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A CO-ANALYTIC COHEN-INDESTRUCTIBLE MAXIMAL
COFINITARY GROUP

VERA FISCHER, DAVID SCHRITTESSER, AND ASGER TÖRNQUIST

Abstract. Assuming that every set is constructible, we find a Π11 maximal cofinitary group of permu-
tations of N which is indestructible by Cohen forcing. Thus we show that the existence of such groups is
consistent with arbitrarily large continuum. Our method also gives a new proof, inspired by the forcing
method, of Kastermans’ result that there exists a Π11 maximal cofinitary group in L.

§1. Introduction. (A)We denote the group of permutations (bijections) of N by
S∞, and its unit element by idN. An element of S∞ is cofinitary if and only if it has
only finitely many fixed points, and G is called a cofinitary group precisely if G ≤ S∞
and all elements of G \ {idN} are cofinitary.
A cofinitary group is said to bemaximal if andonly if it ismaximal under inclusion
among cofinitary groups.
Various aspects of maximal cofinitary groups (or short, mcgs) have long been
studied (see e.g., [1, 3, 4, 10, 20, 26, 27]), including possible sizes of mcgs; their
relation to maximal almost disjoint (or mad) families, of which they are examples;
as well as inequalities relating ag , i.e., the least size of a mcg, to other cardinal
invariants of the continuum; see e.g., [2,8,12,19,28,29]. Analogous questions about
permutation groups on κ, where κ is an uncountable cardinal, have also been
studied; see e.g., [6]. The isomorphism types of mcgs have been investigated in [17].
The line of research to which this paper belongs concerns the definability of
mcgs.

(B) Since the existence of mcgs relies on the axiom of choice, the question of
whether a mcg can be definable has drawn considerable interest.
It was shown by Truss [26] and Adeleke [1] that no mcg can be countable; this
was improved by Kastermans’ result [16, Theorem 10] that no mcg can be K� . On
the other hand, Gao and Zhang [9] showed that assuming V = L, there is a mcg
with a co-analytic generating set. This, too, was improved by Kastermans with the
following theorem.

Theorem 1.1 ([16]). If V = L there is aΠ11 (i.e., effectively co-analytic) mcg.
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The previous theorem immediately raises the question of whether the existence
of a Π11 mcg is consistent with V �= L, or even with the negation of the continuum
hypothesis. In this paper we answer these questions in the positive:

Theorem 1.2. The existence of a Π11 mcg is consistent with arbitrarily large
continuum (assuming the consistency of ZFC).

At the same time we give a new proof of Kastermans’ Theorem 1.1. This is
worthwhile for several reasons: Firstly, our method shows that in L, any countable
cofinitary group is contained in a co-analytic mcg. Secondly, the ‘coding tech-
nique’ which ensures that the group is co-analytic, described in Definition 3.6,
is much more straightforward than the one in [16]. Thirdly, this method seems
open to a wider range of variation, allowing to construct mcgs with additional
properties.
An example of such a property is Cohen-indestructibility, which we now define.
For this, first observe that if G is a cofinitary group, then clearly it remains so in any
extension of the universe.

Definition 1.3. Let G be a mcg and let C denote Cohen forcing. We say G is
Cohen-indestructible if and only if �C Ǧ is maximal.
A Cohen-indestructible mcg was first obtained by Zhang [29]. The following is
our main result; Theorem 1.2 is clearly a corollary.

Theorem 1.4. If V = L, there is aΠ11 Cohen-indestructible mcg.
To prove the theorem, we first find a forcing which, given a cofinitary group G and
z ∈ 2N, adds a generic cofinitary group G′ such that G ≤ G′ and with the property
that z is computable from (or ‘is coded by’, see Definition 3.6) each element from
a sufficiently large subset of G′. To find this forcing, we refine Zhang’s forcing from
[28] (also see [8] and [6] for variations).
We then use this to give a new proof of Kastermans’ Theorem 1.1, building our
group from permutations which are generic over certain countable initial segments
of L. We use ideas from [6] to see that the group produced in this manner is
Cohen-indestructible.

(C)The paper is structured as follows. In Section 2,we establish basic terminology
for Section 3. In Section 3.1 we give a streamlined presentation of Zhang’s forcing
QG , in order to simplify the definition and discussion of our forcing QzG , which
follows in Section 3.2. In Section 4, we prove our main result, Theorem 1.4, in a
slightly more general form (Theorem 4.1), after a short review of facts of effective
descriptive set theory and fine structure theory used in the proof.We close in Section
5 by listing some questions which remain open.

Addendum. After the appearance of this paper, Horowitz-Shelah [11] showed in
ZF that there is a Borel maximal cofinitary group. Note that our result remains
interesting, as the group we construct is in L and of size �1 but remains maximal
after adding any number of Cohen reals, while the group from [11] always has
size 2� .

§2. Notation and preliminaries. We start by reviewing the necessary definitions
and introduce convenient terminology, in particular the notion of a path.
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(A) Since we build a generic element of S∞ from finite approximations, we shall
work with partial functions. We write par(N,N) for the set of partial functions from
N to N, and fin(N,N) for the set of finite such functions. For a ∈ par(N,N), when
we write a(n) = k it is clearly implied that n ∈ dom(a) except when we say a(n) is
undefined, which means that n ∈ dom(a). For the set of fixed points of a we write

fix(a) = {n ∈ N : a(n) = n}.
The set par(N,N) is naturally equipped with the operation of composition of
partial functions

(fg)(n) = m ⇐⇒ f(g(n)) = m,

making it an associative monoid.
Let G be an arbitrary group. By F(X ) we denote the free group with single gener-
ator X . We identify the group G ∗ F(X ), i.e., the free product of G and F(X ), with
the setWG,X of reduced words from the alphabet

(G \ {1G}
)∪ {X,X−1}, equipped

with the familiar ‘concatenate and reduce’ operation (see e.g., [21, Normal Form
Theorem]). The neutral element 1G is therefore identified with the empty word,
which we denote by ∅.
By a circular shift of a nonempty word w = wn . . . w1 we mean the result of
reducing the word w�(n) . . . w�(1), where � is a permutation of {1, . . . , n} such that
for some k ∈ N,

�(i) = i + k mod n.

