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Experiments with a weakly damped monopile, either fixed or free to oscillate, exposed
to irregular waves in deep water, obtain the wave-exciting moment and motion
response. The nonlinearity and peak wavenumber cover the ranges: εP ∼ 0.10–0.14
and kPr ∼ 0.09–0.14 where εP = 0.5HSkP is an estimate of the spectral wave slope,
HS the significant wave height, kP the peak wavenumber and r the cylinder radius.
The response and its statistics, expressed in terms of the exceedance probability, are
discussed as a function of the resonance frequency, ω0 in the range ω0 ∼ 3–5 times
the spectral peak frequency, ωP. For small wave slope, long waves and ω0/ωP = 3,
the nonlinear response deviates only very little from its linear counterpart. However,
the nonlinearity becomes important for increasing wave slope, wavenumber and
resonance frequency ratio. The extreme response events are found in a region
where the Keulegan–Carpenter number exceeds KC > 5, indicating the importance
of possible flow separation effects. A similar region is also covered by a Froude
number exceeding Fr > 0.4, pointing to surface gravity wave effects at the scale of
the cylinder diameter. Regarding contributions to the higher harmonic forces, different
wave load mechanisms are identified, including: (i) wave-exciting inertia forces, a
function of the fluid acceleration; (ii) wave slamming due to both non-breaking and
breaking wave events; (iii) a secondary load cycle; and (iv) possible drag forces, a
function of the fluid velocity. Also, history effects due to the inertia of the moving
pile, contribute to the large response events. The ensemble means of the third, fourth
and fifth harmonic wave-exciting force components extracted from the irregular wave
results are compared to the third harmonic FNV (Faltinsen, Newman and Vinje)
theory as well as other available experiments and calculations. The present irregular
wave measurements generalize results obtained in deep water regular waves.

Key words: surface gravity waves, wave breaking, wave–structure interactions

1. Introduction
In the offshore industry, there is a growing focus on lower cost and higher efficiency.

This requires improved accuracy of the design conditions and enhanced optimized
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Resonant response of a monopile in deep water waves 565

solutions (Zhen et al. 2015). A widely used offshore structure is the monopile. This
is relevant for both the oil and gas business as well as for the renewable industry. In
the development of new wind farms, the cylindrical structure has become a standard
foundation type for the bottom fixed wind turbines. Typically the diameter is less than
8 m, the first natural period is 3–5 s and the damping is 1–4 % of critical damping
(Kallehave et al. 2015). In a harsh wave environment these structures may be prone
to high frequency resonant responses well above the governing wave frequency
(Bredmose et al. 2013).

Regarding the high frequency responses, one distinguishes between springing and
ringing behaviour (Faltinsen 1993, p. 5). The springing motion is characterized by
stationary oscillations, mostly caused by weakly nonlinear forces at the second
harmonic of the governing wave frequency. The transient ringing response is
characterized by a short build-up in time, typically within a wave period, and a
longer decay time. The nonlinear loads causing ringing occur in steep waves, where
large inertia forces are present. High or low pressure zones due to strong orbital
velocities and possible flow separation effects may also contribute to the higher-order
forces (Grue, Bjørshol & Strand 1993; Paulsen et al. 2014b; Kristiansen & Faltinsen
2017). Wave slamming, due to steep and breaking waves, can lead to impulsive
excitation, i.e. a high frequency response with no build-up (Bredmose et al. 2013;
Schløer, Bredmose & Bingham 2016).

Theories of the high frequency wave loads and ringing response in realistic ocean
environments still have shortcomings. Loading mechanisms, particularly in strong
waves, are not fully understood. Nor has the probability of occurrence of an extreme
response event been clarified. Remaining challenges include development of methods
which are sufficiently accurate in terms of the hydrodynamic loading. At the same
time, the short- and long-term statistical variability of the wave conditions should be
accounted for.

The hydrodynamic loads and responses, taking into account the short term
variability of the wave conditions, are the foci of the present work. The long-term
variability, on the other hand, is not discussed. We note that, regarding the predictions
of the long-term variability, a complete long-term analysis is required. However, to
predict the response with a prescribed level of probability the alternatives are the
environmental contour line method (Haver & Winterstein 2009) or the use of a
design wave, such as the NewWave model (Tromans, Anaturk & Hagemeijer 1991).
To ensure that the predicted response level is correct, it is vital that the waves driving
the extreme response events and the significant loading mechanisms are both included
in the analysis.

1.1. Previous work
Several model tests with monopiles have been carried out investigating the load
mechanisms that excite the high frequency ringing response. Grue et al. (1993), Grue,
Bjørshol & Strand (1994) and Chaplin, Rainey & Yemm (1997) studied the force in
focusing waves, Huseby & Grue (2000) in regular waves and Grue & Huseby (2002)
in the transient part of a regular wave train, while Stansberg et al. (1995), Marthinsen,
Stansberg & Krokstad (1996), Stansberg (1997) and Bredmose et al. (2013) discussed
the ringing response in irregular waves.

The findings from the previous model tests point to nonlinear inertia loading in
steep waves, generating high frequency transient force oscillations around three to four
times the governing wave frequency. While the first harmonic force is well defined,
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the higher harmonic forces deviate from the predictions, particularly for increasing
wave slope. Irrespective of which load mechanisms exist, the high frequency response
occurs due to significant nonlinearities. There are three possible sources for these
nonlinearities as listed by Tromans, Swan & Masterton (2006): the wave motion, the
hydrodynamic loading and the dynamic response of the structure itself.

The industry has traditionally obtained the wave loads by Morison’s formula
(Morison et al. 1950) with an empirical adjustment of the wave kinematics such as
Wheeler stretching incorporated (Wheeler 1970). As the inertia term in Morison’s
formula only includes the force to a first approximation, disregarding possible
significant nonlinear contributions (Lighthill 1979, 1986), a number of theoretical
works have addressed the issue of the high frequency nonlinear loading. Linear- and
second-order diffraction solutions capture the first and second harmonic forces in
regular and irregular waves, while the solution obtained by Malenica & Molin (1995)
captures the third harmonic force in regular waves. A long wave approximation
(with kr < 0.14, k the wavenumber, r the cylinder radius, see figure 7) developed
by Faltinsen, Newman & Vinje (1995), and referred to as the FNV method, was
first obtained for regular waves, and secondly generalized by Newman (1996) to
the case of irregular waves. Later Krokstad et al. (1998) proposed a modification to
the FNV method, where the linear- and second-order contributions were replaced by
the complete diffraction solutions. The method was combined with the third-order
contribution from the long wave approximation. With an appropriate description of
the wave kinematics for realistic wave spectra, Johannessen (2010, 2012) obtained
good agreement between the modified FNV method and measurements of a monopile
exposed to irregular deep water waves.

