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The behaviour of an inviscid, lock-released gravity current which propagates over a
horizontal porous boundary in either a rectangular or an axisymmetric geometry is
analysed by both shallow-water theory and ‘box-model’ approximations. It is shown
that the effect of the porous boundary can be incorporated by means of a parameter
λ which represents the ratio of the characteristic time of porous drainage, τ, to that
of horizontal spread, x0/(g

′h0)
1/2, where x0 and h0 are the length and height of the

fluid initially behind the lock and g′ is the reduced gravity. The value of τ is assumed
to be known for the fluid–boundary combination under simulation. The interesting
cases correspond to small values of λ; otherwise the current has drained before any
significant propagation can occur. Typical solutions are presented for various values of
the parameters, and differences to the classical current (over a non-porous boundary)
are pointed out. The results are consistent with the experiments in a rectangular
tank reported by Thomas, Marino & Linden (1998), but a detailed verification, in
particular for the axisymmetric geometry case, requires additional experimental data.

1. Introduction
Gravity currents occur whenever fluid of one density flows primarily horizontally

into fluid of a different density. Many such situations arise in both industrial and
natural settings, as reviewed by Simpson (1997) and Huppert (1998). Commonly
the current is driven by compositional or temperature differences, to lead to a
homogeneous current, or by suspended particulate matter, to lead to a particle-
driven current. Combinations of both particle and compositional or temperature
differences can also occur (Sparks et al. 1993). Currents may propagate in either
a rectangular two-dimensional or cylindrical axisymmetric configuration, or may
be otherwise influenced by sidewall and/or topographic constraints. Some of these
processes have now been fairly well investigated. The typical problem considers
the instantaneous release of a constant volume of heavy fluid from behind a lock
into a large reservoir of a lighter fluid above an impermeable horizontal boundary.
Our aim here is primarily to evaluate the effects of a porous horizontal boundary on
the propagation and shape of high-Reynolds-number homogeneous currents resulting
from the instantaneous release of a finite volume in either rectangular two-dimensional
or cylindrical axisymmetric geometry. Applications of our work include areas such as
oceanography (i.e. currents impinging on coastal shelves) and environmental control
(i.e. accidental collapse of storage tanks surrounded by gravel beds).
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2 M. Ungarish and H. E. Huppert
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Figure 1. Schematic description of the system. In the axisymmetric case z is the axis of symmetry
and the horizontal coordinate is the radius, r. The grey region represents the current at t = 0. The
z-coordinate is scaled with the initial height h0 of the current, and the horizontal coordinate is
scaled with the initial length x0 (or r0). The deformation of the upper interface is negligibly small.

Almost the only previous study on this problem has been recently performed by
Thomas, Marino & Linden (1998, hereafter referred to as TML). They considered
the propagation of a saline current into fresh water in a rectangular container over a
porous boundary (which they represented by a thin metallic grid below which a layer
of fresh water was placed). They contributed to the understanding of the problem
as follows. First, a collection of laboratory experimental data, mainly of distance of
propagation as a function of time, was acquired. The maximum propagation distance
in the rectangular tank was 195 cm, the additional length of the lock was between
15 and 37 cm, and the height of the ambient fluid, as well as the initial height of
the current in the lock, was 20 cm, while the values of g′ were 9.8, 49 or 98 cm s−2.
Second, an analysis was performed which: suggested a practical correlation for the
vertical velocity component on the porous boundary; showed that the volume of the
released current decays due to the porous boundary, approximately as exp (−t/τ);
presented the evaluation of τ for the experimental settings; and showed that viscous
forces in the motion of the current above the porous boundary were unimportant
(the flow in the porous layer is of course greatly influenced by viscous effects). TML
also presented a simple analytical model for correlating the distance of propagation
against time t and the parameter τ. However, the integration of these observations into
a systematic theory of gravity currents – in particular, the formulation and solution
of the shallow-water equations and the development of ‘box models’ – is still needed,
and it is the objective of this paper to supply these results.

The system under consideration is sketched in figure 1: a deep layer of ambient
fluid, of density ρa, lies above a porous horizontal surface at z = 0. Gravity acts
in the −z-direction. Both rectangular and cylindrical (sector or fully axisymmetric)
configurations are of interest. In the rectangular case the system is bounded by
parallel vertical smooth impermeable surfaces and the current propagates in the
direction labelled x. In the cylindrical case the vertical surfaces are radially directed
and form a sector of angle Θ (the full axisymmetric case corresponds to a sector
angle of 2π) and the current propagates entirely in the radial direction, r. At time
t = 0 a given volume of fluid of density ρc > ρa and kinematic viscosity ν, initially
at rest in a box of height h0 and length x0 (or a cylinder of height h0 and radius
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High-Reynolds-number gravity currents over a porous boundary 3

r0), is instantaneously released into the ambient fluid. Either a two-dimensional or an
axisymmetric current commences to spread. We assume that the Reynolds number
of the horizontal flow, Re = hNuN/ν where the subscript N denotes values associated
with the ‘nose’ of the current, is large and hence viscous effects can be neglected.
In the experiments of TML the Reynolds number at the beginning of the motion
was typically 5 × 104, and these authors estimated that transition to the viscous
regime occurs at Re = 50; the inviscid regime was therefore valid for the most
significant stage of propagation of the current. While the current propagates, fluid is
also absorbed into the porous substrate with an expected double effect: the flow is
slowed down due to loss of the effective buoyancy excess, and the practical distance
of propagation is limited because the current runs out of fluid.

The corresponding flows over an impermeable surface, in particular in the rectangu-
lar configuration, have been extensively studied both experimentally and theoretically.
Theoretical investigations successfully using the shallow-water approximation have
been conducted. Further simplifications in the form of ‘box models’ have also been
developed for obtaining quick estimates of the global behaviour (see Huppert 1998).
An extension of these studies that bears some similarity with the present problem is
the situation in which the current consists of a fluid laden with particles (Bonnecaze,
Huppert & Lister 1993; Bonnecaze et al. 1995; Ungarish & Huppert 1998). During
the propagation, the heavier particles settle from the current. This causes the flow to
slow down and finally stop after a finite distance of propagation when the current
runs out of particles.