Thus, e.g., cdab is a circular shift ofabcd (in the free group generated by {a, b, c, d}).
By a subword of w we mean a contiguous subword wi . . . wj for n ≥ i ≥ j ≥ 1, or
the empty word. Of course, the empty word is both the only circular shift and the
only subword of itself.
We call a group homomorphism � : G → S∞ a cofinitary representation of G if
and only �[G] is cofinitary. Clearly, if � is injective (i.e., a faithful representation), we
may identify G with the cofinitary group �[G] ≤ S∞.
For the remainder of this section assume G ≤ S∞. Choosing an arbitrary s ∈
par(N,N) gives rise to a unique homomorphism of monoids

� : G ∗ F(X )→ par(N,N)
such that �(X ) = s and � is the identity on G. It can be defined by induction
on the length of words in the obvious way. Let’s denote this homomorphism by
�G,s , departing from [8] (where it is precisely the map w �→ ew(s)). Its image is the
compositional closure 〈G, s〉 of G ∪ {s} in par(N,N).
Convention 2.1. We adopt the convention to denote �G,s (w) by w[s], for any
w ∈WG,X (we ‘substitute s for X in w’; as e.g., in [16,28]).

Observe that slightly awkwardly by this convention ∅[s] = idN for any s ∈
par(N,N).

(B) We define the notion of a path, which will be extremely useful in the next
section. Fix s ∈ par(N,N). Say w ∈WG,X , and in reduced form

w = an . . . a1.
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We define the path under (w, s) of m, also called the (w, s)-path of m and written

path(w, s,m) = 〈mi : i ∈ α〉,
to be the following sequence of natural numbers: m0 = m and for l ∈ N and i ∈ N

such that 0 < i ≤ n,
mnl+i = ai . . . a1wl [s](m0)

and α ∈ � + 1 is maximal such that all of these expressions are defined. That is
we simply iterate applying all the letters of w as they appear from right to left and
record the outcome until we reach an undefined expression.
We can represent such a path e.g., as follows (where i = 1+ (k mod n)):

· · ·mk+1 ai←− mk · · · a2←− mn+1 a1←− mn an←− · · · a2←− m1 a1←− m0,
or more simply, we shall represent it as 〈. . . , mn, . . . , m1, m0〉.
For k < α and i = 1 + (k mod n), we say ai occurs at step k + 1 in the above
path; if mk+1 is defined we also say ai is applied (to mk) at this step. If mk+1 is
undefined, we say the path terminates after α − 1 = k steps with last value mk or
that it terminates before (an occurrence of) the letter ai .
Sometimes we are interested in the pathmerely as a set, rather than as a sequence;
so let

use(w, s,m) = {mi : i < α}.
(C) Of course, we identify N and �, but prefer to denote this set as N in the
context of permutations. We denote by |A| the cardinality of A, for any set A. We
sometimes, but not always, decorate names in the forcing language with dots and
checks, with the goal of aiding the reader. Notation regarding forcing is as in [13].

§3. Coding into a generic group extension. Fix, for this section, a cofinitary group
G ≤ S∞. We want to enlarge it by �∗ ∈ S∞, such that 〈G, �∗〉 is cofinitary. This
can be done using a forcing invented by Zhang [28]; for some of its applications see
[2,9,12,18,19,29,30].
In Section 3.2, we introduce a new forcingQzG , such that in addition to the above,
every permutation in 〈G, �∗〉 with certain property ‘codes’ a given, fixed z ∈ 2N, in
a certain sense (see below).
Before we introduce this new forcing notion,we define our own version of Zhang’s
forcing, QG in Section 3.1, differing slightly from [28]. We then analyse carefully
how paths behave when conditions inQG are extended, facilitating the treatment of
QzG .
Note that in the case of countable G, Zhang’s QG from [28], our version of

QG described in Section 3.1, and the forcing QzG are all countable, i.e., particular
presentations of Cohen forcing.

3.1. Zhang’s forcing revisited. We now turn to our definition of the forcing to
add a generic faithful cofinitary representation of G ∗ F(X ).
Definition 3.1 (The forcing QG).
(a) Conditions ofQG are pairs p = (sp, F p), where s ∈ fin(N,N) is injective and
F p ⊆WG,X is finite and closed under taking subwords.
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(b) (sq, F q) ≤QG (s
p, F p) if and only if sq ⊇ sp, F q ⊇ F p and for allw ∈ F p\G,

if m ∈ fix(w[sq]), then there is a nonempty subword w ′ of w such that
use(w, sq,m) ∩ fix(w ′[sp]) �= ∅.

The reader is invited to check that ≤QG is transitive—it is for this reason that we
require F p to be closed under taking subwords.
We write any condition p ∈ QG as (sp, F p) if we want to refer to the components
of that condition.
If G is (V,QG)-generic, we let

�G =
⋃
p∈G
sp.

As we shall see, �G,�G : G ∗ F(X ) → 〈G, �G 〉 is a faithful cofinitary representation;
moreover, 〈G, �G 〉 is maximal with respect to the ground model, that is, for no
� ∈ (S∞ \ G) ∩ V is G ∪ {�G, �} contained in a cofinitary group.
The role of the requirement regarding fixed points in (3.1) is to guarantee that
〈G, �G 〉 is cofinitary (as will be seen Lemma 3.12).
As is pointed out in [28, p. 42f.], one cannot replace (3.1) by the simpler

(b)′ (sq, F q) ≤QG (s
p, F p) if and only if sq ⊇ sp, F q ⊇ F p and for all w ∈ F p,

we have fix(w[sq]) ⊆ fix(w[sp]).
For with this simpler definition, supposing g ∈ G and n ∈ fix(g), the condition
(∅, {X−1gX}) ∈ QG has no extension q ∈ QG with n ∈ ran(sq). It is fixed points of
conjugate subwords that give rise to this problem. Accordingly, if desired one could
replace the phrase ‘nonempty subword’ in (3.1) by the phrase ‘conjugate subword’.
In a previous article [8] by two of the present authors, allowing only certain
words in F p made it possible to define ≤QG as in (b)

′. The present defini-
tion helps to simplify proofs in comparison with both [8] and Zhang’s original
version [28].
We nowprove two versions of theDomain ExtensionLemma and a crucial lemma
concerning the length of certain paths (Lemma 3.5). This will considerably clean
up the presentation when we deal with the more complicated forcing QzG .
The following is implicit in [28]; for the convenience of the reader, we include a
new, very short proof.

Lemma 3.2 (Contingent Domain Extension for QG). Suppose s ∈ fin(N,N) is
injective, w ∈ WG,X and n ∈ N is such that for any nonempty subword w ′ of w,
n /∈ fix(w ′[s]). Then for a cofinite set of n′, letting s ′ = s ∪ {(n, n′)}, we have that s ′
is injective and fix(w[s ′]) = fix(w[s]).