An alternative nonlinear load description, based on energy considerations, was
obtained by Rainey (1989, 1995a,b). The benefit of the Rainey method is that it
takes undisturbed wave kinematics as input. This allows for both nonlinear wave
motion and short crestedness to be taken into account. This is in contrast to the FNV
method, which is based on the underlying linear wave assumption in a unidirectional
sea.

Computational fluid dynamics (CFD) is increasingly being used to calculate the
wave loads on offshore structures, see Paulsen, Bredmose & Bingham (2014a),
Paulsen et al. (2014b). Although CFD is capable of capturing the nonlinearities,
the downside is that it is resource demanding. This adds restrictions to the length of
analyses with an irregular wave input. Recently, the FNV method has been generalized
to a finite water depth by Kristiansen & Faltinsen (2017).

1.2. Foci of present work
We here investigate the high frequency resonant response of a monopile exposed to
irregular waves in deep water, where the short-term statistical variability of the wave
conditions is accounted for. The following subjects are included:

(i) We carry out a set of laboratory experiments with a single bottom hinged, rigid
cylinder in two different set-ups (§ 2). In the first set-up the cylinder is fixed. The
response of an oscillating cylinder is then calculated from the measured wave-
exciting moment. The cylinder in the second set-up is free to oscillate where the
motion response is measured (§ 3.1).

(ii) In the single wave events of the irregular waves, we identify local proxies
such as the local trough-to-trough period and crest height. The higher harmonic
load contributions are then investigated by obtaining the third, fourth and fifth
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harmonic load components in the irregular waves and comparing to published
results for regular waves (FNV, Huseby & Grue 2000; Paulsen et al. 2014b)
(§ 3.2).

(iii) We identify and investigate several different wave load mechanisms that are
present during the large response events (§ 3.3).

(iv) While previous investigations have typically focused on the wave loads acting
on the structure only, the present work obtains both the force and the resulting
motion. We present the response as a function of resonance frequency, which
is varied in the range 3–5 times the peak wave frequency. We obtain the short-
term exceedance probability of the response maxima. The linear and nonlinear
contributions to the response statistics are compared (§ 3.4).

(v) The most extreme response events are discussed in terms of the local wave slope
and non-dimensional trough-to-trough period (§ 3.5).

A conclusion is given in § 4.

2. Experiments
2.1. Wave tank

The experiments were carried out in the wave flume in the hydrodynamic laboratory
at the University of Oslo. The wave flume is 25 m long, 0.5 m wide and was filled to
a water depth of h= 0.72 m. In one end of the tank there is a hydraulic piston-type
wavemaker with motion controlled by a preset voltage time series based on linear
wavemaker theory. At the opposite end there is a passive absorbing beach. At the
location 10.9 m from the wavemaker, a bottom hinged cylinder, with a diameter
d= 6 cm, was placed to obtain the wave-exciting moment and the motion response.

2.2. Wave conditions
A total of six irregular long-crested wave time series based on the JONSWAP
spectrum (Hasselmann et al. 1973), each 320 s long, were used in the experiments.
The JONSWAP spectrum was chosen to generate an approximately real ocean wave
environment. The spectrum as a function of angular frequency ω is given by

SJ(ωn)= Aγαω−5
n exp

(
−

5
4ω
−4
n

)
γ exp(−(1/2σ 2)(ωn−1)2), (2.1)

where ωn = ω/ωP and α = (5/16)ω−1
P H2

S . The peak wave frequency is denoted by
ωP= 2π/TP and the significant wave height by HS = 4ση, where TP is the peak wave
period and ση is the standard deviation of the measured surface elevation. The peak
shape parameter is γ = 3.3, the spectral width parameter is σ = 0.07 for ω6ωP and
σ = 0.09 for ω>ωP. Further, Aγ = 1− 0.287 ln(γ ) is a normalization factor.

To relate the wave-exciting moment and motion response to undisturbed wave
parameters, the surface elevation was measured with the cylinder removed, using
ultra-sound wave sensors (UltraLab ULS Advanced Ultrasound, USS02/HFP with
250 Hz sampling rate). The waves were measured at the location for the cylinder, in
addition to 0.12 m and 4.9 m upstream, and 4.4 m downstream.

The governing wave parameters of the six time series, given by HS and TP at the
location of the cylinder, are listed in table 1. Here the peak wavenumber kP is found
from the linear dispersion relation ω2

P = gkP tanh(kPh), where g is the acceleration of
gravity and h is the water depth. The normalized water depth, kPh, is in the range
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FIGURE 1. Wave energy density spectrum. Measured surface elevation and JONSWAP
spectrum with γ = 3.3 for (a) all of the six time series and (b) time series c, where
HS = 6.24 cm and TP = 1.044 s, measured at the location of the cylinder, in addition to
4.9 m upstream and 4.4 m downstream.

Series HS (cm) TP (s) TP
√

g/d kPr kPh εP ω0/ωP

a 6.45 1.157 14.8 0.09 2.22 0.10 3.3
b 7.73 1.156 14.8 0.09 2.22 0.12 3.3
c 6.24 1.044 13.4 0.11 2.68 0.12 2.9
d 5.20 0.939 12.0 0.14 3.30 0.12 2.6
e 9.01 1.157 14.8 0.09 2.22 0.14 3.3
f 6.12 0.939 12.0 0.14 3.30 0.14 2.6

TABLE 1. Sea state parameters. Significant wave height HS, peak wave period TP,
normalized peak wave period TP

√
g/d, normalized wavenumber kPr, normalized water

depth kPh, spectral wave slope εP = 0.5HSkP and resonance frequency ratio ω0/ωP as
obtained from the oscillating cylinder.