Our task here is to incorporate the drainage effect of the porous substrate into the
modelling of the flow and to understand its main influence. Loosely speaking, the
vertical velocity component on the horizontal boundary, with an appropriate coupling
to the flow above, must be added to the classical system of flow over an impermeable
boundary.

In § 2 the model equations of motion, based on shallow-water approximations
and the appropriate boundary conditions, are introduced. Finite-difference solutions
of these equations are obtained and discussed in § 3, including a brief comparison
with the experimental results of TML. Next, in § 4, box-model approximations are
developed and compared to the shallow-water predictions. We present a summary of
our results and some concluding remarks in § 5.

2. Formulation and shallow-water approximation
The configuration is sketched in figure 1. The driving force is the reduced gravity

of the current, which is defined by

g′ = (ρc − ρa)g/ρa, (2.1)

where g is the acceleration due to gravity. For the rectangular case we use an {x, y, z}
Cartesian coordinate system with corresponding {u, v, w} velocity components. We
assume that the flow does not depend on the lateral coordinate y and that v ≡ 0. For
the sector or full axisymmetric case we use a cylindrical coordinate system {r, θ, z}
with corresponding {u, v, w} velocity components. We assume that the flow does not
depend on the angular coordinate θ and again that v ≡ 0.

We shall use a one-layer approximation. In the ambient fluid domain, of density ρa,
we assume that u = v = w = 0 and hence this fluid is in purely hydrostatic balance.
The motion is assumed to take place in the lower layer only, 0 6 x 6 xN(t) and
z 6 h(x, t). As in the classical inviscid shallow-water analysis of a gravity current,
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4 M. Ungarish and H. E. Huppert

we argue that the predominant vertical momentum balance is hydrostatic and that
viscous effects in the horizontal momentum balance are negligibly small. Hence the
motion is driven by the pressure and inertia forces in this horizontal direction. On the
other hand, pressure continuity between the ambient and the current on the interface
z = h(x, t) indicates that the horizontal pressure gradient in the current is given by

∂p

∂x
= ρag

′ ∂h
∂x
. (2.2)

These assumptions and the use of (2.2) simplify the momentum equations for the
current. The next step is to consider the z-average of the equations of motion, which,
in conjunction with volume continuity, produces a system of equations for h(x, t) and
for the averaged longitudinal velocity u(x, t). However, at this stage it is useful to
consider the contribution of the porous boundary to the expected flow, which is the
major difference between the present situation and the classical one.

The porous boundary is conveniently incorporated into our analysis as a boundary
condition for the vertical velocity component at the bottom, w(x, z = 0, t), denoted wb.
This is of course equal to the rate of discharge through the porous substrate. TML
(§ 4) developed a useful correlation for this variable which is expected to be valid when
the Reynolds number of the flow through the porous medium, Re′ = wbd/ν, is smaller
than about 10; here d is the diameter of the pores. In this case, the employment of
Darcy’s law under the assumption that the porous layer has a constant thickness
and the fluid above and below it is in vertical hydrostatic balance, yields (using
dimensional variables)

wb(x, t) =
1

τ
h(x, t), (2.3)

where τ is proportional to ν/g′ and also depends on the porous properties of the
boundary. However, for a given configuration and with the effects of saturation of
the pores and entrainment into the current excluded, τ is a constant.

Moreover, TML also showed that if τ is a constant on the entire boundary
below the current then the condition (2.3) implies that the volume of the heavier
fluid above the porous substrate decreases like exp (−t/τ) (see § 2.2 below) in quite
general circumstances of motion. This provides an efficient means for the experimental
evaluation of τ for a given combination of fluid and boundary. TML made use of the
expected exponential decay feature to evaluate the values of τ from measurements of
the volume for the various settings used in their experiments. We shall elaborate on
this issue in § 3.

Our present study adopts the condition (2.3) and assumes that the necessary value
of τ is provided. We show that this is a sufficient condition for the incorporation of
the porous-boundary effect in the shallow-water formulation. For simplicity and due
to lack of further information, we assume that τ is a constant on the porous portion
of the bottom boundary. If an impermeable portion is present (usually in the lock
domain) the boundary condition there is w(x, z = 0, t) = 0 which can be treated as
the limit τ → ∞ of (2.3). Furthermore, we show that if the given τ is a constant on
the entire bottom boundary then simple box-model analytical approximations can be
obtained.

This framework is, strictly speaking, specialized for the configurations of the type
used by TML. Deviations from the present framework of assumptions may occur in
practical circumstances. However, we suggest that many additional pertinent details,
when available, can be incorporated in a straightforward extension of the analysis
presented here by using τ as a function of x and of dependent variables of the current,
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High-Reynolds-number gravity currents over a porous boundary 5

such as h(x, t). A compatible practical situation is when a thin layer of low porosity
separates fluid above and a thick high-porosity bed below (say, a layer of sand above
gravel). Let l and Φ be the thickness and the porosity of the porous domain into
which the gravity current drains. The portion of the porous region that is subjected
to the influx with velocity wb at its upper boundary is expected to reach saturation
in the typical time interval lΦ/wb. If this time is substantially larger than the typical
time of propagation of the gravity current, T , then the details of the flow in the
porous bed are not expected to influence the flow of the current above the substrate.
With the aid of (2.3) this condition can be expressed as lΦ/h0 � λ, where λ is the
governing dimensionless parameter defined below, typically a small number. This
condition is not very restrictive, but when it is violated the lateral flow in the region
below the current may become important (i.e. the absorbed fluid is forced to move
laterally rather than vertically) and a feedback flux may occur. In this case the present
analysis needs augmenting, and the motion above and in the porous regions must be
determined by coupled equations. Such problems were recently discussed by Davis &
Hocking (1999) in the context of viscous spreading of liquids on a porous base.