Proof. LetW ∗ be the set of subwords of circular shifts ofw and pick n′ arbitrary
such that

n′ /∈
⋃{

fix(w ′[s]) : w ′ ∈W ∗ \ {∅}},
n′ /∈

⋃{
w ′[s]i(n) : i ∈ {−1, 1}, w ′ ∈W ∗}, and

n′ /∈ ran(s).
(3.1)

The role of the last requirement is to ensure that s ′ is injective.
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Assume towards a contradiction that m0 ∈ fix(w[s ′]) \ fix(w[s]). As the (w, s)-
path ofm0 differs from the (w, s ′)-path, the latter must contain an application of X
to n or of X−1 to n′. Write this latter path as

· · ·mk(3) w′′←− mk(2) Xj←− mk(1) w′←− mk(0) = m0, (3.2)

where j ∈ {−1, 1} and mk(1) = n when j = 1, mk(1) = n′ when j = −1; moreover
we ask that w ′, w ′′ ∈ WG,X are the maximal subwords of w such that from mk(0)
to mk(1) and mk(2) to mk(3), the path contains no application of X to n or of X−1

to n′ (allowing either of w ′, w ′′ to be empty). Thus, w ′ and w ′′ correspond to path
segments where s and s ′ agree:

w ′[s](mk(0)) = w
′[s ′](mk(0)) = mk(1),

w ′′[s](mk(2)) = w
′′[s ′](mk(2)) = mk(3).

We show that we can assume w = w ′′Xjw ′. Otherwise, by maximality of w ′′, at
step k(3) again X is applied to n or X−1 to n′. Write the path as

· · · Xj
′

←− mk(3) w′′←− mk(2) Xj←− mk(1) w′←− mk(0) = m0
with j′ ∈ {−1, 1} and observe:
1. mk(2) = mk(3); for otherwise, n′ = (w ′′)i [s](n) for some i ∈ {−1, 1},
contradicting the choice of n′.

2. Thus, w ′′ �= ∅, since on one side of w ′′ we have X and on the other X−1 and
w is in reduced form.

3. As n′ /∈ fix(w ′′[s]), we have thatmk(2) = mk(3) = n.
4. So n ∈ fix(w ′′[s]), contradicting the hypothesis of the lemma.

Thus, w = w ′′Xjw ′ and m0 = mk(3). We infer that n′ = (w ′w ′′)−j [s](n), again
contradicting the choice of n′. �
Remark 3.3. Note as this is easily overlooked, that (3.1) implies n′ �= n, since
∅ ∈ W ∗ and by Convention 2.1. Also note that the requirements in (3.1) were
chosen to be easy-to-state rather than minimal (as will be the case for (3.3), (3.4),
(3.5), and (3.7) below).

This enables us to give a short proof of the analogue of [28, Lemma 2.2]:

Lemma 3.4 (Domain Extension for QG). For any n ∈ N, the set of q such that
n ∈ dom(sq), is dense in Q.
Proof. Fix p ∈ Q; we shall find a stronger condition q ∈ Q such that n ∈
dom(sq). Analogously to the previous proof, let F ∗ consist of the empty word
together with all subwords of circular shifts of words in F p, and let n′ be arbitrary
such that

n′ /∈
⋃{

fix(w[s]) : w ∈ F ∗ \ {∅}},
n′ /∈

⋃{
w[s]i(n) : i ∈ {−1, 1}, w ∈ F ∗}, and

n′ /∈ ran(s).
(3.3)

Note that (3.3) excludes only finitely many values for n′. Define s ′ = s ∪ {(n, n′)}
and q = (s ′, F p). As in the proof of Lemma 3.2, s ′ is injective.
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Given w ∈ F p and supposing m0 ∈ fix(w[s ′]) \ fix(w[s]), the proof of the
previous lemma shows that there is a subword w ′ of w such that n ∈ fix(w ′[s]) and
n appears in the (w, s ′)-path of m0. In other words,

use(w, s ′, m) ∩ fix(w ′[s]) �= ∅,
whence q ≤QG p. �
A crucial observation for the following discussion of QzG is that when extending
the domain of sp for a given condition p, we have fine control over the length of
paths that result from this extension.

Lemma 3.5 (Lengths of paths). Fix w ∈ WG,X and m ∈ N. Moreover, let s ∈
fin(N,N) and n ∈ N \ dom(s) be given.
Then for cofinitely many n′ ∈ N, if we let s ′ = s ∪ {(n, n′)} the following holds:
1. If the (w, s)-path ofm does not terminate with last value n before an occurrence
of X , path(w, s ′, m) = path(w, s,m).

2. If w is not conjugate to any of its proper subwords,w/ ∈ G , and the (w, s)-path
of m terminates with last value n before an occurrence of X , the (w; s ′)-path of
m contains exactly one more application of X than does the (w, s)-path and no
further application of X−1.

Proof. Let E = dom(s)∪ ran(s)∪{n}∪ {m} andW ∗ be the set of subwords of
circular shifts of w. Suppose n′ is arbitrary such that

n′ /∈
⋃{

fix(w ′[s]) : w ′ ∈W ∗ \ {∅}} and
n′ /∈

⋃{
w ′[s]i [E] : i ∈ {−1, 1}, w ′ ∈W ∗}.

(3.4)

In Case 1 of the lemma, show path(w, s ′, m) = path(w, s,m). Suppose that the
(w, s)-path ofm terminates after k steps with last valuemk before an occurrence of
Xj , j ∈ {−1, 1}. If j = 1,mk �= n by assumption; and as the (w, s)-path terminates
with mk , we havemk /∈ dom(s) ∪ {n}, so the (w, s ′)-path terminates as well.
So assume towards a contradiction that j = −1 and mk+1 in the (w, s ′)-path of
m is defined. As the (w, s)-path terminates with mk , before an occurrence of X−1,
while (w, s ′)-path does not terminate, mk = n′. Thus, n′ ∈ w ′[s][E] for a subword
w ′ of w, contradicting (3.4).
For Case 2 of the lemma, suppose that the (w, s)-path of m terminates after k
steps with last valuemk = n before an occurrence of X . In the (w, s ′)-path we have
on the contrary thatmk+1 = n′.
If the letter occurring at step k + 2 in this path is again X , the path terminates
after k + 1 steps with last value n′ = mk+1, since n′ /∈ dom(s ′) by (3.4).
If the letter occurring at step k + 2 is g ∈ G \ {idN} followed by X or X−1 at
step k + 3, the path terminates after k + 2 steps with last value mk+2 = g(n′), as
otherwise, n′ ∈ g−1[dom(s ′) ∪ ran(s ′)], which implies n′ ∈ g−1[E] or n′ ∈ fix(g),
contradicting (3.4).
Lastly, suppose the letter occurring at step k + 2 is g ∈ G \ {idN} and g is
the last letter of w. Further suppose the following letter at step k + 3 (the first
letter in w) is h ∈ G \ {idN, g−1} followed by X or X−1 at step k + 4. Then the
path terminates after k + 3 steps with last value mk+3 = h(g(n′)), as otherwise,
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n′ ∈ (hg)−1[dom(s ′) ∪ ran(s ′)], which implies n′ ∈ (hg)−1[E] or n′ ∈ fix(hg),
contradicting (3.4).
As w has no proper conjugate subwords and is reduced no other combination of
letters can occur at the next steps. �
All other proofs regardingQG will be omitted (but note that they can be inferred
from their counterparts forQzG in the next section).

