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Magnetic field quantization is an important issue for degenerate environments such as
neutron stars, radio pulsars and magnetars etc., due to the fact that these stars have
a magnetic field higher than the quantum critical field strength of the order of 4.4×
1013 G, accordingly, the cyclotron energy may be equal to or even much more than
the Fermi energy of degenerate particles. We shall formulate here the exotic physics
of strongly magnetized neutron stars, known as pulsars, specifically focusing on the
outcomes of the quantized magnetic pressure. In this scenario, while following the
modified quantum hydrodynamic model, we shall investigate both linear and nonlinear
fast magnetosonic waves in a strongly magnetized, weakly ionized degenerate plasma
consisting of neutrons and an electron–ion plasma in the atmosphere of a pulsar. Here,
linear analysis depicts that sufficiently long, fast magnetosonic waves may exist in
a weakly dispersive pulsar having finite phase speed at cutoff. To investigate one-
dimensional nonlinear fast magnetosonic waves, a neutron density expression as a
function of both the electron magnetic and neutron degenerate pressures, is derived
with the aid of Riemann’s wave solution. Consequently, a modified Korteweg–de Vries
equation is derived, having a rarefractive solitary wave solution. It is found that the
basic properties such as amplitude, width and phase speed of the fast magnetoacoustic
waves are significantly altered by the electron magnetic and the neutron degenerate
pressures. The results of this theoretical investigation may be useful for understanding
the formation and features of the solitary structures in astrophysical compact objects
such as pulsars, magnetars and white dwarfs etc.
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1. Introduction
Neutron stars (NS) have been an attractive research area (Baade & Zwicky 1934)

due to their exotic environments and being one of the important ingredients in
stellar evolution. NS comprising of iron/oxygen/carbon and helium nuclei (Massey
1976; Shukla, Mamun & Mendis 2011) are dense enough (ns & 1030 cm−3) to be
treated as a degenerate plasma system (Lai 2001; Chabrier, Saumon & Potekhin
2006), thus quantum corrections become quite important for such stars (Abdikian
& Mahmood 2016). The physics of the highly degenerate NS crust involves several
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applications, ranging (Chamel & Haensel 2008) from nuclear and condensed matter
physics to general relativity. The initial signals detected from neutron stars emerging
from radio pulsars were found to spin many times in one second. Then, strongly
magnetized NS, known as pulsars, were observed to spin down and their periods
were found to increase continuously. In this context, (Hewish et al. 1968) the rotating
dipole model was applied to find the spin-down rate of the pulsars, prescribing
that the required surface magnetic fields should be in the range (1011–1013) G for
the first detected pulsars. It was depicted in Chabrier, Douchin & Potekhin (2002),
Harding & Lai (2006) that the magnetic field for radio pulsars is Bo = (1011–1014) G,
whereas for anomalous X-ray pulsars the superstrong magnetic field may be higher
i.e. Bo∼ (1014–1015) G (Lewin & Van Der Klis 2005). At such a high magnetic field
the cyclotron energy h̄ωce(= eB/ωce) may be of the order of or much larger than the
electron Fermi energy (Tsintsadze & Tsintsadze 2012), EF(= ((3π2)2/3h̄2/2me)n2/3

e )

i.e. h̄ωce� EF.
Moreover, due to the fact that bound state species such as hydrogen and