Subsequently, the governing equations in the region of the current are averaged in z,
and reduced to a system of equations for the position of the interface, h(x, t), and for
the z-averaged longitudinal velocity, u(x, t). The difference from the classical current
over an impermeable boundary is the presence of the non-zero vertical velocity on
the boundary z = 0, for which we use (2.3).

It is convenient to scale the dimensional (denoted by the asterisks) variables as
follows

{x∗, h∗, t∗, u∗} = {x0x, h0h, T t, Uu}, (2.4)

where

U = (h0g
′)1/2 and T = x0/U. (2.5)

Here h0 and x0 are the initial height and length of the current, U is a typical inertial
velocity of propagation of the nose of the current and T is a typical time period
for longitudinal propagation for a typical distance x0. In the axisymmetric case x is
replaced by r.

This scaling produces the non-dimensional parameter

λ = T/τ (2.6)

which simply reflects the ratio between the typical time of propagation of the nose to
the typical time of descent of the interface due to the porosity of the boundary, the
former over a length x0 and the latter over a height h0. This turns out to be the main
parameter in the present analysis. It can be anticipated that the interesting cases have
small values of λ, because otherwise the fluid has drained into the porous bound-
ary before any significant propagation occurs. Indeed, for most of the experiments
discussed by TML λ was in the range 0.02–0.24. The small value of λ in the TML
experiments inhibits the rapid piling-up of a thick layer of salt water in the region be-
low the porous grid, and hence prevents the formation of a significant gravity current
in this region, in accordance with the assumption that this domain has a passive role.

The relevant Reynolds numbers can now be rewritten using the dimensionless
variables as

Re = Re0

dxN
dt

hN and Re′ = Re′0h, (2.7)

where Re0 = g′1/2h3/2
0 /ν and Re′0 = λg′1/2h3/2

0 d/(x0ν); here h0, x0 and d are dimensional.
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6 M. Ungarish and H. E. Huppert

This form is convenient for estimating the instantaneous importance of the viscous
effects in the current and in the porous substrate in terms of the dimensionless results
calculated below.

The equations of motion can be conveniently expressed either for h and the
combined variable,

q = uh, (2.8)

in ‘conservation form’, or for the original variables in ‘characteristic form’, as follows.

2.1. The governing equations

Consider first the rectangular case. In conservation form the equations can be written
as

∂h

∂t
+

∂

∂x
(uh) = −λh (2.9)

and
∂

∂t
(uh) +

∂

∂x
[u2h+ 1

2
h2] = −λuh. (2.10)

In characteristic form this becomes[
ht
ut

]
+

[
u h
1 u

] [
hx
ux

]
=

[ −λh
0

]
. (2.11)

Consider now the axisymmetric case. In conservation form the equations can be
written as

∂h

∂t
+
∂

∂r
(uh) = −uh

r
− λh (2.12)

and

∂

∂t
(uh) +

∂

∂r
[u2h+ 1

2
h2] = −u

2h

r
− λuh, (2.13)

which in characteristic form become[
ht
ut

]
+

[
u h
1 u

] [
hr
ur

]
=

[ −uh/r − λh
0

]
. (2.14)

An unusual boundary condition which may appear in this problem is the presence
of a non-porous section of the boundary, typically in the lock region x 6 1. This is
readily accounted for by setting λ = 0 in the equations of motion for the impermeable
region. Actually, we note that λ can be allowed to vary with x and t without affecting
the foregoing formulation. This may model motion over a boundary of complex
structure and prone to partial saturation. However, this flexibility was not pursued
further in the present work.

The velocity variable u at the origin is zero. In addition, a boundary condition for
the velocity at the nose is essential for a proper physical definition and mathemat-
ical closure of the problem. The appropriate condition has been well studied, both
theoretically and experimentally (Benjamin 1968; Huppert & Simpson 1980). The
pertinent result is that

dxN
dt

= Fr(hN)1/2, (2.15)

Fr =

{
1.19 (0 6 hN/H 6 0.075)

0.5H1/3h
−1/3
N (0.075 6 hN/H 6 1),

(2.16)
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High-Reynolds-number gravity currents over a porous boundary 7

whereH is the initial depth ratio of the ambient fluid to the current, or the thickness
of the ambient layer scaled with h0. In general, we consider 1 6 H < ∞, but the
more detailed calculations presented in this paper are for H = 1, the same regime as
the experiments of TML.

The boundary conditions for the interface height variable h can be incorporated
by considering the characteristic paths and relationships (see Bonnecaze et al. 1993
for further discussion). The standard derivation, see for example Anderson, Tannehill
& Pletcher (1984), requires first the determination of the eigenvalues of the matrix of
coefficients, which are

l± = u±√h,
and the corresponding eigenvectors

(1,±√h).
Consequently, the relationships between the variables on the characteristics with
dx/dt = l, are

l± : dh±√h du = −λh dt. (2.17)

2.2. The global volume balance

Let V(t) denote the volume per unit width of the heavier fluid above the porous
boundary. TMS showed that the correlation (2.3) between the velocity at the base
and the local height leads, by purely kinematic considerations, to

V(t) =V(0)e−λt. (2.18)

However, this simple and apparently robust result is based on the assumption that
the porous boundary starts at the origin. In relevant practical circumstances, and
also in the experiments performed by TMS, this condition is not fulfilled: the porous
boundary actually extends only for x > 1, while the portion 0 6 x 6 1 is impermeable.

For the sake of completeness we shall briefly rederive the result (2.18) in the context
of the shallow-water theory, using (2.9) and (2.12) and the boundary conditions u = 0
at the origin.