3.2. Coding into a generic cofinitary group extension. Our next goal is to define,
given z ∈ 2N, a forcing QzG such that whenever G is (V,QzG)-generic the following
holds: There exists �G ∈ S∞ such that for a large enough set of � ∈ 〈G, �G 〉 (i.e.,
large enough for our application), z is computable from � (i.e., the characteristic
function of z is computable by a Turing machine using � as an oracle).
First, we describe the algorithm by which z is computed from an element of
〈G, �G 〉 \ G. Since our forcing uses finite approximations to �G , we must also define
the coding for elements of fin(N,N).

Definition 3.6 (Coding).

1. We say that � : N→ N codes z ∈ 2N with parameterm if and only if
(∀k ∈ N) �k+1(m) ≡ z(k) (mod 2).

2. Let t ∈ {0, 1}l , where l ∈ N. We say that � ∈ fin(N,N) exactly codes t with
parameterm ∈ N if and only if

(∀k < l) �k+1(m) ≡ t(k) (mod 2)
and in addition, �l+1(m) is undefined.

Note that using this algorithmwhen � ∈ S∞ is conjugate to an element of G with
only finite orbits, we can’t expect that arbitrary z ∈ 2N be coded—the sequence
coded by such � will always be periodic. Fortunately we can exclude such � from
consideration for the proof of our main result
In fact it suffices for our application to restrict our attention to those � which can
be represented as a word in WG,�G \ G which is not conjugate to any of its proper
subwords (we will see below that �G,�G is injective so in fact this representation is
unique).1

For the rest of this section, fix z ∈ 2N. Now we can define the forcing.
Definition 3.7 (Definition of Q = QzG).
(A) Conditions of Q are triples p = (sp, F p, m̄p) s.t.
(1) (sp, F p) ∈ QG .
(2) m̄p is a partial function into N from the set of wordsw ∈WG,X \ G such
that no proper subword w ′ of w is conjugate to w.

(3) For any w ∈ dom(m̄p) there is l ∈ � such that w[sp] exactly codes z � l
with parameter m̄p(w).

(4) If w,w ′ ∈ dom(m̄p) and w �= w ′,

use(w, sp, m̄p(w)) ∩ use(w ′, sp, m̄p(w ′)) = ∅.
1Devising a forcing which similarly codes z into all words except those conjugate to elements of G

with only finite orbits is possible, but more involved for several reasons.
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(B) (sq, F q, m̄q) ≤ (sp, F p, m̄p) if and only if
(1) (sq, F q) ≤QG (s

p, F p),
(2) m̄q extends m̄p as a function.

We write any condition p ∈ Q as (sp, F p, m̄p) if we want to refer to the components
of that condition.
Note that (A3) ensures that for any p ∈ Q and w ∈ dom(m̄p) the path under
(w, sp) of m̄p(w) is finite (although other paths may be eventually periodic and
thus infinite). Also note that by (A4), |G| is collapsed to � by Q whenever G is
uncountable in the ground model.

For a (V,Q)-generic G , as in the previous section we let

�G =
⋃
p∈G
sp.

We now show in a series of lemmas that �G,�G : G ∗ F(X ) → 〈G, �G 〉 is a faithful
cofinitary representation and for any w ∈ WG,X \ G which does not have a proper
conjugate subword, w[�G ] codes z. The reader should note that this immediately
implies that for any g ∈ G \ {idN} and any � ∈ 〈G, �G 〉 either z is coded by � or
by g�.
We begin with a Lemma showing that �G is forced by Q to be totally defined
on N.

Lemma 3.8 (Domain Extension).

1. For any n ∈ N, the set Ddn = {q ∈ Q : n ∈ dom(sq)} is dense in Q.
2. In fact, suppose p ∈ Q, n ∈ N, w∗ ∈ WG,X \ G is not conjugate to any of its
proper subwords, m∗ ∈ N, n is the last value of path(w∗, sp,m∗) and this path
terminates before an occurrence of X . Then one can find q ∈ Q such that q ≤ p
and path(w∗, sq ,m∗) contains exactly onemore application ofX , and no further
application of X−1, than does path(w∗, sp,m∗).

Before we prove the lemma, to avoid repetition, we introduce the following
terminology: For w ∈ WG,X and j ∈ {−1, 1}, call an occurrence of Xj in w
critical if there is no occurrence of X or X−1 in w to its left. Otherwise, we call
it an uncritical occurrence. Clearly, it is through a critical occurrence of X (resp.
X−1) in some word in dom(m̄) that the coding requirements from (A3) restrict our
possibilities to extend dom(sp) (resp. ran(sp)).

Proof of Lemma 3.8. Let p ∈ Q, w∗ ∈ WG,X , and m∗, n ∈ N be as in the
statement of the lemma and suppose n �∈ dom(sp). We will find n′ such that for
s ′ = sp ∪ {(n, n′)}, q = (s ′, F p, m̄p) is a condition stronger than p.
Write s for sp and m̄ for m̄p. Let

E = ran(s) ∪ dom(s) ∪ {n} ∪ ran(m̄) ∪ {m∗},
and let F ∗ consist of all words which are a subword of a circular shift of a word in
F p ∪ {w∗}. The first requirement we make is that n′ be chosen such that

n′ /∈
⋃
{fix(w[s]) : w ∈ F ∗ \ {∅}} and

n′ /∈
⋃{
g−1wi [s][E] : i ∈ {−1, 1}, w ∈ F ∗, g ∈ F ∗ ∩ G}.

