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The current work analyses the onset characteristics of Rayleigh-Bénard convection
in confined two-dimensional two-layer systems. Owing to the interfacial interactions
and the possibilities of convection onset in the individual layers, the two-layer
systems typically exhibit diverse excitation modes. While the attributes of these
modes range from the non-oscillatory mechanical/thermal couplings to the oscillatory
standing/travelling waves, their regimes of occurrence are determined by the numerous
system parameters and property ratios. In this regard, the current work aims at
characterising their respective influence via methodical linear and fully nonlinear
analyses, carried out on fluid systems that have been selected using the concept of
balanced contrasts. Consequently, the occurrence of oscillatory modes is found to
be associated with certain favourable fluid combinations and interfacial heights. The
further branching of oscillatory modes into standing and travelling waves seems to
additionally rely on the aspect ratio of the confined cavity. Specifically, the modulated
travelling waves have been observed to occur (amidst standing wave modes) at discrete
aspect ratios for which the onset of oscillatory convection happens at unequal fluid
heights. This behaviour corresponds to the typical m:n resonance where the critical
wavenumbers of convection onset in the layers are dissimilar. Based on all of these
observations, an attempt has been made in the present work to identify the oscillatory
excitation modes with a reduced number of non-dimensional parameters.
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1. Introduction

A comprehensive characterisation of Rayleigh—-Bénard—Marangoni (R-B-M)
convection in multiple fluid layers is essential for the understanding of various
systems such as Earth mantle convection (Richter & Johnson 1974; Busse 1981) and
liquid encapsulated crystal growth (Johnson 1975; Shen et al. 1990). The underlying
mechanisms of convection in the R-B-M systems can generally be attributed to the
isolated/coupled action of buoyancy and capillary forces. The influence of these forces,
in conjunction with the thermal and viscous interactions at the fluid—fluid interfaces
result in a plethora of unique thermoconvective modes. Notably, parameters such
as layer height ratios, container aspect ratios, various property ratios of the fluids
and surface tension gradient diversely alter the onset of convection in the layers.
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As a result, the multilayer R-B-M flows occasionally exhibit exclusive features
such as oscillatory flow excitation and onset of convection even for stable density
stratification.

The simplest of multilayer R-B-M systems involves two superimposed layers of
immiscible fluids which are subjected to a temperature gradient opposing the direction
of gravity (Zeren & Reynolds 1972). Interestingly, such a two-layer system possesses
a variety of convection modes even in the absence of interfacial thermocapillary
effect. Here, at both the extremes of layer depth ratio (approaching zero or infinity),
buoyancy-driven convection is stimulated in the thicker fluid layer due to the effect
of unstable density stratification. As a consequence, a weak convection is induced in
the other layer through continuity of shear stress at the interface; these modes are
labelled (Johnson & Narayanan 1997) as ‘lower’ or ‘upper’ dragging modes based
on the layer which undergoes primary excitation. However, in the intermediate range
of interface heights (determined by property ratios of the fluids), both the fluid layers
will be susceptible to undergo simultaneous transition. In these situations, two modes
of interactions, namely ‘mechanical coupling’” (MC) and ‘thermal coupling’ (TC),
can occur between the layers (Rasenat, Busse & Rehberg 1989). The MC mode is
characterised by counter-rotating rolls which are formed due to the synchronisation of
self-excited convection phenomena in the top and bottom layers. In contrast, the TC
mode possesses co-rotating rolls which are separated by a buffer layer that satisfies
mechanical continuity at the interface. At certain ranges of depth ratios in between
the values corresponding to MC and TC modes (in other words, when the Rayleigh
numbers (Ra) in the two layers are equal), competition arises between these states
and, eventually, the system may tend to oscillate between them.

The occurrence of oscillatory modes in buoyancy-driven two-layer systems is
realisable since the resultant matrix of its linearised system can become non-self-
adjoint (Renardy 1996). Correspondingly, the leading eigenvalue of the matrix
becomes complex and represents the onset of oscillatory convection. Nevertheless, in
order to obtain such non-self-adjoint systems, it is essential for the fluids to have
favourable combination of properties (Renardy 1996). To be precise, the property
ratio combination pfa (p, density ratio; B, ratio of thermal expansion coefficients; «,
thermal diffusivity ratio) should be either much greater or much smaller than unity.
Degen, Colovas & Andereck (1998) had accordingly observed the onset of oscillatory
convection in silicone oil-water system which has property ratios satisfying the
above condition. However, in this case, Nepomnyashchy & Simanovskii (2004) and
Simanovskii & Nepomnyashchy (2006) have shown that in addition to the favourable
property combination, the presence of thermocapillarity at the interface also plays a
decisive role in stimulating oscillations. It is thus evident that the precise parametric
conditions for the onset of oscillatory convection in pure buoyancy-driven systems
are still not fully identified.

Moreover, the typical manifestation of oscillations in two layer systems occurs
via standing wave (SW) or travelling wave (TW) patterns based on the geometric
configuration. While the oscillations in infinite (or sufficiently wider) systems happen
as TWs, SW phenomena are observed (Colinet & Legros 1994) in smaller-aspect-ratio
boxes. Modulated TWs are generally anticipated in the systems with moderate aspect
ratios. Here, again, the exact conditions that lead to their occurrence are not precisely
known. Yet, the existence of remarkably distinct features at certain aspect ratios of
the confined two-layer systems has been widely established. For instance, Johnson &
Narayanan (1996, 1997) have observed a dynamic transformation of flow structure in
the silicone oil-air system at conditions (aspect ratio) closer to the codimension-two
point.
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Understandably, the exact parametric conditions for oscillations and associated
modulated TWs are buried within the wide ranges of non-dimensional parameters
that control the multilayer fluid systems. Thus, the main objective of the current
work is to unravel these conditions by performing linear and fully nonlinear analyses
on different fluid systems which have been obtained using the ‘balanced contrasts’
of properties (Colinet & Legros 1994). Owing to this concept, the property ratios
of these systems have been balanced in such a way that each of them identically
satisfy the criterion proposed by Renardy (1996) (i.e. pfa > 1 or pBa < 1) and, yet,
correspond to a unique value of the parameter a* (critical height ratio at which Ra
values in the two layers are equal). As a consequence of this exercise, it is intended
to relate a* with the occurrence of oscillatory excitation in the two-layer systems
and, hence, plausibly reduce the number of non-dimensional parameters that may be
required to specify their regimes.

For each of the fluid systems considered in the current work, spectral collocation-
based linear stability analysis is first carried out to obtain the critical Ra values
for excitation at different depth ratios and cavity aspect ratios. In the process, the
linear analysis is also utilised in demarcating the oscillatory and non-oscillatory
regimes, thereby facilitating their linkage with the a* values. Full nonlinear simulations
involving the spectral domain decomposition approach are then selectively performed
to bring out the resonant wave interactions in the layers. This paves the way for
understanding the segregation of oscillatory regimes in confined systems into SW and
TW (modulated) modes. Through all of the above means, the current work brings out
the physically rich characteristics of confined two-layer systems which have a direct
relevance in the liquid encapsulated crystal growth process. Before venturing into
further details, a succinct description of the mathematical model and the numerical
approach involved in the current analysis is presented in the following section.

2. Mathematical formulation
2.1. Governing equations and boundary conditions

Consider two superimposed layers of immiscible fluids which are confined in a two-
dimensional cavity of width ‘B’ and total height ‘a; 4+ a,” (figure 1). The equations
governing the buoyancy-driven convection in these fluid layers are given as follows:

(i) Top layer

(V-V)=0
LYY L v, vy Vpi + V2V, + Ra0)]
. =— a
Pre a1 1 1 D1 1 101 2.1)
26, 5
— |+ (V1-V)0, =V,
at
(i) Bottom layer
(V-V,)=0
1 aV, 1 Ra, -~
— || == V,- V)V, =—pV ~Vv —0
Pry |:( al‘>+( 2 ) 2:| o p2+1} 2+ ,3 2] . (22)
06, l_,
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FIGURE 1. Confined two-layer system.