2.2–3.3 which is considered to represent deep water waves, and the spectral wave
slope, εP = 0.5HSkP, is in the range 0.10–0.14 which is considered to represent
moderately steep waves. The normalized wavenumber, kPr, where r is the radius
of the cylinder, is in the range 0.09–0.14 which is considered to be outside of
the diffraction regime. The corresponding non-dimensional peak wave period is
TP
√

g/d∼ 12–15 where d= 2r.
All of the six measured wave spectra show good agreement with the JONSWAP

spectrum, as seen in figure 1(a). In figure 1(b), the spectrum from series c is shown
at the cylinder location in addition to 4.9 m upstream and 4.4 m downstream, showing
only minor modification in the spectral shape. Between the upstream and downstream
locations, the rate of decrease in HS is found to be, on average for the six time series,
0.01 per peak wavelength λP= 2π/kP. Measurements from the two wave sensors with
a distance of 0.12 m have been used to estimate the reflection from the beach. For
the governing wave frequencies, 0.9<ω/ωP < 1.5, the reflection coefficient, in terms
of the amplitude, as outlined by Goda & Suzuki (1976), is found to be less than 0.06.
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FIGURE 2. Local wave properties. (a) Definition of crest height ηC and trough-to-trough
wave period TTT of a wave event and (b) wave scatter plot including all of the 2166
measured waves (+).

2.3. Local wave properties and statistics
The surface elevation at a fixed position in the wave tank is a function of time. It is
convenient to define a single wave event by its crest elevation, ηC, and its trough-to-
trough period, TTT , see figure 2(a). Altogether, the six time series consist of in total
2166 single wave events. A scatter plot of ηC and TTT , measured at the location of
the cylinder, is shown in figure 2(b).

For a group of events the empirical probability of exceedance is given by

Pex(xi)= 1− P(X 6 xi)= 1− i/(N + 1), (2.2)

where xi for i = 1, 2, . . . , N indicates the events in ascending order, and N is the
total number of the events. In figure 3(a) the crest height exceedance probability
Pex(ηC/Hs), as found from series c, is presented and compared to the linear Rayleigh
and the second-order Forristall crest distribution (Forristall 2000). It is observed that
the measurements contain somewhat larger crest heights than expected based on the
second-order distribution. This is further visualized by comparing the largest crest
elevations from all of the series with the corresponding Forristall distribution. If ηF

denotes the Forristall crest height estimate, the largest crest height observed with
regards to significant wave height, ηC/HS = 1.5, has ηC/ηF = 1.6 (found in series d
and seen in figure 2b). Except for this extreme crest event, a plot of ηC/ηF versus
its probability shows 0.97 < ηC/ηF < 1.28 for the 10 % largest waves, for all of the
six series, see figure 3(b).

For later purposes (§§ 3.2 and 3.5), and following Grue et al. (2003), using a variant
of the Stokes’ third-order approximation, the measured ηC and TTT are used to define
a local wavenumber, kTT , and local wave slope, ε, of the event by

ω2
TT = gkTT(1+ ε2) and kTTηC = ε +

1
2ε

2
+

1
2ε

3, (2.3a,b)

where ωTT = 2π/TTT , ε = akTT and a is the approximated underlying linear amplitude.
This enables a wave parametrization of each of the single wave events in the irregular
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FIGURE 3. Crest height exceedance probability for (a) series c, HS = 6.24 cm and TP =

1.044 s (+), linear Rayleigh (– –) and second-order Forristall (——) and (b) measured
crest heights, normalized with the corresponding Forristall estimate, the 10 % largest crest
heights from each series, series a (A), b (@), c (+), d (6), e (×) and f (E).

wave time series. From the same approach a maximum horizontal particle velocity
below the crest is estimated by uC = ε

√
g/kTT exp(kTTηC). The estimation of ε, kTT

and uC in irregular waves have been further tested by Stansberg, Gudmestad & Haver
(2008) and Grue & Jensen (2012), showing good agreement with experimental results.

2.4. Cylinder model
A single cylinder with diameter d = 6 cm, in two different set-ups, was used in the
experiments. The cylinder was located 10.9 m from the wavemaker and hinged at
a horizontal lateral axis at the level of z = z0 = 2 cm above the tank bottom, with
positive rotation in the wave propagation direction. At a distance of za − z0 = 90 cm
above the rotation axis, the cylinder was connected to two load cells (Hottinger
Baldwin Messtechnik Type Z6C2 with 10 kg = 2 mV V−1 and 400 Hz sampling
rate), measuring the force from which the overturning moment was determined. In
the first set-up the cylinder was fixed and rigidly connected to the load cells, where
the wave-exciting force and moment with respect to z0 are measured. In the second
set-up the cylinder was free to oscillate and springs were used to connect the model
and the load cells.

A sketch of the second set-up is shown in figure 4. The vertical cylinder is free to
rotate with an angle θ(t) in the pitch mode of motion. Assuming linear motion, the
moment due to the pressure forces with respect to z0 reads: Mwave(t)− a55θ̈ − b55θ̇ −
c55θ , where Mwave(t), a55, b55 and c55 denote the wave-exciting moment obtained
from the fixed cylinder set-up, added mass, damping and restoring coefficients in
the pitch mode of motion, respectively. The moment due to the spring forces reads:
−(za− z0)(F2(t)− F1(t))=−κ0(za− z0)

2θ where F1 and F2 denote the force recorded
at the left and right transducer, respectively, see figure 4, and κ0 the spring constant.
Balance of angular momentum gives

m55θ̈ =−a55θ̈ − b55θ̇ − (κ0(za − z0)
2
+ c55)θ +Mwave(t), (2.4)

where m55 denotes the moment of inertia of the cylinder.
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FIGURE 4. Oscillating cylinder set-up with angular rotation θ(t), cylinder diameter
D=0.06 m, water depth h=0.72 m, rotation point z0=0.02 m, distance from tank bottom
to load cells za = 0.92 m, load cells F1 and F2, distance to wavemaker LWM = 10.90 m
and distance to tank end, LTE = 13.87 m.

The resonance frequency of (2.4) is given by ω2
0 = (c55 + κ0(za − z0)

2)/(m55 + a55).
Note that the spring force provides the dominant contribution to the restoring force
where c55 is 0.005 times κ0(za − z0)

2 for the actual cylinder. The still water decay
tests as well as the irregular wave experiments determine ω0 = 17.7 rad s−1

∼ 3ωP
(table 1) of the oscillating cylinder. The damping ratio ζ , determined as a fraction
of the critical damping, is 0.02 for the cylinder. The small damping ratio implies a
very lightly damped oscillating system relevant to offshore wind turbines in extreme
conditions (Kallehave et al. 2015).