(3.5)
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Note that (3.5) excludes only finitely many possible values for n′. The taking of
preimages under g ∈ F ∗ ∩ G in (3.5) serves the sole purpose of ensuring that the
following holds:

g(n′) /∈
⋃
{use(w, s, m̄(w)) : w ∈ dom(m̄)} (3.6)

for g = idN as well as for all g ∈ G \ {idN} occurring in a word from F p.
Now suppose for somew ∈ dom(m̄), n appears in the (w, s)-path of m̄(w) before
a critical occurrence of X . In this case, we must make an additional requirement:
Noting that by (A4) there is at most one such w ∈ dom(m̄), let this unique word
be denoted by w∗∗. Let l be such that w∗∗[s] exactly codes z � l with parameter
m̄(w∗∗). Further, supposew∗∗ = gXw ′, wherew ′ ∈WG,X andwe allow g ∈ G to be
idN but no cancellation in Xw ′. Now in addition to (3.5), require that g(n′) be even
if z(l) = 0 and odd if z(l) = 1. This is possible as (3.5) excludes only finitely many
values. Note that by choice of n′ and Lemma 3.5, only for this one w ∈ dom(m̄q)
does the (w, s ′)-path differ from the (w, s)-path, and as w has no proper conjugate
subword, the (w, s ′)-path does not go past the next critical occurrence ofX orX−1.
Thus (A3) holds of q by construction.
To see that q is a condition, it remains to verify (A4). We have seen in the proof
of Lemma 3.5 that at most one path starting in dom(m̄p) acquires new values when
passing to q, and these new values are n′ and possibly g(n′), where g ∈ G is a
subword of a cyclic shift of a word in dom(m̄). Thus requirement (A4) holds of q
by (3.6).
We end the proof of Part 1 of the lemma by quoting the proof of the Domain
Extension Lemma forQG to conclude that q ≤ p.
For Part 2 of the lemma note that by the proof of Lemma 3.5 indeed the (w∗, s)-
path of m∗ contains exactly one more application of X , and no further application
of X−1, than does the (w∗, s ′)-path of m∗. �
The next lemma shows thatQ forces �G to be onto N.

Lemma 3.9 (Range Extension).

1. For any n ∈ N, the set Drn = {q ∈ Q : n ∈ ran(sq)} is dense in Q.
2. In fact, supposep ∈ Q, n ∈ N, andm∗ ∈ N are such that for somew∗ ∈WG,X \G
not conjugate to any of its proper subwords,n is the last value of path(w∗, sp,m∗)
and this path terminates before an occurrence of X−1. Then one can find q ∈ Q

such that q ≤ p and path(w∗, sq , m̄∗) contains exactly one more application of
X−1 and no further application of X than does path(w∗, sp, m̄∗).

Proof. The lemma is entirely symmetrical to the Domain Extension Lemma. By
symmetry, the proofs of Lemmas 3.2, 3.4, 3.5, and 3.8 can easily be adapted. �
By the previous lemma �Q �Ġ ∈ S∞. By the next two lemmas it is forced that for
all w ∈ WG,X \ G which are not conjugate to any of their proper subwords, w[�Ġ ]
codes z, as promised:

Lemma 3.10 (Generic coding). For anyw ∈WG,X \ G without a proper conjugate
subword and any l ∈ N, letDcodew,l denote the set of q ∈ Q such thatw ∈ dom(m̄q) and
for some l ′ ≥ l , q exactly codes z � l ′ with parameter m̄q(w). Then Dcodew,l is dense
in Q.
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Proof. Let w and l be as above, and fix p ∈ Q. We may assume w ∈ dom(m̄p):
Otherwise, find n′ ∈ N such that n′ ≡ z(0) (mod 2) and (3.5) holds with E =
dom(sp)∪ ran(sp)∪ ran(m̄p) and F ∗ equal to the set of subwords of circular shifts
of words in F p ∪ {w} and let p′ = (sp, F p, m̄p ∪ {(w, n′)}). By (3.5) and by the
proof of Lemma 3.8, (A4) is satisfied for p′ and the (w, sp)-path of n′ will terminate
before the right-most application of X or X−1 in w. As sp = sp

′
, this suffices to

show p′ is a condition stronger than p.
So supposing w ∈ dom(m̄p), let m be the last value of the (w, sp)-path of m̄(w)
and assume this path terminates before anoccurrence of the letterX . By theDomain
Extension Lemma, we may find q ≤ p such thatm ∈ dom(sq) and the (w, sq)-path
at m̄(w) terminates either at the next step or after one further application of an
element of G \ {idN}.
If instead the (w, sp)-path of m̄(w) terminates before an occurrence of the letter
X−1, argue similarly using the Range Extension Lemma.
Repeating the argument if necessary, we obtain a condition q such that sq exactly
codes z � l . �
By the next two lemmas, 〈G, �G 〉 is forced to be cofinitary. The reader may care to
notice that the proofs of the remaining lemmas in this section are almost identical
(or in the case of Lemma 3.15 at least not very different) for 〈QG ,≤G〉—excepting
of course Lemma 3.16(II) which doesn’t hold for 〈QG ,≤G〉.
Lemma 3.11. If w ∈WG,X , the set {q ∈ Q : w ∈ F q)} is dense in Q.
Proof. Given p ∈ QzG , let q = (s

p, F p ∪W, m̄p), whereW is the set of subwords
of w. Then q ∈ QzG and q ≤ p. �
Lemma 3.12. If p ∈ Q and w ∈ F p, there is N such that p � fix(w[�Ġ ]) has size
at most N .

Proof. Suppose p and w ∈ F p, and let the length of w be k. Let N be the
number of triples (u,m, l) such that u is a subword of w,m ∈ fix(u[sp]), and l ≤ k.
Towards a contradiction, assume q ≤ p forces that (w[�Ġ ]) has more than N fixed
points. By strengthening q if necessary, we may assume that |fix(w[sq])| > N .
As q ≤ p, by (3.1) in Definition 3.1, for each n ∈ fix(w[sq]) there is a nonempty
subword w ′ of w satisfying

use(w, sq, n) ∩ fix(w ′[sp]) �= ∅.
So letting 〈. . . , m1, m0〉 be the (w, sq)-path of n, pick a subword u = u(n) of w,
m = m(n) ∈ fix(u[sp]) and l = l(n) ≤ k so thatml = m, for each such n.
Note that the function n �→ (u(n), m(n), l(n)) is injective (since w[sq] is); but it
maps fix(w[sq]) to a set of size N , contradiction. �
The next lemma shows that our construction yields a group which is maximal
with respect to permutations from the ground model: For any � ∈ S∞ \ G, �QzG〈G, �Ġ , 〉 ∪ {�̌} is not contained in a cofinitary group. In fact, the Lemma shows:
For any � ∈ S∞ such that 〈G, �〉 is cofinitary, �QzG “{n : �Ġ(n) = �̌(n)} is infinite”.
We will prove a generalization, the P-generic Hitting Lemma below.

