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Computationally efficient real-time digital
predistortion architectures for envelope
tracking power amplifiers

pere l. gilabert and gabriel montoro

This paper presents and discusses two possible real-time digital predistortion (DPD) architectures suitable for envelope track-
ing (ET) power amplifiers (PAs) oriented at a final computationally efficient implementation in a field programmable gate
array (FPGA) device. In ET systems, by using a shaping function is possible to modulate the supply voltage according to differ-
ent criteria. One possibility is to use slower versions of the original RF signal’s envelope in order to relax the slew-rate (SR) and
bandwidth (BW) requirements of the envelope amplifier (EA) or drain modulator. The nonlinear distortion that arises when
performing ET with a supply voltage signal that follows both the original and the slow envelope will be presented, as well as the
DPD function capable of compensating for these unwanted effects. Finally, two different approaches for efficiently implement-
ing the DPD functions, a polynomial-based and a look-up table-based, will be discussed.
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I . I N T R O D U C T I O N

Alternatives to the classical Cartesian transmitter that uses
linear power amplifiers (PAs) with constant supply are being
investigated to overcome the poor power efficiency with
high peak-to-average power ratio (PAPR) signals. The
Doherty architecture, for example, has been adopted for base
stations, where several manufacturers (e.g. Freescale, NXP),
are offering PAs with an average efficiency up to 50% and
even more [1]. However, other promising structures such as
the envelope elimination and restoration (EE&R) [2, 3], the
envelope tracking (ET), or polar transmitters with delta-sigma
modulation [4] are still being considered as candidates to
overcome the Doherty PA efficiency. From the implemen-
tation point of view, ET is a very attractive technique
because it can be applied in conventional transmitters based
on linear RF amplification topologies by simply substituting
the classical static supply for a dynamic one.

One of the main constraints in the maximum efficiency
that can be achieved by ET transmitters regards the envelope
modulator of the envelope amplifier (EA), since the overall
efficiency of an ET architecture is the product between both
the PA and the EA power efficiency. The envelope bandwidth
(BW) is several times (theoretically is infinite) the BW of the
baseband complex modulated signal, which is critical when

considering current wideband signals with high PAPR.
There are already some companies, such as Nujira (www.
nujira.com), MaXentric (www.maxentric.com) or Quantance
(www.quantance.com) that are offering ET solutions with
average efficiencies above 60% for WCDMA and LTE signals.

One of the main challenges of the EA consists of supplying
the power required by the transistor at the same speed of the
signal’s envelope. In dual-band applications, for example, this
becomes even more challenging since the combined envelope
can present BWs more than 5 × the carrier separation.
Therefore, in order to relax the EA requirements, some sol-
utions have been proposed to reduce the BW and slew-rate
(SR) of the original signal’s envelope [5–8]. Unfortunately,
the use of a slower version of the envelope to supply the PA
drain not only degrades the overall efficiency but also results
in nonlinear distortion amplification. Despite the efficiency
and linearity degradation, the solution of supplying the PA
with a slower envelope can still be of interest in applications
where it is necessary to trade-off the BW and efficiency due
to the EA limitations. To compensate the nonlinear distortion
that arises when using the SR’s limited version of the original
envelope, it will be necessary to use a slow envelope-
dependent digital predistorter (SED-DPD) [5, 9, 10].

Therefore, this paper is organized as follows. The BW
versus efficiency trade-off in EAs will be discussed in
Section II. The design of the DPD that is required to compen-
sate for the nonlinear distortion that arises when supplying
with a slower version of the signal’s envelope, will be pre-
sented in Section III. Some field programmable gate array
(FPGA)-oriented implementation architectures for real-time
DPD will be discussed in Section IV. Finally, in Section V con-
clusions will be given.
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I I . D Y N A M I C S U P P L Y O F T H E P A
W I T H S L O W V E R S I O N S O F T H E
S I G N A L ’ S E N V E L O P E

In an ET system (see Fig. 1), the supply voltage is dynamically
adjusted to track the RF envelope at high instantaneous
power. The supply voltage can be shaped according to differ-
ent criteria. By means of a so called shaping function it is pos-
sible to accommodate the shape of the supply voltage (that
somehow must follow the instantaneous RF envelope) to
achieve the following objectives: optimum efficiency, isogain
[11–13] or SR and BW reduced shaping [14].