By integration, the pitch angle θ(t) is obtained as a function of time. For
convenience, the response is multiplied by κ0(za − z0)

2, giving the moment of the
sum spring force with respect to z0. We denote this quantity by R(ω0, t) where

R(ω0, t)= κ0(za − z0)
2θ(t)=

ω2
0

ωd

∫ t

0
Mwave(τ )e−ζω0(t−τ) sin(ωd(t− τ)) dτ , (2.5)

and ωd =ω0

√
1− ζ 2. A derivation of (2.5), commonly known as Duhamel’s integral,

is given in appendix A. Using (2.5) to obtain the motion response R(ω0, t), this
is fully described by the wave-exciting moment, the resonance frequency and the
damping ratio. Use of (2.5) makes possible a response analysis given Mwave(t) on
the fixed cylinder and varying the resonance frequency ω0 to investigate the response
dependency on the ratio ω0/ωP. We shall find a good correspondence between the
measured and calculated response maxima, see § 3.1.

For the calculations of the response, a low pass filter has been applied above the
significant wave frequencies at the frequency ω= 60 rad s−1> 9ωP. This is considered
as well above the significant wave and load frequencies of interest.

3. Wave loads and responses
The surface elevation, wave-exciting moment and motion response for a large event,

occurring between two subsequent zero up-crossings of the moment history, are shown
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FIGURE 5. Series c (t = 155.7 s), HS = 6.24 cm, TP = 1.044 s. (a) Surface elevation,
(b) wave-exciting moment, (c) higher harmonic wave force components, (h − z0)F(3ωTT )

(- - -), (h− z0)F(4ωTT ) (– –), (h− z0)F(5ωTT ) (——), (d) measured (——) and calculated (– –)
response for ω0/ωP = 2.9, (e) measured (——) and calculated (– –) dynamic contribution
for ω0/ωP= 2.9, ( f ) calculated response (——) and measured wave-exciting moment (– –)
for ω0/ωP = 2.0 and (g) calculated response (——) and measured wave-exciting moment
(– –) for ω0/ωP = 4.0.

in figure 5. The various plots in the figure illustrate different effects observed in the
run; these different effects are discussed in §§ 3.1–3.3. The zero up-crossing period
of the moment, TM

z0 , is illustrated in figure 5(b). The periods TTT and TM
z0 occur

approximately in the same time window, but they are not exactly equal. The period
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FIGURE 6. All of the six time series with 2166 events (+) where 2.6 < ω0/ωP < 3.3.
Comparing response maxima by (a) direct comparison and (b) quantiles (sorted values).

TTT is used in combination with the measured wave elevation to define the wave
proxies, ε and kTT in (2.3), for presentation of the higher harmonic forces in § 3.2
and the extreme response events in §§ 3.3 and 3.5. The TM

z0 is used in combination
with the wave-exciting moment time series giving the load and response statistics,
using (2.2), with results presented in §§ 3.1 and 3.4.

The wave event occurs in time series c where TP = 1.044 s and ωP = 2π/TP,
giving a frequency ratio of ω0/ωP = 2.9 where ω0 = 17.7 rad s−1. The surface
elevation in figure 5(a) is normalized by the significant wave height HS, and the
load and responses in figure 5(b–g) are normalized by the standard deviation of the
wave-exciting moment, σM. Three repetitions of the time series are included in the
figure and we note that the repeatability is good with only very small differences at
the wave crest.

The different types of high frequency response may be categorized either as
springing or ringing. In figures 5( f ) and 5(g) calculations have been carried out for
two different resonance frequencies, of ω0/ωP = 2 and ω0/ωP = 4, respectively, using
the measured wave-exciting moment and the transfer function. The results illustrate a
response of the springing type (ω0/ωP = 2) and of the ringing type (ω0/ωP = 4). The
springing behaviour is global in time, while ringing is local in time.

3.1. Single response maxima
The response maxima, obtained from the measured wave-exciting moment on the
fixed cylinder, with the resonance calculated by the transfer function (2.5), denoted
by Rmax

calc = max(R(ω0, t)), are compared to the measured response, denoted by Rmax
meas.

The data from all of the six time series give a total of 2166 events with a frequency
ratio in the range 2.6<ω0/ωP< 3.3. The two quantities show good agreement for the
largest response events Rmax

meas/σM > 7, where the deviation is up to approximately 5 %,
see figure 6(a). Good agreement is also found when looking at the calculated and
measured maxima, sorted according to magnitude, denoted by the so-called quantiles,
see figure 6(b). This justifies the use of the measured wave-exciting moment in
combination with the transfer function, both for estimating the probability levels
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and for the identification of the extreme events. In what follows, we obtain only the
calculated response maxima using the notation Rmax

=Rmax
calc, for the extended frequency

range ω0/ωP = 3, 4 and 5.

3.2. Higher harmonic wave forces
The high frequency response is driven by higher harmonic wave force components.
We investigate the third, fourth and fifth harmonic forces with regards to the local
wave period TTT . The forces are obtained from the wave-exciting moment assuming
that they are acting at the still water level. The high frequency forces are considered to
act close to the surface (Rainey 1989, 1995a,b; Faltinsen et al. 1995; Newman 1996),
which indicates an error of less than (ηC/h) when using the moment to obtain the
forces. For each of the single events, where an event is defined in figure 5(a,b), a
window function of 20 s has been applied, from which the high frequency harmonic
force components are extracted, see figure 5(c). The maximum amplitude found within
the event is defined as the local high frequency harmonic force contribution.

The third harmonic force F(3ωTT ) is found using a filter covering 2.5<ω/ωTT < 3.5.
Likewise, the fourth harmonic force F(4ωTT ) is found for 3.5 < ω/ωTT < 4.5, and the
fifth harmonic force F(5ωTT ) using 4.5 < ω/ωTT < 5.5. The forces are expressed for
the proxies; the normalized wavenumber kTTr and the wave slope ε = akTT , where
both are defined in (2.3) and r is the cylinder radius. The obtained results from the
irregular waves are compared to previous works with a regular wave input; the leading-
order third harmonic FNV solution, F(3)

FNV/ρga3
= 2π(kTTr)2, the measurements from

Huseby & Grue (2000), denoted by H&G and the CFD computations for finite depth
by Paulsen et al. (2014b).