Lemma 3.13 (Generic hitting). Given m ∈ N and � ∈ S∞ such that 〈G, �〉 is
cofinitary, the set Dhit�,m = {q ∈ Q : (∃n ≥ m) sq(n) = �(n)} is dense.
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Proof. Let p ∈ Q and m ∈ N be given. Find n ∈ N such that n ≥ m, and such
that letting n′ = �(n), n′ satisfies (3.5) with s = sp, E = dom(sp) ∪ ran(sp) ∪
{n} ∪ ran(m̄) and F ∗ equal to the set of subwords of circular shifts of words in F p.
To see this is possible, note that (3.5) holds for n′ = �(n) if and only if for
E ′ = dom(s) ∪ ran(s) ∪ ran(m̄),
n /∈ �−1

[⋃{
fix(w[s]) : w ∈ F ∗ \ {∅}}

]
,

n /∈ �−1
[⋃{

g−1w ′[s]i [E ′] : i ∈ {−1, 1}, w ′ ∈ F ∗, g ∈ F ∗ ∩ G}
]
, and

n /∈
⋃{

fix(�−1g−1w ′[s]i) : i ∈ {−1, 1}, w ′ ∈ F ∗, g ∈ F ∗ ∩ G}.
(3.7)

The first two requirements obviously exclude only finitely many n; the same holds
for the last requirement in case w ′ /∈ G, when w ′[s] is finite. Lastly, when w ′ ∈ G,
the last requirement excludes only finitely many n as 〈G, �〉 is cofinitary. Thus, n as
above can indeed be found.
By the proof of the Domain Extension Lemma, letting s ′ = sp ∪ {(n, �(n))},
q = (s ′, F p) is a condition stronger that p. �
Remark 3.14. By standard properties of product forcing, the previous lemma
is easily seen to imply the following: if G is (V,QzG)-generic and H is (V[G ],P)-
generic for a forcing P ∈ V then 〈G, �G 〉 is maximal with respect to S∞ ∩V[H ], i.e.,
if � ∈ (S∞ \ G) ∩ V[H ] there is no cofinitary group G′ ∈ V[G ][H ] such that G ∪
{�G, �} ⊆ G′. This observation inspired our construction of a Cohen-indestructible
mcg in the next section.

The following immediately implies thatQ forces that �G,�G is injective.
Lemma 3.15. For anyw ∈WG,X \{idN}, the setD1-1w of q such that q �Q w[�Ġ ] �=
idN is dense.
Proof. Fix p ∈ Q and w ∈WG,X \ {idN}. We may assume w /∈ G and w has no
proper conjugate subwords. Find l such that wl /∈ dom(m̄p) and q ∈ Q stronger
than p such that for some m �≡ z(0) (mod 2) we havem = m̄q(wl ) (this is possible
as m can be chosen from a cofinite set). Then q �Q w[�Ġ ] �= idN (idN codes the
sequence with constant value m mod 2 with parameter m). �
Anticipating that in the next section we apply our forcing QzG over countable
initial segments of L satisfying only a very weak fragment of ZFC, we list crucial
properties of QzG when forcing over such models:
Lemma 3.16. Suppose M is a transitive ∈-model such that QzG ∈ M , and for
any m ∈ �, � ∈ S∞ ∩ M such that 〈G, �〉 is cofinitary, and w ∈ WG,X \ G we
have {Ddm,Drm,Dhit�,m,D1-1w } ⊆ M and Dcodew,m ∈ M when w has no proper conjugate
subwords. Then for any (M,QzG)-generic filter G , letting

�G =
⋃
p∈G
sp

the following holds:
(I) �G,�G : G ∗ F(X )→ 〈G, �G 〉 is a faithful cofinitary representation.
(II) For any word w ∈WG,X \ G which does not have a proper subword w0 which

is conjugate to w, we have that w[�G ] codes z in the sense of Definition 3.6.
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(III) For any � ∈ cofin(S∞) ∩M such that � /∈ G, there is no cofinitary group G′
such that 〈G, �G 〉 ∪ {�} ⊆ G′.

Proof. AsG intersectsDdm for eachm ∈ N, �G is total. By analogous arguments,
(I), (II) and (III) are obtained using Drm, D

code
w,m , D

hit
�,m, and D

1-1
w . �

The next lemma, like its precursor [6, Theorem 4.1], will help us to show Cohen-
indestructibility in Section 4, in a situation where as above, the ground model
satisfies only a weak fragment of ZFC (see also Remark 3.14).

Lemma 3.17 (P-generic hitting). Let an arbitrary forcingP, aP-name �̇, a condition
(p, q) ∈ P×Q andk ∈ � be given and supposep �P “�̇ ∈ S∞ and 〈Ǧ, �̇〉 is cofinitary”.
Then there is (p′, q′) ∈ P×Q such that (p′, q′) ≤P×Q (p, q) and

(p′, q′) �P×Q (∃n ∈ N) n > k ∧ �Ġ(n) = �̇(n).
Proof. Fix P, �̇, (p, q) ∈ P× Q and k as in the statement of the lemma. Let G
be (P,V)-generic and such that p ∈ G and let � = �̇G .
Working in V[G ], follow the proof of the Generic Hitting Lemma: Find n such
that for s = sq , F ∗ equal to the set of subwords of circular shifts of a word in F q

and E ′ = dom(sq) ∪ ran(sq) ∪ ran(m̄), (3.7) holds; in addition, require �(n) > k.
Letting n′ = �(n), find p′ ∈ G extending p such that

p′ �P �̇(ň) = ň′.

Just as in the proof of the Generic Hitting Lemma, by choice of n, we have that for
E = E ′ ∪ {n}, (3.5) holds in V. By the proof of the Domain Extension Lemma we
can extend q to q′ ∈ Q such that

q′ �Q �Ġ(ň) = ň′,

and we are done. �

§4. A co-analytic Cohen-indestructible mcg. We now use the ideas from the pre-
vious section to prove the main result of this paper. At the same time, we give a new
proof of Kastermans’ result that there is a Π11 mcg in L, based on the idea of finding
generics over countable models.

