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We prove the existence of multi-soliton and kink-multi-soliton solutions of the
Euler–Korteweg system in dimension one. Such solutions behave asymptotically in
time like several travelling waves far away from each other. A kink is a travelling
wave with different limits at ±∞. The main assumption is the linear stability of the
solitons, and we prove that this assumption is satisfied at least in the transonic
limit. The proof relies on a classical approach based on energy estimates and a
compactness argument.
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1. Introduction

The Euler–Korteweg model The Euler–Korteweg equations read{
∂tρ + ∂x(ρv) = 0,
∂tv + v∂xv + g′(ρ)∂xρ = ∂x

(
K(ρ)∂2

xρ + 1
2K ′(ρ)(∂xρ)2

)
,

(x, t) ∈ R × R
+.

(1.1)

They are a modification of the usual Euler equations that model capillary forces
in non viscous fluids. The function K(ρ) is supposed to be smooth R

+∗ → R
+∗.

In some relevant cases it is not bounded near 0, in particular for K = 1/ρ there
exists a change of variable, the Madelung transform, that converts at least formally
solutions of (1.1) into solutions of the nonlinear Schrödinger equation (for details
on this interesting feature see the review article [8]).

There is a formally conserved energy

H[ρ, v] =
∫

R

1
2
(ρv2 + K(ρ)(∂xρ)2) + G(ρ) dx,

where G is a primitive of g, and under appropriate functional settings, denot-

ing δH the variational derivative of H, V =
(

ρ
v

)
(1.1) can be viewed as a
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Hamiltonian system

∂tV = J∂xδH[V ], with J =
(
0 −1 − 1 0

)
. (1.2)

(1.1) also has a formally conserved momentum P (ρ, v) =
∫

R
ρv, whose conservation

is related to the identity δP [V ] = −JV . Although formal these identities are used
at least as notations in this article.

Due to the intricate quasilinear nature of (1.1), only local well-posedness was
obtained so far in dimension one and, even for data close to a constant state,
global well-posedness is an open problem (on well-posedness and stability in larger
dimension, see also [2,6,11]).

It was proved in [4] by ODE technics that (1.1) admits travelling waves as
solutions, namely solutions of the form (ρ, v)(x − ct). There exists two classes
of travelling waves: those such that lim+∞(ρ, v)(z) �= lim−∞(ρ, v)(z) are labelled
as kinks, while solitons satisfy lim+∞(ρ, v)(z) = lim−∞(ρ, v)(z). No quantity is
assumed to be zero at infinity.

Both types of travelling waves are physically relevant, especially kinks are sup-
posed to model phase transition in capillary fluid (e.g. liquid to vapour). While
kinks are known to be always stable, solitons are not and a (conditional) stability
criterion in the spirit of [12] was derived in [4].

This article is devoted to a related, yet different issue : the existence of multi-
travelling waves, i.e. solutions that decouple as t → +∞ to a sum of travelling
waves.

Multi-travelling waves in the literature The existence of multiple travelling waves is
now a classical topic. While the first examples came from the field of integrable equa-
tions (e.g., see the pioneering work of Zakharov–Shabat [18]), flexible and powerful
methods have since been developed to tackle non-integrable equation. In partic-
ular considerable progress was achieved for the KdV and nonlinear Schrödinger
equations over the last twenty years.

In the framework of the nonlinear Schrödinger equation we refer to the work of
Martel, Merle and coauthors [10,15], in particular based on the use of modulation
parameters and a compactness argument, see also Le Coz and Tsai [13] for an
approach based on dispersive estimates. To the best of our knowledge, the inclusion
of a kink in the asymptotic profile is a rather rare feature in the field of multiple
travelling waves, to the noticeable exception of the work of Le Coz–Tsai [13], see
also [14] in higher dimension.

All those results share the fact that they are more conveniently applied to equa-
tions that have a ‘good’ well-posedness theory available (existence of global solutions
in not too restrictive spaces). As such, their adaptation to quasilinear systems like
the Euler–Korteweg system raises some difficulties. To explain it roughly, a key step
of the compactness argument of Martel–Merle requires the existence of solutions for
t ∈ R

+, while the well-posedness theory for the Euler–Korteweg system only allows
existence in finite time.

In the context of the water waves, this difficulty was overcome by Ming–Rousset–
Tzvetkov [16] with the construction of global approximate solutions with some fast
decay in time on the approximation error. This is also, for the main lines, the
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approach that we follow here. More details are included in the paragraph ‘scheme
of proof’ page 2908

The travelling waves A short description of the construction of travelling waves is
provided in the appendix, for more details we refer to [4]. Their main features are
the following:

• A travelling wave is a solution of (1.1) of the form V (x − ct), c is its speed.

• All the travelling waves that we consider are smooth and bounded. Their deriva-
tives are exponentially decreasing at ±∞. Consequently all travelling waves
have limits at ±∞.

• Kinks are travelling waves that have different endstates at ±∞, say (ρ±, u±).
The function ρ is monotonous.

• Solitons are travelling waves with same endstates at ±∞. ρ changes monotony
only once, when it reaches its unique extremum. In the appendix we only
deal with the case where this extremum is a minimum. By analogy with the
Schrödinger equation (see e.g. [3]), we label such solutions bubbles (note that
for fluids such solutions correspond to a negative bump in the density, therefore
the word bubble is consistent).

• For a fixed endstate solitons can be smoothly parametrized by their speed.

Main result Let (V cj )1�j�n be travelling waves with ordered speeds cj < cj+1. We
assume that all V cj are stable, and we consider one of the following two cases:

• V c1 is a kink, and V cj are solitons with ∀ j � 2, lim±∞ V cj = lim+∞ V c1 .

• V cj are all solitons with the same endstate.

For V c a soliton, we denote U c = V c −
(

ρ+

v+

)
, and define the rescaled momentum

P (V c) = P (ρc, vc) =
∫

R

(ρc − ρ+)(vc − v+) dx. (1.3)

We assume that the solitons are stable in the following sense

Stability condition:
d
dc

∫
(ρc − ρ+)(vc − v+) dx < 0.

We refer to the appendix A for the proof that our conditions can be met, where we
also show that this stability criterion coincides with the one derived in [4].

We define the multi-soliton

S(x, t) = V c1(x − c1t) +
n∑

k=2

U ck

⎛⎝x − ckt −
k∑

j=2

Aj

⎞⎠ ,

Aj � A a large constant to choose later. Our main result is that there exists a
solution which converges to S as t → ∞ (see § 2 for the definition of Hn).
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Theorem 1.1. For A0 large enough, A � A0, and n � 3, there exists a global
solution of (1.1) such that V − S ∈ C(R+,H2n) and

lim
t→∞ ‖V (t) − S(t)‖H2n → 0.

Remark 1.2. It may be tempting to think that theorem 1.1 hints towards the
stability of multi-solitons. This is not correct as the solution constructed is quite
peculiar: it is a pure soliton solution with no dispersive part. For NLS multi-solitons
have been constructed in cases where each soliton is unstable[9,10].

Note however that in the case of the Gross–Pitaevskii equation, whose hydrody-
namics formulation is a special case of (1.1) with K = 1/ρ, g = ρ − 1, nonlinear
stability of multi-solitons was obtained by Béthuel–Gravejat–Smets [7]. It is
expectable that a similar result holds (at least in some regime) for (1.1), how-
ever, due to the lack of global well-posedness, going beyond conditional stability,
that is stability until blow-up, requires significant new ideas.

Remark 1.3. It is apparent from the proof that multiple travelling waves can be
constructed in more complicated configurations, such as kink-soliton-kink, soliton-
kink-kink etc. We chose not to aim at such results to keep a reasonably simple proof,
and because configurations with multiple kinks and stable solitons might require
very exotic pressure laws to exist.

Scheme of proof As in [16], the key is to construct an approximate solution V a

to (1.1) that satisfies

∂tV
a − J∂xδH[V a] = fa,

which is defined globally, converges as t → ∞ to the multi-soliton, and such that
the error term fa decays rapidly in time. Once V a is constructed, we use the local
well-posedness theory from [5] (with some modified energy estimates) to construct
a sequence of exact solutions V k close to V a, defined on [0, k] with V k(k) = Ua(k).
A compactness argument then provides a global solution of the Euler–Korteweg
system which converges at t → ∞ to the multi-soliton.

The construction of V a is quite intricate, it requires fine resolvent estimates
on the linearized operator J∂xδ2H[S], building upon a spectral decomposition of
δ2H[V cj ] − cjδP . This spectral decomposition sharpens some arguments from [4].
Once these estimates are proved, the approximate solution is constructed by a
Newton iteration method1. As for the Taylor approach the loss of derivatives caused
by the iterations is not an issue because travelling waves are smooth with a fast
(exponential) decay of their derivatives.

Plan of the article In § 2 we define some notations and functional settings. The
energy estimate for (1.1) are proved in § 3.

1Note that the method followed in [16] is rather based on a Taylor expansion of the linearized
operator. The iterative method seems more natural as it only requires a first-order expansion of
δH[V ] instead of a high-order Taylor expansion, this allows to keep a better track of the constants.
Although it is not important here, this requires also less smoothness of the functional H
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Section 4 is the core of the article. We first give a convenient spectral decompo-
sition of the operator δ2E[V cj ] − cjδ

2P . We deduce some estimates on the flow of
J∂xδ2H that are not useful for this paper, but contain most of the ideas for the
much more technical estimates on the flow of J∂xδ2H[S].

With these estimates at hand we construct in § 5 an approximate solution by
following Newton’s iteration method. The compactness argument that provides the
multi-soliton solution is detailed in § 6.

Finally, as the existence of a ‘kink-stable solitons’ configuration is not obvious,
we prove it in the appendix. The appendix is also used to recall how kinks and
solitons for (1.1) are constructed.

