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Abstract

This work explores the uncertainty of the inferred maize pollen emission rate using measure-
ments and simulations of pollen dispersion at Grignon in France. Measurements were
obtained via deposition of pollen on the ground in a canopy gap; simulations were conducted
using the two-dimensional Lagrangian Stochastic Mechanistic mOdel for Pollen dispersion
and deposition (SMOP). First, a quantitative evaluation of the model’s performance was con-
ducted using a global sensitivity analysis to analyse the convergence behaviour of the results
and scatter diagrams. Then, a qualitative study was conducted to infer the pollen emission rate
and calibrate the methodology against experimental data for several sets of variable values.
The analysis showed that predicted and observed values were in good agreement and the cal-
culated statistical indices were mostly within the range of acceptable model performance.
Furthermore, it was revealed that the mean settling velocity and vertical leaf area index are
the main variables affecting pollen deposition in the canopy gap. Finally, an estimated pollen
emission rate was obtained according to a restricted setting, where the model studied includes
no deposition on leaves, no resuspension and with horizontal pollen fluctuations either taken
into account or not. The estimated pollen emission rate obtained was nearly identical to the
measured quantity. In conclusion, the findings of the current study show that the described
methodology could be an interesting approach for accurate prediction of maize pollen depos-
ition and emission rates and may be appropriate for other pollen types.

Introduction

Nowadays, coverage of genetically modified crops is increasing rapidly which induces contam-
ination risk in conventional or organic crops. Furthermore, there is great variability in cross-
pollination rates due to many involved factors which describe pollen and canopy characteristics
as well as to their interactions with its environment. It is therefore difficult to understand and
account for the risks of cross-pollination only by experimental approaches (Treu and Emberlin,
2000). For these reasons and in order to minimize and monitor the risk of this potential and
complex problem, various numerical methods have been developed and discussed in the litera-
ture (e.g., Dietiker et al., 2011; Marceau et al., 2011; Torimaru et al., 2012). Maize pollen grains
are roughly spherical with diameters around 90 μm and therefore have a high settling velocity
compared with other pollen types (Raynor et al., 1972; Di-Giovany et al., 1995). As a conse-
quence, dispersed maize pollen quantities are small: 95% of the emitted pollen is deposited
within 10 m of the source and 99% at 30 m (Jarosz et al., 2003). In order to simulate the
dispersal of maize pollen as well as to estimate quantities of released pollen, many physically-
based models have been developed:

The Lagrangian stochastic approach was introduced by Jarosz et al. (2004), Dupont et al.
(2006) proposed an Eulerian approach, while Klein et al. (2003) adopted a statistical approach.
Furthermore, several atmospheric dispersion models have been developed recently (see, e.g.,
Dietiker et al., 2011; Zhang et al., 2014; Baklanov et al., 2017; Zink et al., 2017). However, the
numerical dispersion models need to be combined with a flow model, whether empirical,
Lagrangian or Eulerian, describing the wind profiles and turbulence. In this setting, Arritt
et al. (2007) have developed a three-dimensional Lagrangian model to simulate the dispersion
of pollen and have validated the approach on daily measurements of deposition on the ground.
Dupont et al. (2006) have compared Lagrangian and Eulerian models with experimental two-
dimensional dispersion measurements in the wind direction. The Eulerian model is based on
a flow model, Aquilon, in which an advection-diffusion conservation equation is integrated,
while the Lagrangian stochastic model, SMOP (Stochastic Mechanistic mOdel for Pollen disper-
sion and deposition), uses an empirical model of flow. Astini et al. (2009) predict effective rates of
cross-pollination at the end of the pollination season using the Lagrangian model of Arritt et al.
(2007) combined with the pollination model of Lizaso et al. (2003). However, the model input
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variables are subject to many sources of uncertainties including
errors of measurement, absence of information and weak or partial
understanding of the driving forces and mechanisms. These impose
limits on our confidence in the response (i.e., outputs) of the model.
Following an Eulerian model, Dupont et al. (2006) developed an
empirical sensitivity analysis for some variables: settling velocity
of pollen, Schmidt number, turbulence parameters and percentage
of pollen re-entrained in the air after deposition on leaves. Contrary
to our setting this methodology does not take into account possible
interaction between variables. Good modelling practice requires that
the specialists provide an evaluation of the confidence in their mod-
els by applying a Sensitivity Analysis (SA). Such an approach is
used to study how a variation in the output of a model can be
apportioned, quantitatively or qualitatively, in different sources of
input variation. For performing a SA of a model, three approach
classes are available: Screening Designs (SD), Local Sensitivity
Analysis (LSA) and Global Sensitivity Analysis (GSA) described
by Saltelli et al. (2000a). The Monte Carlo method, a GSA, has
been applied herein because of its robustness and performance as
stated by Saltelli et al. (2000a, 2000b). However, its application
involves multiple simulations that make it expensive in terms of
time taken to perform the analysis. In order to reduce the compu-
tation time, the Latin hypercube sampling technique has been used
to create a matrix of values used as inputs to the SMOP model.
Such a design is able to sample parameter values with a good
homogeneous distribution in the parameters’ domain as proved
by McKay et al. (1979) and Iman (1992).

Emission of maize pollen could be estimated using plastic bags
placed on the tassels (Hall et al., 1982; Jarosz et al., 2003). As a
shortcoming of this method, tassels in closed environment condi-
tions will induce a greenhouse effect, and as a consequence, this
method provides a measure of potential emitted pollen rather
than the actual emitted pollen. Due to this fact, Raupach (1989)
and later Jarosz et al. (2005), Aylor et al. (2006) and Dupont
et al. (2006) provided an alternative approach, which we use in
this work, leading to a real emission rate that could be inferred
from both measurements and simulations of pollen dispersion.