Theorem 4.1. Assume V = L. Let G0 be any countable cofinitary group, and fix
c ∈ 2N such that an enumeration of G0 is arithmetical in c as a subset ofNx NN. Then
there is a Cohen-indestructibleΠ11(c) maximal cofinitary group which contains G0 as
a subgroup.
Note that for appropriately chosen G0, our method will produce a group which
is isomorphic to Kastermans’ group from [16]. On the other hand, they are not
identical as subgroupsofS∞, as one should not expect that his construction produce
a Cohen-indestructible group.
Our argument is of the same type as Miller’s classical construction given in [24,
Section 7]. A very detailed exposition of this technique can be found in [7, Section
3]; the present account is parallel where possible. We start by fixing notation and
reviewing some facts, in the course of which we also give a sketch of the proof of
Theorem 4.1.
The canonical well-ordering ofL is denoted by≤L. A formula is always a formula
in the language of set theory ([15, p. 1]); likewise for sentences.
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Given x ∈ 2N, let Ex ⊆ �2 be the binary relation defined by
m Ex n ⇐⇒ x(2m3n) = 0.

If it is the case that Ex is well-founded and extensional, we denote by Mx the set
and by �x the map such that �x : 〈�,Ex〉 → 〈Mx,∈〉 is the unique isomorphism of
〈�,Ex〉 with a transitive ∈-model. Recall:
Fact 4.2 (see [15, 13.8]). If Ex is well-founded and extensional and φ is a formula
with k free variables, the following relations are arithmetical in x:

{(m1, . . . , mk) ∈ N× · · · × N : 〈Mx,∈〉 � φ(m1, . . . , mk)},
{(y,m) ∈ NN × N : �x(m) = y}.

Recall that for x, y ∈ 2N, y ∈ Δ11(x) means that y is a Borel subset of N with a
code recursive in x (i.e., y is hyperarithmetic in x; see e.g., [22]). We shall use the
following facts:
Fact 4.3. IfMz = L
 , there is y ∈ Δ11(z) such thatMy = L
+�+� (an elementary
proof is implicitly given in [18, 3.6]).
Fact 4.4 (Mansfield-Solovay, see [22, Corollary 4.19, p. 53]). For any Π11(z)
formulaΨ(x), the formula (∃x ∈ Δ11(z)) Ψ(x) is equivalent to a Π11(z) formula.
We can now give a brief sketch of our construction of a co-analytic Cohen-
indestructible family:
If V = L, one may use the definable well-ordering to enlarge a given count-
able cofinitary group G0 to a mcg: Assuming by induction we have constructed G� ,
where � < �1, let �� be the ≤L-least � ∈ S∞ \ G� such that G�+1 = 〈G� , �〉 is
cofinitary. Then G = ⋃

�<�1
G� will be maximal cofinitary. Using the above corre-

spondence of countable models with elements of 2N, one finds G to be Σ12 in a code
for G0.
We can ‘bound the existential quantifier’ by altering the above construction so
that at step �, an initial segment of L witnessing the fact that �� ∈ G can be found
effectively in some data z (i.e., is hyperarithmetic in z—here we use Fact 4.3); at the
same time applying ideas from the previous section to ensure that z, in turn, can be
found effectively in �� . The resulting mcg is shown to be Π11 using Fact 4.4.
The ‘data’ alluded to in the above sketch will be some z ∈ 2N such thatMz ‘sees’
the first � steps of the construction. The question of how to uniquely pick z leads
naturally to the notion of projectum: We say 
 projects to � if and only if there is a
surjection from � onto L
 which is Σ1-definable (with a parameter) in L
 .
Fact 4.5 (see [14]). The set of 
 which project to � is cofinal in �1. Moreover, if 

projects to �, so does 
 + �.
Supposing 
 projects to �, let p be ≤L-least parameter such that there is a
surjection as above which is Σ1 in p. Call the surjection f so obtained the canonical
surjection from � onto L
 .
Finally, we proceed to prove our main theorem.
Proof of Theorem 4.1. AssumeV = L, and fix G0 and c as in the theorem. Since
the argument relativizes to the parameter c, we may suppress it and assume that G0
is arithmetic. We may also suppose that G0 �= {idN}—otherwise, just replace it by a
larger arithmetic cofinitary group.
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We construct a sequence �G = 〈(
�, z�,G� , ��) : � < �1〉 such that
• 
� is a countable ordinal,
• z� ∈ 2N ∩ L
�+� ,
• G� is a countable cofinitary group, and
• �� ∈ S∞,
and so that the following hold for each � < �1:

(i) 
� is the least ordinal 
 > sup<� 
 such that 
 is a limit of limit ordinals and
projects to �.

(ii) z� is obtained from the canonical surjection f from � onto L
� as follows:
for k ∈ N, z�(k) = 0 ⇐⇒ (k = 2m3n ∧ f(m) ∈ f(n)).

(iii) G� is the compositional closure of {� :  < �} ∪ G0 in S∞.
(iv) G� is cofinitary and G� ∈ L
� .
(v) �� = �G , where G is the unique (L
�+�,Q

z�
G� )-generic obtained by hitting

dense subsets of Qz�G� in the order in which they are enumerated by the
canonical surjection from � onto L
�+� .

(vi) Letting 
(�) =
(
sup{
 + � + � :  < �}

)
+ � for limit � and 
(�) =


�−1 + � + � for successor � < �1 we have

〈(
 , z ,G , �) :  < �〉 ∈ L
(�) .
Obtaining such a sequence is straight-forward: Having constructed �G � �, (i) deter-
mines 
� from 〈
 :  < �〉 and (ii) determines z� ∈ L
�+� . Note that Mz� = L
� ,
and that by Fact 4.5, 
� + � projects to �, as well.
Noting G0 ∈ L
0 for the case � = 0, assume (iv) by induction. Then (v) uniquely
determines �� from 
� , z� and G� . That G�+1 is a cofinitary group follows by Lemma
3.16. Moreover, as the canonical surjection from � to L
�+� is in an element of
L
�+�+� , so are�� andG�+1. It follows thatG�+1 ∈ L
�+1 and the induction hypothesis
(iv) is verified for � + 1.
It remains to verify (iv) for limit � < �1; for this, first show (vi). Observe that
the inductive definition of �G by (i), (ii) and (v) involves only concepts which are
absolute for initial segments of theL-hierarchy. In fact, let Ψ(x) be the formula that
states that x is the sequence obtained using said inductive definition restricted to
ordinals in dom(x) and that there is no largest limit ordinal in the universe; then �g
is equal to some initial segment of �G if and only if for any ordinal 
 such that �g ∈ L

we have L
 � Ψ(�g). With this, (vi) follows by induction.
In particular, it follows that G� ∈ L
� for limit � < �1, verifying (iv). This finishes
the inductive construction of �G.
We have just shown the following fact, crucial to the proof that G is Π11:
Fact 4.6. There is a formula Ψ(x) such that �g is equal to an initial segment
〈(G , 
 , z , �) :  < �〉 of �G if and only if there is 
 < �1 such that �g ∈ L
 and
L
 |= Ψ(�g).
Finally, we let