2. Notations, functional spaces

Reference state of a solution Any solution V of (1.1) that we consider is of the
form

V = Vref + U, (2.1)

where U vanishes at infinity, Vref is a reference state which is a smooth function
with finite limit at ±∞, and for any k + j � 1, ∂k

x∂j
t Vref decays exponentially at

±∞.
The notation V = Vref + U will be used without explanation when the context is

clear, in particular for a soliton of endstate (ρ+, v+) we always take Vref = (ρ+, v+)t.
If any sub/superscript is present we denote V a = V a

ref + Ua, Vj = Vref,j + Uj etc.

We always denote V =
(

ρ
v

)
, U =

(
r
u

)
, and similarly for V a, Ua . . .

Symbols and conventions of computation The constant C in inequalities A � CB
changes from line to line. Depending on the context, they are allowed to depend on
some quantities, but for conciseness this dependency is not explicited. For example,
when proving A � C(‖u‖∞)B, we write freely |uv| � C|v|.

The inequality A � B means A � CB for some constant C > 0, where the
previous rule applies to C.

The L2 scalar product for real vector valued functions is denoted 〈 ·, ·〉.

Sobolev spaces Even for functions of one variable, we use the notation u′ = ∂xu.
Hn is the usual L2 based Sobolev space

Hn = {u ∈ S ′ : ∀ 0 � k � n, ∂k
xu ∈ L2}, ‖u‖2

Hn =
n∑
0

‖∂k
xu‖2

L2 .

We denote Cn
b the set of n times differentiable functions that are bounded as well

as their derivatives. For a vector valued distribution U =
(

r
u

)
, we also define

‖U‖2
Hn = ‖r‖2

Hn+1 + ‖u‖2
Hn , and ‖U‖Xn = ‖U‖Hn+1 + ‖∂tU‖Hn .
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We have the interpolation property

∀ 0 � k � n, ‖u‖Hk � ‖u‖1−k/n
L2 ‖u‖k/n

Hn ,

the continuous embedding Hn ⊂ Cn−1
b . For n � 1, Hn is a Banach algebra.

The following composition rules hold for a ∈ Cn
b + Hn, u ∈ Hn and F smooth on

Im(a), Im(a + u):

‖F (a + u) − F (a)‖Hn � C(‖a‖Cn
b +Hn + ‖u‖Hn)‖u‖Hn , (2.2)

in particular if F (0) = 0, ‖F (u)‖Hn � C(‖u‖Hn)‖u‖Hn .

A similar second-order rule holds

‖F (a + u) − F (a) − uF ′(a)‖Hn � C(‖a‖Cn
b +Hn + ‖u‖Hn)‖u‖2

Hn . (2.3)

Both are consequences of a combination of the Faa Di Bruno formula, Sobolev’s
embedding, Hölder’s inequality and Taylor’s formula.

3. Energy estimates

An essential step is to bound the distance between an exact solution and a smoother
approximate solution V a = (ρa, va) satisfying

∂tV
a = J∂xδH[V a] + fa, for some remainder fa.

Due to the quasi-linear nature of the system the flow map is (probably) not Lipschitz
even in high regularity Sobolev spaces, nevertheless Lipschitz bounds with harmless
loss of derivatives on V a can be obtained.

Energy estimates were obtained by Benzoni et al. [5] thanks to a change of vari-
able (initially due to F. Coquel), and this section is actually more or less contained
in [5]. Let us shortly describe the argument : if (ρ, v) is a smooth solution of (1.1)
without vacuum, n � 2, set w =

√
K/ρ∂xρ, and z = v + iw. Then z satisfies

∂tz + v∂xz + iw∂xz + i∂x(a∂xz) + g′(ρ)∂xρ = 0, (3.1)

with a(ρ) =
√

ρK. This equation has a nice structure : i∂xa∂x is antisymmetric,
v∂x too up to zero-order terms, g′∂xρ is of order zero since w is a derivative of ρ.
The only bad term iw∂xz is dealt with thanks to a gauge method.

A few preliminary notations : for V = (ρ, v), solution of (1.1) and V a = (ρa, va)
an approximate solution, we denote z and za the associated new variables. We
assume that V a = Vref + Ua and V = Vref + U (same reference state) so that V −
V a = U − Ua.

Generically for F a function of ρ we denote ΔF = F (ρ) − F (ρa), for F a function
of v, ΔF = F (v) − F (va), etc. The gauge function of order n is ϕn(ρ) := an/2√ρ
and the modified norm

‖̃ΔV ‖H2n := ‖Δρ‖L2 + ‖√ρΔz‖L2 + ‖ϕn∂2n
x Δz‖L2 .

This notation is quite incorrect as the ‘norm’ depends on V in a nonlinear
way. Nevertheless, using the computation rules 2.2 and with constants depend-
ing continuously on ‖V ‖H2n + ‖V a‖H2n + ‖ρ + 1/ρ‖L∞ + ‖ρa + 1/ρa‖L∞ , we have
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‖̃ΔV ‖H2n ∼ ‖Δρ‖L2 + ‖Δz‖H2n , and ‖(Δρ,Δv)‖H2n ∼ ‖Δz‖H2n + ‖Δρ‖L2 , so

‖̃ΔV ‖H2n ∼ ‖ΔV ‖H2n . (3.2)

The main result is the following:

Proposition 3.1. Let V a
ref be a reference state smooth, bounded with its deriva-

tives rapidly decaying at infinity. Let V a = (ρa, va) = V a
ref + Ua be an approximate

solution of (1.1)

∂tV
a = J∂xδH[V a] + fa,

and V a solution of (1.1) such that U = V − V a
ref ∈ H2n, n � 1. Then the estimate

holds ∣∣∣∣12 d
dt

‖̃ΔV ‖H2n

∣∣∣∣ � C

(
‖U‖H2n + ‖Ua‖H2n+2 +

∥∥1/ρ + 1/ρa

∥∥∥∥
L∞

)
× (‖̃ΔV ‖H2n + ‖fa‖H2n),

with C a continuous, positive nondecreasing function R
+ → R

+∗.

Proof. We recall the convention of § 2; the hidden constants in �,∼ are as the
function C of the statement. If fa = (fa

1 , fa
2 ), the equations on Δρ,Δz are⎧⎪⎨⎪⎩

∂tΔρ + ∂x(Δρv + ρaΔv) = fa
1 ,

∂tΔz + v∂xΔz + Δv∂xza + iw∂xΔz + iΔw∂xza

+ ∂xΔg + i∂x(a∂xΔz + Δa∂xza) = i
√

K
ρa ∂xfa

1 + fa
2 := ha.

‖Δρ‖L2 is estimated by multiplying the first equation by Δρ and space integration∣∣∣∣12 d
dt

‖Δρ‖2
L2

∣∣∣∣ � ‖∂xΔρ‖L2(‖Δρ‖L2‖v‖L∞ + ‖ρa‖L∞‖Δv‖L2) + ‖Δρ‖L2‖fa
1 ‖L2

� (‖ΔV ‖H2n + ‖fa‖2
H2n)‖ΔV ‖H2n . (3.3)

The main issue is thus to control Δz. Let us first note that

‖ha‖2
H2n � ‖∂xfa

1 ‖2
H2n + ‖fa

2 ‖2
H2n � ‖fa‖2

H2n . (3.4)

For 0 � k � n, we apply ak√ρ∂2k
x := ϕk∂2k

x to the second equation. Denoting Δzk =
ϕk∂2k

x Δz we find after some commutations

∂tΔzk + v∂xΔzk + i∂x(a∂xΔzk) + i(ϕkw + 2k∂x(a)ϕk − 2a∂xϕk)∂2k+1
x Δz

+ iϕk∂2k+1
x (Δa∂xza) = R + ϕk∂2k

x ha (3.5)

where R is a remainder term containing derivatives of Δz of order at most 2k, and
derivatives of za of order at most 2k + 2

R = [z∂x, ϕk∂2k
x ]Δz − iϕk∂2k

x (Δv∂xza + iΔw∂xza)

+ i[∂x(a∂x·), ϕk∂2k
x ]Δz + 2ik∂x(a)ϕk∂2k+1

x Δz

− ϕk∂2k+1
x (Δg) + iϕk∂2k+1

x (Δa∂xza) − ϕ′
k∂x(ρv)∂2k

x Δz.
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By construction,

ϕkw + 2k∂x(a)ϕk − 2a∂xϕk = ak
√

K + 2k
√

ρK

=

(√
K

ρ
ak√ρ + 2kaka′√ρ − 2kaka′√ρ − ak+1

√
ρ

)
∂xρ

= 0.

Therefore, multiplying (3.5) by Δzk and integrating,∣∣∣∣ d
dt

‖Δzk‖2
L2

∣∣∣∣ � (‖v‖L∞‖Δzk‖L2 + ‖R‖L2 + C‖za‖H2k+2‖Δz‖H2k

+ ‖ϕk∂2k
x ha‖L2)‖Δzk‖L2 . (3.6)

Using § 2.2 and Faa di Bruno formula ‖R‖L2 � ‖ΔV ‖H2k , moreover from (3.4)
‖ϕk∂2k

x ha‖L2 � ‖fa‖H2k , (3.6) rewrites∣∣∣∣ d
dt

‖Δzk‖2
L2

∣∣∣∣ � ‖ΔV ‖H2k(‖ΔV ‖H2k + +‖fa‖H2k).

Thanks to (3.2), ‖ΔV ‖H2k � ‖̃ΔV ‖H2n . Adding estimates (3.3) and (3.6) with k = 0
and k = n we conclude∣∣∣∣ d

dt
‖̃ΔV ‖2

H2n

∣∣∣∣ =
∣∣∣∣ d
dt

(‖Δρ‖2
L2 + ‖√ρΔz‖2

L2 + ‖ϕn∂2n
x Δz‖2

L2)
∣∣∣∣

� ‖̃ΔV ‖H2n(‖̃ΔV ‖H2n + ‖fa‖H2n). �

4. Linear estimates

This section is devoted to estimates in Hn on the flows associated to J∂xδ2H[V c]
(V c a travelling wave) and J∂xδ2H[S].