The objective of the current paper is to present a methodology
to infer pollen emission rate taking into account the uncertainty
of input variables of the SMOP model on deposition in a small
canopy gap. Uncertainty of variables is related to retention of
pollen by the plant canopy as well as to pollen aerodynamic
characteristics.

Material and methods

Model description

The Lagrangian stochastic SMOP model has been under develop-
ment in the National Institute of Agronomic Research, France
since 2003 (Jarosz et al., 2004). The model is designed to predict
pollen dispersion and deposition downwind and within a flower-
ing field. Displacement of individual pollen grains is given by the
following two-dimensional stochastic differential equations.

du = audt + budjudx = u dt (1)

dw = awd + bwdjwdz = (w−WS) dt (2)

where t is time; u and w are the horizontal and vertical air particle
velocity components, respectively; dξu and dξw are random

numbers drawn from Gaussian distributions with mean zero
and variance dt; Ws is the gravitational settling velocity of pollen
grains (terminal velocity of pollen grains in still air); and au, bu, aw
and bw are the Langevin coefficients (depending on horizontal
and vertical averages of the air velocity components, U and W,
respectively; the horizontal and vertical Eulerian velocity var-
iances, s2

u and s2
w, respectively; the shear stress, u′w′; and the

Lagrangian velocity time scale, TL). All of these parameters are
described in Loubet (2000) and Loubet et al. (2006).

The SMOP model computes pollen trajectories taking into
account both canopy and pollen characteristics, and micro-
meteorological parameters (Loubet, 2000; Jarosz et al., 2004;
Loubet et al., 2006). The mean wind speed profile which is imple-
mented in the model above and in the canopy is defined, respect-
ively, as (Raupach et al., 1996) and (Garratt, 1992).

u (z) =
u(hc)× exp (g× z

hc
− 1) z , hr

u∗
k ln (z− d

z0
)−Cm(z− d

L )+Cm(
z0
L )

[ ]
z ≥ hr

⎧⎨
⎩ (3)

where hc is the canopy height; u* is the friction velocity; k is the von
Karman constant; L is the Monin-Obukhov length; hr is the height
where the exponential and logarithmic profiles of the model join
which is the height of the inflexion point of the wind speed profile;
Ψm is the stability correction function given by Paulson (1970) and
Dyer (1974); z0 = 0.1 × hc is the roughness length and d = 0.7 × hc is
the displacement height (Kaimal and Finnigan, 1994); and γ = 2 is
the attenuation factor (Raupach et al., 1996; Loubet et al., 2006).
Required meteorological records were provided by an Agroclim sta-
tion located in the experimental domain at Grignon, France. Data
should be retrieved from the web site http://www6.paca.inra.fr/
agroclim where global missions and objectives of Agroclim stations
are given by the web site https://www6.paca.inrae.fr/agroclim/con-
tent/download/3214/32033/version/1/file/Plaquette+AGROCLIM+
2020+FR_V1.pdf. For more information about the model, please
visit the following website: https://www6.versailles-grignon.inra.fr/
ecosys_eng/Staff/Photos-and-CV/L/Loubet-B/MODDAAS-SMOP.

Sensitivity analysis methods

Modelling a real-life process with a computer program, one is
often faced with the problem of what values should be used for
the input variables. Therefore, the output results have uncertainty
associated with the input values. Stochastic approaches are usually
used to obtain probabilistic output based on ‘randomly’ distribu-
ted parameters. Analysts desiring to conduct a sensitivity analysis
using such an approach are obliged to select a set of values for
their model inputs. This selection may be done in different
ways: the random sampling is usually used in cases where the
only general behaviour of flows are accounted for; the stratified
sampling and the Latin hypercube sampling techniques are pref-
erably chosen when studies need more accuracy: (i) what is the
uncertainty in the output given the uncertainty in the input?
and (ii) how important are the individual elements of the input
with respect to the uncertainty in the output? (McKay et al.,
1979; Iman, 1992). Latin hypercube sampling is a particular strati-
fied sampling technique and in the absence of correlations
between input variables, it generates a set of values by dividing
the sample space of each variable into m intervals of equal prob-
ability (where m is the number of required model runs) and one
value is randomly selected from each interval.
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Regression analysis sensitivity

Using the least squared method, the model input variables Xj

(1≤ j≤ p) and the model output Y are used to construct a linear
model which can be written as:

Yk = b0 +
∑p
j=1

bj.X jk + 1k = Ŷk + 1kk = 1, . . . , m, (4)

where p is the number of the input variables; bj (1≤ j≤ p) is the
ordinary regression coefficients (ORC) of the model output; εk is
the regression residual; and Ŷk is the regression-estimate of the
model output for kth model run which represents the best linear
prediction. The signs of the coefficients b1, b2, …, bp indicate
whether Yk increases (i.e., a positive coefficient) or decreases
(i.e., a negative coefficient) as the corresponding Xjk values
increases. The main drawback of the ORC method is the depend-
ence of coefficients on physical units of variables and therefore
these quantities cannot be compared with each other (Helton
et al., 2006). Because of this, the ORC in Eqn (4) is expressed
in the standardized regression coefficients (SRC) or normalized
regression coefficients (NRC) forms (Saltelli et al., 2000a) as:

Ŷ − �Y

Ŝ
=

∑p
j=1

b(s)j · Xj − �Xj

Ŝj
,

and

Y
�Y
=

∑p
j=1

b(n)j · Xj

�Xj
,

where [�Y , Ŝ] and [�Xj , Ŝj] are the means and standard deviations
of (Y1,…, Ym) and (Xj1,…, Xjm); and b(s)j and b(n)j are the SRC and
NRC coefficients, respectively. These new coefficients may be
obtained easily from the ORC:

b(s)j = bj.
Ŝj
Ŝ

and b(n)j = bj.
Xj

Y
.

b(s)j and b(n)j measure respectively the effect of moving each
input variable away from its mean by a fixed fraction of its stand-
ard deviation and the relative change DY/Ŷ of Y due to relative
change of DXj/X̂j, while the other variables remain constant.
The regression study is usually associated with the coefficient of
determination R2 which is computed using the variance of the
predicted values in relation to the variance of the observed
ones. More specifically, if R2 is close to 1 then the linear relation-
ship is strong. The usefulness of the coefficient R2 in sensitivity
analysis is limited by the fact that when additional variables are
added to the regression equation, the value of R2 increases even
when these variables do not significantly improve the regression
equation (Janssen, 1994). Because of this, the adjusted R2

adj is usu-
ally used instead:

R2
adj = 1− (1− R2)× m− 1

m− p− 1
, (5)

where m is the model runs and p is the number of the input vari-
ables. The adjusted R2

adj provides a measure of the extent to which
the regression model can match the observed data and it is more

appropriate for a multiple linear regression than the coefficient of
determination R2 (Janssen et al., 1992; Janssen, 1994).

Linear correlation analysis sensitivity

The linear correlation coefficient (LCC) measures the strength of
the linear relationship between the input variable Xj and the out-
put Y; it can be written as:

r(Xj, Y) =
∑m

k=1 (X jk − �Xj)(Yk − �Y)																																					∑m
k=1 (Xjk − �Xj)

2 ∑m
k=1 (Yk − �Y)2

√ , (6)

where �Xj =
∑m

k=1 Xjk/m and �Y = ∑m
k=1 Yk/m. LCC is always

ranged between −1 and +1, values close to either these extremes
indicate a strong correlation, while small absolute values indicate
little or no correlation.

Statistical performance indices

The quantitative evaluation of models is usually made through
statistical performance analysis that is presented and widely
used in many works. The statistical indices which we will use
here are defined as (Hanna et al., 1993; Chang & Hanna, 2004):

the fractional bias (FB) where the general expression is given
by

FB = 2× Cp − Co

Cp + Co
, (7)

where Cp and Co are model predictions and observations of pollen
concentration; C is the average over the dataset. FB produces
values ranged along a linear scale and the systematic bias refers
to the arithmetic difference between Cp and Co, advantages of
FB is that it is a dimensionless number, symmetrical and
bounded; the fractional bias values are ranged between −2.0
(extreme under-prediction) to +2.0 (extreme over-prediction).

Like FB, the geometric mean bias (MG) is a measure of mean
bias and indicate only systematic errors which lead to always over-
estimation or underestimation of the measured values. MG is
defined as

MG = exp (ln (Cp)− ln (Co)), (8)

It is clear to see that MG value greater than 1 implies that the
model underestimates and an MG value less than 1 that the
model overestimates.

The normalized mean square error (NMSE) and the geometric
mean variance (VG) are measures of scatter and reflect both sys-
tematic and unsystematic (random) errors. NMSE is an estimator
of the overall deviations between predicted and measured values.

NMSE = (Co − Cp)
2

Co × Cp
, (9)

The normalization by the product Co × Cp ensures that the
NMSE will not be biased towards models that over-predict or
under-predict. Smaller values of NMSE denote better model per-
formance, however high NMSE values do not necessarily mean
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that a model is completely wrong. The VG is given by

VG = exp ((ln (Co)− ln (Cp))
2) (10)

According to Ahuja and Kumar (1996) and Kumar et al. (1993),
the performance of a model can be deemed acceptable if: |FB| <
0.30, 0.75 < MG < 1.25, 1.00 ≤ VG < 4.00 and NMSE < 1.50.

A perfect model would have MG and VG = 1; and FB, and
NMSE = 0. However, MG and VG are known to be strongly influ-
enced by extremely high and low values, while FB and NMSE are
more influenced by high observed and predicted concentrations
(Chang and Hanna, 2004).

Methodology: sensitivity analysis and inferred pollen
emission rates

The main objective of this paper is to infer the pollen emission rate
from measurements and simulations of pollen deposition rates in a
canopy gap for hybrid maize of 2.02 m height. The experiment was
carried out unfortunately only over 1 day on 8 August 2008 on a
0.5 ha (120.4 × 41m2) maize crop in Grignon, France (48°50′N,
1°56′E, 101 m a.s.l.) with a row spacing of 0.8 m and plant density
of 9.5 plants/m2, however, the developed methodology should be
applied for multiple days. Measurements were done when released
pollens by plants were high and the leaf area density is expressed in
horizontal and vertical projections where ranges of variability are
defined below. The ground deposition rate was recorded in a can-
opy gap of 2.4m diameter at seven distances (0.0, 0.4, 0.8, 1.2, 1.6,
2.0 and 2.4 m) on a line parallel to the row and to the wind direc-
tion, starting where the airflow entered the gap and ending at the
downwind edge of the plants encircling the gap. A container was
placed at the height of the tassel base in the first inter row of
maize upwind of the canopy gap to measure pollen emission
rate. These measurements will be considered to provide good
approximations of the real pollen emission rates. Measurements
were recorded during 30min intervals with six intervals recorded
between 10:15 and 13:15 UTC where the maximum pollen
emission rate typically occurs (Scott, 1970; Gregory, 1973).