The non-dimensionalisation of the above equations has been achieved using the
following scales that pertain to the top layer.

Lref=al; trefZa%/al; vrefZOll/al; Pref=/01051‘)l/a%- (23a_d)

The symbols p, @, v, B, o and « correspond to the ratios between densities
(p1/p2), dynamic viscosities (u1/u;), kinematic viscosities (v;/v,), thermal expansion
coefficients (B,/B,), thermal diffusivities (o;/c;) and thermal conductivities
(k1/ky) of the top (1) and bottom (2) fluids, respectively. Pr; (= v;/o;) and
Ra; (=gBiAba;/via;) refer to the Prandtl and Rayleigh numbers of the top layer.

The rigid plates at the bottom and top are maintained at the temperatures of 8y (hot)
and 6¢ (cold), respectively. At the same time, the side walls are considered to be rigid
and adiabatic. In order to simplify the current analysis, fluid systems involved here are
considered to possess large disparity in their densities (conceivably, the bottom layer
is heavier). By virtue of this assumption, the interfacial deformation can be neglected
in the present configuration since its effect would be commensurate with the other
factors which are omitted by means of Boussinesq approximation (Colinet, Legros &
Velarde 2001). Hence, at the interface, the non-dimensional flow, momentum and heat
transmission conditions are given as follows.

(a) Continuity of horizontal velocity: u; = u,.
(b) Non-deformability of the interface: v = v, =0.
(¢) Continuity of temperature: 6, = 6,.
(d) Continuity of heat flux: x96,/dy = 06,/dy.
(e) Continuity of tangential stress: du;/dy — (1/u)(duy/0y) = Ma(d6/0dx).
Here, Ma (= orAfa;/u ;) corresponds to the Marangoni number at the
fluid interface. In order to retain the primary focus on pure buoyancy-driven
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convection, Ma is set to zero for all of the fluid systems considered in the current
analysis.

2.2. Balanced contrast of property ratios

From the above mathematical formulation, it is evident that the characteristics
of confined two-layer systems are dependent on a large number of distinctive
non-dimensional parameters. As a result, their complete estimation becomes tedious
as it requires a thorough assessment of the effects manifested by each of the
parameters. However, such a comprehensive analysis would be of less importance for
the lower/upper dragging modes since their behaviour is essentially governed by the
layer which undergoes excitation first. It may be noted that the characteristics of these
dragging modes can even be obtained from an equivalent single-layer system whose
boundary conditions emulate the other layer’s influence. In contrast, the coupled
regimes and the oscillatory regimes do not offer a similar convenience and, hence,
efforts are now oriented towards the formation of a few non-dimensional groups that
can facilitate their characterisation.

As mentioned earlier, the non-dimensional group of property ratios ‘pBa’ suggested
by Renardy (1996) forms the basic parameter that can be associated with the
occurrence of oscillations in the two-layer systems. The works of Nepomnyashchy &
Simanovskii (2004) and Simanovskii & Nepomnyashchy (2006) however indicate that
additional groups/parameters are indeed essential for defining the limits of oscillatory
regimes exactly. In this regard, the current work focuses on assessing the candidature
of the parameter a* (critical height ratio), which is defined as the layer height ratio
(ay/a,) at which the Rayleigh numbers of the two layers (Ra; = Ra,) are equal, i.e.

1/4
a' = <'B> . 2.4)
Koy

The choice of using a* for this purpose stems from the convenience it offers
in connecting the property ratios of fluid systems with the oscillatory convection
phenomena. As is evident from the above relationship (2.4), the parameter a* depends
only on the thermophysical properties and lumps four out of the six non-dimensional
ratios (p, B, o, k, v, Pr;) that are required to characterise pure buoyancy-driven
convection in a two-layer system. At the same time, a* also corresponds to the
interfacial height at which the convection phenomena in the two layers exhibit equal
propensity and, hence, are capable of yielding oscillatory excitation. But, as observed
for silicon oil-water system, not all fluid combinations (despite having a favourable
value of pfa) give rise to oscillatory mode of convection and, so, it becomes
important to identify their association with the a* value.

With the above goal, the current work investigates the oscillatory convection
characteristics of seven different fluid systems having unique values of a*. Following
the concept of ‘balanced contrasts’ as suggested by Colinet & Legros (1994), these
fluid systems have been obtained by selectively modifying (table 1) certain fluid
property ratios to retain the value of pBa. Specifically, property ratios such as
p=05 =4, a=2, Prp=1 are retained the same, so that the resultant fluid
combination (pBa =4) is still favourable to form oscillatory modes (Renardy 1996).
The values of a* have been chosen here in such a way that the resultant critical
interfacial heights are obtained as symmetrical pairs with respect to the distance from
the cavity half height. Correspondingly, the discussions in the current work will be
presented in related pairs of a* values.
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no. a*

0.250 16.00  32.00 16.00
0.500  4.00 8.00 4.00
0.667  2.25 4.50 2.25
1.000 1.00 2.00 1.00
1.500 0.4444 0.8889 0.4444
2.000 0.25 0.50 0.25
4.000 0.0625 0.125 0.0625

K v nw

Nk W~ W

TABLE 1. Balanced contrast of properties used for varying a*.

2.3. Numerical methodology

The characterisation of confined R-B convection in the above fluid systems requires
both linear and fully nonlinear approaches for achieving specific objectives. While
the linear stability analysis is utilised here for obtaining the critical Rayleigh numbers
(Ra.,) and the parametric space for oscillatory excitations, their finer classifications are
revealed using the nonlinear approach. In order to be very precise in their respective
estimations, these tasks have been accomplished through the spectral collocation
method. Specifically, the nonlinear approach has been realised using the domain
decomposition method (DDM) that employs an influence matrix (IM) technique for
the coupled evolution of flow in the two layers. The salient aspects of these numerical
procedures are now briefly discussed in the following subsections.

2.3.1. Linear stability analysis
The present linear approach follows the conventional procedure of linearising the

governing equations and boundary conditions over the conductive base state (V,, =0,
00,,/0x=0, 36,,/dy= A,,, where A, is the vertical temperature gradient in each fluid
layer m) corresponding to static fluid layers. Taking the confined two-dimensionality
of the current configuration into account, the perturbations in the field variables are
expanded in terms of normal modes as {V,,,p/,, 0, }= {I7m x,9), Pu(x, ¥), gm(x, y)}eo’.
Resultantly, the semi-discrete equations for the evolution of perturbations are given as
follows: R

V.V,=0

o'f/m = _Amme + Bmvz‘/;m + CmRalé:n/j\ (25)

0-é\m = Dmvzé\m - Ami)\m

where A] =B] =C1 =Pl"1, Dl = 1, A2=,0PI"1, Bz =Pr1/v, C2=Pr1//3 and D2= 1/0[
The corresponding interfacial conditions are

~ 30, 00, o, 1 0
o000 dun 1 dun

=1, V,=0=0 0,=0, =, = 2.6a—
Uy =1up L} 2 1 2 dy dy dy 1w 9y (2.6a-e)
and the boundary conditions are

. . . dé,, ,

V,.=0, 6,=0 (horizontal walls), T = 0 (vertical walls). (2.7a,b)
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Keeping in mind the stringent accuracy requirements for stability solvers, the
spatial discretisation of variables in the above formulation has been dealt using
spectral collocation scheme. Correspondingly, any variable ¢ (except for pressure
which requires a distinct representation) is expanded as a Lagrangian interpolation of
the nodal values as