We recall the notation δH[V ] =
(−K∂2

xρ − 1
2K ′(∂xρ)2 + g(ρ) + v2/2

ρv

)
, in the

same spirit

δ2H[V ]
(

r
u

)
=
(

(−K ′(ρ)∂2
xρ − 1

2K ′′(ρ)(∂xρ)2 + g′(ρ)
)
r − ∂x(K∂xr) + uv

ρu + rv

)
,

(4.1)

or in a matrix operator notation

δ2H[V ] =
((−K ′(ρ)∂2

xρ − 1
2K ′′(ρ)(∂xρ)2 + g′(ρ)

)− ∂x(K∂x·) v
v ρ

)
.

As can be expected, δ2H is a symmetric operator. Recalling 〈·, ·〉 is the L2 scalar
product, we shall use frequently that〈

δ2H[V ]
(

r
u

)
,

(
r1

u1

)〉
=
∫

R

(
−K ′(ρ)∂2

xρ − 1
2
K ′′(ρ)(∂xρ)2 + g′(ρ)

)
rr1

+ K∂xr∂xr1 + vur1 + vru1 + ρuu1 dx, (4.2)
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so that δ2H induces a continuous bilinear form on H0 if V is smooth
enough.

4.1. Linear stability of a travelling wave

The case of a kink Let V c be a kink of speed c. The system (1.1) linearized near
V c reads after the change of variables x → x − ct

∂tU(x, t) = J∂xδ2(H − cP )[V c(x)]U(x, t).

We define a modified energy functional E = H − cP . According to lemma 3 in [4]
(see also remark 2 in this reference) kinks are always stable in the following sense:

Lemma 4.1. For any U ∈ H there exists a unique orthogonal decomposition

U = α∂xV c + W, ∂xV c ∈ Ker(δ2E) and 〈δ2E[V c]U,U〉 � ‖W‖2
H0 . (4.3)

For the link between linear stability and δ2E being definite positive, see e.g. theorem
3.1 of Pego–Weinstein [17].

The case of a soliton We consider a branch of solitons V c. As it is more convenient
here to work on U c, we denote P [U c] =

∫
rcuc and abusively δH[U c] = δH[V c].

We recall (see (1.2)) that J =
(
0 −1 − 1 0

)
so that δ2P = −J . From −c∂xU c =

J∂xδH[U c] we have a number of useful identities

∀U, V, δP [U ] = δ2P [V ]U = −JU, (4.4)

(δH − cδP )[U c] := δE[U c] is constant, (4.5)

δ2E[U c] · ∂xU c = 0 (differentiation of (4.5) in x), (4.6)

δ2E[U c]∂cU
c − δP [U c] = 0 (differentiation in c) (4.7)

⇔ δ2E[U c]∂cU
c = −JU c. (4.8)

Stability assumption. We assume that Uc is stable, namely it satisfies :

dP [Us]
ds

|s=c < 0.

(see the appendix for a link with the so-called Boussinesq momentum of instability).
This also implies that ∂cU

c is an unstable direction in the sense that

〈δ2E[U c]∂cU
c, ∂cU

c〉 = 〈δP [U c], ∂cU
c〉 =

d
dc

P [U c] < 0.

Let us first recall a result from [4] (proved for the formulation of the Euler–Korteweg
system in Lagrangian coordinates, see also [1] appendix B for a proof in Eulerian
coordinates).

Lemma 4.2. Under the stability assumption, the operator δ2E[U c] is block diagonal
on the orthogonal decomposition H = vect(U−) ⊕⊥ vect(∂xU c) ⊕⊥ G, where ∂xU c
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spans the kernel of δ2E, U− is a normalized eigenvector associated to the unique
negative eigenvalue, and

∀W ∈ G, 〈δ2E[V c]W,W 〉 � ‖W‖2
H0 .

Lemma 4.3. For U ∈ H, there exists a unique orthogonal decomposition

U = αδP [U c] + β∂xU c + W, W ∈ (δP [U c], ∂xU c)⊥ and

〈δ2EU,U〉 � ‖W‖2
H0 − Cα2. (4.9)

Remark 4.4. To underline the unity between this decomposition and (4.3) in the
case of a kink, let us point out that since the reference state is constant

∂xV c = ∂xU c.

Proof. The momentum being invariant by translation, 〈δP [U c], ∂xU c〉 = 0 and
according to (4.6), ∂xU c ∈ Ker(δ2E). Therefore the only thing to prove is
〈δ2EW,W 〉 � ‖W‖2

H0 . By contradiction we assume the existence of W ∈
(δP [U c], ∂xU c)⊥ \ {0} such that 〈δ2EW,W 〉 � 0, then for any (α, β, γ) ∈ R

3, using
identities (4.6), (4.7)

〈δ2E(α∂cU
c + β∂xU c + γW ), α∂cUc + β∂xU c + γW 〉

= 〈δ2E(α∂cU
c + γW ), α∂cU

c + γW 〉
= α2〈δP [U c], ∂cU

c〉 + γ2〈δ2EW,W 〉 + 2αγ〈δP [U c],W 〉
= α2〈δP [U c], ∂cU

c〉 + γ2〈δ2EW,W 〉,
by orthogonality. By definition, 〈∂xU c,W 〉 = 0 and 〈∂cU

c, δP [U c]〉 < 0 therefore
(∂cU

c, ∂xU c,W ) is free. But δ2E is thus nonpositive on a dimension 3 space, which
contradicts lemma 4.2. As a consequence

∀W ∈ (δP [U c], ∂xU c)⊥ \ {0}, 〈δ2EW,W 〉 > 0. (4.10)

The improved inequality 〈δ2EW,W 〉 � ‖W‖2
H0 follows from a (probably stan-

dard) compactness argument : consider a sequence Vn of (δP [U c], ∂xU c)⊥ such
that ‖Vn‖H0 = 1 and 〈δ2EVn, Vn〉 → 0. Using lemma 4.2 we write Vn = αnU− +
βn∂xU c + Wn, Wn ∈ G. By assumption, βn = 0 and up to an extraction, αn →n→∞
α, Wn ⇀ W ∈ G. Denoting −λ− the negative eigenvalue,

1 = ‖Vn‖2
H = α2

n + ‖Wn‖2
H0 = α2 + lim

n
‖Wn‖2

H,

0 = lim
n→∞〈δ2EVn, Vn〉 = lim

n→∞−λ−α2
n + 〈δ2EWn,Wn〉

� −λ−α2 + c lim inf
n

‖Wn‖2
H0 .

This implies α �= 0. Let V = αU− + W , then by weak convergence

〈δ2EV, V 〉 = −λ−α2 + 〈δ2EW,W 〉 � −λ−α2 + lim
n
〈δ2EWn,Wn〉 = 0,

but since V is the weak limit of Vn, it belongs to (δP [U c], ∂xU c)⊥, and (4.10) implies
V = 0, which contradicts α �= 0. �
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As a consequence, we deduce the following linear stability result, whose proof
will be a guideline for the computations in the multi-soliton case.

Theorem 4.5. Under the stability assumption (4.1), the solution of{
∂tU(x, t) = J∂xδ2H[U c(x − ct)]U(x, t),
U |t=0 = U0,

satisfies for t ∈ R

‖U(t)‖H0 � (1 + |t|)‖U0‖H0 .

Proof. For conciseness we write δ2H for δ2H[U c]. Using δ2P = −J

d
dt

〈(δ2H − cδ2P )U,U〉 = 〈[∂t, δ
2H]U,U〉 + 2〈δ2HJ∂xδ2HU,U〉 + c〈[∂x, δ2H]U,U〉

= 〈[∂t + c∂x, δ2H]U,U〉.

Since the coefficients of the operator δ2H only depend on x − ct, [∂t + c∂x, δ2H] =
0, so

d
dt

〈(δ2H − cδ2P )U,U〉 = 0. (4.11)

We use the decomposition (4.9) for the solution U(t) = α(t)δP [U c(x − ct)] +
β(t)∂xU c + W (t). Since ∂xU c ∈ Ker(δ2E)

α′(t) =
〈J∂xδ2HU, δ2PU c〉 + 〈U,−c∂xδ2PU c〉

〈δP [Uc], δP [uc]〉 =
〈U, (δ2H − cδ2P )∂xU c〉

〈δP [Uc], δP [uc]〉 = 0.

By the conservation (4.11) and the continuity of δ2H as a bilinear form (4.2)

〈δ2EU(0), U(0)〉 = 〈δ2EU(t), U(t)〉
= 〈δ2E(αδP [U c] + W ), αδP [U c] + W 〉 � ‖W‖2

H0 − Cα2

⇒ ‖W (t)‖2
H0 � α(0)2 + ‖U(0)‖2

H0 .

Moreover |α(0)| = 〈U(0), δP [U c]〉/‖δP [U c]‖2
H〉 � ‖U(0)‖H0 . The last term is esti-

mated thanks to the bounds on α, V :

|β′(t)| =
∣∣∣∣ d

dt

〈U(t), ∂xU c〉
‖∂xU c‖2

L2

∣∣∣∣ =
∣∣∣∣ 〈J∂xδ2E(αδP [U c] + V ), ∂xU c〉

‖∂xU c‖2
L2

∣∣∣∣ � ‖U(0)‖L2 ,

and by integration, |β(t)| � |β(0)| + |t|‖U(0)‖H0 . �

Remark 4.6. The linear growth in time is unavoidable, indeed we have

J∂xδ2E∂cU
c = ∂xJδP [U c] = ∂xU c ∈ Ker(J∂xδ2E),

therefore (∂cU
c, ∂xU c) is associated to a Jordan block of the eigenvalue 0 of J∂xδ2E.
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Remark 4.7. Of course to study the stability of a single soliton it is much more nat-
ural to do the Galilean change of variable y = x − ct and consider the autonomous
linear problem ∂tU = (δ2H − cδ2P )[U c(y)]U . The proof of theorem 4.5 is simplified
in this frame. Nevertheless, when considering multi-soliton such a change variable is
not available and this first simple case is a good warm up before the more technical
computations of § 4.2.