Deposition rates were measured using containers (diameter =
50 mm, height = 70 mm) filled with 30 ml of an electrolyte solu-
tion (Coulter Isoton, Beckman USA) and the amount of pollen
in the containers were counted by using an automatic counter
(Coulter Multisizer III, Beckman, USA). The wind speed and glo-
bal radiation were recorded at 5 m above the canopy while relative
humidity, rainfall, water vapour pressure, water vapour pressure
deficit, presence of wetness and temperature were recorded at
plant height. Each meteorological variable was averaged over
successive 30 min intervals, as for the deposition measurements.

To start, sensitive analysis of the pollen deposition in the canopy
gap according to seven input variables of SMOP was performed.
These variables describe pollen and canopy characteristics as well
as pollen interactions with its environment. There are four continu-
ous variables: two variables of the Gaussian distribution of pollen
settling velocity (mean, meanWs, ranged from 0.15m/s, which cor-
responds to dry pollen to 0.35m/s, which corresponds to fresh pol-
len and standard deviation, StdWS, ranged from 0.01 to 0.06 m/s)
(Aylor, 2002; Loubet et al., 2007; Marceau et al., 2012); horizontal
and vertical projections of the leaf area density LADx and LADz,
respectively (LADx ranged from 0 to 0.55m2/m3 and LADz ranged
from 0 to 0.65m2/m3, Drouet (2003)). More specifically, LADx

influences deposition due to the gravitational settling, and for

example, LADx = 0m2/m3 means that no deposition occurs within
the canopy due to the gravitational settling. While LADz influences
deposition due to the inertial impaction, LADz = 0m2/m3 means
that no deposition occurs within the canopy due to the inertial
impaction. In addition, there are three 2-level variables (Yes or
No): deposition on leaves (Df); resuspension of pollen on vegeta-
tion and ground (Rp); and horizontal pollen fluctuations due to
the wind (1D). In case when no deposition on leaves will be con-
sidered (Df = 1) we impose the probability of deposition trajectories
equal to zero. A detailed description of the three 2-level variables
Df, Rp and 1D as well as a description of their eight possible
combinations are given in Table 1.

Due to the difficulty to describe correctly the turbulence flow in
the canopy gap, as we detail in the Discussion section, the follow-
ing SMOP parameters were estimated using meteorological data;
wind speed (4.06m/s), canopy height (2.02 m), su/u∗ and
sw/u∗ above the canopy were set to 2.6 and 1.25, respectively, neu-
tral conditions were assumed. The crop length upwind and down-
wind of the gap (105 and 13m) and the assumed released pollen
rate to the atmosphere was set at 100 grains/m2/s. Figure 1
describes the geometric configuration of the experimental study.

The output of the model considered here is the pollen depos-
ition rate in the centre of the canopy gap which is a typical practice
configuration for measurements of pollen deposition on the ground
required to infer the pollen emission rate. To do this and to exam-
ine how the uncertainty in the variable estimates affects the depos-
ition rate, the Latin hypercube sampling is used. This technique, as
noted above, allows exploration of the full variable space with a
greatly reduced number of model runs (Iman, 1992). Therefore,
only 105 sets of variables are created to run the model.

In the first approach, the sensitivity methods described in the
previous subsections were applied independently to the seven
variables. As a second approach, the three 2-level variables were
replaced by a unique discrete variable that has been named here-
after as interaction representing the eight combinations of the
three 2-level variables. To finish, for a set of SMOP parameters,
inferences of pollen emission rate were obtained corresponding
to the time intervals where pollen deposition rates were measured.
Pollen emission rate was inferred by assuming that the ratio
between the simulated pollen deposition rate (Dsimulated) and the
measured pollen deposition rate (Dreal) is equal to the ratio
between the simulated pollen release rate (Ssimulated = 100 grains/
m2/s) and the inferred pollen emission rate (Sreal).

Ssimulated

Sreal
= Dsimulated

Dreal
⇔ Sreal = Ssimulated × Dreal

Dsimulated
(11)

For a given time interval, the pollen release rate is inferred
from the measured deposition rate at seven distances in the can-
opy gap following Eqn (11). These inferred estimations are used
to compute an average and a standard error of pollen emission
rate. To assess the influence of SMOP input variables on the
inferred pollen release rate, SA is done using Eqn (11) for differ-
ent interactions.

Results

In the current work, the sensitivity analysis was done according to
the following seven variables described previously in the method-
ology section (meanWS, StdWS, LADx, LADz, Df, Rp, 1D). Results
of general regression and correlation analysis are shown in
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Table 2. For this general analysis, SRC method shows that the pol-
len deposition is mainly affected by 1D,Df and meanWS variables,
while NRC shows that the more important variables are Df, LADz

and meanWS. Results given by LCC method show the linear rela-
tionship between the input variables and the output pollen depos-
ition. LCC method reveals that the output is mainly affected by
1D, Df, Rp and meanWS, and is weakly dependent on LADz.
Because of the difficulties to assess accurately the impact of
each 2-level variable and to take into account interactions between
the three 2-level variables a unique discrete variable was created
corresponding to a combination of the three variables.

Interaction values are interpreted as follows. The first character
corresponds to the variable Df; the second character corresponds
to the variable Rp; and the third character corresponds to the vari-
able 1D (e.g., interaction 010 means that the model includes
deposition on leaves, 0% of the impacted pollen on leaves and
ground rebound, and taking into account horizontal and vertical
pollen fluctuations due to the turbulence).

