
2

L(1, χk)
−1
∏
v

dvh

for the Haar measures dhT and dh on HT (A) and H(A), respectively. If we set dp,∞ hT =∏
v 6=p,∞ dvhT , then, by definition of K ′p and ϕ′,∫

K ′p
ϕ
′p
f (h
−1h−1

j x) dp,∞h = ϕ′pf (h
−1
j x) vol(K ′p, dp,∞hT ) = ϕ

′p
L (h

−1
j x) vol(K p

L , dp,∞h),

where we use part (i) of Lemma 4.14 below in the second equality. On the other

hand, a straightforward computation using the archimedean Weil representation, see [8,

Equation (7.4)], yields∫
HT (R)

ω(gz,∞)ϕ
′
∞(h

−1
T h−1

j x) d∞hT = vol(HT (R), d∞hT )η∞(det a) det(v)qT .

Combining these calculations with part (ii) of Lemma 4.14 below gives

IT (gz, ϕ
′) = C

∑
j


∑

x∈(VT )
2

(x,x)=T
mod 0′j

ϕ
′p
f (x)

 η∞(det a) det(v)WT,p(e, 0,8′p)q
T , (4.25)

where

C = 1
2 L(1, χk)

−1 vol(HT (R), d∞hT ) vol(KL , d∞h).

The proof of [8, Lemma 9.5] implies that C is independent of T as well as the choices

involved in the decompositions of Haar measures; indeed this constant can be written as

a ratio of volumes for which the independence is immediately evident.

Using (4.23) and (4.25),

E′(gz, 0, [L]) = W ′T,p(e, 0,8∗p)
2 IT (gz, ϕ

′)

WT,p(e, 0,8′p)

= 2C ·µp(T ) ·

(∑
x
ϕ
′p
f (x)

)
· η∞(det a) · det(v) · log p · qT .

The result now follows from rewriting the above in terms of the classicalized Eisenstein

series E(z, 0, [L]).

It remains to prove the following lemma.

Lemma 4.14. With the notation as in the previous theorem, we have

(i) vol(K p
L , d p,∞h) = vol(K ′p, d p,∞hT ); and
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(ii) ∫
HT (Qp)

ϕ′(h−1
T x)dphT = γp(V+p )

−2 p3

(p+ 1)2
vol(KL ,p, dph) ·WT,p(e, 0,8′p),

where x ∈ (VT ⊗Qp)
2 with (x, x) = T .

Proof. We use the following expression, found in [8, Lemma 10.4], for the volume of the

stabilizer Kv = KL ,v of the localized lattice Lv at a finite place v. Fix a basis e = {e1, e2}

for Lv, with S = (e, e) the corresponding matrix of inner products. We also fix a Zv-basis

f = { f1, f2, f3, f4} for o2
k,v, so that

e⊗ f := {ei ⊗ f j | i = 1, 2, j = 1, . . . , 4}

is a Zv-basis for L2
v. Finally, fix a Zv-basis c for Herm2(ok,v) whose span is a self-dual

lattice. Then

vol(Kv, dvh) = Lv(1, χk)
|a(e⊗ f)|v
|b(c)|v

|1|vαv(S, S), (4.26)

where a ∈
∧8

Q(V
2)∗ and b ∈

∧4
Q Herm2(ok)

∗ were the fixed non-zero vectors used to

construct the local measure dvh on H(Qv) = U (V )(Qv). Similarly, if K ′ ⊂ HT (A f ) is

the stabilizer of the lattice L ⊂ VT as in (4.24), then

vol(K ′v, dvhT ) = Lv(1, χk)
|a′(e⊗ f)|v
|b(c)|v

|1|vαv(S′, S′),

where a′ = γ ∗a is the pullback under an isomorphism γ : VT ⊗Q ∼
−→ V ⊗Q, and S′ =

(e′, e′) is the matrix of inner products of any basis e′ of Lv. Furthermore, Kudla and

Rapoport compute
|a′(e′⊗ f )|v
|a(e⊗ f )|v

=
|det S′|2v
|det S|2v

, (4.27)

and then conclude in [8, Lemma 10.4] that

vol(K ′v, dvhT )

vol(Kv, dvh)
=
|det S′|2vαv(S

′, S′)
|det S|2vαv(S, S)

. (4.28)

If v 6= p, then Lv ' Lv. In particular, we may choose the bases x and x′ so that S = S′

in the above display, and from this (i) follows immediately.

To prove (ii), we apply a standard calculation relating orbital integrals and Whittaker

functionals, see the proof of [8, Lemma 10.4], and recall that here p is inert:∫
HT (Qp)

ϕ′(h−1
T x)dphT

= γp(V+)2L p(1, χk)
|a′(e′⊗ f )|p
|det S′|2p|b(c)|p

WT,p(e, 0,8′p)

= γp(V+)2L p(1, χk)
|a(e⊗ f )|p
|det S|2p|b(c)|p

WT,p(e, 0,8′p) [by (4.27)]

= γp(V+)2 · vol(K p, dph) · (|det S|2pαp(S, S))−1
· WT,p(e, 0,8′p) [by (4.26)].

https://doi.org/10.1017/S1474748015000109 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000109


944 S. Sankaran

By definition, L p is the maximal lattice in the non-split Hermitian space of dimension 2

over kp, and so we may choose a basis so that S =
(p

1
)
. A direct computation using

Hironaka’s formula (Theorem 3.2) gives the expression

αp
((p

1
)
,
(p

1
))
= p−1(p+ 1)2,

which, when combined with equation preceding it, yields the statement of the lemma.

By combining the above calculation with the geometric computations of § 4.2, we obtain

our main theorem, relating the arithmetic degree of a special cycle Z(T ) to the Eisenstein

series

E(z, s) :=
∑
[L]∈Rd

(C[L])−1E(z, s, [L]).

Corollary 4.15. Suppose that T ∈ Herm2(ok) is positive definite and that |Diff(T )| > 1
with Diff(T ) 6= {2}. Then

d̂egZ(T )qT
=

2h(k)
|o×k |

E ′T (z, 0).

Proof. If |Diff(T )| > 2, then the right-hand side vanishes by Theorem 4.13(i), and the

left-hand side vanishes by Lemma 4.9(iii).

Next, suppose that Diff(T ) = {p} for some p|d. Then, comparing Theorems 4.10

and 4.13,

d̂egZ(T )[L0],[L]qT
=

4h(k)
|o×k |2

o(1)
C−1
[L]E

′(z, 0, [L])

for any [L0] ∈ R0 and [L] ∈ Rd . Note that the right-hand side is independent of [L0].

Given a Hermitian space V0 of signature (1, 0) such that inv`(V0) = 1 for all inert `, there

is a single genus of self-dual lattices in V0; conversely, if L0 is self-dual, then inv`(L0⊗

Q) = 1 for all inert `. Thus, by counting the possibilities of the invariants of V0,

#R0 = #{V0 | inv` V0 = 1 for all ` inert}/isom. = 2o(dk )−1,

and so

d̂egZ(T )qT
=

∑
[L]∈Rd

∑
[L0]∈R0

d̂egZ(T )[L0],[L]qT

= 2o(1)−1
∑
[L]∈Rd

d̂egZ(T )[L0],[L]qT

=
2h(k)
|o×k |

E ′T (z, 0).

Finally, when Diff(T ) = {p} for some odd p - d, the desired result is exactly [8,

Theorem 11.9] applied to the case at hand.
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