4.2. Stability near multiple travelling waves

We recall that the multi-soliton is defined as

S(x, t) = V c1(x − c1t) +
n∑

k=2

U ck

⎛⎝x − ckt −
k∑

j=2

Aj

⎞⎠ = V1 +
n∑
2

Uk, Aj � A,

where V ck = V ck

ref + U ck are travelling waves, c1 < c2 · · · < cn. We have exponential
decay

∀ p � 0, 1 � k � n, ∃α > 0 : |∂p
xUk(x, t)| � e−α|x−ckt−∑k

2 Aj |. (4.12)

The aim of this section is to get bounds on the flow associated to J∂xδ2H[S + η]
where η is a small perturbation of limited smoothness that depends on x and t.
When there is no ambiguity, we write δ2H for δ2H[S + η] and

δ2Ek := δ2H[Vk] − ckδ2P.

Lemma 4.8. For s � 0, let U solve{
∂tU = J∂xδ2H[S + η]U,
U |t=s = U0,

(4.13)

with η a smooth perturbation. There exist C and ε0 such that for ε := 1/A +
‖η‖X1 � ε0,

∀ t � 0, ‖U(t)‖H0 � C(1 + |t − s|)eCε1/4|t−s|‖U0‖H0 .

Remark 4.9. The estimate is not true for t � 0 as the key argument is that the
distance between the travelling waves must be (in some sense) larger than A.

The proof requires some preliminaries that will be used through the
section. Let 2c0 = infj<k ck − cj , and for 1 � k < n, ck+1/2 = (ck + ck+1)/2. We
first define localizing functions : pick a nondecreasing χ ∈ C∞(R), supp(χ) =
[0,∞], χ|[1/2,∞) = 1, 0 < χ < 1 on (0, 1/2), and set

ϕ1(x, t) = 1 − χ

(
x − c1+1/2t − A2/2

A2

)
,
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∀ 2 � k < n, ϕk(x, t) = χ

⎛⎝x − ck−1/2t −
(∑k

2 Aj − Ak/2
)

Ak

⎞⎠
− χ

⎛⎝x − ck+1/2t −
(∑k

2 Aj + Ak+1/2
)

Ak+1

⎞⎠ ,

ϕn(x, t) = χ

(
x − cn−1/2t − (

∑n
2 Aj − An/2)

An

)
.

It is easily seen that

supp(ϕ1) = (−∞, c3/2t + A2],

∀ 2 � k � n − 1, supp(ϕk) =

[
ck−1/2t +

k∑
2

Aj − Ak

2
, ck+1/2t +

k+1∑
2

Aj

]
,

supp(ϕn) =
[
cn−1/2t +

n∑
2

Aj − An/2,∞
)

,

and
∑n

k=1
ϕ2

k � c > 0 for some constant independent of x. The localizing functions
are then defined as

χj =
ϕj√∑n

1 ϕ2
j

so that
∑

χ2
j = 1. (4.14)

Note that ϕj and χj have same support. Thanks to (4.12) we have the following
estimates, uniformly for A large

‖∂j
x∂k

t χj‖L∞
x,t

= O(1/Ak+j) (slow variation ), (4.15)

∀ j �= k, (p, q) ∈ N
2, r � 1, ∃α > 0 : ‖∂p

x∂q
t Uk‖Lr

x(supp(χj)) = O(e−αc0t/A),
(4.16)

if (p, q) �= (0, 0), r � 1, ‖∂p
x∂q

t Vk‖Lr
x(supp(χj)) = O(e−αc0t/A), (4.17)

(support decorrelation).

Proof of lemma 4.8. In the spirit of the proof of theorem 4.5 we define the modified
energy

Ẽ(t) = 〈δ2H[S + η]U(t), U(t)〉 −
n∑

k=1

ck〈δ2PχkU(t), χkU(t)〉. (4.18)

Similarly to theorem 4.5, the proof has three steps : (1) Control of dẼ/dt, (2)
control of ‖U(t)‖2

H0 by Ẽ up to a finite number of parameters, (3) Control of these
parameters.
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Step 1: Control of dẼ/dt. From basic computations, using δ2P = −J, J2 = I,

d
dt

Ẽ = 〈([∂t, δ
2H] + δ2HJ∂xδ2H)U,U〉 +

n∑
k=1

2ck〈χ′
kJU, χkU〉

+
n∑

k=1

ck(〈χk∂xδ2HU,χkU〉) +
(〈χkU,χk∂xδ2HU〉)

= 〈[∂t, δ
2H]U,U〉 +

n∑
k=1

2ck〈χ′
kJU, χkU〉

+
n∑

k=1

ck(〈[χ2
k, ∂xδ2H]U,U〉 + 〈[∂x, δ2H]χ2

kU,U〉)

=
n∑

k=1

〈([∂t, δ
2H] + ck[∂x, δ2H])χ2

kU,U〉

+ ck(2〈χ′
kJU, χkU〉 + ck〈[χ2

k, ∂xδ2H]U,U〉)

=
n∑

k=1

C1,k(t) + C2,k(t) + C3,k(t).

We first point out that X1 controls the L∞ norm, therefore for ‖η‖X1 small enough
the density of S + η remains bounded away from 0 and the computations rules in
(2.2), (2.3) can be applied.

C2,k and C3,k are not difficult to control : let us write [χ2
k, ∂xδ2H] = (Li,j)1�i,j�2

as a matrix of operators, S + η =
(

ρ1

v1

)
and detail the estimate for 〈L1,1r, r〉

〈L1,1r, r〉 = 〈[χ2
k, ∂x((g′ − K ′′(∂xρ1)2 − K ′∂2

xρ1) − ∂xK∂x)]r, r〉
= −〈2χk∂x(χk)(g′ − K ′′(∂xρ1)2 − K ′∂2

xρ1)r, r〉 (4.19)

− 2〈χk∂xχk∂x(K∂xr), r〉 − 〈[χ2
k, ∂xK∂x]r, ∂xr〉. (4.20)

Using the Sobolev estimates (2.2) and (4.15), we find (4.19) � ‖r‖2
H1/A, the second

one is estimated by an integration by part

| − 2〈χk∂xχk∂x(K∂xr), r〉| �
∫

R

|K∂xr∂x(2χk∂xχk r)|dx � 1
A
‖r(t)‖2

H1 .

The last term in (4.20) is estimated similarly with the explicit commutator formula
[χ2

k, ∂xK∂x]r = −2∂x(χ2
k)K∂xr − ∂x(χ2

k)∂x(Kr). Similar computations eventually
lead to

|C2,k + C3,k| � 1
A
‖U‖2

H0 . (4.21)

To bound C1,k we introduce the (bilinear) operator δ3H such that

[∂t, δ
2H[S + η]]U = δ3H[S + η](U, ∂t(S + η)). (4.22)
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This is merely a convenient notation, as writing S + η =
(

ρ1

v1

)
, δ3H(·, ∂t(S + η))

is explicitly

δ3H[S + η](·, ∂t(S + η)) =
(Mt ∂tv1

∂tv1 ∂tρ1

)
,

with Mtr =
(

g′′∂tρ1 − K ′′′∂tρ1(∂xρ1)2 + 2K ′′∂xρ1∂xtρ1

2

)
r

− (K ′′∂tρ1∂
2
xρ1 + K ′∂xxtρ1)r − ∂x(K ′∂tρ1∂xr), (4.23)

and we use the same notation for [∂x, δ2H] := δ3H[S](·, ∂xS). We can thus rewrite
using S = V1 +

∑n
j=2 Uj , with ∂tV1 = −c1∂xV1, ∂tUj = −cj∂xUj , for k > 1

C1,k(t) = 〈δ3H(U, ∂tS + ck∂xS)χ2
kU,U〉 + 〈δ3H(U, ∂tη + ck∂xη)χ2

kU,U〉
= 〈δ3H(U,−c1∂xV1 −

∑
j �=k

cj∂xUj)χ2
kU,U〉 + 〈δ3H(U, ∂tη + ck∂xη)χ2

kU,U〉,

and if k = 1

C1,1(t) =

〈
δ3H(U,−

n∑
j=2

cj∂xUj)χ2
1U,U

〉
+ 〈δ3H(U, ∂tη + c1∂xη)χ2

1U,U〉.

Now using the support decorrelation property (4.16) and the explicit form (4.23)
of δ3H we obtain in both cases

|C1,k(t)| � e−αc0t

A
‖U(t)‖2

H0 + (‖η(t)‖H2 + ‖∂tη(t)‖H1)‖U(t)‖2
H0 . (4.24)

Adding this estimate with (4.21) gives∣∣Ẽ′(t)
∣∣ � ε‖U(t)‖2

H0 . (4.25)

Step 2: Lower bounds for Ẽ. The key here is the decompositions (4.3) and (4.9). For
1 � k � n we set χkU(t) = αk(t)δP [Uk] + βk(t)∂xVk + Wk(t), with the convention
that if V1 is a kink, α1 = 0 (in this case the relevant decomposition is (4.3)). Using
the translation invariance of the L2 norm, the lower bound in (4.9) gives for some
m,C > 0

∀ 1 � k � n, 〈δ2E[Uk]χkU,χkU〉 � m‖Wk‖2
H0 − Cα2

k.