In the rectangular case

V(t) =

∫ xN (t)

0

h(x, t) dx, (2.19)

and hence

dV
dt

=

∫ xN (t)

0

∂h

∂t
dx+

dxN
dt

hN. (2.20)

On the other hand, integration of (2.9) yields∫ xN (t)

0

∂h

∂t
dx = −u(x = xN)hN − λ

∫ xN (t)

0

h(x, t) dx. (2.21)

Combining (2.20) and (2.21) and using (2.19), we obtain

dV
dt

= −λV, (2.22)

which proves (2.18). Note that in dimensionless form V(0) = 1.
In the axisymmetric case

V(t) =

∫ rN (t)

0

h(r, t)r dr, (2.23)
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8 M. Ungarish and H. E. Huppert

and hence
dV
dt

=

∫ rN (t)

0

∂h

∂t
r dr + rN

drN
dt
hN. (2.24)

We eliminate ∂h/∂t with the aid of (2.12) and, after some rearrangement, we again
obtain the result (2.22). Note that in dimensionless form V(0) = 1

2
.

If the portion x 6 1 is non-porous, the lower limit of the integral on the right-hand
side of (2.21) is 1, and instead of (2.22) we obtain

dV
dt

= −λ
[
1− V1(t)

V(t)

]
V, (2.25)

where V1 is the volume of the current above the non-porous boundary. In the initial
stages of propagation the ratio V1/V is close to 1 and hence considerable deviation
from the exponential decay is expected, and, overall, the apparent rate of decay is
smaller than in the idealized case.

The discrepancy between (2.22) and (2.25) is very important for larger values of λ.
However, even for the parametric range in the experiments of TML this effect seems
to be relevant. TML fitted their measurements, performed for a boundary with a
non-porous section in the lock region, to (2.18) as a means for determining the value
of λ (and actually of τ because the other quantities which enter (2.6) were prescribed).
We claim that this procedure underestimates the values of λ (overestimates the values
of τ). The calculations presented in the next section indicate that the values of τ were
overestimated by about 35% (for the single grid substrate).

3. Numerical results
The governing equations (2.9)–(2.10) and (2.12)–(2.13) were formulated in con-

servation form for the variables h and q = uh. Following closely the approach of
Bonnecaze et al. (1993, 1995) and Ungarish & Huppert (1998), we obtained the numer-
ical solutions using a finite-difference two-step Lax–Wendroff method. To facilitate
the implementation of the boundary conditions, the longitudinal coordinate x (or r)
was mapped into y = x/xN(t), which maintains the current in the domain 0 6 y 6 1.
Consequently the original equations were subjected to the modifications(

∂

∂t

)
x

=

(
∂

∂t

)
y

− y ẋN
xN

(
∂

∂y

)
t

and

(
∂

∂x

)
t

=
1

xN

(
∂

∂y

)
t

, (3.1)

where the subscript denotes the fixed variable and the dot differentiation with respect
to time. In order to suppress oscillations of numerical origin a small artificial vis-
cosity term, of the form −b ∂[αh(∂u/∂x)]/∂x, was added to the left-hand side of the
momentum equation (2.10). Here α = (|u| + h1/2)∆x, where ∆x is the mesh interval,
and b = 0.15 were used. Numerical tests indicated that this artificial term affected the
distance of propagation by less than 1% in the cases presented below.

The initial conditions used were

h = 1 and u = 0 (0 6 y 6 1, t = 0) (3.2)

and

xN = 1 (t = 0), (3.3)

while the boundary conditions used were

u = 0 (y = 0) (3.4)
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Figure 2. Rectangular gravity current: numerical shallow-water model calculations of xN and
V(t)/V(0) as functions of t for various values of λ. The λ > 0 cases stopped when the volume
reached about 0.05 of initial value.

and
u = Fr[h(y = 1, t)]× [h(y = 1, t)]1/2 (y = 1), (3.5)

with the values of Fr prescribed by (2.16). The boundary conditions for h at
y = 0 and y = 1 must be calculated, for each time step, from the balances on the
characteristics l±.

The numerical computations presented here are for H = 1, i.e. the initial heights
of the heavy current fluid and of the lighter ambient fluid are equal. This was also
the setup in the experiments of TML.

Figures 2 and 3 give a quick insight into the influence of the parameter λ on
the propagation distance and volume decay in configurations with an impermeable
boundary in the lock region x 6 1 (or r 6 1). The porosity has little influence on
the propagation during an initial period (t < 12 in the rectangular case and t < 8
in the axisymmetric case). The explanation for this is given below. Afterwards, the
porosity slows the current down and shortens the effective distance of propagation.
It is evident that these effects become more pronounced as the parameter λ increases.
Computations with non-zero λ were stopped when either of the following conditions
was achieved: the volume decreased to 5% of the initial value, or hN became smaller
than 0.01. There were indications of fast accumulation of numerical errors afterwards.
The thickness of the cylindrical current is expected to decrease as the square of the
distance and hence for this geometry the condition on hN tends to be fulfilled sooner
than the condition on the volume. The volume V(t)/V(0) decreases slower than e−λt
because of the presence of the non-porous portion of the boundary. This feature is
also discussed further below.
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Figure 3. Axisymmetric gravity current: numerical shallow-water model calculations of rN and
V(t)/V(0) as functions of t for various λ. The λ > 0 cases stopped when hN ≈ 0.01.

More detailed results for the shallow-water equations in a rectangular configuration
are presented in figures 4–6 using a numerical grid of 200 points and with a time step
of 5 × 10−3. In all cases the initial depth ratio is H = 1. Three cases are presented
for comparison: case I is a classical current over an impermeable boundary (λ = 0);
in case II λ = 0.1 and the porous region extends for x > 1; and in case III λ = 0.1
and the porous region starts at the origin.