M N
Gun ) =D i) B dxi, ¥) 2.8)

i=0 j=0

where M and N are the number of collocation points along the x and y directions,
respectively. The cardinal functions g;(x) and Ah;(y) defined over the Gauss—Lobatto—-
Chebyshev (G-L-C) points, x; = cos (wi/M) {i=0,1,..., M} and y; = cos (mj/N)
{j=0,1,..., N} are specified as

(=D (1=x*) T}, (%)

gi(X) - EiMz (x —xi) ' ‘= 0’ 1’ Y M (2.9)
YT (=) Ty )

h; = , =0,1,...,N. 2.10

i(y) N O j (2.10)

Here, T;, (x) and T, (y) correspond to the first derivative of the Mth and Nth
Chebyshev polynomial of the first kind. The values of the constants ¢; and ¢; are 1
for all i and j except at the extremities (i=0 and M or j=0 and N) where they are
of value 2. Consequently, any spatial derivative of ¢ at the G-L—C points is obtained
by differentiating (2.8) with the additional consideration of discrete orthogonality,
i.e. gi(x;) =46; and h;(y;) = ;. The spatial discretisation of the pressure terms requires
a special treatment, as it leads to the generation of spurious pressure modes otherwise.
Correspondingly, the present work uses the Py — Py_, approximation where the
pressure is approximated through polynomials (given below) of degree (M —2, N —2)
when the velocity and other variables are represented by polynomials of degree
(M, N):
M—1 N—1
Pran-206 ) =YY &) () plxi, yy). Q.11)

i=1 j=I

~

Here, 2,(x) and fz_,-(y) are defined as follows:

o - (L=%) p oo (1=

G =7—g@) and fyy) =), (2.12a,b)
(1-2) (1-?)

Using the above polynomial expansions, the system of equations given in (2.5) can

be reduced to a generalised eigenvalue problem of the form, AX = o BX. This matrix

system can then be factorised to yield the spectra of eigenvalues corresponding to any

given Ra. Resultantly, Ra,, is obtained by searching for the Ra value at which the real

part of the largest eigenvalue (o,,,) is zero. In the process, the regimes of oscillatory

convection are also identified over the parametric space for which the imaginary part

of this largest eigenvalue is non-zero.

The validity of the above linear stability approach is evident from figure 2, where
the neutral curves obtained from the current formulation are in close agreement with
the published results of Nepomnyashchy & Simanovskii (2004). At this stage, it is to
be noted that the curves presented in figure 2 specifically correspond to an unconfined
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FIGURE 2. Neutral curve for Rayleigh—-Bénard convection in infinite two layers of silicone
oil and water with a =1.6; Ref* from Nepomnyashchy & Simanovskii (2004).

system of silicone oil and water, with a height ratio of 1.6. Such a utilisation of results
from the unconfined systems is presently necessitated by the scarcity of published
literature on confined two-layer systems. However, with this confirmation, the validity
of the confined formulation can be easily verified by unfolding the unconfined results
to yield different neutral curves of confined two-layer systems with free shear walls.

2.3.2. Spectral domain decomposition approach

Subsequent to the linear analysis, the task of identifying SW/TW modes within
the oscillatory regime is achieved here through nonlinear evaluation of the convection
onset characteristics. Considering the fact that these simulations have to be carried out
at conditions very close to criticality, usage of highly accurate techniques becomes
mandatory. Hence, akin to the linear formulation, the spatial discretisation of flow
variables has been performed using spectral collocation which offers ‘exponential’
or ‘infinite order’ convergence of errors. However, the restrictions posed by various
interfacial discontinuities obviate the use of uniform expansions (Hewitt & Hewitt
1979; Gottlieb & Shu 1997) for the whole domain. This issue is remedied in
the current work by employing a spectral DDM where the two fluid domains are
distinctly identified and their interface acts as the common boundary. Accordingly,
the (mechanically and thermally) coupled evolution of flows in the two domains is
evaluated using the IM technique of Dennis & Quartapelle (1983).

The overall procedure of the DDM essentially involves decomposition of the
coupled problem into homogeneous and non-homogeneous parts. By virtue of this
splitting process, the non-homogeneous set of equations for the two domains are
favourably decoupled and are solved using the projection technique (Chorin 1968).
On the other hand, the homogeneous equations of the domains are still coupled and
require the prediction of interfacial velocity/temperature as a primary task. Hence,
the homogeneous solutions are represented here as a superposition of solutions
corresponding to various fundamental interfacial modes (Sabbah & Pasquetti 1998).
The scalar multipliers associated with the superposition procedure are then obtained
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through enforcement of various transmission conditions for the velocity/temperature
fields at the interface. This procedure typically leads to the formulation of an IM
whose solution at every time step (along with those of the non-homogeneous part)
facilitates the transient evolution of flow variables in the two-layer system. The
detailed procedures involved in the current implementation and their systematic
validation can be accessed from the earlier work of the present authors (Diwakar,
Das & Sundararajan 2014).

3. Results
3.1. Critical behaviour of a fluid system with a* =1.0

Using the linear and nonlinear approaches described above, the characterisation of
pure Rayleigh—-Bénard convection in confined two-layer systems is initiated here by
considering a sample fluid system with a* = 1.0 from table 1. Correspondingly, its
excitation behaviour is comprehensively studied for different interfacial heights (Yy)
and cavity aspect ratios (AR = B/(a, + a»)).

Beginning with a linear stability analysis of the system, the neutral curves for
various excitation modes in a cavity of unit height and AR = 0.5 are shown in
figure 3(a). Here, the branches ‘Top,” and ‘Bot,” correspond to the fundamental mode
of excitation in the top and bottom fluid layers, respectively. Likewise, branches
‘Top,” and ‘Bot,’ represent the next higher mode of excitation in the respective layers.
Branch ‘Osc’ depicts the part of neutral curve for which there is simultaneous onset
of oscillatory convection in both the layers. Since the current interest is oriented
only towards the prediction of onset behaviour, the focus here is limited to branch
‘Osc’ and the lowermost parts of the branches ‘Top,” and ‘Bot,’. Correspondingly,
figure 3(b) and its magnified view in figure 3(c) show the least stable part of these
curves for different values of AR varying from 1.0 to 4.0. In each of these cases,
the cubic dependence of Ra on the fluid layer thickness (a;) induces an early onset
of convection in the top layer when Y; is lower than 0.47. This results in the
phenomenon of ‘upper dragging mode’ wherein the bottom layer is passively driven
by the continuity of shear stress at the fluid interface. In contrast, an exactly opposite
mechanism is observed in the top layer (lower dragging mode) when the interfacial
height is more than 0.53, even though the related Ra. values are the same. It is
important to note here that the quasi-symmetric (symmetric except for switching in
the least stable mode) behaviour of non-oscillatory neutral curves over Y, = 0.5 is
mainly due to the deliberate choice of fluid properties which facilitate such a tendency.
However, it will be shown later that this symmetric behaviour is only restricted to
the neutral curves whereas their corresponding flow patterns are significantly different
at onset.

Incidentally, at interface heights closer to cavity half-height (¥, =0.5), the branches
‘Top;” and ‘Bot,” cross each other and their interaction leads to the formation
of an oscillatory regime (depicted as branch ‘Osc’). Here, the propensity for
self-excitation in the individual layers becomes nearly the same and the difference in
the corresponding Ra.. values becomes marginal. At the beginning (¥; ~ 0.48) and
end (Y;~0.52) of this oscillatory range, the system is characterised to be in MC and
TC modes (Nataf, Moreno & Cardin 1988) respectively where strong buoyancy-driven
convective flows in the two layers interact to form counter-rotating and co-rotating
rolls on either side of the interface. In between the cases corresponding to MC and
TC modes, both of these states may be cyclically favoured and this results in the
generation of oscillatory convection patterns within the domain.
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FIGURE 3. Neutral curves at different aspect ratios: (a¢) AR =0.5; (b) other higher AR;
(c) magnified view of (b).