According to this, we split Ẽ as a sum of localized terms and remainders:

Ẽ = 〈δ2H[S + η]U,U〉 −
n∑

k=1

ck〈δ2PχkU,χkU〉

=
n∑

k=1

〈δ2H[S + η]χ2
kU,U〉 − ck〈δ2PχkU,χkU〉,
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so commuting δ2H and χk we obtain

Ẽ(t) =
n∑

k=1

〈δ2EkχkU,χkU〉 + 〈(δ2H[S + η] − δ2H[Uk])χkU,χkU〉

+ 〈[δ2H[S + η], χk]χkU,U〉

�
n∑

k=1

m‖Wk(t)‖2
H0 − Cα2

k(t) + 〈(δ2H[S + η] − δ2H[Vk])χkU,χkU〉

+ 〈[δ2H,χk]χkU,U〉. (4.26)

The last term is estimated as in (4.20),∣∣〈[δ2H,χk]χkU(t), U(t)〉∣∣ � ε‖U(t)‖2
H0 . (4.27)

Thanks to the support decorrelation (4.16) and calculus rules (2.2), one can check

〈(δ2H[S + η] − δ2H[Vk])χkU,χkU〉 �
(

e−αc0t

A
+ ‖η‖H2

)
‖U(t)‖2

H0 . (4.28)

For example, the term associated to ∂x(K∂xr) is controlled as follows

|〈∂x((K(S + η) − K(Vk))∂x(χkr)), χkr〉|
� |‖K(S + η) − K(Vk)‖L∞(supp(χk))‖∂x(χkr)‖2

L2

�
(

e−αc0t

A
+ ‖η(t)‖H0

)
‖r(t)‖2

H1 .

Note that ‖U‖2
H0 �

∑n
1 ‖Wk‖2

H0 + α2
k + β2

k, so for ε small enough, from (4.26),
(4.27),(4.28), there exists constants m,C0, C1 (m is not the same as in (4.26)) such
that

Ẽ(t) �
n∑

k=1

m‖Wk(t)‖2
H0 − C0α

2
k(t) − C1εβ

2
k(t). (4.29)

Step 3: Control of the parameters. Once more it is a matter of repeating the proof of
theorem 4.5 with some commutators. Let us start with (αk(t))1�k�n (k > 2 when
V1 is a kink):

α′
k(t) =

d
dt

〈χkU, δ2PUk〉
‖δ2PUk‖2

L2

=
〈(∂tχk)U, δ2PUk〉 + 〈χkJ∂xδ2H[S + η]U, δ2PUk〉 + 〈χkU,−ckδ2P∂xUk〉

‖δ2PUk‖2
L2

=
〈(∂tχk)U, δ2PUk〉 + 〈[χk, J∂xδ2H[S + η]]U, δ2PUk〉

‖δ2PUk‖2
L2

+
〈J∂x(δ2H[S + η] − δ2H[Vk])χkU, δ2PUk〉 + 〈χkU, δ2Ek∂xUk〉

‖δ2PUk‖2
L2

.

There are four terms. The fourth one is actually 0, thanks to identity (4.6).
From the same argument as for C2,k, C3,k in (4.20), the first and second ones
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are O(|U(t)‖H0/A). Using integration by part, the smoothness of Uk and the
same argument as for (4.28), the third one is O(‖U(t)‖H0(e−αc0t/A + ‖η‖H2)). To
summarize

∀ 1 � k � n, t � 0, |α′
k(t)| � ε‖U(t)‖H0 . (4.30)

We bound now βk(t):

‖∂xVk‖2
L2β′

k(t) =
d
dt

〈χkU, ∂xVk〉
= 〈(∂tχk)U, ∂xVk〉 + 〈χkJ∂xδ2HU, ∂xVk〉 + 〈χkU,−ck∂2

xVk〉
= 〈(∂tχk)U, ∂xUk〉 + 〈J∂xδ2Ek(χkU), ∂xVk〉

+ 〈χkJ∂x(δ2H[S + η] − δ2H[Vk])U, ∂xVk〉
+ 〈[χk, J∂xδ2H[Vk]]U, ∂xVk〉.

Since χkU = αkδP [Uk] + βk∂xVk + Wk, with δ2Ek∂xVk = 0, we have

|〈J∂xδ2Ek(χkU(t)), ∂xVk(t)〉| � |αk(t)| + ‖Wk(t)‖H0 .

The other terms are estimated as for α′
k, leading to

|β′
k(t)| � |αk(t)| + ‖Wk(t)‖H0 + ε‖U(t)‖H0 . (4.31)

Conclusion. Let us rewrite (4.25), (4.30), (4.31) : there exists some C > 0 such
that for ε small enough

|Ẽ′(t)| � Cε‖U(t)‖2
H0 ds,

|α′
k(t)| � Cε‖U(t)‖H0 ,

|β′
k(t)| � C(|αk(t)| + ‖Wk(t)‖H0 + ε‖U(t)‖H0).

With the same constants as in (4.29), let Ê(t) := Ẽ(t) +
∑n

1 (C0 + m)α2
k + ε1/2β2

k,
then for ε small enough Ê(t) �

∑n
1 α2

k + ‖Wk‖2
H0 + ε1/2β2

k, and

|Ê′(t)| �
n∑

k=1

Cε(‖Wk‖2
H0 + α2

k + β2
k) + Cε1/2|βk|(|αk| + ‖Wk‖H0 + ε‖U‖H0)

� Cε1/2Ẽ + Cε1/2

(
α2

k + ‖Wk‖2
H0

ε1/4
+ ε1/4β2

k

)
� Cε1/4Ê(t).

With Gronwall’s lemma and thanks to (4.29) we get
n∑

k=1

m(‖Wk(t)‖2
H0 + α2

k(t)) + ε1/2β2
k(t) � Ê(t) � Ê(s) eCε1/4|t−s|.

We can assume ε � 1/(4C2
1 ) so that ε1/2 − C1ε � ε1/2/2, and

n∑
k=1

(‖Wk(t)‖2
H0 + αk(t)2) � ‖U(s)‖2

H0 eCε1/4|t−s| = ‖U0‖2
H0 eCε1/4|t−s|.
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To bound βk independently of ε, we plug the estimate above in the differential
inequality (4.31)

n∑
k=1

|β′
k(t)| � M

(
n∑

k=1

|αk(t)| + ‖Wk(t)‖H0 + ε‖U(t)‖H0

)

� M1‖U0‖H0 eCε1/4|t−s|/2 +
Cε1/4

2

n∑
k=1

|βk(t)|. (4.32)

(for ε small enough so that Mε � Cε1/4/2). (4.32) has the form (e−δ|t−s|ϕ(t))′ �
Meμ|t−s|, so by integration on [s, t]

n∑
k=1

|βk(t)| �
n∑

k=1

|βk(s)|eCε1/4|t−s|/2 +
2M1‖U0‖H0

Cε1/4
(eCε1/4|t−s| − 1)

� ‖U0‖H0(1 + |t − s|)eCε1/4|t−s|.

Combining this with the estimate on Wk, αk, we conclude

‖U(t)‖H0 � ‖U0‖H0(1 + |t − s|) eCε1/4|t−s|. �

It is useful to restate the result of lemma 4.8 in a slightly more abstract way:

Corollary 4.10. Let Rη(t, s) the resolvent operator associated to ∂tU =
J∂xδ2H[S + η]U . There exists ε0 and C such that if 1/A + ‖η‖X1 := ε � ε0, t, s �
0:

‖Rη(t, s)‖L(H0) � (1 + |t − s|)CeCε1/4|t−s|.

We deduce now similar estimates at any level of regularity.

Theorem 4.11 (Higher order estimates). Let ε := 1/A + ‖η‖X2n , n ∈ N
∗. There

exists εn, Ce,n, Cn such that for any ε � εn, we have the resolvent estimate

‖Rη(t, s)‖L(H2n) � (1 + |t − s|)CneCe,nε1/4|t−s|

Proof. The Hamiltonian structure is useless here, so we denote for conciseness
L := J∂xδ2H[S + η]. As for the energy estimate, an important issue is that
J∂xδ2H[S + η] does not commute with ∂t, this will be overcome with the same
method as for the zero-order estimate. The commutator [∂t, L] = J∂xδ3H( · , ∂t(S +
η)) := δL( · , ∂t(S + η)) is not zero (for the definition of δ3H, see (4.22) in the proof
of lemma 4.8), thus to get higher order estimates it is more natural to use the
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operator L̃ := L +
∑n

k=1 ckχ2
k∂x. Indeed using

[L, L̃] =
n∑

k=1

[L, ckχ2
k∂x] =

n∑
k=1

ck[L,χ2
k]∂x − ckχ2

kδL(·, ∂x(S + η)),

we find for any V

[∂t − L, L̃]V =
n∑

k=1

χ2
kδL(V, (∂t + ck∂x)(S + η))

+ 2ckχk(∂tχk)∂xV − [L, ckχ2
k]∂xV, (4.33)

therefore recalling ∂xVj = ∂xUj for j � 2

∂t(L̃nU) = L(L̃nU) +
n−1∑
q=0

L̃q[∂t − L, L̃]Ln−q−1U

= L(L̃nU) +
n−1∑
q=0

L̃q

⎛⎝∑
j �=k

χ2
kδL(·, (ck − cj)∂xVj)

+ χ2
kδL(·, (∂t + ck∂x)η)

⎞⎠ L̃n−q−1U

+
n−1∑
q=0

L̃q

(
n∑

k=1

2ckχk(∂tχk)∂x − [L, ckχ2
k]∂x

)
L̃n−q−1U

= L(L̃nU) + C1 + C2. (4.34)

Let us recall that if S + η =
(

ρ1

v1

)
, for any U = (r, u)t, we have

LV = −∂x

(
uρ1 + rv1(

g′ − K′′(∂xρ1)
2

2 − K ′∂2
xρ1

)
r − ∂x(K∂xr) + uv1

)
,

the first coefficient contains derivatives of r, u, ρ1, v1 of order at most 1, the second
contains derivatives of v1, v of order at most 1, and derivatives of ρ1, l of order at
most 3 so using the rules of § 2.2,

∀N � 0, ‖LV ‖HN � CN (‖η‖HN+2)‖V ‖HN+2 , (4.35)

⇒ ‖L̃V ‖HN � MN (‖η‖HN+2)‖V ‖HN+2 , (4.36)

with CN ,MN positive locally bounded functions (we recall that S is smooth
and is unimportant in the estimates). With this observation, estimate (4.15) and
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computations similar to (4.20) we deduce

‖C2(t)‖H0 � ‖U(t)‖H2n

A
� ε‖U(t)‖H2n .

