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Abstract. In the present research paper, the nonlinear propagation of dust ion
acoustic solitary waves in a collisional dusty plasma, which consists of negat-
ively charged small dust grains, positively charged ions and isothermal electrons
with background neutral particles, is investigated. The low rates compared to the
ion oscillation frequency, of the charge-fluctuation dynamics of the dust grains,
the ionization, ion-neutral and dust-neutral collisions (i.e. weak dissipations) are
considered. Using the reductive perturbation theory, a damped Korteweg-de Vries
(DKdV) equation is derived. On the other hand, the dynamics of solitary waves
at a critical phase velocity is governed by a damped modified Korteweg-de Vries
(DMKdV) equation. The nonlinear properties of dust ion acoustic waves in the
presence of weak dissipations in the two cases are discussed.

1. Introduction
Dusty plasmas (DPs) are different from the ordinary plasmas (electrons and ions).
The DPs are the mixtures of ordinary plasma, a finite size of charged dust grains
and the neutral particles occurring both in the space and the laboratory [1–4]. The
ionization, recombination and electron-ion loss due to attachment on the dust grain
processes play a significant role to define the stationary state in a DP. Accordingly,
the laboratory gas-discharged weakly ionized DP is a strong non-equilibrium plasma
medium [5]. The ionization instability was examined for ion-acoustic (IA) in a DP-
containing positive ions, electrons, neutral gas and negatively charged dust grains at
a sufficiently low pressure. It was found that the presence of negatively charged dust
increases both the frequency and the growth rate of the IA wave excited through the
ionization instability [6]. In fact, charged dust grains immersed in ambient plasmas
are electrically charged due to the current flux of electrons (Ie) and ions (Ii) on the
dust grain surfaces. Varma et al. [7] studied the dust charge fluctuation effect for the
first time. Furthermore, several authors [8–10] showed that the charge fluctuation
of the dust grains plays an important role in the study of collective effects of the
DP. The presence of highly negatively charged and massive grains of dust particles
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in electron and ion plasmas is responsible for the appearance of new types of
waves, depending on whether the dust grains are considered to be static or mobile.
One type of these waves is the dust ion acoustic waves (DIAWs), which are the
usual ion acoustic waves modified by the presence of dust grains. Shukla and Silin
[11] predicted the existence of small amplitude DIAWs in an unmagnetized DP.
Barkan et al. [12] observed these waves in a laboratory experiment. On the other
hand, the nonlinear DIAW characteristics in a DP have been widely investigated [8,
13, 14]. For example, the nonlinear propagation of the DIAWs accounting for the
charge-fluctuation dynamics of stationary dust grains in a DP consisting of a cold
ion fluid and Boltzmann distribution electrons has been studied by Mamun and
Shukla [10]. They demonstrated that the dust grain charge fluctuations reduce the
speed of compressive DIAWs. All these investigations considered the propagation
of the DIAWs without ionization source model. Ghosh [15, 16] has studied the
nonlinear DIAWs propagation characteristics in the presence of ionization, ion-dust
and ion-neutral collisions in a DP consisting of positively charged ions, isothermal
electrons and immobile fixed [15] and variable [16] negatively charged dust grains.
He illustrated that the ionization instability leads to the exponential growth of
the DIAW amplitude with time, whereas ion-dust and ion-neutral collisions reduce
the growth rate. Also, his analytical solution reveals that the ionization has a
destabilizing effect, whereas ion loss and dust-charge variation play a stabilizing role
to control the ionization instability. In fact, dust grains participate in the motion
in the case of DIAWs. Therefore, in several papers, DIAWs are studied in the
presence of the dynamics of charged dust particles. For example, Tiwari and Mishra
[17] studied IA-dressed solitons in a collisionless DP having positively/negatively
charged dust grains using the reductive perturbation method [18]. They found
that the presence of positively charged dust grains in the system supports only
compressive solitons. However, the plasma with negatively charged dust grains could
support compressive solitons only up to a certain concentration of dust. Above this
critical concentration of negative charge, the DP can support rarefactive solitons.
A little work is concerned with the effects of ionization, ion-neutral, ion-dust and
dust-neutral collisions on DIAWs in the presence of the dynamics of negatively
charged dust grains. For example, Moslem and El-Taibany [19] have studied the
propagation of nonlinear DIAWs in a DP consisting of warm positive ions, warm
negatively charged dust fluid and low temperature-trapped electrons. The ionization
and collisions between ions and dust grains are considered. They found that the
wave amplitude is exponentially decaying with time and admits only compressive
solitons. Recently, Shukla and Eliasson [20] have presented an updated knowledge
of fundamentals of collective DP interactions and several novel phenomena that
have been observed in laboratories and in space DPs. It should be mentioned here
that both shocks and solitons in DPs could be formed by different means. These
are not necessarily restricted to the mode excitation due to instabilities, or an
external forcing, but can be a regular collective process analogous to the shock wave
generation in gas dynamics. The anomalous dissipation in DPs, which originates
from the dust particles’ charging process, ionization, ion-neutral collisions and dust-
neutral collisions, makes possible the existence of a new kind of shocks related to
this dissipation [20,21]. If the dissipation is weak at the characteristic dynamical
time scales of the system (i.e. for the case in hand), the balance between nonlinear
and dispersion effects can result in the formation of symmetrical solitary waves – a
soliton.
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The motive of this article is to study the propagation characteristics of weakly
dissipative DIAWs with the effect of the dust charge fluctuation in a collisional
DP in the presence of ionization, ion-neutral collisions and dust-neutral collisions
taking into account the dynamics of a relatively small fraction of negatively charged
small dust grains (a≈ 0.1 µm). We focus our attention to the effects of the
dynamics of charged dust particles, ion-neutral collisions and critical phase velocity
on the nature of DIAWs. Therefore, we assume that the ion-loss frequency, ion-
neutral collision frequency and dust-neutral collision frequency are smaller than
the ion-plasma frequency (ωpi ≈ 107 s−1)(i.e. weak dissipations) [16]. In Sec. 2, we
present the equations governing one-dimension dynamics of nonlinear DIAWs.
The nonlinear propagation of DIAWs is investigated through the derivation of a
damped Korteweg-de Vries (DKdV) equation. In Sec. 3, at the critical phase velocity,
we derived a damped modified Korteweg-de Vries (DMKdV) equation using new
stretched variables for describing the DIAWs. Numerical results and discussion in
these two cases are given in Sec. 4.