More information on the above oscillatory and non-oscillatory modes can also be
perceived by varying AR of the system at fixed values of Y;. These are now explained
in the following subsections with the help of full nonlinear simulations.

3.1.1. Non-oscillatory modes (0 <Y; <0.48; 0.52 <Y, < 1.0)
Focusing attention on the non-oscillatory flow regimes first, a two-layer system of
unit height and Y; = 0.40 is now chosen to illustrate the flow features of confined
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FIGURE 4. Onset characteristics of the confined two-layer system with a* = 1.0 and
Yy =0.40: (a) neutral curves; (b) streamlines of flow at AR =1.0.

upper dragging mode. The corresponding neutral curves are shown in figure 4(a).
For the sake of clarity, only the neutral curves which at some point may become
the least-stable mode are shown here. In the present case, they correspond to the
top layer since it attains early criticality at lower Y; values. It may be noted that
it is possible to associate the attributes of these curves with an equivalent confined
single-layer system whose bottom wall mimics the effects manifested by the bottom
layer. This can be ascertained from the fact that frequent mode switching (from (ss)7
to (aa)r and vice versa as shown in figure 4a) manifested at discrete values of AR
are governed by the aspect ratio of the top layer and not by the cavity aspect ratio.
The symmetric (or the asymmetric) nature of the modes are defined here with respect
to the cavity mid-plane in the x direction. Figure 4(b) shows the streamlines of flow
evaluated through nonlinear simulations at AR = 1.0 and Rayleigh number slightly
higher (¢ = (Ra — Ra.,)/Ra., =0.002) than the corresponding critical value (Ra,,). The
convention adopted here to represent the streamlines facilitate an easier qualitative
comparison of flow in the layers. Accordingly, the number of streamlines in each layer
acts as an indicator of the relative strength of convection in that layer. At the same
time, the sense of rotation of the rolls is indicated by differentiating the streamlines
via continuous solid and dashed lines. While the positive stream-function contours
(anticlockwise rolls) are represented by solid lines, the negative stream-function
contours (clockwise rolls) are represented through dashed lines. In order to clearly
demarcate the zones of various convection rolls, iso-stream-function contours of zero
value (even though this might not perfectly qualify as a streamline) have also been
included in all of the streamline plots. Correspondingly, all the contour lines that have
any end point on the rigid wall boundary correspond to this zero stream-function
contour. From figure 4(b), the features of upper dragging mode are clearly evident
as strong buoyancy driven clockwise convection in the top layer induces a weak
anti-clockwise circulation in the bottom layer. The diagonal lines as observed in the
four corners represent the zero stream-function contours that demarcate the corner
vortices from the main convection rolls.

In contrast to the above behaviour, distinctive features are observed at a higher
interfacial position (Y; = 0.48). From the corresponding neutral curves shown in
figure 5(a), the presence of intermittent oscillatory regimes can be observed in certain
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FIGURE 5. Onset characteristics of the confined two layer system with a* = 1.0 and
Yy =0.48. (a) Neutral curves; (b) streamlines of flow at AR=1.0.

lower ranges of AR values due to the pronounced effect of lateral confinement. Here,
the solid parts of the neutral curves correspond to the excitation curves of the top
layer, whereas the dotted parts represent the merged excitation curves of both the top
and bottom layers and indicate the onset of oscillatory convection. Adhering to the
present focus on non-oscillatory modes, flow simulations have been performed just
above criticality for a confined system of AR=1. The resultant streamline patterns are
shown in figure 5(b), where evidently the strength of convection in each of the layers
reveals their tendency for self-excitation. However, the slight dominance of convection
in the top layer aided by lower thermal expansion coefficient and kinematic viscosity
of the bottom layer coerces excitation in the bottom layer to mechanically synchronise
with that of the top layer (MC). Correspondingly, the interface between the two layers
is rendered as an isotherm. Since the increase of interfacial height (from 0.40 to 0.48)
increases the local aspect ratio of top layer, flow excitation occurs here at a higher
mode number and, hence, a dual loop structure is observed.

Interestingly, the situation at the interfacial height of Y, = 0.52 is completely
contrary to the above scenario. The regimes for the onset of oscillatory convection
here have narrowed down to a large extent (figure 6a). Also, the solid parts of
neutral curves now correspond to the least-stable modes in the bottom layer as the
interfacial height of Y, = 0.52 favours an early onset of convection in that layer.
Furthermore, a remarkable change can be seen in the streamline plots of figure 6(b)
where the two layers are subjected to convection rolls of same orientation. This
result can be explained as follows. By virtue of its larger thickness, the bottom
layer is subjected to intense convection which results in non-uniform heating of the
interface. Specifically, for the dual loop structure formed at AR = 1, the mid-portion
of the interface becomes hot. Such a temperature distribution coupled with the higher
thermal expansion coefficient in the top layer causes fluid particles to rise in that layer.
The larger magnitude of buoyancy force available in the top layer thus overwhelms
the dragging effect created at the interface by the bottom layer convection and
eventually, macro co-rotating rolls (with respect to the convection loops in the bottom
layer) are formed in the top layer also. In the process, mechanical continuity at the
interface is satisfied through the creation of a small buffer layer in the interfacial
zone where weak rolls counter-rotate with respect to the macro rolls of both the
layers. As a consequence, a large amount of dissipation happens in this buffer zone.
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FIGURE 6. Onset characteristics of the confined two-layer system with ¢* = 1.0 and
Yy =0.52: (a) neutral curves; (b) streamlines of flow at AR=1.0.

(@) 3 )
(x10%) - e
22 T [ AN ™
\ Y =06
20 1 }
18 | l|| (SS)B - symmetric in x ©
A (s5)p (aa)p — antisymmetric in x terface
16 1 \ o
Ra \‘ ; \
14 4 oy \ \
\ (aa)p ; W
12 4 Z i
10 4
8 :
0 1 2 3 4 5 A
AR -’ /

FIGURE 7. Onset characteristics of the confined two-layer system with a* = 1.0 and
Yy =0.60; (a) neutral curves; (b) streamlines of flow at AR =1.0.

On increasing the interfacial height further to ¥y =0.60, it can be observed that the
resultant neutral curves (figure 7a) are identical to the case of Y; =0.40 (figure 4a),
except for the present association of least stable modes with the bottom layer.
However, such an apparent quasi-symmetric transition about the cavity half-height is
restricted only to the neutral curves. The resultant flow patterns shown in figure 7(b)
are visibly different from the situation at Yy = 0.40. Here, the streamline patterns
clearly reveal the dominance of convection in the bottom layer and the enlargement
of counter-rotating convection roll (driven by viscous dragging at the interface) which
marginalises the co-rotating vortex zone of the top layer. With any additional increase
in the interfacial height, it can be expected that the co-rotating roll weakens and the
counter-rotating convection zone completely encompasses the top layer. Interestingly,
in figure 7(b), an asymmetry can be observed in the two co-rotating rolls at the
top. This is mainly caused due to a peculiar interaction between the TC and MC
processes. It can be recalled that at ¥, =0.52 (figure 6b), the top layer consisted of
a dual loop convection roll which had the same rotational orientation as that of the
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bottom layer. However, with the increase of interfacial height to ¥, =0.60, the strong
buoyancy-driven convection in the bottom layer transitions from a dual loop structure
to a single loop structure. At the same time, the counter-rotating roll in the top layer
(which was originally a small buffer zone) also becomes single looped and possesses
a contrasting influence on the weak co-rotating rolls at the top. In other words, the
counter-rotating roll aides the clockwise rotating roll on the top right while it opposes
the anticlockwise rotating roll on the top left. Owing to its strength, it is even able
to coerce a change in the rotational orientation of weak co-rotating roll on the top
left. As a result, an asymmetric (with respect to the vertical mid-plane) configuration
of flow is observed for this interfacial height. With the further increase in interfacial
height, the self-excitation tendency of the top layer reduces and the system can be
expected to regain its antisymmetric feature.