Similarly, C1(t) is estimated thanks to (4.16) as for (4.24),

‖C1(t)‖H0 �
(

e−αc0t

A
+ ‖η‖X2n

)
‖U(t)‖H2n � ε‖U(t)‖H2n .

Conversely thanks to the interpolation estimate ‖∂p
xϕ‖L2 � ‖ϕ‖1−p/q

L2 ‖∂q
xϕ‖p/q

L2 ,
and Young’s inequality, ‖∂p

xϕ‖L2 � C(ε)‖ϕ‖L2 + ε‖∂q
xϕ‖L2 for any ε > 0, p < q,

therefore using once more the explicit formula for L̃V , we obtain

‖L̃V ‖H0 � ‖V ‖H2 − C‖V ‖H0 , and by induction

‖L̃nU‖H0 � ‖U‖H2n − Cn‖U‖H0 . (4.37)

Equation (4.34) is of the form ∂tV = LV + f . We apply Duhamel’s formula and
corollary 4.10

‖L̃nU(t)‖H0 � (1 + |t − s|)‖U0‖H2neCε1/4|t−s|

+ ε

∫ t

s

(1 + |t − τ |) eCε1/4|t−τ |‖U(τ)‖H2n ds (4.38)

� (1 + |t − s|)‖U0‖H2n eCε1/4|t−s| + ε3/4

∫ t

s

e2Cε1/4|t−τ |‖U(τ)‖H2n dτ,

(4.39)

where the last estimate simply follows from (1 + s) es � e2s.
We use (4.39), the bound ‖U(t)‖H0 � C(1 + |t − s|)eCε1/4|t−s|‖U0‖H0 of

lemma 4.8 and the lower bound (4.37) with Gronwall’s lemma

‖U(t)‖H2n � (1 + |t − s|) eCε1/4|t−s|‖U0‖H2n

+ ε3/4

∫ t

s

e2Cε1/4(t−τ)‖U(s)‖H2n ds,

⇒ ‖U(t)‖H2n � (1 + |t − s|)‖U0‖H2n eC(ε1/4+ε3/4)|t−s|.

For ε small ε3/4 + ε1/4 = O(ε1/4) and the proof is complete. �

5. Construction of an approximate solution

We construct here an approximate solution V a close to the multi-soliton and such
that the error ∂tV

a − J∂xδH[V a] is rapidly decaying in t. It is done with Newton’s
algorithm, initialized with S as the first approximate solution.
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Theorem 5.1. For any n ∈ N, ε > 0, Ce > 0, there exists A0 such that for A � A0,
there exists Ua ∈ L∞

t Hn, α > 0 such that

∀ t � 0, ‖∂t(S + Ua) − J∂xδH[S + Ua]‖Hn � εe−Cet and ‖Ua(t)‖Hn � e−αc0t

A
.

We recall Newton’s algorithm: S0 = S, f0 = ∂tS
0 − J∂xδH[S0], η0 = 0, and recur-

sively

ηj+1 is the solution of

⎧⎨⎩∂tη
j+1 = J∂xδ2H[Sj ]ηj+1 − f j ,

lim
t→∞ ηj+1 = 0,

Sj+1 = Sj + ηj+1, f j+1 = ∂tS
j+1 − J∂xδH[Sj+1].

Of course since ∂tS
j+1 − J∂xδH[Sj+1] = J∂xδH[Sj ] + J∂xδ2H[Sj ]ηj+1 −

J∂xδH[Sj+1] we need some Taylor expansion estimate :

Lemma 5.2. For V := S + U , (U, η) ∈ (Hn+2)2 such that ‖V ‖L∞ + ‖η‖L∞ �
inf ρS/2 (non vacuum condition), then

‖J∂xδH[V + η] − J∂xδH[V ] − J∂xδ2H[V ]η‖Hn

� C(‖η‖Hn+2 + ‖U‖Hn+2)‖η‖2
Hn+2 ,

with C continuous.

Proof. We set V =
(

ρ
v

)
, U =

(
r
u

)
, η =

(
γ
ω

)
.

Elementary computations lead to

J∂xδH[V + η] − J∂xδH[V ] − J∂xδ2H[V ]η

= −∂x

⎛⎜⎜⎜⎝
γω

ω2

2
+ (g(ρ + γ) − g(ρ) − γg′(ρ)) − (K(ρ + γ) − K(ρ))∂2

xγ

+(K(ρ) + γK ′(ρ) − K(ρ + γ))∂2
xρ − (K ′(ρ + γ) − K ′(ρ))∂xρ∂xγ

− 1
2K ′(ρ + γ)(∂xγ)2

⎞⎟⎟⎟⎠ .

We have using the rules in 2.2

‖∂x(γω)‖Hn+1 � ‖γ‖Hn+2‖ω‖Hn+2 � ‖η‖2
Hn+2 .

For the second coordinate, we only treat a few terms. Thanks to the smallness
assumption in L∞, inf ρ, inf ρ + γ � inf ρS/2 so that we can use the composition
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rules again

‖∂x((K(ρ + γ) − K(ρ))∂2
xγ)‖Hn

� ‖K(ρ + γ) − K(ρ)‖Hn+1‖γ‖Hn+3 � ‖γ‖2
Hn+3 ,

‖∂x(K(ρ) + γK ′(ρ) − K(ρ + γ))∂2
xρ)‖Hn

� ‖K(ρ) + γK ′(ρ) − K(ρ + γ)‖Hn+1‖r‖Hn+3

� ‖γ‖2
Hn+2 .

After similar estimates for the other terms, we end up with

‖J∂xδH[U + η] − J∂xδH[U ] − J∂xδ2H[U ]η‖Hn

� ‖ω‖2
Hn+2 + ‖γ‖2

Hn+3 = ‖η‖2
Hn+2 . �

Proof of theorem 5.1. We fix some k ∈ N large, and iterate Newton’s algorithm k
times.

The proof is divided in the following steps : (1) Control of f0, (2) Control of η1,
(3) Iteration argument.

Step 1: Control of f0. We use the partition of unity (4.14):

∂tS − J∂xδH[S] =
∑

j,k, j �=k

χ2
jJ∂xδH[Vk] +

∑
j

χ2
jJ∂x(δH[Vj ] − δH[S]).

We set Vj =
(

ρj

vj

)
, S =

(
ρS

vS

)
, and explicit the second term

δH[Vj ] − δH[S] =

⎛⎜⎜⎝
−(ρS − ρj)vj − ρS(vS − vj)

(uS − uj)(uj + uS) + (K(ρj) − K(S))∂2
xρj

+K(S)∂2
x(ρj − S)

+ 1
2K ′(ρj)(∂xρj)2 − 1

2K ′(S)(∂xS)2

⎞⎟⎟⎠ .

Since all terms are smooth and spatially decorrelated, they are small and
exponentially decaying in t for any Sobolev norms, for example,

‖χj∂x((K(ρj) − K(ρS))∂2
xρj)‖H2n+2k

� ‖∂xρj‖H2n+2(k+1)‖K(ρj) − K(S)‖H2n+2k+1(supp(χj))

� e−αc0t

A
.

With similar computations, we find the existence of C0 only depending on S, n, k
such that

‖f0‖H2n+2k � C0
e−αc0t

A
.

Step 2: Control of η1 and η2. At this point some care with the constants is required.
We denote Rη the resolvent operator associated to J∂xδ2H[S + η]. Following the
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notation and result of theorem 4.11, we set Ce = maxn�p�n+k Ce,p. There exists a
constant CR such that for 1 � l � k, under the conditions

Ce(1/A + ‖η‖X2n+2l)1/4 � αc0/4, 1/A + ‖η‖X2n+2l � min
1�j�k

εn+j , (5.1)

and using tet � e2t then

‖Rη(t, s)‖L(H2n+2l) � C(1 + |t − s|) eαc0|t−s|/4 � CReαc0|t−s|/2. (5.2)

According to lemma 5.2, there exists CTayl such that for

j � n + k, η ∈ H2j+2, U ∈ H2j+2, V = S + U, ‖η‖L∞ + ‖U‖L∞ � inf S/2, (5.3)

⇒ ‖J∂xδH[V + η] − J∂xδH[V ] − J∂xδ2H[V ]η‖H2j � CTayl‖η‖2
H2j+2 . (5.4)

With these notations we bound η1 using the Duhamel formula,

η1 =
∫ ∞

t

R0(t, s)f0(s) ds,

⇒ ‖η1‖H2n+2k �
∫ ∞

t

C0C
αc0/2|t−s|
Re

e−αc0s

A
ds =

2C0CR

Aαc0
e−αc0t.

We define δ = 2C0CR/(Aαc0), which can be as small as needed.
To bound f1 = J∂xδH[S] + J∂xδH[S]η1 − J∂xδH[S + η1] we can use estimate

(5.4) (note that up to decreasing min1�j�k εn+j , condition (5.1) is stronger than
(5.3))

‖f1‖H2n+2(k−1) � CTaylδ
2 e−2αc0t.

Next to use the resolvent estimate (5.2), we need to bound ‖η1‖X2n+2(k−1) . This is
done thanks to a general estimate : if ∂tη = J∂xδH[S + U ]η + f , then using (4.35)

∀N � 2, ‖∂tη‖HN−2 � CX,N (‖U‖HN )‖η‖HN + ‖f‖HN−2 . (5.5)

We define CX = max
1�j�k

CX,2n+2j(εn+j). Since ∂tη
1 = J∂xδ2H[S]η1 − f0, (5.5) gives

‖∂tη
1‖H2n+2(k−1) � CX‖η1‖H2n+2k +

C0 e−αc0t

A
� CXδ +

C0

A
.

In particular, ‖η1‖X2n+2(k−1) � (CX + 1)δ + C0/A. Therefore (up to increasing A)
condition (5.1) is satisfied (with l = k), Duhamel’s formula gives again

‖η2‖H2n+2(k−1) �
∫ ∞

t

CRCTaylδ
2eαc0|t−s|/2 e−2αc0s ds

� CRCTaylδ

αc0
δe−2αc0t := qδe−2αc0t.