For the longest waves, with 0.10 6 kTTr 6 0.14 (14.1> T0
TT

√
g/d> 11.9, where T0

TT
is the linear estimate) we observe that F(3ωTT ) tends towards a constant level close to
the FNV result, with the average of the irregular results approximately 11 % below
the theory (figure 7a). The FNV force is evaluated for the middle value of kTTr in
each of the kTTr ranges. In the range 0.146 kTTr 6 0.18 (11.9> T0

TT

√
g/d> 10.5), the

results from H&G are lower, but within the standard deviation of the present irregular
wave results. The average of the irregular wave results are approximately 29 % below
the FNV theory, when the waves are steep (figure 7b). For the shorter waves, with
0.18 6 kTTr 6 0.22 (10.5 > T0

TT

√
g/d > 9.5), the results from H&G are close to the

irregular wave results, tending towards the same level, which is ∼44 % below the
theory (figure 7c). Compared to the results on finite depth by Paulsen et al. (2014b)
for kTTr= 0.1, a deviation is observed. However, Kristiansen & Faltinsen (2017) point
at a substantial difference between the forces in deep water and finite depth.

For the fourth harmonic force, F(4ωTT ), the results show good agreement with H&G
(figure 7(d,e). The results for the fifth harmonic force, F(5ωTT ), are similar to those
of H&G for kTTr= 0.245, where the present results are obtained for the wider range
of 0.18 < kTTr < 0.22 (figure 7f ). A comparison between the normalized forces for
ε = 0.25 is provided in table 2.

The present extracted higher harmonic force components in the irregular waves,
for 0.1< kTTr< 0.22 and 0.1< ε < 0.32, provide a quite strong generalization of the
higher harmonic forces measured by H&G in the regular waves with 0.1< ε < 0.24.
This in spite of the present results being obtained from the wave-exciting moment,
assuming a moment arm equal to the still water level. We note that the present
irregular wave results have a significant standard deviation not observed in the
regular wave measurements.
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FIGURE 7. Higher harmonic wave force components. Individual events (+), ensemble
average (——p) and standard deviation (– –p), F(3)

FNV (- - -), H&G (u) and Paulsen et al.
(2014b) for finite water depth (q). (a) F(3ωTT ) for 0.10 6 kTTr 6 0.14, (b) F(3ωTT ) for
0.146 kTTr 6 0.18, (c) F(3ωTT ) for 0.186 kTTr 6 0.22, (d) F(4ωTT ) for 0.146 kTTr 6 0.18, (e)
F(4ωTT ) for 0.18 6 kTTr 6 0.22 and ( f ) F(5ωTT ) for 0.18 6 kTTr 6 0.22.

kTTr F(3) F(4) F(5)

0.12± 0.02 0.08 0.03 0.01
0.16± 0.02 0.11 0.05 0.03
0.20± 0.02 0.13 0.09 0.03

TABLE 2. The ensemble average of the higher harmonic wave force components F(3)
=

F(3ωTT )/ρga3, F(4)
= F(4ωTT )/ρga4a−1 and F(5)

= F(5ωTT )/ρga5a−2 for local wavenumber
0.10< kTTr< 0.22 and wave slope ε = akTT = 0.25.

As expected for the third harmonic forces, the FNV approximation is found
to best fit the longest waves (0.1 < kTTr < 0.14). In general we observe that the
force components are tending towards a constant level for the steep waves. The
compliance with the previous results in periodic waves indicates that the high
frequency contribution originates from nonlinearities and not from shorter linear free
waves, since regular waves do not contain energy from linear free waves. Moreover,
it illustrates that the local wave slope and the wavenumber defined in (2.3) are useful
proxies of the local wave events.
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3.3. Wave load mechanisms
In this section we discuss the following different wave load mechanisms driving the
response:

(i) wave-exciting inertia forces, a function of the fluid acceleration;
(ii) wave slamming, due to both non-breaking and breaking wave events;

(iii) the secondary load cycle; and
(iv) possible drag forces as a function of the fluid velocity.

Consider the wave-exciting moment in figure 5(b) where the maximum occurs for
t/TP= 0. This is simultaneous to the maximum wave crest and means that the orbital
velocity is approximately horizontal and at maximum. The force at this instant is
associated with wave breaking, slamming and possible viscous drag forces (Paulsen
et al. 2014b; Kristiansen & Faltinsen 2017) which are included in the categories (ii)
and (iv) above.

Consider then the negative response maximum in figure 5(d), of absolute value
Rmax
≈ 8σM and occurring at t/TP ≈ 0.25. This is approximately at the same time as

the wave elevation has a zero down-crossing, corresponding to a maximum horizontal
particle acceleration at the surface. The acceleration is associated with an inertia force
and is in accordance with category (i). Returning to the load history in figure 5(b), the
secondary load cycle (Grue et al. 1993) occurs slightly before the time of the negative
response extreme.

The dynamic part of the response, R(t)−M(t), further highlights the effects of the
different load mechanisms (i)–(iv). In figure 5(e) we observe that the large wave crest
produces a significant change of the response amplitude and its phase for t/TP > 0.
Between the two local response peaks at t/TP≈−0.1 and t/TP≈ 0.1 the dynamic part
experiences a local oscillation of duration equal to half of the resonance period. The
modification of the response is due to a strongly nonlinear impulse type of loading,
originating from the slamming event. As a result, the dynamic contribution attains
a value of R(t) − M(t) ≈ 4σM at t/TP ≈ 0.1. The response is further increased to
R(t) − M(t) ≈ 5σM around the wave zero down-crossing, at t/TP ≈ 0.25, with load
contributions from the large inertia force and the secondary load cycle. Another effect
that adds to the large negative response peak is the restoring force of the cylinder.
Even with no wave-exciting forces, this would cause a negative response peak after the
positive build-up. The timing of this, relative to the wave forces, is governed by ω0,
the natural frequency. A result of the different load contributions working together, is
that the maximum response occurs after and in the opposite direction of the maximum
wave-exciting moment, approximately at the same time as the wave elevation has a
zero down-crossing.