The Boxplot (Fig. 2) shows clearly the effect of Df variable on
the simulated pollen deposition rate for the eight interactions.
Furthermore, interactions when deposition on leaves is taken
into account lead to much lower levels of the simulated pollen

Table 1. Description of the 2-level parameters which constitute the eight interactions used to conduct a sensitivity analysis of the model with a description of each
of the eight possible combinations of the three variables Df, Rp and 1D

Variable No (0) Yes (1)

Df Pollen deposition on leaves and pollen impacted on stems No pollen deposition on leaves and no pollen
impacted on stems

Rp Pollen rebound: 75% of impacted pollen return in the air + pollen rebound
on the ground in the function of pollen velocity

No pollen rebound on leaves and ground among
the 75% of the impacted pollen

1D Pollen trajectories are sensitive to both horizontal and vertical fluctuations
due to the turbulence

Pollen trajectories are sensitive only to vertical
fluctuations due to the turbulence

Combination of Df
Rp 1D

Description of the included model interaction

000 Deposition on leaves, 75% of the impacted pollen on leaves and ground rebound, and taking into account horizontal and vertical
pollen fluctuations due to the turbulence

001 Deposition on leaves, 75% of the impacted pollen on leaves and ground rebound, and taking into account only vertical pollen
fluctuations due to the turbulence

010 Deposition on leaves, 0% of the impacted pollen on leaves and ground rebound, and taking into account horizontal and vertical
pollen fluctuations due to the turbulence

011 Deposition on leaves, 0% of the impacted pollen on leaves and ground rebound, and taking into account only vertical pollen
fluctuations due to the turbulence

100 No deposition on leaves, 75% of the impacted pollen on the ground rebound, and taking into account horizontal and vertical pollen
fluctuations due to the turbulence

101 No deposition on leaves,75% of the impacted pollen on the ground rebound, and taking into account only vertical pollen fluctuations
due to the turbulence

110 No deposition on leaves, 0% of the impacted pollen on the ground rebound, and taking into account horizontal and vertical pollen
fluctuations due to the turbulence

111 No deposition on leaves, 0% of the impacted pollen on the ground rebound, and taking into account only vertical pollen fluctuations
due to the turbulence

Fig. 1. Configuration of the computational domain with the mean wind direction and canopy dimensions. Seven containers were placed in the canopy gap at
ground level, on a line parallel to the wind direction. Another container was placed in the first inter-row of maize, upwind of the canopy gap and at the height
of the tassel base.
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deposition rates. Also, the variance of these deposition rates is
more important when horizontal fluctuation is not taken into
account. Deposition corresponding to interactions 010 and 011
are lower because there is deposition on leaves and no resuspen-
sion inducing strong retention of pollen by plants which shows
the influence of the Rp variable when deposition on leaves is
taken into account.

To explain the variation of deposition observed for each inter-
action, regression and correlation analysis were conducted on the
four remaining continuous variables. Corresponding results are
shown in Figs 3 and 4, and Table 3. The scatterplots (Fig. 3)
and the adjusted R2

adj coefficient of determination (Table 3)
show that the SMOP-modelled pollen deposition rate at the
seven positions in the canopy gap may be estimated with a linear
regression model except for interaction 100 (R2

adj < 0.6) for which
the model is then non-linear. Table 3 shows that variation in
meanWS has a significant effect on outputs for models in six
out of eight interaction cases (with the exception of 010 and
011). NRC and ORC are positive which means an increase of
meanWS leads to an increasing of deposition in the gap. The vari-
ation in LADz has a significant effect on outputs for models in
three interactions (000, 001 and 011), while variation in LADx

has a significant effect on outputs for models in two interactions
(000 and 001). Variation in StdWS is only significant for inter-
action 010. The correlation analysis results shown in Fig. 4 are
similar to regression analysis, taking into account the effects of
interactions. When no deposition on leaves is taken into account,
the meanWS variable is the main correlated variable with depos-
ition rate; while LADz variable is more correlated when deposition
on leaves is taken into account.

The quality and performance of models are usually presented
by drawing a scatter diagram using predicted and observed values
(when observations are available). Observed deposition rates were
calculated from estimations of the number of pollen grains col-
lected in each container and time of exposure. Figure 5 shows
the measured deposition rates as a function of downwind distance
in the canopy gap at different times. The figure reveals that depos-
ition rates are approximately unchangeable with distance in the
canopy gap moreover the standard deviation of pollen deposition
rates are ranged from 60 grains/m2/s at 10:15 UTC to 15 grains/
m2/s at 12:45 UTC, while the mean of deposition rates are ranged
from 524 grains/m2/s at 10:15 UTC to 84 grains/m2/s at 12:45
UTC. Figure 6 represents a scatter diagram between measured
and inferred pollen emission rates for interactions 110 and 111

which seem to be good parameterizations of the model as
shown in Table 4. The figure provides an immediate visualization
of the overall model performance. This direct visual inspection
shows that the inferred pollen emission rate tended to be slightly
larger than those measured. This is due to several factors as
explained in the discussion section. In fact, most of the points
are predicted within a factor of two, the model appears then to
have a good performance qualitatively for these two interactions.
This is re-affirmed from the values of statistical performance
measures given in Table 4, which provides a quantitative evalu-
ation of the model including the parameters FB, MG, NMSE
and VG to specify which of the eight 2-level interactions gives
good results.