Focusing on this later objective, two different approaches
based on SR and BW reduction of the RF signal’s envelope
showed that these strategies are suitable to adapt the envelope
characteristics to the EA requirements or limitations at
the expenses of having efficiency degradation. On the one
hand, the method proposed in [5, 6] limits the BW of the

envelope iteratively, which may represent an issue in real
time applications. On the other hand, the method proposed
in [8] consists of a real-time algorithm where the resulting
signal is limited in SR but not in BW, making challenging
its amplification if only a switched mode EA is considered
or requiring a wide band if only a linear EA is considered.
Therefore, in [14], the SR reduction algorithm proposed in
[8] was modified in order to also restrict the BW of the result-
ing slow envelope. Moreover, due to its simplicity this algor-
ithm is suitable to be implemented in a digital signal
processor. Fig. 2 shows the original RF signal’s envelope, an
SR reduced version of the original envelope (SR reduced
envelope – SRRE) and a BW reduced version of the original
envelope (BW reduced envelope – BWRE) in both time and
frequency domains, respectively. The parameter N (defined
in [8]) is related to the maximum allowed increment in the
signal’s slope. For example, N ¼ 100 corresponds to an SR
reduction of 96% and BW reduction of 64% with respect to

Fig. 1. General block diagram of an ET PA with DPD.

Fig. 2. Waveforms and spectra of the envelope and its SR and BW limited versions [14].

188 pere l. gilabert and gabriel montoro

https://doi.org/10.1017/S1759078713000135 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078713000135


the original signal’s envelope. The results shown in Fig. 2 were
extracted from the implementation of this algorithm on a
FPGA Virtex-4 whose clock speed was set to 60 MHz.

As reported in [15], the efficiency decays more or less lin-
early with the BW reduction, while it presents a logarithmic
behavior with the SR reduction. As a consequence, when con-
sidering applications with high BW signals (e.g. dual-band
transmissions) it is possible to find a trade-off solution to
meet both SR and BW requirements of the EA while still
keeping a reasonably good drain efficiency figure.

Unfortunately, using the SR and BW limited envelope (or
simply slow envelope – Es) to supply the power transistor’s
drain generates a particular nonlinear distortion. Fig. 3
shows the AM–AM characteristics considering different
margins of Es values. As observed in Fig. 3, the ET PA
shows a nonlinear variant gain because the slow envelopes
used to supply the PA and the RF input signal are not univo-
cally related. Therefore, for a given input it is possible to have
a range of different outputs because it depends on the specific
value of the dynamic power supply. Therefore, the ET PA pre-
sents a SED nonlinear behavior.

I I I . D E S I G N O F A R E A L - T I M E D P D
F O R E T

The type of low-pass equivalent black-box behavioral model
required to characterize the nonlinear distortion that arises
when applying ET is dependent on the strategy (or shaping
function) followed to supply the PA. Therefore, on the one
hand, if the PA drain voltage follows the same shape (despite
being bounded at low-voltage levels) than the RF signal’s
envelope, typical behavioral models such as the memory poly-
nomial (MP) [7] can be used for DPD purposes. On the other
hand, if the slow envelope is used to supply the PA, then the
DPD has to include the information of the slow envelope in
order to be capable of compensating for this type of nonlinear
distortion.

For the case of using the original envelope, we can consider
the implementation of a DPD based on the simple MP model.
Following the notation in Fig. 1, the input–output relationship
of the MP DPD is defined as

x[n] =
∑N

i=0

u[n − ti]fi u[n − ti]| |( ), (1)

where nonlinear functions fi(.) can be described by poly-
nomials of order P

fi u[n − ti]| |( ) =
∑P

p=0

gpi u[n − ti]| |p = g0i + g1i u[n − ti]| |

+ · · · + gPi u[n − ti]| |P. (2)