We have now discussed the load event in figure 5. Further, we consider the
load histories of the 21 largest response events which are listed in table 3. More
specifically, these events are obtained with regards to Rmax/σM for ω0/ωP = 3. We
observe that different wave load and response mechanisms contribute to the response
level, including:

(i) a large nonlinear inertia force before the wave crest has passed, FI,front, which is
observed for 15 of the 21 events. The inertia force is characterized by the front
of the wave being steep with 1η/1t> 5HS/TP;

(ii) a large nonlinear inertia force after the wave crest has passed, FI,back, observed
for 16 of 21 events. This is characterized by the back of the wave being steep
with 1η/1t<−5HS/TP;
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Event Series t (s) TTT
√

g/D kTTηC FI,front FI,back Fslam FII Ropp λprec

(1) b 154.8 15.5 0.21 N Y Y Y Y Y
(2) d 250.1 10.7 0.41 Y Y Y Y Y N
(3) c 155.7 10.8 0.38 Y Y Y Y Y N
(4) e 229.6 15.0 0.30 Y Y Y Y Y Y
(5) e 101.8 11.0 0.44 Y Y N Y Y N
(6) c 156.5 12.2 0.21 N N N N N Y(S)
(7) e 118.0 9.8 0.44 Y Y N Y Y N
(8) e 151.3 13.2 0.25 N Y Y Y Y N
(9) d 146.7 11.5 0.24 N Y N Y Y N
(10) e 112.2 11.8 0.35 Y Y N Y Y N
(11) e 265.4 11.8 0.36 Y Y Y Y Y N
(12) e 22.3 12.6 0.28 Y N N Y N Y(S)
(13) e 94.2 12.6 0.32 Y Y N Y Y N
(14) f 274.3 10.8 0.34 N Y Y Y Y Y
(15) f 30.5 10.6 0.37 Y Y N Y Y N
(16) c 265.7 11.7 0.25 Y N N N N N
(17) f 69.3 10.4 0.34 N Y N Y Y N
(18) e 24.0 13.8 0.24 Y N N N N Y(S)
(19) b 105.6 10.8 0.31 Y Y Y Y Y Y
(20) f 128.1 8.8 0.44 Y Y N Y Y N
(21) b 170.0 12.7 0.26 Y N N N N N

TABLE 3. Wave parameters and observed wave load and response characteristics, for the
21 largest response events when ω0/ωP = 3, listed in decreasing order with respect to
Rmax/σM . The characteristics are confirmed with Y = Yes, N = No or Y(S) = Yes,
strongly dominated. Parameters in the table: event number, series index, time of occurrence
and the rest of the parameters are defined in the text.

(iii) wave slamming, Fslam, observed for 8 of 21 events, including the 4 largest events.
Here slamming is characterized by a coinciding wave crest and a maximum wave-
exciting moment; and

(iv) the secondary load cycle, FII , observed for 17 of 21 events. The FII values are
found to coincide with a steep crest back and occur close to the wave zero down-
crossing.

Further we note:

(i) an opposite direction of the maximum response, Ropp, characterized by the
maximum response occurring after and in the opposite direction to the maximum
wave-exciting moment and simultaneous to the wave zero down-crossing. This
is observed for 16 out of 21 events;

(ii) an effect of a preceding wave, λprec, where the response is affected by the inertia
of the moving pile. The oscillations are significant before the wave event appears.
This is observed for 7 out of 21 events, where 3 among the 7 events are strongly
dominated by the effect.

We observe that slamming plays a dominant role for the largest response events.
Apart from one of the preceding wave cases, large nonlinear inertia forces are present
for all of the events, where either the front or back of the wave, or both, are observed
to be steep. However, the large inertia force and the resulting response rather occurs
for a large elevation gradient in the back of the wave while what happens in the wave
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front is less important. Apart from one preceding wave case, the secondary load cycle
is found to coincide with the steep wave gradient in the back of the wave.

3.4. Nonlinear versus linear exceedance probability
The empirical exceedance probabilities of the nonlinear wave-exciting moment and
motion response are found using (2.2). Each of the series is considered separately,
where the frequency ratio is varied with ω0/ωP=3,4 or 5. The load and responses are
presented for increasing nonlinearity (0.10< εP < 0.14) and for long and moderately
long waves (0.09< kPr< 0.14).

Estimates for the linear wave-exciting moment and motion response were carried
out for reference purposes. In order to estimate the underlying linear wave spectrum,
the measured surface elevation was linearized as proposed by Johannessen (2010,
2012). The second-order contribution was calculated from the measured wave time
series, using the total surface elevation. Subsequently, the linear surface elevation
was found by subtracting the second-order contribution from the measured surface
elevation. Further, irregular waves were created from each of the estimated linear wave
spectra. The MacCamy & Fuchs solution (1954) was used to obtain the wave-exciting
moment for a fixed cylinder. More details are found in appendix B.

As expected, the linear and nonlinear analyses agree well for ω0/ωP = 3 when the
waves are long and have small amplitude (εP = 0.10 and kPr = 0.09, figure 8a). The
same is true when the wave slope is moderate and the waves are long (εP= 0.12 and
kPr = 0.09, figure 8b). In these cases the estimated linear response provides a good
representation of the nonlinear probability.

For moderate wave slope and moderately long waves (εP = 0.12 and kPr = 0.11,
figure 8c), the linear estimate gives a good representation of the distribution of the
response for Pex(Rmax/σM) > 0.06. However, for Pex(Rmax/σM) < 0.06 the nonlinear
contribution becomes significant, showing a deviation of ∼50 % for the largest
nonlinear response events (marked by circles) when compared to the corresponding
linear estimates. For steeper and shorter waves, we observe that the deviation appears
at an earlier stage: for εP = 0.12 and kPr = 0.14 Pex(Rmax/σM) ∼ 0.1 (figure 8d),
for εP = 0.14 and kPr = 0.09 Pex(Rmax/σM) ∼ 0.2 (figure 8e) and for εP = 0.14
and kPr = 0.14 Pex(Rmax/σM) ∼ 0.3 (figure 8f ). For the steepest waves (εP = 0.14)
the nonlinear force deviates earlier from the linear force for longer waves (compare
figure 8e, f ). We note that while the wave-exciting moment is dominated by the energy
around the governing wave frequency, the response is governed by the nonlinear high
frequency forces.