Figure 8 shows the streamlines for the above non-oscillatory modes at a slightly
higher AR of 3. Here, the previously discussed flow behaviour of different modes
are essentially retained except for the increase in number of rolls and the change in
configuration (symmetric or asymmetric) which are determined by the corresponding
least-stable modes of excitation. Noticeably, in all of these cases, the convection rolls
at the ends are affected by the presence of lateral walls.

3.1.2. Oscillatory modes (0.48 <Yy < 0.52)

Following the characterisation of non-oscillatory modes, the mechanisms of
oscillatory convection are now analysed in a representative two-fluid system with
Yy =0.50. The respective neutral curves obtained from the linear stability analysis are
shown in figure 9. Once again, only the least-stable parts of the neutral curves are
utilised here for representing the onset behaviour. Evidently at this cavity half-height,
the excitation of oscillatory flow is observed for all of the aspect ratios. Also,
the presence of local peaks at discrete aspect ratios indicates mode switching
of convection rolls (number and type of symmetry) at those points. In order to
understand the corresponding flow pattern, nonlinear simulations are now performed
for a particular system with AR = 3. Figure 10 shows the temporal sequence of
streamlines in half a period of the oscillatory pattern. It can be clearly observed that
the rotational orientation of MC rolls are periodically reversed here by the occurrence
of ephemeral TC modes. Notably, the change from MC to TC is initiated in the
top layer by virtue of its higher thermal expansion coefficient. In other words, the
predominance of buoyancy force in the top layer induces a local reversal of flow
direction for any small heat perturbation transferred across the interface. Once the
strength of convection increases in the top layer, the small buffer layer associated with
the TC mode shifts its location from the top layer to bottom fluid layer. This buffer
zone then transiently grows in the bottom layer and brings about a new configuration
of MC that is exactly opposite to the initial one. Subsequent flow reversal from the
MC configuration is once again initiated by the onset of TC characteristics in the top
layer and not by backtracking the path that led to the new MC mode. As a result,
the system exhibits a hysteretic cycle since the forward and backward paths between
the two MC or TC modes are different.

In order to quantify the nature of the wave mechanism in the above oscillatory
case, velocity values are temporally monitored at various points in both the layers
as shown in figure 11. Figure 12 shows the temporal variation of u-velocity at points
B4 and T4 after the flow fields in both the top and bottom layers have transiently
converged to a proper periodic state. It is observed that at both of these points, the
signature of the velocity signal conforms to a typical sinusoidal function that implies


https://doi.org/10.1017/jfm.2014.359

https://doi.org/10.1017/jfm.2014.359 Published online by Cambridge University Press

Stability of confined two-layer R-B systems 429

(a)

(b)

(©

(d)

FIGURE 8. Streamlines of flow in the confined two-layer system with AR = 3.0 and:
(a) Y;=0.40; (b) Yy =0.48; (c) Y, =0.52; (d) Y; =0.60.

a SW phenomenon. Figure 13 shows the phase plots obtained by correlating velocity
signals between points B3 and BS and points B3 and TS5. The linear contravariance of
v-velocity at points B3 and BS5 of the bottom layer (figure 13a) clearly represents the
formation of a SW with asymmetric rolls along the horizontal direction of the cavity.
On the other hand, the elliptical phase variation between points B3 and TS5 is due to
the sequence of changes in flow patterns as explained in the previous paragraph. For
the current two-layer system with the chosen properties and ¥y =0.50, the SW pattern
is observed invariably at all of the lower values of aspect ratios considered. However
for an unconfined system, Colinet & Legros (1994), Nepomnyashchy & Simanovskii
(2004) have shown that TW patterns are normally expected. From the very slight
asymmetry of streamlines observed for the current case of AR = 3 as opposed to
perfect symmetry observed for AR=1 presented in the work of Diwakar et al. (2014),
it can be speculated that the increase of this asymmetry with increase in AR may lead
to a TW at infinite horizontal extent.

The time period for oscillations here is generally determined by the transport and
thermophysical properties of both of the fluids since the oscillations are formed
due to the competing influence of TC and MC processes. However, for a given
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FIGURE 9. Neutral curves for the onset of flow in a confined two-layer system with
a*=1.0 and Y; =0.50.

fluids combination, the oscillation time period depends on the thermal constraint (Ra)
applied to the system. As shown by Colinet & Legros (1994), both the SW and TW
mechanisms have a limited range of existence above the threshold. Upon gradually
increasing the Ra value from Ra,,, they have observed an increase in harmonics of the
temporal transport property variation. Resultantly, the time period of the oscillations
increases and beyond a certain value of Ra, the system will end up in a state of
steady MC.

3.2. Oscillatory onset characteristics for the fluids system with a* =0.667 and 1.50

Proceeding further with the other fluid systems mentioned in table 1, the onset
behaviour is now described for a confined two-layer system of unit height and
a* = 0.667 (third row of table 1). The critical interface height (Yf*) for equality
of Rayleigh numbers in the two layers of the system is 0.4. With respect to this
system and the others to follow, efforts will be expended only on understanding
their oscillatory regimes since they are the true manifestations of strong two-layer
interactions.

Figure 14(a) shows the neutral curves (with respect to interfacial heights) of the
above system obtained at different values of AR varying from 1.0 to 4.0. A magnified
view of the oscillatory regime in this figure is shown in figure 14(b). It is evident
from the latter figure that the change of least-stable mode from top layer to bottom
layer occurs here through an oscillatory regime closer to the expected value of Y7.
However, in comparison with the scenario at a* = 1.0, there is a reduction in the
range of interfacial heights over which the onset behaviour is oscillatory. Interestingly,
AR = 1.0 is devoid of any oscillatory transition zone and the reason for this could
be understood by analysing the variation of onset characteristics with AR at a fixed
Y, closer to Y;. Correspondingly, figure 15(a) and its magnified view in figure 15(b)
show the least-stable segments of neutral curves at different aspect ratios and a fixed
interfacial height of Y, = 0.41. From the figure, it is evident that the overlapping
pattern of various modes has resulted in non-oscillatory onset of flow for a narrow
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FIGURE 10. Streamlines of flow showing SW mechanism at onset for AR=3.0 and Y; =
0.50: (@) t=0; (b) t=T/30; (c) t=T/15; (d) t =T/10; (e) t =2T/15; (f) t =T/6;
(&) t=T/5 (h) t=7T/30; () t =4T/15; (j) t=3T/10; (k) t=T/3; () t=11T/30;
(m) t=2T/5; (n) t=13T/30; (o) t=TT/15; (p) t=T/2.

regime around AR = 1.0. Also, the presence of local peaks at discrete aspect ratios
are seen beyond AR > 1.2 where mode switching of convection rolls can be expected.