In the initial stages of the motion, for t < 15, and in particular for t < 5, the
qualitative behaviour of the interface is similar in the three cases. As expected, the
fluid initially collapses from the front to hN ≈ 0.6. In the classical (λ = 0) case this
head height persisted for a while (t < 3), during which time the speed of propagation
is constant. The porosity causes a continuous decrease of hN , as expected. After the
adjustment time t ≈ 15 the classical λ = 0 current tends to approach the similarity
form of solution with a head-up, tail-down smooth profile and with u a linear function
of x. Here the porosity tends to strengthen the differences between the head and the
tail regions, especially in case II where u becomes a non-monotonic function of
x. Quantitatively, up to t ≈ 10 the distance of propagation is almost the same in
all three cases, despite the fact that the height of the nose decreases considerably
more in the porous cases (hN = 0.162, 0.092, 0.076 at t = 10 in cases I, II, and III,
respectively). The reason is the behaviour of Fr with hN , cf. (2.16), which makes the

velocity of propagation a weak function of hN (dxN/dt ∝ h
1/6
N ). In the deep stage

of propagation, hN < 0.075, the porous drainage has a significant influence on the
velocity of propagation: at t = 40 the non-porous xN is about 50% larger than for
the porous cases.
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Figure 4. Rectangular gravity current: numerical shallow-water model calculations of case I, with
an impermeable wall (λ = 0). (a) and (b) h as a function of x at various t; (c) and (d) u as a function
of x at various t.

Comparing cases II and III we notice that the non-porous portion x < 1 keeps
the fluid at a higher level than in the tail which follows the head. In addition, the
overall volume in case II is higher (by 48%, 81%, 110% at t = 10, 20, 30) than the
e−λt behaviour in case III, and therefore the propagation is slightly faster.

Similar results of the shallow-water equations in the axisymmetric configuration
are presented in figures 7–9. Three cases are again presented for comparison: case I
is a classical current over an impermeable boundary (λ = 0); in case II λ = 0.1 and
the porous region extends for r > 1; and in case III λ = 0.1 and the porous region
starts at the origin. The qualitative behaviour is as in the rectangular case, but the
reduction of hN is proportional to r2

N . Some oscillations appear near the centre for
t > 5 which seem to be introduced by the reflection (from the axis) of the initially
backward-moving wave created at t = 0 at the collapsing front, as also discussed by
Bonnecaze et al. (1995, § 3.1). In this respect the axisymmetric current (over a solid
boundary) is different from the rectangular one: although the same initial collapse of
the front to hN ≈ 0.6 occurs in both cases, the subsequent propagation with a constant
velocity and a constant hN is not possible in the diverging cylindrical geometry, and
therefore a deceleration of the head domain occurs, accompanied by the appearance
of a positive ∂h/∂r and a non-monotonic profile of u as a function of r. The porous
drainage tends to amplify these oscillations, and it is difficult to decide if this is a
numerical perturbation or an indication of a physical instability. However, since the
amount of fluid in the relevant region is relatively small this is not expected to be of
significance to the propagating current.
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Figure 5. As figure 4 but for case II with λ = 0.1 for x > 1 and an impermeable wall for x 6 1.
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Figure 6. As figure 4 but for case III with λ = 0.1 for x > 0.
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Figure 7. Axisymmetric gravity current: numerical shallow-water model calculations of case I with
an impermeable wall (λ = 0). (a) and (b) h as function of r at various t; (c) and (d) u as a function
of r at various t.

3.1. Comparisons with the experiments of TML

Detailed comparisons with the experiments of TML are beyond the scope of the
present study. However, some insights into the process and additional confidence
in the theory may be gained by a discussion of the numerical results for the main
parameters used in the experiment.

The major input needed for a proper comparison is the value of τ which, in the
present theory, is expected to be provided by (special) experiments. Indeed, TML
determined values of τ, and we first apply our numerical code to verify the accuracy
of the procedure and to suggest ‘corrected’ values of τ. Subsequently, using these
corrected values we calculate xN(t) for several experimental cases.

The procedure of TML for evaluating τ was essentially as follows. They released a
current of known properties in the experimental tank and recorded its volumeV as a
function of t. The experimental values V(t)/V(0) were used to fit the approximation
e−t/τTML (with the subscript TML denoting the values obtained by this procedure),
where τTML was determined so that the correspondence was ‘good’.

The problem with this procedure is that the exponential decay of V with t is
strictly valid only when the entire bottom boundary beneath the current is porous,
while in the experimental tank the initial lock region, 0 6 x 6 1, was impermeable. As
indicated in § 2.2 the apparent (fitted) rate of decay of λ is smaller (the apparent (fitted)
τ is larger) than the correct value of the system. Moreover, the scatter of the data
around the fitted curve is expected to contain a systematic component in addition to
the random contributions of measurement errors (figure 7 of TML seems to confirm
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Figure 8. As figure 7 but for case II with λ = 0.1 for r > 1 and impermeable wall for r 6 1.
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Figure 9. As figure 7 but for case III with λ = 0.1 for r > 0.
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High-Reynolds-number gravity currents over a porous boundary 15

g′ (cm s−2) 9.8 49 98

τ (s) 12.30 4.32 2.19
τTML (s) 17.57 6.53 3.52

Table 1. Values of τ for different g′ corresponding to the TML experiments on a simple grid:
corrected and reported (subscript TML).

this observation). TML were aware of this difficulty (private communication) and
attempted to overcome it by discarding initial time readings in the fitting of τ. This
approach is indeed expected to reduce the contribution of the impermeable portion,
but does not compensate for the effect; moreover, the later measurements of the
volume are prone to larger experimental errors owing to mixing effects.