2. Basic assumptions, equations and derivation of evolution
equation

Before going to the basic equations, we consider the basic assumptions that will help
us to formulate the physical problem. Let us consider a DP consisting of negatively
variable-charged cold dust fluid, positively charged ion fluid, isothermal electrons
and immobile background neutral particles. Also, there are ionizing (fast) electrons,
whose density is much smaller than the density of the thermal electrons, which
produce new ions due to the ionization of neutral fluid. Therefore, the ion-creation
term is given by Q̃i = σ(ϕ)nnΨ [15], where σ(ϕ) is an ionization cross section, nn is
the neutral gas density and Ψ is the flux of ionizing electrons. On the other hand,
ions are lost from the ion fluid because of the attachment on the grain within the
plasma. Hence, the ion-loss term is given by Q̃l = Iin

(0)
d /e, where Ii/e is the ion

current per unit charge. The ions and the dust grains undergo elastic collision with
the background neutral particles. According to the above-mentioned assumptions,
the system of basic fluid equations, which governs the dynamics of one-dimensional
DIAWs in a DP in the existence of the charge-fluctuation dynamics of the dust
grains, the ionization and ion-neutral and dust-neutral collisions is given by the
following normalized equations [5, 6, 16, 17, 19]

∂nd

∂t
+

∂

∂x
(ndVd) = 0, (1)

∂Vd

∂t
+ Vd

∂Vd

∂x
+ βd(Q − 1)

∂ϕ

∂x
+ νdnVd = 0, (2)

∂ni

∂t
+

∂

∂x
(niVi) − Qi + Q� = 0, (3)

ni

(
∂Vi

∂t
+ Vi

∂Vi

∂x

)
+ ni

∂ϕ

∂x
+ σi

∂ni

∂x
+ νinniVi + QiVi = 0, (4)