Taking the effects of lateral cavity walls into account, it would be reasonable to
expect SW patterns similar to those observed in the previous section for all lower
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FIGURE 11. Locations of monitoring points for two-layer systems with onset of oscillatory
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FIGURE 12. Temporal variation of v-velocity at various points: (a) B4; (b) T4.

values of AR. Correspondingly, a SW pattern is observed for a sample system with
AR =2.35 and Y; =0.41. The related temporal evolutions of streamlines for the full
period of oscillations are shown in figure 16. As indicated by the vertical arrows
at t =0 and t = T, the changes with respect to time occur only between the top
and bottom layers (SW) with no lateral movement of the circulation patterns. The
arrows signify the heat and momentum exchanges in the vertical direction across the
interface and not any fluid movement. Following the SW mechanism explained earlier,
the system here undergoes perpetual switching between the MC and TC modes with
a slight asymmetry observed along the horizontal direction. It can also be observed
that the critical wave mode for both the layers is essentially the same and hence, the
predominant number of rolls in both the layers is equal to three. Upon increasing the
AR value to 2.45, the number of rolls in each layer increases to four and this is evident
from the corresponding instantaneous streamline plots presented for a full time period
in figure 17. Once again, a typical SW behaviour is observed wherein the MC mode
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FIGURE 13. Phase variations in v-velocity of different points on the domain: (a) B3
versus B5; (b) B3 versus T5.
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FIGURE 14. (a) Neutral curves for the two-layer system with a* =0.667. (b) Magnified
view of (a).

is periodically reversed by the TC mode which originates in the top layer due to its
higher B value. In stark contrast to these features, a peculiar behaviour is observed
at a selected aspect ratio closer to the mode switching point (in-between the values
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FIGURE 15. (a) Neutral curves corresponding to interfacial height Y, =0.41 for the two-
layer system with a* =0.667. (b) Magnified view of (a) around AR =2.5.

2.35 and 2.45). Figures 18 and 19 show the temporal evolution (truncated from a full
cycle) of streamlines corresponding to the two layer system with AR =2.415. Here,
in addition to the local reversal of flow direction (as in a SW), the rolls are subjected
to back and forth lateral motion along the horizontal direction, as indicated by the
arrows. Such a combination of flow characteristics clearly corresponds to a typical
modulated TW, which can be attributed to the mismatch of critical wavenumbers of
excitation in the confined two layers. It can be clearly seen that at this value of
AR, the individual aspect ratios of the top and bottom layers result in their critical
excitation at mode numbers three and four, respectively. As a result of this non-similar
excitation, there is a dynamic adjustment of rolls in the individual layers and thus a
modulated TW pattern is evolved. Such a dynamic response of the system can also
be associated with the conventional [:/ + 1 resonance, where [ is the lowest mode
number corresponding to the two layers. However, this behaviour is slightly different
from that of the Takens—Bogdanov bifurcation (Renardy, Renardy & Fujimura 1999)
which deals with the interaction of two real eigenvalues with a complex conjugate pair.
In the current case, the point of [:/ + 1 resonance deals with the interaction of two
complex conjugate pairs. It may be noted that modulated TWs were not observed at
mode switching points in the case of fluid system with a* = 1.0 since their excitation
does not happen as /:/+ 1 resonance.
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FIGURE 16. Streamlines of flow showing SW mechanism at onset for a* = 0.667,
AR = 2350 and Y, = 041: (@) t =0; (b) t =T/15; (¢c) t = 2T/15; (d) t = T/5;
(e) t=4T/15; (f) t=T/3; (g) t=2T/S5; (h) t =7T/15; (i) t =8T/15; () t =3T/5;
(k) t=2T/3; () t=11T/15; (m) t =4T/5; (n) t =13T/15; (o) t =14T/15; (p) t=T.

(A video of the above dynamics is available as online supplementary material available at
http://dx.doi.org/10.1017/jfm.2014.359.)
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FIGURE 17. Streamlines of flow showing SW mechanism at onset for a* =0.667, AR=
245 and Y; =041: (a) t=0; (b) t=T/15; (c) t=2T/15; (d) t=T/5; (e) t =4T/15;
() t=T/3; (g) t=2T/5, (h) t =17T/15; (i) t =8T/15; (j) t =3T/5; (k) t =2T/3;
(D) t=11T/15; (m) t=4T/5; (n) t=13T/15; (0) t=14T/15; (p) t=T. (See the online
supplementary movie.)

The comparison of temporal variations (figure 20) in v-velocity at points B4
and T4 for the above aspect ratios clearly reveals the amplitude modulation of an
otherwise sinusoidal wave at AR = 2.415. Noticeably, the time plots reveal that the
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FIGURE 18. Streamlines of flow showing a quasi-periodic modulated TW mechanism
at the onset for a* = 0.667, AR =2.415 and Y; = 0.41: (a) t = 291.2; (b) t = 291.4;
() t=1291.6; (d) t=291.8; (e) t =292.0; (f) t =292.2; (g) t =292.4; (h) t = 292.6;
@) t=1292.8; (j) t =293.0; (k) +=293.2; (I) t =293.4; (m) t =293.6; (n) t=293.8;
(0) t=294.0; (p) t=294.2.

TW phenomenon at AR = 2.415 is not truly periodic as compared with the SWs
observed for AR =2.35 and AR = 2.45. This is evident from the tiny shifts in the
peaks of modulated wave that can be observed in figure 20(c,d). The reason for such a
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(b)

FIGURE 19. Streamlines of flow showing a quasi-periodic modulated TW mechanism at
the onset for a* =0.667, AR=2.415 and Y; =0.41 (continued): (a) t=294.4; (b) t =294.6;
(c) t=294.8; (d) t =295.0; (e) t=295.2; (f) t=295.4; (g) t =295.6; (h) t = 295.8;
(@) t=296.0; (j) t =296.2; (k) t =296.4; () t=296.6; (m) t =296.8; (n) t =297.0;
(o) t=297.2; (p) t=297.4. (See the online supplementary movie.)

behaviour can be deduced from the corresponding fast Fourier transform (FFT) shown
in figure 21 which reveals the presence of some significant subharmonic (figure 21,
inset) and superharmonic modes for the quasi-periodic modulated TW. Their effects
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FIGURE 20. Temporal variation of v-velocity at various points on systems with a* =0.667:
(a) B4 at AR=2.35; (b) T4 at AR=2.35; (c) B4 at AR=2.415; (d) T4 at AR=2.415;
(e) B4 at AR=2.45; (f) T4 at AR=2.45.

are also visible in the related phase plots of figure 22, which are drawn between
v-velocity at different points on the top and bottom layers. The elliptical trajectories
of phase plots at AR =2.35 (shown in figure 22a,b), clearly reveal a contravariance
of v-velocity between the chosen points through the alignment of its major axis. The
length of minor axis indicates the level of asymmetry present in the fluid layers even
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FIGURE 21. FFT of the v-velocity signal corresponding to figure 20(c).

though they are characterised to be associated with a SW. In contrast, the scenario at
AR =2.45 is characterised by a direct covariance of v-velocity at corresponding points
in the two layers. The absence of any lateral attribute clearly signifies the exact spatial
symmetry of flow features in both the layers. By virtue of their complex nature, the
phenomena in both the top and bottom layers for AR = 2.415 are characterised by
a transient and gradual alternation between the covariant and contravariant states.
This is clearly evident from the intricate trajectory followed by the phase plots at
AR = 2.415, even though some orderliness is observed in the time plots shown in
figure 20. The subharmonic and superharmonic contributions seen in the spectrum of
figure 21 have actually evolved during the later part of simulations over a modulated
carrier wave of fixed amplitude and frequency. The future course of evolution for the
case with AR = 2.415 is unclear and it could get into a chaotic attractor mode or
something else entirely different. Only a very long time transient analysis, which is
beyond the scope of present work, could lead to a definite conclusion.