For ω0/ωP = 4 the response for small wave slopes and long waves (εP = 0.10 and
kPr= 0.09, figure 9a) follows the linear results, but shows a deviating trend for small
exceedance probability. For moderate wave slope and long waves (εP= 0.12 and kPr=
0.09, figure 9b) the deviation between the nonlinear and linear results becomes evident
for Pex ≈ 0.1. In moderate and steep waves (εP > 0.12, figure 9b–f ) a significant
deviation between the nonlinear and linear results is found for Pex< 0.2. For ω0/ωP=

5 the same tendencies as for ω0/ωP=4 are observed. When the frequency is increased,
the response tends towards the wave-exciting moment, which is equivalent with the
quasi-static level.

As expected, the linear and nonlinear analyses agree well when the waves are long
and have small amplitude. The nonlinearity of the wave-exciting moment becomes
more important in the steeper and shorter waves. The nonlinearity also becomes more
prominent when the frequency ratio ω0/ωP is increased from 3 to 4.
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FIGURE 8. The empirical exceedance probability for the linear wave-exciting moment
(– –), nonlinear wave-exciting moment (+), linear motion response (——) and nonlinear
motion response (E) where ω0/ωP = 3 for (a) series a, (εP, kPr) = (0.10, 0.09),
(b) b, (0.12, 0.09), (c) c, (0.12, 0.11), (d) d, (0.12, 0.14), (e) e, (0.14, 0.09) and ( f ) f,
(0.14, 0.14).

3.5. Extreme response events
The most extreme responses are critical for design. It is of interest to further
investigate the wave effects driving these responses. The 1 % largest events (satisfying
Pex(Rmax/σM) < 10−2) are presented in scatter diagrams according to the wave proxies
TTT
√

g/d and kTTηC. The resonance frequencies are ω0/ωP= 3, 4 and 5. The majority
of these events occur for waves with period TTT

√
g/d between 9 and 16 and wave

slope kTTηC larger than 0.2 (figure 10a,c,e).
In order to discuss the history effect in the response, i.e. the contribution from

the inertia of the moving pile due to successive large wave events, we present
calculations with a damping of both ζ = 0.02 and ζ = 0.06, where in the latter the
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FIGURE 9. The empirical exceedance probability for the linear wave-exciting moment
(– –), nonlinear wave-exciting moment (+), linear motion response (——) and nonlinear
motion response (E) where ω0/ωP = 4 for (a) series a, (εP, kPr) = (0.10, 0.09), (b) b,
(0.12, 0.09), (c) c, (0.12, 0.11), (d) d, (0.12, 0.14), (e) e, (0.14, 0.09) and ( f ) f,
(0.14, 0.14).

effect of preceding waves, for the local response, is smaller compared to the former.
The extreme response events obtained with ζ = 0.06 all gather in a common region
(figure 10b,d, f ).

The nonlinear high frequency forces driving the response originates either from flow
separation, free surface gravity waves or a combination. Flow separation is governed
by the Keulegan–Carpenter number KC = uCTTT/d, while gravity wave effects are
governed by the Froude number Fr = uC/

√
gd. We have in figure 10 indicated the

line corresponding to KC= 5. Almost all of the extreme events are found for KC> 5
and kTTηC > 0.15. Note that a KC-number larger than 2 is commonly associated with
flow separation (Sarpkaya 1986).
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FIGURE 10. Wave scatter plot including all the 2166 events (+), events with
Pex(Rmax/σM) < 0.01 (u), Fr= 0.4 (——) and KC= 5 (– –) for (a) (ω0/ωP, ζ )= (3, 0.02),
(b) (3, 0.06), (c) (4, 0.02), (d) (4, 0.06), (e) (5, 0.02) and ( f ) (5, 0.06).

A contribution of flow separation to the higher harmonic wave forces has recently
been suggested by Paulsen et al. (2014b), Kristiansen & Faltinsen (2017). We remark
that the details of the flow separation depend on the Reynolds number (Re) and are
different in the model scale compared to the large scale, where Re is approximately
1000 times larger. The possible flow separation may contain more three-dimensional
effects in the large scale compared to the model scale.

We have also indicated the line Fr=0.4, where Fr=uC/
√

gd. The extreme response
events found for waves with Fr< 0.4 are all affected by preceding waves. The Froude
number indicates a gravity wave effect at the scale of the cylinder diameter, where
Fr= 0.4 corresponds to a local wavelength λC= 2πu2

C/g of the local crest velocity uC

with λC ≈ d contributing to a particular wave–body interaction, as proposed by Grue
et al. (1993, 1994).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

49
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.499


582 B. H. Riise, J. Grue, A. Jensen and T. B. Johannessen

The present data of the obtained responses show that the extreme events occur
for KC > 5. The regime KC > 5, is significantly above the separation limit (KC > 2,
Sarpkaya 1986), indicating a flow separation effect and contribution from possible
drag forces, even though the flow separation itself has not been measured. The
findings supports KC and flow separation as a more relevant criterion for the extreme
response events. However, we choose to include the Froude criterion, as the results
are not considered sufficient in order to exclude the surface gravity wave effects.
The more visible local free surface wave, suggested at the cylinder diameter scale,
is for comparison governed by Fr > 0.4. The free surface effect is very clear in the
experiments. The wave may co-interact with the flow separation effects, suggesting
that both effects and criteria are relevant.

4. Conclusions

The high frequency resonant responses of a weakly damped monopile exposed to
irregular deep water waves have been investigated. The response events were obtained
accounting for the short-term wave statistics. Experiments were carried out with a
single bottom hinged cylinder in two different set-ups. In the first set-up the cylinder
was fixed, while in the other it was free to oscillate, yielding both the wave-exciting
moment and the motion response. The nonlinearity, peak wavenumber and peak period
of the six different wave series were in the ranges: εp ∼ 0.10–0.14, kPr ∼ 0.09–0.14
and TP

√
g/d∼ 12.0–14.8, respectively, where all quantities are defined in § 2.2.

By use of a transfer function, the response was calculated from the measured
wave-exciting moment of the fixed cylinder. The calculations of the extreme response
maxima compare very well with the measured ones. The accuracy is approximately
5 %. The overall agreement is even better when comparing the sorted maxima (the
so-called quantiles). This justifies the use of the measured wave-exciting moment in
combination with the transfer function, both for estimating the probability distributions
and for calculating the response level of the extreme events. The response is then
discussed as a function of the resonance frequency ω0, which is varied in the range
where ω0/ωP ∼ 3–5.