δ
∂2ϕ

∂x2
− ne + δni + (δ − 1)(Q − 1)nd = 0, (5)

ne = exp(ϕ) (6)
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and (
∂

∂t
+ Vd

∂

∂x

)
Q = ν(Ie + Ii)/νchz

(0)
d e, (7)

where the normalized expression for the ion-creation term Qi, the ion loss term Q�,
the electron current term Ie, the ion current Ii for spherical dust grains with radius
a are, respectively, given by

Qi =
Q̃i

ωpin
(0)
i

= Qi0

[
1 +

∆σ

σ0
ϕ +

1

2σ0

(
d2σ

dϕ2

)
ϕ2 + · · ·

]
(8)

Q� =
Iin

(0)
d

ωpin
(0)
i e

= νLni

(
1 − zQ

σi + z

)
, (9)

Ie = −eπa2

(
8Te

πme

)1/2

n(0)
e exp [ϕ + z(Q − 1)] (10)

and

Ii = eπa2

(
8Ti

πmi

)1/2

n
(0)
i ni

[(
1 +

z

σi

)
− z

σi
Q

]
. (11)

In the above equations the variables nd, ni and ne are the dust, ion and electron
number densities, Vi(Vd) is the ion (dust grain) flow velocity and ϕ is the electric
potential. x and t are the space coordinate and time variable respectively. ν, νL, νin
and νdn is the dust-charging frequency, the ion-loss frequency, the ion-neutral and
dust-neutral collision frequencies, respectively. Q = (Qd/z

(0)
d e) is the normalized

dust-charge fluctuating, where Qd is the fluctuating charge on the dust grains. At
equilibrium, i.e. at ϕ = 0, ne = n(0)

e , ni = n
(0)
i , nd = n

(0)
d and qd = −z

(0)
d e, the charge

neutrality condition is given by n(0)
e + z

(0)
d n

(0)
d − zin

(0)
i = 0, where n

(0)
i , n

(0)
d and n(0)

e are

the unperturbed number densities of ions, dust grains and electrons respectively, z(0)
d

is the equilibrium number of charges residing on the dust grain, and singly charged
ions for which zi = 1. σ = σ(ϕ) is the ionization cross section, where σ0 represents
the value of σ(ϕ) at ϕ = 0. Also, at equilibrium, (3) illustrates that Qi0 = Q�0,

therefore Qi0 = νL. We introduce the following notations:

βd =
z

(0)
d mi

md

, σi =
Ti

Te

, δ =
n

(0)
i

n
(0)
e

, ν =
νch

ωpi

, νch =
a√
2π

ω2
pi

Vti

[σi + (1 + z)],

νL =
a√
2π

ω2
pi

Vti

[σi + z]

zδ
(δ − 1) , ∆σ =

(
dσ

dϕ

)
0

, z =
z

(0)
d e2

4πε0aTe

.

Here Te(Ti) is the electron (ion) temperature in energy units, mi(md) is the ion
(dust) mass, ε0 denotes the free space permittivity, 4πε0a is the capacitance of a
spherical dust grain and Vti(=

√
Ti/mi) is the ion thermal velocity. All physical

quantities are normalized as follows: nd, ni and ne are normalized by n
(0)
d , n

(0)
i and

n(0)
e , respectively, Vi and Vd by the ion acoustic speed

(
Ti/mi

)1/2
, ϕ by (Te/e),

x by the ion Debye length λDi = (ε0Te/n
(0)
i e2)1/2, t by the ion plasma period

ω−1
pi = (n(0)

i e2/ε0mi)
−1/2, ν, νL, νin and νdn by ωpi and Qi and Q� by ωpini0.
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In order to derive the nonlinear dynamical equation for DIAWs from (1)–(7), we
introduce the stretched space-time coordinates [16, 17]

ξ = ε1/2(x − V0t), τ = ε3/2t, (12)

where V0 is the phase velocity of the linear DIAWs to be determined later, and
ε is a smallness parameter measuring the weakness of the nonlinearity. Now we
can expand the plasma physical quantities in a power series of ε around their
corresponding equilibrium values as follows:

nd = 1 + εn
(1)
d + ε2n

(2)
d + ε3n

(3)
d + · · · ,

ni = 1 + εn
(1)
i + ε2n

(2)
i + ε3n

(3)
i + · · · ,

Vd = εV
(1)
d + ε2V

(2)
d + ε3V

(3)
d + · · · ,

Vi = εV
(1)
i + ε2V

(2)
i + ε3V

(3)
i + · · · ,

ϕ = εϕ(1) + ε2ϕ(2) + ε3ϕ(3) + · · · ,
Q = εQ(1) + ε2Q(2) + ε3Q(3) + · · · .