molecules are present in the photosphere of neutron stars, pulsars etc., the degenerate
thermodynamic properties of protons, free electrons and bound species in these
environments are significantly modified by the magnetic field. These modified
thermodynamic properties of the plasma and the propagation of proper waves is an
important research area (Tsintsadze 2010) in supernovae, pulsars, the convective zone
of the Sun, white dwarfs, brown dwarfs, the early prestellar period of the evolution
of the universe as well as in laboratory situations such as laser–matter interaction
experiments. On the theoretical front, a lot of effort has been devoted in the direction
(Abrahams & Shapiro 1991; Kouveliotou, Ventura & Van Den Heuvel 2001; Lai
2001; Tsintsadze & Tsintsadze 2009a,b, 2010) of describing the thermodynamic
properties of strongly magnetized matter under NS conditions. However, the impact
of this modified thermodynamics, particularly magnetic field quantization, has not
received much attention in the literature (Shah et al. 2012), although it may be
of great interest to formulate both linear and the nonlinear modes in quantum
astrophysical environments. On the other hand, it is well known that the nonlinear
effects appearing due to large amplitude oscillations in the plasma system may
introduce a shock wave, whereas in the presence of dispersive effects, being balanced
by the nonlinearity of the system, one may have a soliton structure. In this context,
the Korteweg–de Vries (KdV) equation is well known for classical ion acoustic
waves (Sagdeev 1966; Chen 1984), and solitary waves in a weakly ionized classical
gas have been reported in Stenflo, Tsintsadze & Buadze (1989). Low frequency
magnetosonic solitons are investigated in a magnetized spin-1/2 degenerate plasma,
while opting for the Sagdeev potential approach (Marklund, Eliasson & Shukla
2007), where the authors found that rarefractive magnetosonic solitons may exist
due to a balance between nonlinearities and the quantum diffraction term. Nonlinear
magnetosonic waves in quantum dissipative magnetized plasmas are investigated in
Masood et al. (2014). Linear and weak nonlinear propagation of magnetosonic waves
in a degenerate plasma using perturbation theory was formulated in Haas & Mahmood
(2018), modified KdV was derived having coefficients which are a strong function
of quantum effects. Various linear and nonlinear aspects of magnetoacoustic waves
are investigated (Masood et al. 2009; Masood, Jehan & Mirza 2010; Lui et al. 2011;
Lui, Wang & Yang 2013; Iqbal et al. 2019). However, in all of the above mentioned
literature regarding magnetosonic waves, magnetized plasmas are considered without
taking into account the quantized magnetic pressure, which is the subject matter of
the present study.
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In this work, we aim to investigate the impact of quantized magnetic pressure on the
linear and nonlinear properties of low frequency fast magnetosonic waves in a weakly
ionized, dispersive degenerate neutron, electron–ion plasma in the atmosphere of a
pulsar. The paper is organized as follows: in § 2, we derive the linear dispersion
relation of fast magnetosonic waves using new set of quantum hydrodynamic
equations. Section 3 presents the nonlinear behaviour of fast magnetosonic waves,
and a brief summary is presented in § 4.

2. Basic formalism
Here, we consider a weakly ionized, quantum neutron–electron ion plasma in

the presence of a super strong magnetic field ẑ H0, in the atmosphere of a pulsar,
where H0 is the strength of the magnetic field and ẑ is the unit vector along the
z-axis in a Cartesian coordinate system. We shall formulate here a new quantum
magnetohydrodynamic set of equations for the weakly ionized pulsars under study,
where all components of the neutron star are in a degenerate state. For our theoretical
description, the neutron dynamics is governed by the neutron momentum equation

nN
dpN

dt
=−∇PFN +

h̄2nN

2mN
∇

1
√

nN
1
√

nN + f N, (2.1)

and the neutron continuity equation

∂nN

∂t
+ div nNuN = 0, (2.2)

where pN is the neutron momentum, fN = mNnN
∑

i vNi(ui − uN) is the neutron
collisional frequency, PFN = (3π2)2/3h̄2/5mN(nN)

5/3 is the neutron Fermi pressure h̄
is Planck’s constant divided by 2π, mN , nN, uN are the mass, number density and
velocity of the neutrons respectively, vNi is the neutron–ion collisional frequency
and ui is the velocity of ions. Here, we suppose that the neutron–electron collision
frequency νNe is comparatively small. It was shown in Tsintsadze et al. (2018) that
in the presence of a quantized magnetic pressure, the plasma becomes anisotropic,
and the associated momentum equations in the directions perpendicular and parallel
to the applied superstrong magnetic field are respectively

dpxj

dt
= ej

(
E+

1
c
(uj ×H)

)
x

−
1
nj
∇xPxj +

}2

2mj
∇x

1
√nj

(∇2√nj)+
1
nj

f xj, (2.3)

dpzj

dt
= ej

(
E+

1
c
(uj ×H)

)
z

−
1
nj
∇zPzj +

}2

2mj
∇z

1
√nj

(∇2√nj)+
1
nj

f zj, (2.4)

with the continuity equation

∂nj

∂t
+∇ · (njuj)= 0. (2.5)

We shall also make use of the quasineutral condition∑
j

ejnj = 0 (2.6)

and Maxwell’s equation
∇ ·H= 0, (2.7)
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where j represents plasma species, j= (e, i), x and z are the directions perpendicular
and parallel to the external field respectively, e is the magnitude of electron charge,
c is the speed of light in a vacuum, nj, mj and uj are the number density, mass and
velocity of plasma species j respectively, E is the electrostatic field. The collisional
force of each plasma particle fj in (2.3) and (2.4) in the presence of magnetic pressure
inhomogeneity is defined as

f xj =mjnj

∑
α

υjα(uα − uj)x

f zj =mjnj

∑
α

υjα(uα − uj)z

 . (2.8)