Figure 7 shows the measured and inferred emission rates using
the SMOP model for interactions 001, 110 and 111 as a function of
time. Measured and inferred emission rates decreased with time
and the inferred ones are higher than the measured ones. These
profiles show the quality of the model parameterization for inter-
action 111. Furthermore, measured rates decrease with time
and are ranged at 10:15 UTC from 590 grains/m2/s at 0.8 m to
438 grains/m2/s at 2.0 m, and at 12:45 UTC from 107 grains/m2/s
at 1.6 m to 60 grains/m2/s at 2.4m. However, the inferred emission
rates, for interaction 110 (resp. 111), are ranged from 1022 to 615
grains/m2/s (resp. from 792 to 536 grains/m2/s) at 10:15 UTC, and
from 224 to 138 grains/m2/s (resp. from 169 to 104 grains/m2/s) at
12:45 UTC. These profiles show also the quality of the model par-
ameterization for interaction 111. Although the inferred pollen
rates are higher than the measured ones, these results are similar
to those found by Jarosz et al. (2005) and Marceau et al. (2012).

Table 4 summarizes the SMOP model performance: all statis-
tical measures presented in this table are based on measured v.

Table 2. General regression and correlation analysis: linear correlation
coefficient (LCC), standardized regression coefficients (SRC) and normalized
regression coefficients (NRC) are computed using ordinary regression
coefficients (ORC) and equations given in the section on sensitivity analysis
methods

Variable ORC SRC NRC LCC

meanWS 9.89 0.27 0.20 0.55

StdWS 14.50 0.07 0.04 −0.16

LADx −2.95 −0.06 −0.07 −0.14

LADz −8.54 −0.10 −0.23 −0.22

Df 14.35 0.40 0.59 0.69

Rp −3.09 −0.10 −0.12 0.59

1D 1.19 0.66 0.05 −0.85

Fig. 2. Boxplots of 105 model run representing the simulated pollen deposition rate
(grains/m2/s) in the canopy gap and classed per interaction. The 105 sets of variables
are divided per interaction (defined in Table 1) as: 000: 14 model runs; 001: 12 model
runs; 010: 11 model runs; 011: 15 model runs; 100: 13 model runs; 101: 14 model runs;
110: 14 model runs; 111: 12 model runs. The endpoints of the box are formed by the
lower and upper quartiles of the data, that is, X0.25 and X0.75. The line within the box
represents the median, X0.50. The bar above the box extends to the minimum of
X0.75 + 1.5(X0.75- X0.25) and the maximum value. The bar at the bottom of the
box extends to the maximum of X0.25–1.5(X0.75- X0.25) and the minimum value.
The observations falling outside of these bars are shown in marks.
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inferred pollen deposition rates, the calculated values are mostly
within the range of acceptable model performance for interactions
110 and 111 corresponding to the fact that the model includes no
deposition on leaves, no resuspension, and taking (or not) into
account horizontal pollen fluctuations. And as presented in
Fig. 7, these two interactions are used to infer maize pollen emis-
sion rates. For the remaining interactions, the results are out of
the desired ranges.

Discussion

The SMOP model has been evaluated in many experimental stud-
ies with various hybrids, for example, studies conducted in France
at Montargis and Grignon in 2000–2002, 2008 and 2009 (Jarosz
et al., 2004, 2005; Marceau et al., 2011, 2012). During these
experiments, airborne concentration and deposition rates of
maize pollen were measured at several locations within and down-
wind from various maize fields. All of these validations were done
without a detailed sensitivity analysis of the model, such as that
conducted in the current work, to pinpoint uncertainties in
maize pollen deposition rates as well as in inference of pollen

emission rates. Note that Jarosz et al. (2004) and Marceau et al.
(2012) carried out an SA of the model but only to the settling vel-
ocity, and showed that measured and modelled deposition rates
performed at downwind distance x = 3m and x = 10 m were
very sensitive to this uncertain variable.

Using the surface wetness index measurements Jarosz et al.
(2003) and Marceau et al. (2012) have shown that the start of
the pollen release in the morning appeared to coincide with the
drying of the crop, and the largest concentration and deposition
usually occurs at around 10:00 UTC (Scott, 1970; Gregory,
1973; Marceau et al., 2011) which is the time when our experi-
ment was done. Furthermore, Marceau et al. (2011) and Sofiev
et al. (2013) have explored and quantified the effects of both
meteorological variables and variety on pollen emission. Their
data analysis revealed the effects of temperature and relative
humidity on both diurnal and seasonal patterns of emission.
The rate of pollen emission was higher when temperatures were
high and lower when the humidity was high. In addition, they
have shown that the pollen emission rate is higher when the
wind speed is high. However, direct measurement of pollen
release rate is not easy to quantify as this flux remains difficult
to estimate. Jarosz et al. (2003) and Marceau et al. (2011) inferred

Fig. 3. Simulated pollen deposition rate (grains/m2/s) in the canopy gap. The assumed pollen release rate to the atmosphere is 100 grains/m2/s. This scatterplot
represents 105 model runs classed per interaction using a colour for each one. Lines represent the linear regression.
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the release rate by combining pollen measured directly on the tas-
sel and deposition measured above the source using the slope of
the linear regression.

In this study, the inferred pollen emission rate is calculated
using Eqn (11) for only two validated interactions 110 and 111.
However, before conducting this inference, we have to inspect

Fig. 4. Linear correlation coefficients for each interaction, between simulated deposition rate in the canopy gap and the four continuous variables: mean of pollen
settling velocity, meanWS (m/s); standard deviation, StdWS (m/s); horizontal projection of the leaf area density, LADx (m

2/m3); and vertical projection, LADz (m
2/m3).