To assess and perhaps improve the experimental values of τTML we solved the
following ‘inverse’ problem: for the parameters g′ and x0 of the experiment, find
the ‘correct’ value of τ so that the resulting (numerical) values of V(t)/V(0) are
‘well fitted’ by an exponential decay with the value τTML reported for this experiment.
(Inspired by an inspection of figure 8 of TML, we defined ‘well fitted’ as a collocation
at the time when V/V(0) = 0.3). The results of the inverse problem are given in
table 1, together with the values of TML.

The ‘correct’ τ are 30–38% smaller than the apparent ones. We also note that
the ‘correct’ values of τ are closer to the theoretical proportionality to g′−1 than the
values reported by TML. The deviation is more pronounced for the larger value of
τ (smaller value of g′) and we speculate that this is a result of remixing with fresh
water. Indeed, remixing reduces the effective g′, and for smaller g′ there is more time
for remixing during the process.

Figure 10 illustrates these results: for x0 =15 cm, h0 =20 cm and g′=9.8, 49, 98 cm s−2

the points are numerical calculations of V/V(0) with the ‘correct’ values of τ, while
the curves are the exponential decay using the τTML values. On the other hand, tests
(not shown here) indicate that the direct use of the τTML values as the ‘correct’
ones in the numerical simulations yield discrepancies of order tens of percent in the
behaviour of V(t) as compared to the exponential decay with the same τTML.

Figure 11 displays results of our computations corresponding to the experiments
of TML with variables given in table 2. The results are presented in the rescaled
form used in figure 9 of TML, i.e. in the present notation (xN − 1)λTML vs. λTMLt
on a log-log plot. The computations were performed with the values of λ (or τ)
inferred as the ‘correct’ ones (see table 1). The fifth column of table 2 indicates the
practical limit on the rescaled range of propagation that could be followed in the finite
experimental tank. The last column vindicates the use of an inviscid approximation.
The penultimate column may indicate that the validity of Darcy’s law in the pores
is questionable in the initial part of the motion, in particular for the current with
g′ = 98 cm s−2; however, we keep in mind that the flow through the pores slows down
like h, which is on the average faster than the relative increase of the length xN(t).

The behaviour depicted in figure 11 is consistent with that presented by TML for
their experiments with exceptions for small and large values of λTMLt, which can be
attributed to experimental errors and the influence of the far endwall of the container.
There is, however, one remarkable difference: the experimental curve for λ = 0.382
undergoes a drastic slope reduction and intersects the other curves in 1 < λTMLt < 3,
then regains the large slope. We have no explanation for this discrepancy.
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Figure 10. The dimensionless volume V(t)/V(0) as a function of time (in s) for the configurations
of the TML experiments with x0 = 15 cm, h0 = 20 cm and g′ = 9.8, 49, 98 cm s−2 determined by
the numerical shallow-water model calculations performed with the corrected values of τ (symbols),
and the curves display exp (−t/τTML), see table 1. (The values in the computations are λ = 0.087,
0.111, 0.155, and for the curves λTML = 0.061, 0.073, 0.097.)
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Figure 11. Distance of propagation as function of time (in rescaled forms) simulated by numerical
shallow-water model calculations for the data of table 2.

We conclude that there seems to be fair overall agreement between the present
shallow-water theory and the experiments of TML. However, a detailed and thorough
comparison with experimental data is beyond the scope of this paper and would
require additional experiments.
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g′ (cm s−2) x0 (cm) λ λTML (Lmax/x0)λTML Re′0 Re0

9.8 10 0.058 0.041 0.80 8 3× 104

49 15 0.111 0.073 0.95 23 6× 104

49 23 0.170 0.113 0.96 23 6× 104

98 37 0.382 0.237 1.27 45 9× 104

Table 2. Data for comparison with the experiments of TML. g′ and x0 are variables of the
experiment, Lmax = 195 cm is the length from the gate of the lock to the opposite wall. λTML and λ
are calculated with τTML and τ given in table 1.

For the axisymmetric configuration there are no available experimental data, to the
best of our knowledge, and hence no comparisons can be attempted.

4. Box-model approximations
Box models have been successfully used for quick estimates of the global behaviour

of gravity currents in various circumstances. Here we develop this type of approxi-
mation for the problem under investigation and assess its validity via comparisons
with the shallow-water numerical results for typical values of λ.

The current is viewed as a control volume of rectangular cross-section, i.e. height
hN(t) and length xN(t) (rN(t) in the axisymmetric case). For simplicity we assume that
the porous floor starts at the origin.† The changes of this control volume with time,
which are expected to reproduce the motion of the gravity current, are governed by the
following considerations: (a) the volume balance (2.18); and (b) the nose-propagation
correlation, or Froude condition, (2.15)–(2.16). The initial conditions for xN and hN
are known, as is the value of the initial depth ratio, H.

In the limit λ→ 0 the box model for the impermeable wall is recovered, as described
in the Appendix.

4.1. Rectangular geometry

The volume balance (2.18) is expressed as

xN(t)hN(t) = e−λt, (4.1)

and the nose Froude condition can be written

dxN
dt

= Frh
1/2
N . (4.2)

The initial conditions are

xN = 1 and hN = 1 (t = 0). (4.3)

We distinguish between the shallow stage, 0 6 t 6 t∗, during which Fr varies with
hN , and the deep stage, t > t∗, during which Fr = 1.19.

† When a non-porous portion is incorporated the solution requires numerical integration of
ordinary differential equations. The details will be given in a separate paper.
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18 M. Ungarish and H. E. Huppert

The shallow stage appears only if the initial depth ratio H < 1/0.075. For this

case, we substitute Fr = ( 1
2
)H1/3h

−1/3
N in (4.2) and eliminate hN with the aid of (4.1).