Here, υjα is the collisional frequency of particle α with j and uα, uj are their relative
velocities respectively. We note here that when collisions between particles are very
frequent (Tsintsadze et al. 2018) the velocities of different plasma species must in
fact be almost equal. It is quite evident from (2.1)–(2.8) that, if υei, υeN and υiN are
significantly large, the frictional forces can be balanced by other terms only if the
relative velocities of different species, ui−ue, uN −ue and uN −ui are small i.e. ui'ue,
uN ' ue and uN ' ui, which in turn leads to the relation (Tsintsadze et al. 2008).

ne

n0e
'

nN

nN0
'

ni

n0i
. (2.9)

The influence of a super strong magnetic field on the thermodynamic properties of
a Fermi gas was presented in Tsintsadze (2010), Tsintsadze & Tsintsadze (2015) to
emphasize that strongly magnetized systems hold the inequality EF� h̄ωce, hence the
consequent perpendicular, Pxe, and parallel, Pze, components of the magnetic pressure
are

Pxe =
h̄ωce

3
ne, (2.10)

Pze = γ
(ne

H

)2
ne, (2.11)

where ne = h̄ωcemePFe/π
2h̄3 with PFe = (3π2)1/3h̄n1/3

e as the Fermi momentum at
the Fermi level and γ = π4}4c2/3mee2. It is clear from the above expressions that
for strongly magnetized NS the dependence of magnetic pressure on magnetic field
intensity is quite different in the perpendicular and parallel directions. It may be
noted here that the proton motion is also quantized into Landau levels due to the
high magnetic field, but their corresponding cyclotron energy is much smaller than
the electron cyclotron energy, i.e. h̄ωcp = h̄ωce(me/mp) (here ωcp, ωce, mp, me are the
cyclotron frequencies and masses of protons and electrons respectively.)

3. Linear dispersion equation
We shall follow Riemann’s solution, to formulate the linear dispersive properties of

one-dimensional fast magnetosonic waves propagating across the magnetic field, while
assuming that me�mi 'mN and ne ' ni� nN . In this context, by adding (2.1)–(2.6),
we may obtain

nN
dpxN

dt
=

1
c
(J×H)x −∇x

(
PFN +

∑
j=e,i

Pxj

)
+

h̄2nN

2mN
∇x

1
√

nN
1
√

nN

+
h̄2ne

2me
∇x

1
√

ne
1
√

ne +
h̄2ni

2mi
∇x

1
√

ni
1
√

ni. (3.1)
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We shall also make use of Magneto-hydrodynamic (MHD) equations

∂H
∂t
=∇× (u×H) (3.2)

J=
c

4π
(∇×H), (3.3)

where J = −eneue + Zieniui is the plasma current density defined in the MHD
approximation, Pxj is the quantized pressure of species j in a direction perpendicular
to the external field. Let us rewrite (3.1) by making use of (3.3)

dpxN

dt
=−

1
nN
∇x

(
PFN + Pxe +

H2

8π

)
+

1
4πnN

(H · ∇)Hx +
h̄2

2me

ne

nN
∇x

1
√

ne
1
√

ne. (3.4)

It may be noticed here that the diffraction term of neutrons and ions can be ignored
as compared to the electron diffraction term due to different possible inequalities
ne/nN�me/mN or ne/nN�me/mN =me/mi, consequently, the electrons may play an
important role in exciting fast, degenerate magnetosonic waves. Using (2.9), we may
re-write (3.4) as

dpxN

dt
=−

1
nN
∇x

(
PFN + Pxe +

H2

8π

)
+

1
4πnN

(H · ∇)Hx +
h̄2

2me

ne

nN
∇x

1
√

nN
1
√

nN, (3.5)

or in linearized form we may write

dδpxN

dt
=−

1
n0N
∇x

(
δPFN + δPxe +

H2
0

4π

δHz

H0

)
+

H0

4πn0N
∇zHx+

}2

4me

n0e

nN0
∇x∇

2 δnN

n0N
, (3.6)

where Hz, Hx, are the components of the magnetic field along and perpendicular to
the external magnetic field respectively. Similarly, we can write the oscillations of the
pressure expressions form (2.10), while taking into account equation (2.9)

δPxe = P0ex

(
δHz

H0
+
δnN

n0N

)
, (3.7)

where P0ex = (h̄ωce0/3)n0e. Further, let us now write down the components of the
magnetic field from (3.2) as

∂Hx

∂t
=H0∇zux. (3.8)

Then, by making use of (3.6)–(3.8), (2.2), we may obtain the dispersion relation of
fast, degenerate, neutron magnetosonic waves that are propagating perpendicular to the
applied superstrong magnetic field