Table 3. Summary of regression analysis classed per interaction: ordinary regression coefficients (ORC) and normalized regression coefficients (NRC)

Variable
meanWs StdWS LADx LADz

R2adjInteraction ORC NRC ORC NRC ORC NRC ORC NRC

000 22.90* 0.76 5.58 0.02 −3.87* −0.17 −19.95* −0.82 0.95

001 7.58* 0.20 21.46 0.09 7.39* 0.15 −22.39* −0.79 0.94

010 4.64 1.70 −32.75* −1.50 −6.01 −0.59 −12.12 −3.01 0.87

011 −31.20 −2.54 −63.42 −0.72 −2.70 −0.22 −21.30* −1.96 0.77

100 24.55* 0.32 −13.25 −0.02 0.19 0.01 1.26 0.02 0.58

101 20.52* 0.27 23.84 0.04 0.68 0.01 2.30 0.03 0.76

110 33.26* 0.44 4.95 0.01 1.86 0.03 −0.81 −0.01 0.82

111 30.92* 0.33 −9.80 −0.18 −4.48 −0.04 −1.99 −0.04 0.78

*indicates the most significant parameters at the 1% level on the basis of the T-test statistic. The last column shows the adjusted R2adj computed per interaction.
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the influence of environmental variables on the simulated pollen
deposition rates by using a global sensitivity analysis. Table 2
shows that increasing the meanWS seems to increase the pollen
deposition rate in the canopy gap; this may be explained by the
fact that the horizontal wind speed in the canopy gap is low,
and inertia and crossing trajectories effect of heavy particles is

small (Snyder and Lumley, 1971; Reynolds, 2000). The same
result is also shown for detailed sensitivity analysis by including
interactions (Fig. 3 and Table 3). Nevertheless, turbulence inten-
sity increases immediately downwind of a roughness change
(Gash, 1986) and, in particular, much more in a canopy gap.
One can see that deposition rates decrease when the leaf area

Fig. 5. Measured deposition rate (grains/m2/s) as a function of downwind distance in the canopy gap at different time. Measurements were recorded during 30-min
intervals with six intervals recorded between 10:15 and 13:15 UTC and were calculated from estimations of the number of pollen grains collected in each container
and time of exposure.

Fig. 6. Measured pollen emission rate versus inferred pollen emission rate (grains/m2/s) using the model at seven distances in the canopy gap showed only for (a)
interaction 110 and (b) interaction 111 as defined in Table 1. The solid line is the one-to-one between observed and inferred pollen emission rates whereas the
dotted lines correspond to factor of two (i.e., y = 0.5 × x and y = 2 × x).
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density, which is expressed in horizontal and vertical projections,
increases. Indeed, when modelling pollen trajectories, not all of
the pollen deposited on leaves and ground rebound. The global
regression shows that SRC, NRC and LCC methods provide a dif-
ferent order of the more influenced variables on the simulated
deposition rates (Table 2). This may be due to the discrete
variables as well as to the variances of the inputs and the output
pollen deposition rate, for example, the variance of LADz is equal
to approximately 169 times the variance of StdWS; and the vari-
ance of LADx is equal to approximately 8 times the variance of
meanWS. More accurately, SRC and NRC coefficients are related
as follows.

b(s)j = b(n)j · VXj

VY
,

where VXj and VY are the coefficients of variation for Xj and Y,
respectively. This global sensitivity analysis showed that the real

influence of each of the seven input variables on deposition
rates cannot be concluded.

Jarosz et al. (2004) have shown that for larger settling velocity
the model simulates the deposition rates better near the source
but does not simulate the concentration profiles correctly, espe-
cially at x = 10 m, where measured concentrations are greatly
underestimated for large meanWS. These results suggest that dis-
crepancies in concentration and deposition reported by the model
near the source are unlikely to be solely due to pollen settling vel-
ocity. To better understand this discrepancy and since no definite
results could be concluded from the global sensitivity analysis,
eight combinations of the three 2-level variables were introduced.
By considering these combinations, the SMOP model may be
represented as a linear model, which is established by the coeffi-
cient of determination R2

adj (Table 3). Simulated pollen deposition
rates are given in Figs 2 and 3, and the calculated values tended to
be in the same range as those reported by Aylor et al. (2006).
Figure 2 shows great variability of pollen deposition; furthermore,

Table 4. Summary of the four statistical performance parameters: the fractional bias (FB), the geometric mean bias (MG), the normalized mean square error (NMSE)
and the geometric mean variance (VG) classed per interaction as defined in Table 1

Statistical
parameters 000 001 010 011 100 101 110 111

Performance measures Chang and Hanna
(2004)

FB 0.97 1.42 0.91 1.30 0.43 0.38 0.02 0.09 |FB| < 0.30

MG 2.92 6.19 2.87 4.97 1.57 1.44 1.02 1.15 0.75 < MG < 1.25

NMSE 1.23 4.07 1.26 2.86 0.36 0.40 0.13 0.08 NMSE < 1.50

VG 3.26 7.34 5.04 8.88 2.20 1.65 1.20 1.27 1.00≤ VG < 4.00

Fig. 7. Measured and inferred pollen emission rates (grains/m2/s) estimated using the restricted setting where our model includes no deposition on leaves, no
resuspension and either taking both horizontal and vertical pollen fluctuations into account or only the vertical, which correspond to 110 and 111 interactions
versus the interaction 001 as defined in Table 1.
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when the canopy and ground are perfect sinks (i.e., no pollen
rebound on leaves and ground among 75% of the impacted pol-
len) and horizontal fluctuations are accounted for, the amount
of pollen reaching the deposition cup will decrease almost to
zero (deposition near zero). One could interpret that an effect
of an increase of probability of impaction is due to increased par-
ticle horizontal velocity. This also explains the larger correlation
coefficient of LADz in Fig. 4 for 001 when compared to 011.
Meanwhile, the interactions 100 and 101 show positive correla-
tions between deposition rate and LADz while all other combina-
tions show negative correlations (Fig. 4). This is probably because
the 100 and 101interactions correspond to maximum rebound on
plants and ground while 110 and 111 have rebound only on the
ground. This is the only situation for which the increase of
LADz show an effect via lowering the wind speed profile in the
canopy (which depends on LADz), while in any other case, the
deposition by impaction dominates. In the literature, little infor-
mation is known about pollen resuspension from either leaves
or the ground. Aylor et al. (2003) have shown experimentally
that pollen could be quite easily dislodged from maize leaves by
either leaf shaking, roll-off or small wind speed (0.2–0.5 m/s).
However, in the current experiment, the wind speed was fixed
at 4.06 m/s which explain the neglected effect of 1D variable on
the deposition rate.