The behaviour of two-layer system with a*=1.50 is quite identical to its counterpart
at a* = 0.667 except for the previously described bottom layer phenomena now
occurring in the top layer. The corresponding fluid property ratios are given in the
fourth row of table 1. The least-stable parts of the neutral curves related to this rigidly
confined two-layer system are shown in figure 23(a). Once again, the closeness of
oscillatory regime to the expected value of critical interfacial height (Y7 = 0.6) is
evident from the magnified view in figure 23(b). Akin to the case of a* = 0.667, a
direct jump of critical characteristics from the top layer to the bottom layer (absence
of non-oscillatory regime) is observed at AR = 1.0. Figure 24 shows the least-stable
parts of the neutral curves at ¥y = 0.59 where it can be observed that intermittent
non-oscillatory regimes exist at lower values of AR, owing to the overlapping patterns
of various fundamental modes. In addition to these non-oscillatory zones, local peaks
at distinct aspect ratios can also be observed where modulated TWs will be present
in contrast with SW modes at nearby aspect ratios. For the current fluid system, one
such occurrence can be identified at AR =2.40 where there is an active interaction
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FIGURE 22. Phase variations in v-velocity of different points on the domain for a* =
0.667: (a) B3 versus B5 at AR=2.35; (b) T3 versus T5 at AR=2.35; (¢) B3 versus B5
at AR =2.415; (d) T3 versus TS at AR=12.415; (e) B3 versus B5 at AR =2.45; (f) T3
versus TS at AR =2.45.

between the fourth mode of top layer and the third mode of bottom layer. For the
sake of conciseness, the plots related to the temporal evolution of streamlines are
not presented here. Rather, the characteristics of these oscillatory modes are clearly
brought out through the time (figure 25) and phase plots (figure 26) corresponding to
various points in the top and bottom layers. Identical to the system with a* = 0.667,
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FIGURE 23. (a) Neutral curves for the two-layer system with a* = 1.50. (b) Magnified
view of (a).

the occurrence of modulated wave pattern (figure 25c¢,d) in between two regular
sinusoidal variations can be observed. Similarly, the phase variations of v-velocity
at points on the top and bottom layers (figure 26) reveal the presence of a single
trajectory for the cases with AR = 2.30 and AR = 2.60. In between these cases, it
can be clearly observed that a complex and transient trajectory for the phase plots is
followed due to the modulated TW phenomena occurring in the top and bottom layers.

3.3. Oscillatory onset characteristics for the fluid system with a* =0.5 and 2.00

In the case of fluid systems with a* = 0.5 and a* = 2.0 from table 1, the critical
interfacial position (Y;) moves closer to the top and bottom horizontal walls,
respectively. As a consequence, the parametric window for oscillations (with respect
to interfacial heights) in these two-layer systems narrows down and is visible only
after significant enlargement of the figure as shown in figure 27. This behaviour
can be corroborated with figures 28 and 29 where the least-stable parts of the
neutral curves obtained at fixed interfacial heights, are presented. In contrast to the
behaviour observed for a* = 0.667 or a* = 1.5, the oscillatory zones have shrunk to
a few smaller patches at lower values of AR. Clearly, this behaviour corresponds to
the overlapping pattern of various neutral curves wherein the primary criticality is
determined by the non-oscillatory modes at higher AR values. In order to understand
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FIGURE 24. Neutral curves corresponding to interfacial height ¥; =0.59 for the two-layer
system with a* =1.50.

the flow features in the smaller window of oscillatory regime, a two-layer system with
a*=0.50, ¥, =0.351 and AR=1.0 is now analysed. Figure 30 shows the instantaneous
streamlines obtained for a full period of oscillations in the domain. The system clearly
reveals a modulated TW behaviour wherein the rolls in the bottom layer periodically
change their rotational orientation and also undergo a back and forth motion along
the horizontal direction of the cavity. However, the top layer is characterised by
the presence of a SW which is slightly modulated by the TW of the bottom layer.
The main reason for such a behaviour can be attributed to the occurrence of critical
interfacial heights closer to the extrema (0 or 1). This correspondingly results in a
large disparity between the aspect ratios of the top and bottom layers and so, the
disparate critical modes in the two layers favour the formation of modulated TWs
within the confined system. For the system under consideration, it can be clearly
observed that the mode numbers corresponding to the top and bottom layers are one
and three, respectively. An exactly reversed behaviour is observed (not shown here)
for the system with a*=2.00, ¥, =0.649 and AR= 1.0 where the rolls in the top layer
undergo a periodic change in rotational orientation and also back and forth horizontal
motion. Despite these manifestations of modulated TWs in the streamline plots, the
time plots for the system with a* = 0.5 (and also for a* = 2.0) shown in figure 31
are devoid of any low-frequency amplitude modulation as observed in the cases of
a* =0.667 and a* = 1.50. The reason for this phenomenon could be a perfect match
in the frequencies associated with the reversal of roll orientation and the back and
forth motion of the rolls. However, the phase variations in the v-velocity (figure 32)
at various points in both the layers reveal a typical TW pattern where orientation of
the major axis of intersecting loops represent a contravariance between these points
on the same layer (associated with odd mode number). The lateral thickness of the
phase loops indicate the phase lags brought in due to the presence of TWs.

3.4. Convection onset characteristics for systems with a* =0.25 and a* =4.00

Finally, for the two-layer systems with a* =0.25 and a* =4.00, the critical interface
heights are much closer to the top and bottom horizontal walls. This leads to the
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FIGURE 25. Temporal variation of v-velocity at various points on systems with a* =1.50:
(a) B4 at AR=2.30; (b) T4 at AR =2.30; (c¢) B4 at AR=2.40; (d) T4 at AR = 2.40;
(e) B4 at AR=2.60; (f) T4 at AR=2.60.

complete disappearance of the intermediate oscillatory zone, as can be seen in
figure 33. As a result, there is an abrupt change of criticality from the top layer
to the bottom layer as the interfacial height is gradually increased in the two-layer
system with the above-mentioned properties. This behaviour can be corroborated from
figures 34 and 35 which depict stationary streamline patterns at interfacial heights
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FIGURE 26. Phase variations in v-velocity of different points on the domain for a* =1.50:
(a) B3 versus B5 at AR = 2.30; (b) T3 versus T5 at AR = 2.30; (¢) B3 versus B5 at
AR =12.40; (d) T3 versus TS at AR=2.40; (e¢) B3 versus B5 at AR=2.60; (f) T3 versus
TS5 at AR =2.60.

just above and below the critical interfacial height. The strong convection present in
the top layer at ¥y very slightly less than Y abruptly transfers to the bottom layer
upon crossing the critical interfacial height and evidently, the fluid combinations are
devoid of any oscillatory patterns.
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FIGURE 28. Neutral curves corresponding to interfacial height Y, =0.351 for the two-layer
system with a* =0.50.
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FIGURE 29. Neutral curves corresponding to interfacial height Y;=0.649 for the two-layer
system with a* =2.00.