The empirical short-term exceedance probability distributions of the nonlinear
wave-exciting moment and motion response, obtained for each of the six series,
show: for small wave slope (εP = 0.10), long waves (kPr = 0.09) and a resonance
frequency of ω0/ωP = 3, the nonlinear response analyses agree, and the results in
fact are very well represented by their linear counterparts. The same is true for a
moderate wave slope (εP = 0.12) and long waves (kPr = 0.09). By increasing the
ratio ω0/ωP to 4 or 5, the importance of the nonlinearities becomes apparent, where
the deviation between the nonlinear and linear calculations occurs for an exceedance
probability of Pex(Rmax/σM) < 0.1. For moderate to strong waves (εP∼ 0.12–0.14) and
long to moderately long waves (kPr∼ 0.09–0.14), the deviation between the nonlinear
and linear results are clear in all cases. The deviation starts earlier for ω0/ωP = 4, 5
compared to ω0/ωP= 3, as well as for an increasing wave slope, and for a decreasing
wavelength.

The most extreme response events, moreover, are obtained according to the local
wave proxies: the local trough-to-trough period TTT

√
g/d and the local wave slope

estimate kTTηC. The events are found in a region where the Keulegan–Carpenter
number exceeds KC> 5, indicating that possible flow separation effects contribute to
the extreme responses. The contribution of flow separation to the higher harmonic
wave forces has been recently suggested by Paulsen et al. (2014b), Kristiansen &
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Faltinsen (2017). A similar region is also covered by a Froude number exceeding
Fr> 0.4 pointing to surface gravity wave effects at the scale of the cylinder diameter,
as suggested by Grue et al. (1993, 1994). It is still an open research question whether
either of the effects are dominant or if they are of equal importance.

From a number of large response events, different wave load mechanisms are
discussed: (i) wave-exciting inertia forces, a function of the fluid acceleration;
(ii) wave slamming due to both non-breaking and breaking wave events; (iii) the
secondary load cycle; and (iv) possible drag forces as a function of the fluid velocity.

The third, fourth and fifth harmonic wave-exciting force components are extracted
by their ensemble average and standard deviation in the irregular waves. They are
expressed by the local wave proxies. The present results, for a wave slope up to 0.3,
fit well to, and generalize, the results in regular waves for a wave slope up to 0.24
of Huseby & Grue (2000). The third harmonic force in the longer waves shows good
agreement with the FNV method.

The JONSWAP spectrum was chosen to approximate a real ocean environment. In
general, the findings are expected to apply for a broader range of storm conditions, i.e.
other spectral shapes. However, one should be careful when there is the possibility of
a linearly induced high frequency response, such as in combined wind and swell sea,
i.e. two peak spectra.
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Appendix A
The vertical cylinder may rotate with an angle θ(t) in the pitch mode of motion

about a hinge at the bottom, located at z = z0 = 2 cm above the tank floor.
Assuming linear motion, the moment due to the pressure forces with respect to
z0 reads: Mwave(t) − a55θ̈ − b55θ̇ − c55θ , where Mwave(t), a55, b55 and c55 denote
the wave exciting moment, added mass, damping and restoring coefficients in the
pitch mode of motion, respectively. The moment due to the spring forces reads:
−(za − z0)(F2(t) − F1(t)) = −κ0(za − z0)

2θ where za denotes the height of the force
transducers, F1(t) and F2(t) denote the force recorded on the left and right transducer,
respectively, see figure 4, and κ0 the spring constant. Balance of angular momentum
gives

m55θ̈ =−a55θ̈ − b55θ̇ − (κ0(za − z0)
2
+ c55)θ +Mwave(t), (A 1)

where m55 denotes the moment of inertia of the water filled cylinder. This yields

θ̈ + 2ζω0θ̇ +ω
2
0θ =Mwave(t)/(m55 + a55), (A 2)

where the resonance frequency is given by ω2
0 = (c55 + κ0(za − z0)

2)/(m55 + a55).
Note that the spring force provides the dominant contribution to the restoring force
where c55 is 0.005 times κ0(za − z0)

2 for the actual cylinder. The still water decay
tests as well as the irregular wave experiments determine ω0 = 17.7 rad s−1 of the
oscillating cylinder. The damping ratio ζ , determined as the fraction of the critical
damping, is 0.02 for the cylinder. In the experiments with the fixed cylinder set-up,
small vibrations are measured at frequencies ω> 88 rad s−1. These are driven by the
wavemaker and transferred through the tank frame to the cylinder set-up.
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Equation (A 2) may be expressed in matrix form: (d/dt)(eAtY) = eAt
[0, Mwave(t)/

(m55 + a55)ωζ ]
T where Y = [θ, y]T, [ ]T denotes the transpose, θ̇ + ζω0θ = ωζy, and

ωζ =ω0

√
1− ζ 2. The matrix A and its variant eAt are expressed by

A=

(
ζω0 −ωζ
ωζ ζω0

)
, eAt

= eζω0t

(
cosωζ t − sinωζ t
sinωζ t cosωζ t

)
. (A 3)

By integration, the pitch angle θ(t) is obtained as a function of time. For convenience
this is multiplied by κ0(za − z0)

2 giving the moment of the sum spring force with
respect to z0. We denote this quantity by R(ω0, t) where

R(ω0, t)= κ0(za − z0)
2θ(t)=

ω2
0

ωζ

∫ t

0
Mwave(τ )e−ζω0(t−τ) sin(ωζ (t− τ)) dτ . (A 4)

Appendix B
In order to estimate the underlying linear wave spectrum the measured surface

elevation, η, is linearized as proposed by Johannessen (2010, 2012). The second-order
contribution, η′(2), is calculated using finite depth theory (Sharma & Dean 1981),
where only nearby wave components are allowed to interact. This is implemented
by a maximum bandwidth between the interacting wave components δω = 0.8ωP.
The prime denotes the use of the total surface elevation for the calculations of the
second-order contribution. Then the resulting linear surface elevation, η(1), is found
by

η− η′(2) = (η(1) + η(2) + · · ·)− (η′(2) +O(3))= η(1) +O(3) (B 1)

being accurate to and including second-order effects. Subsequently, theoretical
realizations of irregular waves were created from each of the linear wave spectra,
with random phase. The MacCamy & Fuchs solution (1954) was used to obtain
the linear wave-exciting moment for a fixed cylinder. The standard deviation of the
linear part is, on average for the six series, 1 % smaller than the measured and fully
nonlinear wave-exciting moment. Finally, the response transfer function (A 4) was
used to calculate the linear motion response.
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