Daily measured pollen emission rates and therefore deposition
rates depend on the local weather conditions (e.g., Scott, 1970;
Gregory, 1973; Marceau et al., 2011). This explains the results
given in Fig. 5: measured deposition rates are approximately
unchangeable with distance in the canopy gap and do not
decrease as is the case when we consider deposition rates down-
wind the source (Jarosz et al., 2003; Marceau et al., 2011;
Torimaru et al., 2012). This result is certainly due to the turbu-
lence intensity in the canopy gap and may explain the discrepancy
between measured and simulated pollen deposition rates (Figs 6
and 7). Indeed, the empirical parameterization of turbulence
field in the transition zone used is not the correct one and future
versions of the model should take this conclusion into account.

Variations in input variables (Fig. 7) have a large effect on the
inferred pollen emission rates. Dupont et al. (2006) showed that a
simplified parameterization of turbulence in the area between two
different canopies leads to underestimates of pollen deposition
close to the field. However, the current work found the opposite,
i.e. the simulated pollen deposition rates overestimate the mea-
sured ones (Figs 6 and 7). The meteorological conditions during
these experiments were not reported in sufficient detail to draw
definite conclusions about quantities of maize pollen released
and distance of pollen dispersal in the canopy gap. Various
assumptions are cited below to explain this overestimation:

(1) the surface is dynamically heterogeneous that could perhaps
lead to overestimation of the turbulence intensity in the can-
opy gap (Flesch et al., 1995): larger turbulence intensity
would induce larger vertical diffusion, which favours larger
deposition rates near the source. Indeed, it is difficult to
describe correctly the turbulence flow in the transition zone
at the downwind edge of the source and in particular in a can-
opy gap (Gash, 1986; Heisler and DeWalle, 1988; McCartney
and Lacey, 1991). They showed that, immediately downwind
of a roughness change, the turbulence intensity increases
three times over normal conditions. By taking into account
these results, the SMOP model includes an empirical param-
eterization of the turbulence field for heterogeneous

landscapes. However, this parameterization, which was also
used in the current simulation, is possibly not valid for the
canopy gap that is established by an approximately constant
deposition rate with distance (Fig. 5),

(2) by considering interactions 110 and 111, i.e. where there is no
deposition on leaves and no rebound of pollen, the variable
meanWS is the only significant variable (Fig. 3); therefore,
lower meanWS leads to less deposition. The settling velocity,
as well as many of the biophysical characteristics of pollen, is
mainly determined by pollen water content (Di-Giovanni
et al., 1995; Aylor, 2003; Loubet et al., 2007; Marceau et al.,
2012). Indeed, pollen water content affects pollen mass, diam-
eter and density which determine pollen settling velocity as
formulated by Di-Giovanni et al. (1995). In the current
work, the simple model proposed by Marceau et al. (2012)
was used to predict accurately pollen water content at emis-
sion as a function of air vapour pressure deficit. In our opin-
ion, this simple model computes with uncertainty pollen
water content, which affects the pollen settling velocity.
Hence, the overestimation of the deposition rate would be
linked to an erroneous parameterization of intervals of the
two variables describing the Gaussian distribution of pollen
settling velocity,

(3) biased emission and deposition rates measurements; the cups
used to collect the pollen grains influence their deposition on
the ground. McCartney and Lacey (1991) showed experimen-
tally that numbers of spores collected on horizontal micro-
scope slides openly exposed were almost double to those on
slides placed on a table or at the bottom of large cups.
Hence, collecting pollen in containers could have led to an
underestimation of the deposition rate in the current work
(McCartney et al., 1991), and

(4) the quantity of pollen deposited in the source itself was
estimated to range from 17 to 50% (Jarosz et al., 2004).
Then, by taking into consideration interactions 110 and 111
where there is no pollen deposition on leaves, the simulated
deposition rates automatically overestimate the measured
deposition ones in the canopy gap.

The real pollen emission rate at a given time is always difficult to
determine. To this end, one should use the inference methodology
set out in the current paper for calibration of the parameters by
combining the Lagrangian stochastic model with a high-
resolution version of the meteorological flow model, if they
have to be used in complex experiments. Without any calibration
of the model as detailed in this work, the inference of pollen
emission rate appears to be uncertain.

Conclusion

The current study has shown that the inferred emission rate over-
estimates the measured quantities. Sensitivity Analysis has shown
that simulated pollen deposition rates are mainly influenced by
and correlated with the mean gravitational settling velocity and
to the leaf area density. The overestimated emission rate could
possibly be as a result of (i) biased emission and deposition
rates measurements, (ii) gravitational settling velocity of pollens,
(iii) pollen deposition on leaves or pollen resuspension from the
leaves or the ground. However, the model overestimation of
the emission rate could also be due to a parameterization of the
turbulent field in the canopy gap.
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