We note for later use that for A large enough, we have q � 1/2 so that
∑

j�0 qj � 1.
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Step 3. Induction. Assume we have constructed (ηi)1�i�j for some j < k, with

‖η1‖H2n+2k � δe−αc0t, ∀ i � 2, ‖ηi‖H2n+2(k−i+1) � q2i−1
δe−2i−1αc0t.

In particular, ‖∑j
1 ηi‖H2n+2(k−i+1) � 2δ and from (5.4)

∀ 1 � i � j, ‖f i(t)‖H2n+2(k−i) � CTaylq
2i

δ2e−2iαc0t.

Estimating ∂tη
i as for ∂tη

1 we have∥∥∥∥∥∂t

(
j∑

i=1

ηi

)∥∥∥∥∥
H2n+2(k−j)

�
j∑

i=1

CX‖ηi‖H2n+2(k−i+1) + ‖f i−1‖H2n+2(k−i)

� 2CXδ + 2CTaylδ
2 +

C0

A
,

therefore ‖∑j
1 ηi‖X2n+2(k−j) � 2(CX + 1)δ + 2CTaylδ

2 + C0/A, and the smallness
conditions (5.1) are satisfied (with l = k − j) for A large enough independent of j.

We can use the uniform resolvent estimate (5.2) and Taylor estimate (5.4) as for
the construction of η2

‖ηj+1‖H2n+2(k−j) �
∫ ∞

t

CRCTaylq
2j

δ2eαc0|t−s|/2 e−2jαc0s ds � q2j

δe−2jαc0t.

By induction, we obtain (ηj)1�j�k, the function Ua
∑k

1 ηj is sufficient to end the
proof since by construction and estimate (5.4)

∂t

(
S +

k∑
1

ηj

)
= J∂xδH

[
S +

k∑
1

ηj

]
+ fk, with ‖fk‖H2n � CTaylq

2k

δe−2kt,

so that the remainder fk is as small and rapidly decreasing as required for k large
enough. �

6. Proof of the main result

This section is a compactness argument. Let V a =
(

ρa

va

)
= S + Ua be an approxi-

mate solution given by theorem 5.1 with Ua ∈ H2n+2 and n, ε, Ce to choose later.
Define V k the solution of (1.1) with Cauchy data V k(k) = V a(k). According to the
energy estimate of proposition 3.1, we have for ΔUk := V k − V a∣∣∣∣ d

dt
‖̃ΔUk‖H2n

∣∣∣∣ � C(‖ΔUk‖H2n + ‖Ua‖H2n+2 + ‖1/ρk + 1/ρa‖L∞)

× (‖̃ΔUk‖H2n + εe−Cet).

Let m = inf(x,t)∈R×R+ ρa, we pick ε such that ‖̃ΔUk‖H2n < 2ε ⇒ inf ρk � m/2, and
‖ΔUk‖H2n � C1‖̃ΔUk‖H2n . Set C = C(2C1ε + ‖Ua‖H2n+2 + 3/m), and fix Ce �
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2C. We can assume C � 1. Since ΔUk(k) = 0, the energy estimate backwards in
time gives (as long as ‖U(t)‖H2n � 2ε)

d
dt

(eCt‖̃ΔUk‖H2n) � −εe−(Ce−C)t ⇒ ‖̃ΔUk(t)‖2
H2n � ε

Ce − C
e−Cet � εe−Cet.

From a (backwards) continuation argument, the solution is well defined on [0, k] for
ε small enough, and independently of k

∀ 0 � t � k, ‖ΔUk(t)‖H2n � C1εe−Cet.

For n large (actually n = 2 is enough), we have from the equation ∂tV
k ∈

Cb(R+,H2n−2), indeed we recall that ∂xS is smooth and rapidly decaying:

∂tρ
k = −∂x(ρkuk), with ρk ∈ (ρS + H2n+1),

uk ∈ (uS + H2n), thus ∂tρ
k ∈ H2n−1,

∂tu
k = −∂x

⎛⎜⎜⎝g(ρk) +
(uk)2

2︸ ︷︷ ︸
(uS)2+H2n

−K∂2
xρk︸ ︷︷ ︸

H2n−1

− 1
2
K ′(∂xρk)2︸ ︷︷ ︸

H2n

⎞⎟⎟⎠ ∈ H2n−2.

Similarly, ∂tU
a ∈ Cb(R+,H2n). We deduce that V k − S = Ua + ΔUk is bounded

in Cb([0, k],H2n) and C1
b ([0, k],H2n−2. By weak* compactness, up to an extraction

V k − S converges weakly to some U ∈ L∞(R+,H2n). Moreover for any bounded
interval J , we have the compact embedding H2n−2(J) ⊂ H2n−3(J), so using
the Ascoli-Arzela theorem, up to another extraction V k − S converges to U in
Cloc(R+,H2n−2

loc ). For 2n − 3 � 2 it is not hard to check that S + U is a solution of
the Euler–Korteweg system (1.1).

Now due to the uniform estimate ‖V k(t) − V a(t)‖H2n � εe−Cet (t � k), passing
to the (weak) limit

‖(S + U)(t) − V a(t)‖H2n � εe−Cet (a.e.).

From theorem 5.1, we also know ‖V a − S‖H2n � e−αc0t/A, therefore we can
conclude

lim
t→∞ ‖U(t) − S(t)‖H2n = 0.

Remark 6.1. A priori, the pointwise H2n convergence holds only almost every-
where in t, however using the well-posedness theorem 1.1 in [4], one can prove that
U coincides with the C(R+,H2n) solution, and by continuity the convergence holds
for all t.
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Appendix A. Complements on travelling waves

Existence of kinks A travelling wave satisfies⎧⎨⎩
−c∂xρ + ∂x(ρv) = 0,

−c∂xv + ∂x(v2/2) + ∂xg(ρ) = ∂x

(
K∂2

xρ + 1
2K ′(∂xρ)2

)
.

A first integration gives⎧⎨⎩
ρ(v − c) = j,

(v − c)2

2
+ g(ρ) − K∂2

xρ − 1
2
K ′(∂xρ)2 = q.

Assuming lim±∞ ρ = ρ±, lim±∞ v = v±, we have

j = ρ(v − c) = ρ+(v+ − c) = ρ−(v− − c), (A.1)

q =
(v − c)2

2
+ g(ρ) − K∂2

xρ − 1
2
K ′(∂xρ)2 (A.2)

=
(v+ − c)2

2
+ g(ρ+) (A.3)

=
(v− − c)2

2
+ g(ρ−). (A.4)

This implies

q =
j2

2ρ2
+ g(ρ) − K∂2

xρ − 1
2
K ′(∂xρ)2 =

j2

2ρ2
+

+ g(ρ+) (A.5)

=
j2

2ρ2−
+ g(ρ−). (A.6)

Set f(ρ) = j2/2ρ2 − q + g(ρ), we get two conditions

f(ρ+) = f(ρ−) = 0. (A.7)

Multiplying (A.5) by ∂xρ and integrating from ρ− to ρ

1
2
K(∂xρ)2 = −q(ρ − ρ−) − j2

2

(
1
ρ
− 1

ρ−

)
+ G(ρ) := F (ρ), (A.8)

with G the primitive of g such that G(ρ−) = 0. From this integrated momentum
equation we get one condition :

F (ρ+) = 0. (A.9)

This condition can be written only in term of ρ−, ρ+:

G(ρ+) − G(ρ−)
ρ− − ρ−

=
g(ρ+)ρ+ + g(ρ−)ρ−

ρ+ + ρ−
. (A.10)
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Lastly according to (A.2) ρ satisfies the following system of ODE{√
K∂xρ = w√
K∂xw = j2/2ρ2 + g(ρ) − q,

up to a change of variable it is Hamiltonian (with energy F (ρ)) therefore steady
states can only be centres or saddles, and a travelling wave connects two saddle
points. So (ρ±, 0) should be a saddle point, which leads to a last condition: the
characteristic equation at (ρ±, 0) is

λ2 + j2/ρ3
± − g′(ρ±) = 0,

and the roots in λ are real with opposite sign under the condition

j2 < ρ3
±g′(ρ±) ⇔ (v± − c)2 < ρ±g′(ρ±) ⇔ f ′(ρ±) > 0. (A.11)

(we will see several interpretations of this condition). Conversely, assume (A.7),
(A.9), (A.11) are satisfied, and that f only changes sign once on (ρ−, ρ+). Due to
(A.7), (A.11), f ′(ρ± > 0 thus f must be positive then negative on (ρ−, ρ+), and
from (A.9), F remains positive on (ρ−, ρ+), but vanishes at second order at ρ±. The
existence of a kink then just follows from the integration of ±√

K∂xρ/
√

2F (ρ) = 1
(with a choice of sign adapted to the one of ρ− − ρ+). To summarize, provided
this equation is satisfied c is a free parameter, and either ρ+ or ρ− is used to fully
parametrize the travelling waves. Kinks should thus form locally two-dimensional
manifolds.

Remark A.1. As the construction of the profile ρ depends on (v+ − c)2, we can
assume c − v+ > 0.

The speed of kinks, some geometry The momentum equation is

j2

2ρ2
− j2

2ρ2
+

+ g(ρ) = K∂2
xρ +

1
2
K ′(∂xρ)2,

⇒ −j2(ρ − ρ+)2

2ρρ2
+

+ G(ρ) =
1
2
K(∂xρ)2 � 0. (A.12)

Letting x → ±∞, from the sign condition we find again (A.11)

j2

ρ3±
=

(v± − c)2

ρ±
� g′(ρ±). (A.13)

This inequality gives a geometric interpretation of (A.7), that we rewrite

g(ρ−) =
−j2

2ρ2−
+ q, g(ρ+) =

−j2

2ρ2
+

+ q,

meaning that ρ± are intersection points of the curves g,−j2/2ρ2 + q, and conditions
(A.11) mean that the curves intersect transversally at ρ±. Condition (A.9) means
that the total signed area between the two curves from ρ− to ρ+ must be zero. See
figure A1. When g follows a Van Der Waals law, such conditions can be met we
refer to [4] for some relevant examples.
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Figure A1. Full line g, dashed line −j2/(2ρ2) + q, the two shaded areas should be equal.