(13)

Before using the usual procedure of the reductive perturbation theory [18], let
us make the nonlinear perturbation consistent with (12) and (13). Therefore, the
following assumptions and scaling are made [15,16]

(i) The dust-charging frequency νch is low compared to the ion-oscillation frequency
ωpi, i.e. ν10−3 and hence it is assumed that ν ∼ O(ε 3/2).

(ii) The ratio of the ion-loss frequency to ion-plasma frequency is small, i.e. νL ≈
10−3 and hence it is assumed that νL∼O(ε3/2).

(iii) The ratio of the ion-neutral frequency to ion-plasma frequency is small, i.e.
νin ≈ 10−3 and hence it can be assumed that νin ∼ O(ε3/2).

(iv) Also, the ratio of the dust-neutral frequency to ion-plasma frequency is small,
i.e. νdn ≈ 10−6 and hence it is assumed that νdn ∼ O(ε3).

Substituting (12) and (13) into the basic set of (1)–(7), with the aid of the above
assumptions, then collecting terms of like powers of ε, in the lowest order we obtain
the following relations:

n
(1)
d = − βd

V 2
0

ϕ(1), n
(1)
i =

1

V 2
0 − σi

ϕ(1), Q(1) = 0, (14)

V
(1)
d = − βd

V0
ϕ(1), V

(1)
i =

V0

V 2
0 − σi

ϕ(1), (15)

ϕ(1) = (δ − 1)
[
Q(1) − n

(1)
d

]
+ δn

(1)
i . (16)

Substituting (14) into (16), we get the linear dispersion relation

δ

V 2
0 − σi

+
βd(δ − 1)

V 2
0

− 1 = 0. (17)
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The last equation gives the normalized linear-phase velocity of DIAWs, at β2
d ≈ 0, as

V0 =

[
(σi + δ)

2

((
1 +

βd (δ − 1)

(σi + δ)

)
+

√
1 +

2βd (δ − 1) (δ − σi)

(σi + δ)

)]1/2

, (18)

where V0 =
√
δ + σi is the linear-phase velocity of DIAWs at stationary dust grains,

i.e. βd = 0 [16]. Now, if we consider the next order in ε, we obtain a system of
equations in the second-order perturbed quantities. Solving this system, we finally
obtain the following DKdV equation,

∂ϕ(1)

∂τ
+ Aϕ(1) ∂ϕ

(1)

∂ξ
+ B

∂3ϕ(1)

∂ξ3
+ Dϕ(1) = 0, (19)

where

B =
δ

2

[
δV0(

V 2
0 − σi

)2
+

βd

V 3
0

(δ − 1)

] ,

A= 2B

[
1(

V 2
0 − σi

)2

(
V 2

0

V 2
0 − σi

+
1

2

)
− 1

2δ

]
,

D =
V0B(

V 2
0 − σi

)2

[
νin + νL

(
2 −

(
∆σ

σ0

) (
V 2

0 − σi
))]

+ ναB
(δ − 1)

(
V 2

0 − σi − 1
)

δV0

(
V 2

0 − σi
)

and

α =
σi + z

z [σi + (1 + z)]
.

To obtain a solitary wave solution of (19) we introduce the variable

η = ξ − U(τ)τ,

where η is the transformed coordinate with respect to a frame moving with velocity
U(τ). Integrating (19) with respect to the variable η and using the vanishing boundary
conditions for ϕ(1) and its derivatives up to the second order for |η| → ∞, we obtain
the time evolution solitary waveform approximate solution as

ϕ(1) = ϕ(1)
m (τ) sech2

(
η

W (τ)

)
, (20)

where ϕ(1)
m (τ) = ϕ

(1)
0 exp(−Dτ) andW (τ) =

√
12B exp(Dτ)/Aϕ(1)

0 are the amplitude

and width of DIAWs respectively, and U(τ) = (Aϕ(1)
0 /6)exp(−Dτ). To determine the

value of ϕ(1)
0 , we let D = 0 in (19) and then it becomes the standard KdV equation

and its solution is given by

ϕ(1) = ϕ
(1)
0 sech2

(√
12B/Aϕ(1)