G =
⋃
�<�1

G�,

which is a cofinitary group by (iv) above.
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To see that G is Π11, we first show a weaker statement:
Claim 4.7. As a subset of NN, G is Σ12.
Proof of Claim. By [23] and [5] (or by [14]), we may fix a sentence Λ such that
whenever M is transitive and 〈M,∈〉 � Λ, we have M = L
 for some 
. By the
Fact 4.6, � ∈ G if and only if
there exists a countable transitive setM s.t. 〈M,∈〉 � Λ and

for some �g ∈M of the form �g = 〈(
′� , z′� ,G′�, � ′�) : � ≤ 〉
we have � = w[� ′] for some w ∈WG′

 ,X and 〈M,∈〉 � Ψ(�g). (4.1)
By Fact 4.2, (4.1) is equivalent to a Σ12 formula

(∃y ∈ 2N) Φ(y, �), (4.2)

where Φ(y, �) is a Π11 formula expressing that Ey is well-founded and extensional
andMy witnesses (4.1), i.e., 〈�,Ey〉 � Λ and for some n,m ∈ �, �y(m) = � and
〈�,Ey〉 � “Ψ(n) ∧ n = 〈(
′� , z′� ,G′� , � ′�) : � ≤ 〉 ∧ � ′ = m”. �Claim 4.7.
Lemma 4.8. In fact, G is Π11 (as a subset of NN).

Proof of Lemma. The proof rests on the fact that y as in (4.2) can be found
effectively in �. First fix some arbitrary h∗ ∈ G0 \ {idN} (this is not necessary but
serves to better emphasize the structure of the argument) noting that by assumption
h∗ is arithmetic.
For � ∈ G \ G0, by (4) we may take M in (4.1) to be L
+�+� where  is least
such that � ∈ G+1. Thus by Fact 4.3, y in (4.2) can be chosen so that y ∈ Δ11(z).
We show that z is arithmetic in �: Letting � = w[�G ], this holds by construction
if w has no conjugate proper subword. Otherwise, h∗w has no conjugate proper
subword and so z is computable in h∗� (any arithmetic element of G \{idN}would
do here). In either case we obtain ‘⇒’ in the following (‘⇐’ is obvious):

� ∈ G ⇐⇒ (∃y ∈ Δ11(�)) Φ(y, �).
By Fact 4.4, the right-hand side can be rendered as a Π11 formula, proving the
Lemma. �Lemma 4.8.
Since any � ∈ S∞ appears in some L
� , maximality of G follows from (III) of
Theorem 3.16, and (v) above. In fact, we show the stronger statement:

Lemma 4.9. G is Cohen-indestructible.
Proof of Lemma. Towards a contradiction, fix a C-name �̇ and p ∈ C such that
p �C 〈Ǧ, �̇〉is cofinitary.
For each n ∈ N, pick �pn = 〈pnk : k ∈ �〉 such that {pnk : k ∈ �} is a maximal
antichain in C of conditions deciding �̇(n): i.e., we may find, for each n ∈ N, a
sequence �mn = 〈mnk : k ∈ �〉 such that for each k,

pnk � �̇(ň) = m̌nk .

Further, find � < �1 such that for each n ∈ N, {�pn, �mn} ⊆ L
� . We may assume (by
strengthening p if necessary) that there is N such that

p �C |{n ∈ N : �̌�(n) = �̇(n)}| = Ň . (4.3)
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By repeatedly using Lemma 3.17, we may extend any given condition in Qz�G� to
a condition q ∈ Q

z�
G� such that for some p

′ ∈ C stronger than p and for some set
Z ⊆ dom(sq) of size N + 1 we have

(∀n ∈ Z) p′ �C �̇(ň) = š q(ň).

Just as in Lemma 3.16, we must circumvent the use of the forcing relation: Since
each �pn enumerates a maximal antichain, by extending p′ finitely many times, we
can assume that for every n ∈ Z, p′ ≤C p

n
k for some k such thatm

n
k = s

q(n).
Let D be the set of q ∈ Q

z�
G� such that for some p

′ ∈ C stronger than p and for
some set Z ⊆ dom(sq) of size N + 1 we have that for every n ∈ Z, p′ ≤C p

n
k for

some k such thatmnk = s
q(n).

We have just shown that D is dense Qz�G� ; as D ∈ L
�+� , the generic which gave
rise to �� meets D and we conclude that for some p′ ∈ C stronger than p and for
some set Z ⊆ N of size N + 1 we have

(∀n ∈ Z) p′ �C �̇(ň) = �̌�(ň),

contradicting (4.3); thus, G is Cohen-indestructible. �Lemma 4.9.
�

As an immediate corollary, we obtain Theorem 1.2:

Corollary 4.10. The existence of a constructibleΠ11 maximal cofinitary group of
size �1 is consistent with arbitrarily large continuum (relative to ZFC).

Proof. Note that if Ψ(x) is the Π11 formula which we constructed in Claim 4.8
and which defines membership in G, then the following holds in V

(∀� ∈ NN) Ψ(�) ⇐⇒ � ∈ L∧Ψ(�)L.
This is because Ψ(�) is easily seen to imply � ∈ L. �
§5. Questions. Considering the many known models where some inequality
holds between ag and another cardinal invariant of the continuum, the methods
developed in the present paper suggest to consider the following definable analogue:
For Γ an arbitrary pointclass, let ag(Γ) be the least cardinal κ such that there is
a mcg G ∈ Γ of size κ; if there is no mcg G ∈ Γ, let ag(Γ) =∞.
Question 5.1. Which inequalities involving ag(Π11) and other cardinal invariants
of the continuum can be shown to hold consistently?

An earlier version of this paper asked whether there can be a Borel mcg; as
mentioned in Section 1 this question has since been answered in the affirmative (see
[11], in which the authors also state as their goal to show in a future paper that a
closed mcg exists; also compare [25] which shows that there is a closed so-called
maximal eventually different family).
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