ω2
= k2

x(V
2
FN +C2

x + V2
A)

1/2
+

}2k4
x

4memN

n0e

n0N
, (3.9)

where VFN = (3π2)1/3h̄/mN(n0N)
1/3 is the neutron Fermi speed, Cx =

√
2Px0e/mNn0N =√

2/3(h̄ωce0/mN)(n0e/n0N) is the magnetic neutron acoustic speed and VA = H0/√
4πmNn0N is the neutron Alfvén speed. For a weakly dispersive medium, equation

(3.9) may be written as

ω= kx(V2
FN +C2

x + V2
A)

1/2
+ λk3

x , (3.10)
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where λ= (}2/8memN)(n0e/n0N)(1/
√

V2
FN +C2

x + V2
A) is the dispersive parameter. The

above equation describes that sufficiently long waves may exist in a weakly dispersive
pulsar having a finite limit on the phase velocity at k= 0. In the following section, we
shall show that the dispersive properties of nonlinear fast magnetosonic waves, in the
presence of a quantized magnetic pressure, are governed by a modified KDV equation.

4. Solitary fast magnetosonic waves in a weakly dispersive pulsar
To show that nonlinear stationary waves can be formed in the dispersive pulsar

atmosphere, we shall follow the method presented in Whitham (1974), Landau
& Lifshitz (1987), Tsintsadze, Hussain & Murtaza (2011) and Tsintsadze et al.
(2018). For this purpose, in order to consider the x-dimensional propagation of fast
magnetosonic waves travelling across the quantized magnetic field, let us re-write
equations (2.2), (3.2), (3.5) respectively as

∂nN

∂t
=−nN

∂uxN

∂x
(4.1)

dHz

dt
=−Hz

∂ux

∂x
(4.2)

∂uxN

∂t
+ uxN

∂

∂x
uxN =−

1
mNnN

∂

∂x

(
PFN + Pxe +

H2
z

8π

)
+

h̄2

2memN

∂

∂x
1
√

nN

∂2

∂x2

√
nN .(4.3)

Here, PFN is the neutron Fermi pressure and Pxe is the electron magnetic pressure
defined in (2.11). Since the magnetic field is favoured by conduction currents frozen
in the interior part of NS (Chabrier et al. 2002), we shall apply here the frozen-in
condition to reflect that the lines of magnetic force are frozen with the magnetic field
lines to move with them i.e. Hz/nN = constant, then we may have

Pxe = P0e

(
nN

n0N

)2

and H2
z =H2

0

(
nN

n0N

)2

, (4.4a,b)

where P0e= (h̄ωce(n0N)/3)n0e. For a weakly dispersive medium, let us linearize the last
term of (4.3), to obtain from (4.1)–(4.3)

∂nN

∂t
+ nN

∂

∂x
uxN = 0 (4.5)

∂uxN

∂t
+ uxN

∂

∂x
uxN =−

∂

∂x
(αn2/3

N + βnN)+
h̄2

2memN

∂3

∂x3

nN

n0N
(4.6)

where here α= (3π2)2/3h̄2/2m2
N , and β = ((2h̄ωce/3)n0e+H2

0/4π)1/n2
0NmN . Now, if we

ignore the last term in the above equation and look for Riemann’s solution of (4.5)
and (4.6) for a simple plane wave propagating in the positive x-direction, we have

∂uxN

∂nN
=

√
2
3
α

1

n4/3
N

+
β

nN
, (4.7)

or

nN =
1
β3

−α3 +
(α

3
+ βn1/3

0N

)1+
βuN

2
(α

3
+ βn1/3

0N

)3/2


2/3

3

. (4.8)
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Substitution of (4.8) into (4.6) may lead to a modified KdV equation with complex
nonlinearity. To get a simplified KdV equation, let us simplify (4.8) for two particular
cases: (i) if the neutron degenerate pressure is much more than the electron magnetic
pressure i.e. α� 3βn1/3

0N , equation (4.8) reduces to

nN =
m3

Nu3
N

35/2π2h̄3 , (4.9)

and (ii) conversely, if α� 3βn1/3
0N , we may obtain from (4.8)

nN = n0N

(
1+

uN
√
βn0N

)2

. (4.10)

To show that both cases will lead to a soliton solution, let us substitute the density
expression (4.10) into (4.6) to obtain the KdV equation

∂uxN

∂t
+ (uxN + η)

∂

∂x
uxN = σ

∂3uxN

∂x3
(4.11)

having the solitary wave solution

uxN = ux0N

{
cosh

[(ux0N

12σ

)1/2
(x− ηt−

1
3

ux0N t)
]}−2

. (4.12)

Here, η= 3
4αn1/6

0N

√
1/β +

√
βn0N/2 and σ = h̄2/4memN

√
βn0N . We want to emphasize

here that, since the sign of the last term of (4.11) is positive, the obtained solitary
waves will be rarefractive.