0 η0

)
, (21)

where η0 is the transformed coordinates with respect to a frame moving with velocity
U0 of ϕ(1)

m = ϕ
(1)
0 = 6U0/A at τ = 0.
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3. Derivation of the evolution equation at critical phase velocity
It should be mentioned here that there exists a special value of V0 = V0c, which may
be called critical phase velocity, where the coefficient of the nonlinear term of (19)
becomes zero and the amplitude for DIAWs becomes very large. This implies that
the stretching used in Sec. 2 is not valid for the case V0 = V0c. Therefore, one has to
look for another equation suitable for describing the evolution of the system. The
critical phase velocityV0C is given by

V0c =
(
(σi + 1) +

√
1 + 2σi + δ − 2βd(δ − 1)

)1/2

. (22)

Now, let us introduce the new stretched coordinates, defined by [22]

ξ = ε(x − V0t), τ = ε3t. (23)

Using the above-mentioned assumptions, one can assume that νL, νin and ν ∼O(ε3).
Substituting (13) and (23) into the basic (1)–(7), we obtain to the lowest order in ε,
the linearized solutions (14) and (15) and the linear dispersion relation (17).

If we continue to the next order in ε for continuity and momentum equations, we
get

n
(2)
d = − βd

V 2
0

ϕ(2), (24)

n
(2)
i =

1(
V 2

0 − σi
)2

(
V 2

0

V 2
0 − σi

+
1

2

) (
ϕ(1)

)2
+

ϕ(2)

V 2
0 − σi

, (25)

V
(2)
d = − βd

V0
ϕ(2), (26)

V
(2)
i =

V0(
V 2

0 − σi
)2

(
V 2

0

V 2
0 − σi

− 1

2

)(
ϕ(1)

)2
+

V0

V 2
0 − σi

ϕ(2). (27)

Furthermore, the next order for the charging and Poisson’s equations with the aid
of the lowest order in ε, leads to the following equation:{

δ(
V 2

0 − σi
)2

(
V 2

0

V 2
0 − σi

+
1

2

)
− 1

2

}(
ϕ(1)

)2
+

(
δ

V 2
0 − σi

− (δ − 1) βd

V 2
0

− 1

)
ϕ(2) = 0.

(28)
The coefficient of φ(2) is identically zero because of the linear dispersion relation

(17), while the coefficient of
(
ϕ(1)

)2
is precisely A/B, which vanishes in the case at

hand. Thus, Poisson’s equation is automatically satisfied.
For the next order in ε, we obtain a system of equations in the third-order

perturbed quantities. Solving this system, we finally obtain the DMKdV equation

∂ϕ(1)

∂τ
+ Ac

(
ϕ(1)

)2 ∂ϕ(1)

∂ξ
+ B

∂3ϕ(1)

∂ξ3
+ Dϕ(1) = 0, (29)

where

Ac =
6V 2

0 B(
V 2

0 − σi
)4

[
V 2

0(
V 2

0 − σi
) +

(
V 2

0 − σi
)

12V 2
0

+
1

6

]
− B

2δ
,

and B and D have the same forms as before.
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Figure 1. Plot of V0 against σi for different values of βd,δ = 3 and Z(0)
d = 1000.

The time evolution solitary waveform approximate solution of (29) is given by

ϕ(1) = ϕ(1)
mc(τ) sec h

(
η

Wc(τ)

)
, (30)

where the amplitude ϕ(1)
mc(τ) and the width Wc are given by ϕ

(1)
0c exp(−Dτ) and

Wc(τ) =
√

Bexp(Dτ)/U0, respectively, and ϕ(1)
mc = ϕ

(1)
0c = ±

√
6U0/Ac at τ = 0.