As previously explained, when considering the slow envelope
to supply the PA, the nonlinear distortion that appears cannot
be compensated by simply using dynamic behavioral models
such as the MP [10]. Therefore, in [9] a dynamic SED behav-
ioral model is proposed to compensate for this type of non-
linear distortion. The input–output relationship of the
SED-DPD is defined as

x[n] =
∑M

j=0

∑Q

q=0

∑N

i=0

∑P

p=0

gpiqj Es[n − tj]
( )q

u[n − ti] u[n − ti]| |p,

(3)

where Es[n] is the SR-limited version of the original envelope,
u[n] is the input signal, tj and ti (with t0 ¼ 0) are the most
significant tap delays of the slow envelope and input signal,
respectively, contributing to the characterization of memory
effects.

Figure 4 shows linearized and unlinearized AM–AM
characteristics of an ET PA when supplying the PA with the
original envelope (MP DPD used) and with a slower version
of the original envelope (SED-DPD used). The linearity per-
formance in terms of out-of-band distortion compensation
of the SED-DPD can be observed in Fig. 5. These particular
results were measured on a test-bed based on instrumentation,
schematically depicted in Fig. 1 and described in [10]. The
Device under test (DUT) is a Cree Inc. Evaluation Board
CGH40006P-TB (GaN transistor) at 2 GHz operating at a
mean output power of 28 dBm. For the sake of simplicity, a
linear IC LT1210 was considered as the envelope driver. The
PAPR of the signals at baseband range from around 8 up to
11 dB, depending on the type of signal used (single-carrier
M-QAM or OFDM). In the case of the SED-DPD, we used
the following configuration: P ¼ 9, Q ¼ 2, M ¼ 3 and N ¼ 1
(alternatively, N ¼ 0).

Fig. 3. AM–AM characteristics of the PA when considering only three margins of Es (left) and taking into account all possible values of Es (right).
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Fig. 4. Linearized and unlinearized AM-AM characteristics of an ET PA considering: (a) the original envelope (left), (b) a slow envelope (right).

Fig. 5. Unlinearized and linearized (dynamic SED-DPD) output power spectra of a single-carrier 16-QAM (left) and OFDM 16-QAM (right) signals, respectively.

Fig. 6. Block diagram of the MP DPD (left) and the SED-DPD (right).
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I V . F P G A I M P L E M E N T A T I O N
A R C H I T E C T U R E S

The FPGA implementation of an MP DPD will follow the
structure presented in Fig. 6. Each branch represents one
nonlinear function expressed by means of a polynomial devel-
opment. To allow an accurate and efficient FPGA implemen-
tation of the MP DPD it is important to minimize the number
of arithmetic operations (counting both additions and multi-
plications) and minimize the accumulative error inside the
FPGA. Both issues can be addressed using the Horner’s rule
and this way limiting the number of consecutive complex
multiplications to a maximum of two. Moreover, as presented
in [16], in order to avoid a large variation in magnitude of the
polynomial coefficients (which requires a large number of bits
to preserve the precision of the computation) it is possible to
take the ratios of adjacent coefficients. As a consequence, with
a reformulation of (2) according to Horner’s rule, nonlinear
functions fi(.) can be described as

fi u[n − ti]| |( ) = g0i 1 + g1i

g0i
u[n − ti]| |

(
1 + · · ·

(

+
g P−1( )i
g P−2( )i

u[n − ti]| | 1 + gPi

g P−1( )i
u[n − ti]| |

( ))
· · ·

)
(4)

Therefore, taking into account the polynomial expression in
(2), where gpi [ C, it takes p + 1 real multiplications for
each monomial gpi u[n − ti]

∣∣ ∣∣ p and 2P additions (P complex

additions), resulting in P(P+7)/2 arithmetic operations for a
polynomial of degree P. While using the formulation in (4),
computation starts with the innermost parentheses using the
coefficients of the highest degree monomials and works
outward, each time multiplying the previous result by
u[n − ti]| | and adding the coefficient of the monomial of

the next lower degree. Now it takes 4P arithmetic operations
for a polynomial degree of P, which for high polynomial
orders, Horner’s algorithm results much more computationally
efficient. Figure 7 shows the structure of the nonlinear branches
of the MP DPD in Fig. 6. Alternatively, instead of using poly-
nomials to describe nonlinear functions fi(.) it would have
been possible to use basic predistortion cells (BPCs) [17]. A
BPC is composed of a RAM block acting as a look-up table
(LUT), an address calculator and complex multipliers.