5. Summary
We have presented a graphical analysis of (3.9), (4.10) and (4.12) to study the

magnetic field quantization effects on the dispersive properties of fast, degenerate,
magnetosonic neutron waves that are propagating perpendicular to an applied
superstrong magnetic field. For the graphical analysis the typical parameters of an
astrophysical degenerate plasma, present in the magnetosphere of a highly magnetized
star such as a radio pulsar or magnetar, are chosen (Bailes 1989; Zhang & Harding
2000; Chabrier et al. 2002; Harding & Lai 2006), which in the cgs system of units
are: n0e = (1022–1023) cm−3, n0N = (1030–1034) cm−3, ux0N = (1–2) × 107 cm s−1,
H0 = (1010–1014) G with the physical constants c = 3 × 1010, me = 9.1 × 10−28,
mN = 1.6749286 × 10−24, e = 4.8 × 10−10, h = 1.05 × 10−27. We have displayed
equation (3.9) in figure 1 to show that the angular frequency (ω) of a fast
magnetosonic wave increases by increasing the strength of the magnetic field H0.
Figure 2 depicts that the neutron number density (nN) decreases with the increase of
magnetic field strength, as shown in (4.10). The impact of the quantized magnetic
field and neutron density on the dispersive properties of solitons, given in (4.12), are
displayed in figure 3(a,b), respectively, to show that the width of the soliton decreases
by increasing the magnetic field intensity, while it increases by increasing the neutron
density concentration.

To conclude, in this paper we have investigated both linear and weakly nonlinear
propagation of fast magnetosonic waves in a strongly magnetized, degenerate weakly
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FIGURE 1. Normalized angular frequency (ω) of fast, degenerate, neutron magnetosonic
waves is plotted against the wavenumber (kx) (as given by (3.9)) for different values of
the magnetic field, H0= 6× 1010 G (green curve), H0= 3× 1010 G (blue curve) and H0=

8× 1010 G (red curve), while assuming n0e = 1022 cm−3 and n0N = 1030 cm−3.

FIGURE 2. The neutrons number density (nN) is plotted against the neutron velocity (uN)
(as given by (4.10)), for different magnetic field strengths H0 = 1× 1011 G (green curve),
H0 = 2× 1011 G (blue curve) and H0 = 3× 1011 G (red curve), other parameters are the
same as in figure 1.

ionized dispersive neutron, electron–ion plasma in the atmosphere of a pulsar. It is
shown that the linear propagation frequency of a fast magnetosonic wave increases as
a function of both the neutron degenerate pressure and electron magnetic pressure via
the neutron acoustic speed. It is depicted that sufficiently long linear waves may exist
in a weakly dispersive neutron star (pulsar), having a finite limit on the phase velocity
at cutoff. Next, the weak nonlinear features of one-dimensional fast, degenerate
magnetosonic waves are formulated with the aid of Riemann’s solution for simple
plane waves, to obtain a general expression for the neutron density as a function of
both neutron degenerate pressure and electron magnetic pressure, which further was
discussed for two special cases by comparing the neutron degenerate pressure with
the electron magnetic pressures. The obtained neutron density expressions correspond
to two different types of KdV equation, having coefficients which are a strong
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(a)

(b)

FIGURE 3. (a) The x-dimensional neutron velocity (uxN) of fast magnetosonic neutron
waves is plotted against the x-coordinate for different magnetic field values (as given by
(4.12)), H0 = 1× 1011 G (red curve), H0 = 2× 1011 G (blue curve) and H0 = 3× 1011 G
(green curve). Here we consider n0e = 1022 cm−3, n0N = 1033 cm−3, the neutron velocity
ux0N = 1 × 107 cm s−1 and time t = (10−15 s). (b) The x-dimensional neutron velocity
(uxN) of fast magnetosonic neutron waves is plotted against the x-coordinate (as given
by (4.12)), for different neutron density concentrations; n0N = 1033 cm−3, (red curve) n0N =

3× 1033 cm−3 (blue curve), n0N = 5× 1033 cm−3 (green curve), with the neutron velocity
ux0N = 1× 107 cm s−1, n0e = 1022 cm−3, H0 = 1× 1011 G and time t= (10−15 s).

function of both quantized magnetic pressures and neutron density concentration, the
consequent solitary wave solutions are found to be rarefractive.
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