We obtain a differential equation for xN(t), which can be easily integrated to yield

xN(t) =

[
7

2λ
H1/3(1− e−λt/6) + 1

]6/7

(t 6 t∗), (4.4)

and with the use of (4.1),

hN(t) = e−λt/xN(t). (4.5)

The shallow stage terminates at the time t∗ when hN(t∗) = 0.075H. By virtue of (4.5)
and (4.4), and after some algebra, we can formulate this condition as

2

7H1/3
λ

(
1

0.075H
)7/6

s7 + s− 1− 2

7H1/3
λ = 0, (4.6)

where

s = e−λt∗/6. (4.7)

The numerical solution of this equation shows that t∗ decreases when λ and/or H
increases. This is expected: a larger λ causes a quicker decay to the deep stage and
a larger H means that the current is initially closer to the deep stage. We denote by
x∗ the value of xN at t∗. For the sake of a unified treatment, when H > 1/0.075 and
the shallow stage does not occur we define t∗ = 0 and x∗ = 1.

For the deep stage of propagation we substitute Fr = 1.19 in (4.2) and eliminate
hN with the aid of (4.1). We obtain again an equation for xN(t), which can be easily
integrated to yield

xN(t) =

[
3× 1.19

1

λ
(e−λt∗/2 − e−λt/2) + x

3/2
∗
]2/3

(t > t∗) (4.8)

with the height of the current given by (4.5).
After obtaining hN , the instantaneous Reynolds number of the current can be

readily evaluated by using (2.7): Re = Re0Frh
3/2
N , where again distinction between the

shallow and deep stages is necessary. We recall that transition to the viscous domain
is expected to occur at Re = 50, where the preceding results become invalid. An
analysis for the viscous domain is at present in progress and will be published in a
separate paper.

We now compare the present box-model results to the simple model for the
propagation of the current suggested by TML, equation (4.10) in their paper. In the
present notation, that equation reads

xN(t) =
1

λ
(1− e−λt/2) + 1 (4.9)

(the last term does not actually appear in the paper TML, apparently due to a
misprint, and the constant C of the paper has been set equal to 0.5, consistent
with other results in that paper. Recall that TML consider H= 1). Evidently, there
are significant qualitative discrepancies between the models, although expansions for
small values of t yield the same leading terms, 1 + ( 1

2
)t, for both (4.4) and (4.9). The

next terms in the expansions, however, are −(1 + 2λ)t2/48 and −λt2/8, respectively.
For λ < 0.25, (4.4) predicts a slower initial propagation than (4.9), but eventually this
trend is reversed. The model suggested by TML does not distinguish between the
shallow and deep stages of propagation.
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Figure 12. Shallow-water (solid, i.e. upper, lines) and box-model (dotted, i.e. lower, lines) calculations
for propagation as function of t for two values of λ in (a) rectangular case; (b) axisymmetric case.
The porous boundary starts at the origin.

It is interesting to note that the motion in the deep stage predicted by the present
box model reflects an instantaneous balance between the total buoyancy force per
unit width, Fg ∼ ρg′h2, and the total inertial force per unit width, Fi ∼ ρU2h (in
dimensional form); where the symbol ∼ implies an order of magnitude relationship.
Huppert (1982, Appendix A) used such balances to obtain simple estimates of the flow
properties and the criteria describing transition between different flow regimes. Here,
upon combining the balance Fi ∼ Fg with the volume balance, letting U ∼ dxN/dt
and using the initial condition xN(0) = 1, we obtain, in dimensionless form,

xN(t) ∼
[

3

λ
(1− e−λt/2) + 1

]2/3

(t > 0), (4.10)

a result very close to (4.8) for the case of an initially deep current.
A comparison between the predicted propagation by the present box model results

and those obtained by the shallow-water equations for two values of λ is shown in
figure 12(a) (from release point until decrease of volume to 5%). The agreement is
good. The box-model approximation predicts a slower propagation than the shallow-
water equations. This could be anticipated because in the shallow-water (and also
real) profiles the value of hN becomes quickly larger than the average h and hence
the velocity of the nose is larger than that obtained under the assumption that hN
equals the average h.

4.2. Cylindrical (axisymmetric) geometry

The volume balance (2.18) is expressed as

r2
N(t)hN(t) = e−λt, (4.11)

and the nose Froude condition reads

drN
dt

= Frh
1/2
N . (4.12)

The initial conditions are

rN = 1 and hN = 1 (t = 0). (4.13)
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We proceed as for the rectangular case. Now, using (4.11), we obtain

hN(t) = e−λt/r2
N, (4.14)

and we also determine that in the shallow stage

rN(t) =

[
4

1

λ
H1/3(1− e−λt/6) + 1

]3/4

(t 6 t∗), (4.15)

where, again, t∗ is the time when hN reaches the value 0.075H, and is given by the
solution of

1

4H1/3
λ

(
1

0.075H
)2/3

s4 + s− 1− 1

4H1/3
λ = 0, (4.16)

where

s = e−λt∗/6. (4.17)

As in the rectangular case, the solution of this equation indicates that t∗ decreases
when λ and/orH increase. For a prescribed combination of λ andH the axisymmetric
current attains the deep stage in shorter time and distance of propagation than the
rectangular current because its thickness decreases with the square of the distance.

Denote by r∗ the value of rN at t∗. For the sake of a unified treatment, when
H > 1/0.075 and the shallow stage does not occur, we define t∗ = 0 and r∗ = 1.

For the subsequent deep stage of propagation we obtain

rN(t) =

[
4× 1.19

1

λ
(e−λt∗/2 − e−λt/2) + r2

∗

]1/2

(t > t∗). (4.18)

As in the rectangular case, the motion in the deep stage predicted by the present
box model reflects an instantaneous balance between the total buoyancy force, Fg ∼
ρg′h2rN , and the total inertial force, Fi ∼ ρU2hrN (in dimensional form).

A comparison between the predicted propagation in axisymmetric circumstances
of the present box-model results to those obtained by the shallow-water equations
for two values of λ is shown in figure 12(b) (from the release point until decrease
of the numerical hN to 0.01). The agreement is good. As for the rectangular case,
the box-model approximation predicts a slower propagation than the shallow-water
equations.