3.5. Remarks

Before summarising the outcomes of the above balanced contrast analysis, it becomes
essential to examine some of its aspects more closely. Primary among them concerns
the uniqueness and the exclusivity of the obtained results to pBa and a* values
considered in table 1. In other words, it is important to understand the behaviour of
fluids that have alternative combinations of properties and, yet, yield the same values
of pBa and a*. For this purpose, a linear stability analysis is now carried out on
fluid systems that have been obtained through the balanced contrasts of properties
corresponding to silicone oil-water combination. These new fluids (listed in the first
three rows of table 2) have the same value of pfa =4 and different values of a*
such as 1.0, 1.5 and 2.0. The actual property ratio values of the silicone oil-water
system have been listed in the fourth row of table 2. Figure 36 compares the neutral
curves of the respective fluid combinations from tables 1 and 2, at AR =2.0. Except
for the small offset in the zones of oscillatory excitation and a proportional change in
the Ra., values (as per the modified property ratios), the new neutral curves exactly
corroborate the aforementioned findings of §§ 3.1-3.4. Precisely, figure 36 reveals that
the ranges of interfacial heights corresponding to the onset of oscillatory convection
are nearly equal, for all of the related fluid systems. The curves also reaffirm
the narrowing of the oscillatory regime with the deviation of @* value from unity.
However, a small rightward bias is observed for the fluid systems of table 2. This can
be construed to occur due to their large 8 value that renders the top layer to be more
sensitive to thermal perturbation transferred across the interface. In addition, the lower
o value also delays the dissipation of any imposed thermal fluctuations. Hence, the
top layer is susceptible to undergo (thermal) fluctuation-induced flow reversals, even
when the bottom layer has a slightly dominant convection. As a result, the regime of
oscillatory convection (or the intersection point of neutral curves) for fluid systems
listed in table 2 shifts to higher interfacial heights. Nevertheless, this behaviour can
also be influenced by other factors/parameters whose characterisation requires some
more meticulous analyses that are beyond the scope of the present work.


https://doi.org/10.1017/jfm.2014.359

https://doi.org/10.1017/jfm.2014.359 Published online by Cambridge University Press

448 S. V. Diwakar, S. Tiwari, S. K. Das and T. Sundararajan

(b) () (d)

©

(®

(k)

(0)

@,
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FIGURE 33. Neutral curves for the two-layer system with (a) a*=0.25; (b) a*=4.00.

Interestingly, the above facts also divulge the exact reason for the non-oscillatory
behaviour exhibited by the silicone oil-water system when considered under the
influence of pure buoyancy forces (Nepomnyashchy & Simanovskii 2004; Simanovskii
& Nepomnyashchy 2006). The neutral curves for the onset of convection in silicone
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FIGURE 34. Streamlines at onset of flow in the two-layer system with a* = 0.25 and
AR=1.0: (a) Y;=0.216; (b) Y;=0.219.
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FIGURE 35. Streamlines at onset of the flow in the two-layer system with a* =4.0 and
AR=1.0: (a) Y;=0.781; (b) Y;=0.784.

*

P v K o B Pr pBa a

0.8687 3.479 200 08135 5.66 257 400 1.00
0.8687 0.687 2.00 0.8135 5.66 257 4.00 1.50
0.8687 0.217 2.00 08135 5.66 257 4.00 2.00
0.8687 2.00 0.184 0.778 5.66 257 3.825 2.11
0.50 2.00 0.5 200 2.00 1.00 2.00 1.00
0.50 0.80 0247 200 200 1.00 2.00 1.50
0.50 2.00 0.50 400 400 100 800 1.00
0.50 0.80 0247 400 400 1.00 8.00 1.50

=
e

O UN AW~ W

TABLE 2. Balanced contrast of the silicone oil-water system and balanced contrast of
properties for varying pBo.

oil-water system at different aspect ratios are shown in figure 37. Evidently, the
system is devoid of any oscillatory regimes and the corresponding reason can be
directly inferred from its values of pfa (= 3.825) and a* (= 2.11). With these
properties, the silicone oil-water system is closer to the fictitious a* = 2.00 system
considered in the current work. However, owing to its slightly higher a* value, the
disappearance of even the small patches of oscillatory regimes as observed for a*=2.0
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FIGURE 36. Neutral curves for the two layer system with AR =2.0 and: (@) a* = 1.00;
(b) a* =1.50; (¢) a*=2.00.

(at lower AR) is justified. This is further confirmed by the reduction in pfBw, based
on which the range for oscillatory excitation (with respect to a*) can be expected
to shrink. To prove this point, fluid systems with different pfa combinations (2, 4
and 8) have been considered. Figure 38 shows their corresponding neutral curves at
AR =2.0 and a* = 1.0, 1.5 where the expansion of the oscillatory regime with the
increase in pfBa is undoubtedly established.
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FIGURE 37. Neutral curves for the two-layer silicone oil-water system.

The other important aspect of the current results which is worth re-emphasising is
the occurrence of modulated TWs. While the range for the occurrence of oscillatory
excitation is determined by the pSa and a* values as discussed above, the criterion for
the manifestation of modulated TWs (both periodic and quasi-periodic) additionally
depends on the aspect ratio of the system. This primarily requires the critical height
ratio a* to be different from unity, so that the oscillatory excitation in the fluid layers
occurs at unequal heights. Resultantly, at a particular aspect ratio of the system, the
individual aspect ratios of the fluid layers will yield different fundamental modes
(critical wavenumbers) of excitation in the layers. Owing to this disparate excitation
(m:n resonance), a dynamic adjustment of convection rolls in the layers is necessitated
and, thus, the system exhibits modulated TW phenomena. Correspondingly, for the
present fluid systems with a* = 0.667 and 1.50, the modulated TW was found to
occur as [:/+ 1 resonance whereas for the systems with a*=0.5 and 2.0, it found to
be associated with m :n resonance modes. It may be noted that these are very specific
instances of resonance modes that have been obtained by selectively performing full
nonlinear simulations. However, a complete bifurcation diagram representing all of the
possible resonance modes can be obtained by a systematic weak nonlinear analysis.
Also, the modes that have been obtained here mainly pertain to the two-dimensional
situations. Owing to the third dimension, these modes will certainly be different for
the 3D problem, as recently shown by Xie & Xia (2013).

4. Conclusions

From the neutral curves and flow patterns of various fluid combinations presented
in this study, some important inferences can be obtained. Primary among them is the
fact that flow onset characteristics for confined systems are largely dependent on the
aspect ratio (AR) in addition to the height ratio (a) between the two fluids. At times,
they are quite distinct from the characteristics of unconfined system comprising of
same fluids and interfacial configuration (height). This can be ascertained from the
tendencies shown by confined systems for oscillatory convection when the behaviour
of the corresponding unconfined system is non-oscillatory and vice versa. In addition
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FIGURE 38. Neutral curves for the two-layer system with AR =2.0 and: (a) a* = 1.00;
(b) a*=1.50.

to such distinctions, unique features are also exhibited in the oscillatory regimes
wherein modulated TWs are observed at discrete aspect ratios for which the critical
excitation wavenumber in the two layers are dissimilar (m:n resonance). In all
the other situations involving similar critical wavenumbers, the oscillations are
characterised by a SW pattern. It may be noted that the behaviour of oscillating
unconfined systems primarily corresponds to that of a TW.

The other important conclusion that can be derived from the results is the ability of
critical height ratio (a*) to complement the property combination pBa in identifying
the chances for oscillatory convection in any given system. It is now well established
that the condition concerning pfa (either >> 1 or « 1) alone cannot provide complete
information on the possibility for onset of oscillatory flow. This can be corroborated
from the absence of oscillatory onset for systems with a* = 0.25 and a* = 4.00
despite possessing a pfa value of 4. Yet, the criterion suggested by Renardy (1996)
cannot be wholly omitted since it is associated with the non-self-adjointness of the
corresponding matrices and, thus, forms a necessary condition for oscillations in
the systems. Interestingly, the current work shows that a sufficient condition in this
regard can be successfully identified with the additional consideration of a* values.
It is important to note here that the ranges of a* (0.5 < a* <?2) for which oscillatory
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behaviour is observed in the current work are exclusive to the fluid combination with
pPa = 4. Correspondingly, it has been shown that the oscillatory range of a* may
either widen or become narrow based on the remoteness or closeness of pBa value to
unity. This is consistent with the observations made for the silicone oil-water system
which does not show any oscillatory modes when considered under the influence
of pure buoyancy forces. However, with the consideration of thermocapillary effects,
this fluid combination possesses onset of oscillatory convection as observed in the
experiments of Degen et al. (1998).

Supplementary movies

Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2014.359.
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