4. Numerical results and discussion
In this paper we have considered the propagation of weakly dissipative DIA solitary
waves in a DP composed of a relatively small fraction of negatively charged
small dust grains with charge fluctuation, positively charged ions fluid, isothermal
electrons, immobile background neutral particles in the presence of weak dissipations
arising due to the low rates of ionization, dust charging and ion-neutral collision.
For nonlinear DIAWs, the reductive perturbation theory is used to reduce the basic
set of (1)–(7) to the DKdV equation, (19), and the DMKdV equation, (29), for
critical phase velocity (V0c). The coefficient of the linear damping term in (19) and
(29) arises from the ionization, ion-neutral collisions and dust charge-fluctuation
dynamics. It should be mentioned here that for our numerical analyses, we have
carried a numerical investigation over a wide range of plasma parameters. These
numerical values of the parameters are frequently used in the literature [17,23],
σi(= Ti/Te)∼0.01 − 0.1, βd(= zdmi/md)∼10−6 − 10−2 and δ(= n

(0)
i /n(0)

e )∼2.0 −3.0. As
the coefficients A, B, C and Ac of DKdV and DMKdV equations play a crucial role
in determining the existence criteria and the nature of the DIA solitary waves, it is
instructive to investigate these coefficients in terms of their dependence quantities.
Figure 1 demonstrates the variation of the linear-phase velocity V0 of the DIA
solitary waves with σifor different values of βd. It is obvious from Fig. 1 that
V0 increases as σi and βd increase. Figure 2 indicates that A (the coefficient of
nonlinearity of (19)) increases with the increase of V0, whereas it decreases as δ

increases. Figure 3 shows that B (the coefficient of dispersion) decreases as V0

increases, but increases as δ increases. In the absent of the ion-neutral collision
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Figure 2. Plot of A against V0 for different values of δ, βd = 10−6, and Z(0)
d = 1000.

Figure 3. Plot of B against V0 for different values of δ, βd = 10−6, and Z(0)
d = 1000.

frequency, i.e. νin = 0, and ∆σ/σ0 = 2, Figs. 4 and 5 clarifies that |D| increases as
ν and νL increase, respectively, and it decreases with the decrease of δ. Figure 6
points out that D increases as V0 and νin increase. It is worth to notice from Fig. 4–6
that the values of ν, νL and νin justify assumptions and scaling of (i), (ii) and (iii),
respectively, in Sec. 2, on the basis of which the reductive perturbation analysis is
used. Figure 7 shows how at critical phase velocity the coefficient of nonlinearity of
(29) Ac changes with V0for different values of δ. It is clear that Ac increases as V0

increases, whereas it decreases with the increase of δ. Moreover, from the study of
the behavior of DIAWs, the following interesting features are deduced:

• The phase velocity of the DIAWs in DPs depends on the dynamics of the small
fraction of small dust grains (Fig. 1).

• Both compressive and rarefactive DIAWs are obtained in our system (Fig. 2).
• The coefficients of nonlinearities A and Ac decrease, whereas the coefficient

of dispersion B increases with the increase of ion-electron number density ratio δ.
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Figure 4. Plot of D against ν for different values of δ, νin = 0, ∆σ/σ0 = 2, βd = 10−6

and Z(0)
d = 1000.

Figure 5. Plot of D against νL for different values of δ, νin = 0, ∆σ/σ0 = 2, βd = 10−6

and Z(0)
d = 1000.

Therefore, the DIA amplitude, which is proportional to 1/A and 1/
√
Ac, respectively,

increases, and the spatial width of the DIAWs, which is proportional to
√
B also

increases; i.e. the DIAWs grow as δ increases (Figs. 2, 3 and 7).
• The presence of the low rates of charge-fluctuation dynamics of the dust grains,

ion-neutral collision, ionization and ion loss modifies the characteristics of nonlinear
propagation of DIAWs, for which the nonlinear waves are governed by the DKdV
equation, and whereas at critical phase velocity by DMKdV equation (19) and (29)
respectively.
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Figure 6. Plot of D against V0 for different values of νin, ∆σ/σ0 = 2, βd = 10−6

and Z(0)
d = 1000.

Figure 7. Plot of Ac against V0 for different values of δ, βd = 10−6 and Z(0)
d = 1000.

• The magnitude of the damping term D due to ion-neutral collisions is much
greater than that due to charge fluctuation and ion loss. Also, ion-neutral collision
dominates over ionization, therefore the DIAWs are always stable (Fig. 6).

• In the absence of the ion-neutral collision frequency, the ionization dominates
over the charge variation and ion loss. Hence, the DIAWs become unstable due to
ionization (Figs. 4 and 5).
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