5. Concluding remarks
In this paper we have analysed the behaviour of an inviscid lock-released gravity

current which propagates over a horizontal porous boundary in either a rectangular
or an axisymmetric geometry. The effect of this boundary was described by means of
a parameter λ, which represents the ratio of the typical time of porous drainage, τ, to
that of horizontal spread, x0/(h0g

′)1/2. The value of τ was assumed to be known for
the fluid–boundary combination under simulation. The interesting cases correspond to
small values of λ, otherwise the current is drained before any significant propagation
can occur.

We formulated and solved the one-layer shallow-water equations for this problem,
and pointed out the differences with the classical current (over an impermeable bound-
ary). We compared the motion over an entire porous boundary and over one for which
the portion under the lock is impermeable. We showed that the decrease of volume in
the latter case deviates considerably from the exponential decay pointed out by TML
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for the former case. This suggests that the evaluations of τ performed by TML from
the measurements of volume fitted to the exponential decay curve must be adjusted
downwards by typically 35%. Furthermore, because of the problematic contribution
of the non-porous boundary beneath the lock region to the experimental finding of
τ from lock-release experiments, we suggest a different method, as follows. If we let
the heavy fluid ‘settle’ through an entire porous boundary (without performing any
vertical motion) under external conditions of the ambient fluid pertinent to the gravity
current of interest, the volume decay is expected to be exponential and conveniently
given by the height of the interface between the two fluids, thus allowing a more accu-
rate evaluation of τ. This may require a special mechanism for turning on and off the
holes in the grid (in other words, instead of the vertical lock mechanism some kind of
horizontal lock is needed to allow control on the start of the drainage of the current).

A brief comparison of shallow-water simulations with some experimental results
of TML shows consistency in most cases. However, a detailed comparison between
the theory and experiments, in particular for axisymmetric configurations, calls for a
special study requiring additional experiments.

We developed box-model approximations which yield the distance of propagation
and average thickness as explicit functions of time, in fair agreement with the shallow-
water results.

The assumption of a constant λ in the porous domain of the boundary is an
oversimplification for practical cases, but is not a necessary one. Formally, it can be
readily relaxed in both the shallow-water and box-model approximation. Since the
shallow-water equations are solved numerically, a quite complicated dependence of the
vertical velocity at the base, wb, see (2.3), on x, t and other variables (which will result
in a similarly complicated λ) can be straightforwardly incorporated into the shallow-
water analysis. For the box model it may become necessary to integrate the ordinary
differential equations numerically when a variable λ is used. Practically, however, the
employment of an improved representation of λ depends on the availability of more
sophisticated models and data for the behaviour of a porous substrate. Indeed, the
correlation suggested by TML and adopted in this work has not yet been tested, to
our knowledge, on real porous materials. This topic requires investigation.

For very small values of λ the current propagates for much more than its initial
length. Such a propagation, in the absence of porous drainage, would cause the current
to approach a similarity form of behaviour. It is plausible that small λ will introduce
only a small perturbation to this ideal similarity feature for a significant period of
time; such a feature was indeed detected for the particle-driven current by Hogg,
Ungarish & Huppert (2000), which allowed a convenient asymptotic expansion to be
obtained. This investigation is in progress and will be published in a separate paper.

There is an intuitive similarity between a homogeneous current over a porous wall
and a particle-driven current over an impermeable wall. Here, following Ungarish &
Huppert (1998), we must distinguish between two models of particle transport: the
turbulent remixing and the laminar settling models (labelled T and L, respectively,
in that paper). The latter model bears the greatest similarity to the porous boundary
problem because it assumes that the concentration of the particles is constant (i.e. g′
does not change during propagation) and the settling of the particle causes ‘pure’ fluid
from the current to flow through the upper interface and mix with the embedding
fluid, thus causing a continuous decay of the volume of the current, V(t). The
parameter β̄ = h0/(wsT), where ws is the particle settling velocity, is analogous to the
present λ. However, quantitatively this similarity is not exact: the settling velocity of
the particles is constant, while the porous suction velocity is dependent on the local
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and instantaneous value of h(x, t). Consequently the particle-driven current is subject
to a more effective decay mechanism than the drainage through a porous medium
when β̄ = λ. The interesting question of how these two effects combine is left for
future investigations.

The research was supported by the EPSRC and by the Fund for Promotion of
Research at the Technion.

Appendix A. The box model for an impermeable boundary
The limit λ→ 0 corresponds to the impermeable boundary case. The results are as

follows.

A.1. Rectangular geometry

In the shallow stage,

xN(t) = ( 7
12
H1/3t+ 1)6/7 (t 6 t∗), (A 1)

t∗ =
12

7H1/3

[(
1

0.075H
)7/6

− 1

]
(A 2)

and

x∗ = 1/(0.075H). (A 3)

When H > 1/0.075 and the shallow stage does not occur, we define t∗ = 0 and
x∗ = 1. For the deep stage of propagation

xN(t) = [ 3
2
1.19(t− t∗) + x

3/2
∗ ]2/3 (t > t∗). (A 4)

In both stages hN(t) = 1/xN(t).

A.2. Cylindrical (axisymmetric) geometry

In the shallow stage,

rN(t) = ( 2
3
H1/3t+ 1)3/4 (t 6 t∗), (A 5)

t∗ =
3

2H1/3

[(
1

0.075H
)2/3

− 1

]
(A 6)

and

r∗ = 1/(0.075H)1/2. (A 7)

When H > 1/0.075 and the shallow stage does not occur, we define t∗ = 0 and
r∗ = 1. For the deep stage of propagation

rN(t) = [1.19× 2(t− t∗) + r2
∗]

1/2 (t > t∗). (A 8)

In both stages hN(t) = 1/r2
N(t).
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