The dimension of families of kinks. There exists a kink provided equations (A.7),
(A.9) are met ((A.11) is open and therefore plays no role for the dimension), namely

f(ρ+) = f(ρ−) =
∫ ρ+

ρ−
f(ρ) dρ = 0, where f depends onρ±, c, j, q.

Consider the application ϕ : (ρ±, j, q, c) →
⎛⎝ f(ρ+)

f(ρ−)∫ ρ+

ρ−
f(ρ) dρ

⎞⎠, we have

Dϕ =

⎛⎝−j2/ρ3
− + g′(ρ−) 0 j/ρ2

− −1 0
0 −j2/ρ3

+ + g′(ρ+) j/ρ2
+ −1 0

−f(ρ−) f(ρ+) j2

2 (1/ρ− − 1/ρ+) ρ− − ρ+ 0

⎞⎠

=

⎛⎝−j2/ρ3
− + g′(ρ−) 0 j/ρ2

− −1 0
0 −j2/ρ3

+ + g′(ρ+) j/ρ2
+ −1 0

0 0 j2

2 (1/ρ− − 1/ρ+) ρ− − ρ+ 0

⎞⎠ .

According to the sign condition (A.11), in the generic case −j2/ρ3
± + g′(ρ±) > 0,

so the rank of the matrix is three and the kinks form a manifold of dimension two.

The case of solitons Kinks can not provide a nontrivial soliton in the limit ρ− →
ρ+, indeed kinks are monotonous therefore the ‘soliton’ limit of a kink is actually a
constant solution. Nevertheless, the construction of solitons follows the same lines.
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We denote ρ+ = lim±∞ ρ. Since g is a primitive of g′, we can assume g(ρ+) = 0.
Equation (A.7) gives

f(ρ+) =
j2

2ρ2
+

− q = 0 ⇒ f(ρ) =
j2

2ρ2
− j2

2ρ2
+

+ g(ρ).

Then (A.9) is free so

1
2
K(ρ′)2 =

−j2

2ρρ2
+

(ρ+ − ρ)2 + G(ρ) =
−(c − v+)2

2ρ
(ρ+ − ρ)2 + G(ρ). (A.14)

For j2 < ρ3
+g′(ρ+) ⇔ (v+ − c)2 < ρ+g′(ρ+), we can define

ρm = sup
{

ρ < ρ+ :
−j2

2ρρ2
+

(ρ+ − ρ)2 + G(ρ) = 0
}

.

From basic ODE arguments, there exists a homoclinic orbit to ρ+ with minimal
value ρm; a ‘bubble’ decreasing from ρ+ to ρm then increasing back to ρ+.

Remark A.2. We recall that a kink of speed ck and right endstate (ρ+, v+) satisfies
(v+ − ck)2 < ρ+g′(ρ+), and since its construction depends on (v+ − ck)2 rather
than v+ − ck, we may assume ck − v+ � 0. In particular since there exists solitons
of speed cs with (v+ − cs)2 arbitrarily close to ρ+g′(ρ+), there always exists solitons
faster than the kink and sharing the same endstate.

Existence of kink-stable solitons configuration According to remark A.2, given a
kink with right endstate (ρ+, v+), there exists solitons with same endstate and
larger speed satisfying c − v+ > 0. We are left to check wether such solitons are
stable.

We assume here that the asymptotic state (ρ+, v+) is fixed, so that solitons only
depend on the speed c, and we also assume g′′(ρ+) � 0 (this is true for the Van Der
Waals case).

For consistency, we first prove that the stability condition dP/dc < 0 is indeed
equivalent to the stability condition of Benzoni et al. [4]. To do so, we recall the
definition of momentum of instability from [4]. The equations satisfied by a soliton
are {−c(v − v+) + v2/2 + g(ρ) − K∂2

xρ − 1
2K ′(∂xρ)2 = v2

+/2 + g(ρ+),
−c(ρ − ρ+) + ρv = ρ+v+.

Defining H = 1/2
∫

ρv2 − ρ+v2
+ + K(∂xρ)2 + 2G(ρ) dx, and recalling P =

∫
(ρ −

ρ+)(v − v+), they can be expressed in an abstract way

δH − cδP = (u2
+/2 + g(ρ+))δP1 + ρ+v+δP2 := λ1δP1 + λ2δP2, (A.15)

where P1 =
∫

ρ − ρ+dx, P2 =
∫

v − v+dx. The momentum of instability is then

m(c) = H − cP − λ1P1 − λ2P2, (A.16)

and the stability condition of [4] is m′′(c) > 0.
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Lemma A.3. The condition m′′(c) > 0 is equivalent to

dP

dc
=

d
dc

∫
R

(ρ − ρ+)2

ρ
(c − v+) dx < 0. (A.17)

Proof. Denote ′ the derivative with respect to c, using (A.15) we have

m′(c) = H ′ − cP ′ − P − λ1P
′
1 − λ2P

′
2 = −P, (A.18)

We differentiate again and use the identity ρ(v − c) = ρ+(v+ − c)

m′′(c) = −P ′ = − d
dc

∫
R

(ρ − ρ+)(v − v+) dx

= − d
dc

∫
R

(ρ − ρ+)2

ρ
(c − v+) dx.

The condition m′′ > 0 gives the expected result. �

The so-called transonic limit corresponds to j2/ρ2
+ = (v+ − c)2 → ρ+g′(ρ+), so we

set j2 = ρ3
+g′(ρ+)(1 − ε). From numerical computations it was conjectured in [4]

that solitons are stable in the transonic limit, and this is rigorously proved with
the following result. As it gives the existence of stable solitons with speed arbi-
trarily close to

√
ρ+g′(ρ+), it also provides the existence of kink-stable soliton

configurations.

Lemma A.4. For ε small enough and g′′(ρ+) > 0, ‘bubble’ solitons of speed√
ρ+g′(ρ+)(1 − ε) are stable.

Proof. The condition dP/dc < 0 is equivalent to dP/dε > 0 and equation (A.14)
reads

1
2
K(∂xρ)2

= (ρ − ρ2
+)

(
g′(ρ+)

2
+

g′′(ρ+)(ρ − ρ+)
6

− ρ+g′(ρ+)(1 − ε)
2ρ

+ O(ρ − ρ+)2
)

= (ρ − ρ+)2
(

ερ+g′(ρ+)
2ρ

+
(

g′′(ρ+)
6

+
g′(ρ+)

2ρ

)
(ρ − ρ+) + O(ρ − ρ+)2

)
:=

ρ+g′(ρ+)
2ρ

(ρ − ρ+)2(ε + α(ρ − ρ+)) + O(ρ − ρ+)4.

Note that α > 0, in the limit ε → 0+, solitons have an amplitude ρ+ − ρm ∼ ε/α →
0, where ρm(ε) is the minimum of ρ, and in this regime ρ′m(ε) < 0. Up to translation,
we can assume that the minimum of ρ is reached at x = 0, and ρ is strictly decreasing
on (−∞, 0). Using on x ∈ (0,∞) the change of variable ρ(x) = ρ, dx =

√
K/2F dρ

we find

P = 2
∫ ρ+

ρm

(ρ − ρ+)2(c − v+)
ρ

√
K

2F
dρ. (A.19)

As is expectable, the situation is somewhat degenerate at ε = 0, as one can check
that P (c) = P (

√
ρ+g′(ρ+)(1 − ε)) = O(ε3/2). This is handled by a factorization of
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F (see (A.8)):

F =
ρ+g′(ρ+)(ρ − ρ+)2

2ρ

(
ε +

2ρG

ρ+g′(ρ+)(ρ − ρ+)2
− 1

)
:=

ρ+g′(ρ+)(ρ − ρ+)2

2ρ
(ε + H(ρ)).

Here H(ρ+) = 0 and by construction H(ρm(ε)) + ε = 0. The condition
α > 0 implies H ′(ρ+) > 0, so ϕ(ρ, ε) := (H + ε)/(ρ − ρm) is well defined
near (ρ, ε) = (ρ+, 0), smooth and does not cancel. To summarize, F =
ρ+g′(ρ+)(ρ − ρ+)2(ρ − ρm)/2ρϕ(ρ, ε). Denoting δ(ε) = ρ+ − ρm, we use the change
of variables ρ = ρ+ − δr :

P = 2
∫ 1

0

δ2r2(c − v+)
ρ

√
ρK

ρ+g′(ρ+)δ2r2δ(1 − r)ϕ(r, ε)
δ dr

= 2
∫ 1

0

δ3/2r(c − v+)
ρ

√
ρK

ρ+g′(ρ+)(1 − r)ϕ(r, ε)
dr.

From ρ′m(ε) < 0, ε → δ(ε) is locally invertible and the stability condition is
equivalent to dP/dδ > 0, but it is clear from the formula that

dP/dδ =
3δ1/2

2

∫ 1

0

r(c − v+)
ρ

√
ρK

ρ+g′(ρ+)(1 − r)ϕ(r, ε)
dr + O(δ3/2),

which is positive for δ small enough. �
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7 F. Béthuel, P. Gravejat and D. Smets. Stability in the energy space for chains of solitons of
the one-dimensional Gross–Pitaevskii equation. Ann. Inst. Fourier (Grenoble) 64 (2014),
19–70.

8 R. Carles, R. Danchin and J.-C. Saut. Madelung, Gross–Pitaevskii and Korteweg. Nonlin-
earity 25 (2012), 2843–2873.

https://doi.org/10.1017/prm.2019.51 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.51


2936 C. Audiard

9 V. Combet. Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger
equation in one dimension. Discrete Contin. Dyn. Syst. 34 (2014), 1961–1993.
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