In order to implement the dynamic SED-DPD in an FPGA
device, the polynomial model in (3) is expressed as a combi-
nation of several BPCs [9]:

x[n] = u[n] ×
∑P

p=0

gp000 × u[n]| |p

︸										︷︷										︸
G000

LUT (·)

+ · · · + Es[n]( )Q

× u[n] ×
∑P

p=0

gp0Q0 × u[n]| |p

︸										︷︷										︸
G0Q0

LUT (·)

+ · · · + u[n]

Fig. 7. Structure of one of the branches of the MP DPD (see Fig. 6) using Horner’s rule.
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×
∑P

p=0

gp00M × u[n]| |p

︸										︷︷										︸
G00M

LUT (·)

+ · · · + Es[n − tM]( )Q

× u[n] ×
∑P

p=0

gp0QM × u[n]| |p

︸											︷︷											︸
G0QM

LUT (·)

+ · · ·

+ u[n − tN ] ×
∑P

p=0

gpN00 × u[n − tN ]| |p

︸														︷︷														︸
GN00

LUT (·)

+ · · · + Es[n]( )Q × u[n − tN ]]

×
∑P

p=0

gpNQ0 × u[n − tN ]| |p

︸														︷︷														︸
GNQ0

LUT (·)

+ · · ·

+ u[n − tN ] ×
∑P

p=0

gpN0M × u[n − tN ]| |p

︸														︷︷														︸
GN0M

LUT (·)

+ · · · + Es[n − tM]( )Q × u[n − tN ]

×
∑P

p=0

gpNQM × u[n − tN ]| |p

︸															︷︷															︸
GNQM

LUT (·)

+,

(5)

which yields to the following expression of the SED-DPD:

x[n] =
∑M

j=0

∑Q

q=0

∑N

i=0

Es[n − tj]
( )q

u[n − ti] × Giqj
LUT u[n − ti]| |( )

(6)

with GLUT
iqj being complex LUT gains.

Figure 6 shows the general block diagram of the SED-DPD
architecture, where nonlinear functions fiqj (.) can be
expressed as a combination of BPCs. The number of BPCs
forming this SED-DPD is # BPCs¼ (Q + 1)(N + 1)(M + 1).
This structure requires less arithmetic operations than using
polynomials; however, it consumes more memory resources.

Figure 8 shows the basic structure of a BPC where a dual-
port RAM, with two independent sets of ports for simul-
taneous reading and writing, is used to allow the complex
LUT gains to be updated continuously without interrupting
the normal data transmission. Therefore, because of this
LUT-based architecture, it is possible to perform continuous
adaptation of the DPD function by means of the least-mean
squares (LMS) algorithm [17].

V . C O N C L U S I O N

In this paper, we have presented and discussed two computa-
tionally efficient design strategies for implementing real-time
DPD in a FPGA device when considering ET PAs. As dis-
cussed along the paper, when considering slow versions of
the original envelope to perform ET, the nonlinear distortion
that appears has to be compensated using DPD architectures
that depend not only on the input data and its memory, but
also on the drain voltage signal (slow envelope) and its
memory. Two efficient architectures to allow real-time
FPGA implementation of the DPD function have been pre-
sented. One solution is based on polynomials and the other
one is based on LUTs. The trade-off between those two con-
figurations is the number of arithmetic operations versus the
memory resources requirements. In any case, the linearization
performance of both architectures has been validated in
several papers [9, 16]. Finally, another key issue toward the
computationally efficient FPGA implementation is the
design of identification/adaptation process. One possibility is
the use of LMS-based solutions as in [17], where the

Fig. 8. Basic architecture of a BPC forming the SED-DPD (see Fig. 6).
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coefficients (or complex LUT gains) are being continuously
updated. Alternatively, if more complex least-squares-type
algorithms are considered, the coefficient update procedure
can be relocated to embedded software running on a micro-
blaze soft processor core as in [18].
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