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Abstract. If a countable amenable group G contains an infinite subgroup 0, one may
define, from a measurable action of 0, the so-called co-induced measurable action of G.
These actions were defined and studied by Dooley, Golodets, Rudolph and Sinelsh’chikov.
In this paper, starting from a topological action of 0, we define the co-induced topological
action of G. We establish a number of properties of this construction, notably, that the
G-action has the topological entropy of the 0-action and has uniformly positive entropy
(completely positive entropy, respectively) if and only if the 0-action has uniformly
positive entropy (completely positive entropy, respectively). We also study the Pinsker
algebra of the co-induced action.

1. Introduction
A well-known result of Ornstein [20, 22] states that there is a completely positive entropy
(c.p.e.) non-Bernoulli Z-action of any given entropy. This result was subsequently
generalized by many authors; for example, Ornstein and Shields showed that there is an
uncountable family of pairwise non-isomorphic c.p.e. non-Bernoulli Z-actions with the
same entropy [23], and Feldman [8] found a c.p.e. non-loosely Bernoulli Z-action (each
Bernoulli action is loosely Bernoulli). Kalikow [18] subsequently gave a very simple
example of a c.p.e. non-loosely Bernoulli Z-action. For further results see [12, 17, 21, 25].

A natural extension of a Z-action is the action of an amenable group. A classical result is
that each Z-action on a compact metric space admits an invariant Borel probability measure
on the space, and it is now well known that the amenability of the group suffices for the
existence of an invariant Borel probability measure. The class of amenable groups includes
finite groups, solvable groups and compact groups. However, non-amenable groups such
as the free group on two generators can admit actions on a compact space with no invariant
Borel probability measures.
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The foundations of the theory of amenable group actions were laid by Ornstein and
Weiss [24]. Rudolph and Weiss [26] developed the notion of c.p.e. in this setting and
solved a long-standing open problem by proving that, for any infinite countable discrete
amenable group action, c.p.e. implies mixing of all orders. Inspired by this, Dooley and
Golodets [6] proved that every free ergodic c.p.e. action of an infinite countable discrete
amenable group has a countable Lebesgue spectrum. Recently, Dooley et al [7] considered
the problem of the existence of a c.p.e. non-Bernoulli action for infinite countable discrete
amenable groups. They proved that if the group contains an element of infinite order then
there exists an uncountable family of pairwise non-isomorphic c.p.e. actions with any given
entropy. In fact, for an infinite countable discrete amenable group G containing an element
of infinite order, one starts from a c.p.e. non-Bernoulli action of a subgroup 0 isomorphic
to Z (by Ornstein’s result and by the assumptions on G and 0, such an action must
exist); [7] constructed the co-induced action of G, which was shown to be non-Bernoulli
and c.p.e.

In general, if 0 is a subgroup of G, [7] used co-induction to construct a G-action from
a 0-action, and proved that co-induction preserves measure-theoretic entropy and that the
co-induced action has c.p.e. (is Bernoulli, respectively) if and only if the original 0-action
has c.p.e. (is Bernoulli, respectively).

In this paper, we consider co-induction for topological group actions. Following [7], for
any infinite countable discrete amenable group G containing an infinite subgroup 0, we
show how to co-induce a continuous 0-action to obtain a continuous G-action. We shall
show that, as in the measure-theoretic case, co-induction preserves topological entropy.
We further investigate the relationship of the original action and the co-induced action with
respect to the properties of (topological) c.p.e. and u.p.e. (uniformly positive entropy).

To explain this a little more, let us recall some results on local entropy from [16],
generalizing [1–4, 9, 11, 13–15]. If an infinite countable discrete amenable group acts on a
compact metric space, its local entropy theory is established by proving a local variational
principle for a given finite open cover; we introduce entropy tuples in both the topological
and the measure-theoretic settings, and prove variational relations between these two kinds
of entropy tuples. It is then straightforward to define u.p.e. and c.p.e. topological actions.
(See §6 for details.)

We shall show that the induced topological action has c.p.e. (respectively u.p.e.) if and
only if the original action has c.p.e. (respectively u.p.e.). In order to do so, we define
and study the relative Pinsker algebra of a measurable dynamical system and relative
c.p.e. actions in a measure-theoretic setting, proving that the Pinsker algebra of the co-
induced G-action is the product of the Pinsker algebra of the 0-action. Hence, we
characterize entropy tuples of the G-action by entropy tuples of the 0-action.

The paper is organized as follows. Section 2 is devoted to preliminaries. In §3, we study
the relative Pinsker algebra of a measurable dynamical system and relative c.p.e. actions in
the measure-theoretic setting. In §4, we recall from [7] the definition and basic properties
of measure-theoretic co-induction, and introduce and discuss it in the topological setting.
We prove that co-induction preserves topological entropy. In §5, we describe the Pinsker
algebra of the co-induced action. Then, using the results of the previous sections, we prove
in §6 that the co-induced (topological) action has u.p.e. (respectively c.p.e.) if and only if
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the original action has u.p.e. (respectively c.p.e.). In §7, we discuss the situation for more
general groups.

2. Preliminaries
In this section, we shall give some definitions and theorems, which we shall use without
further comment. Further details of these notions may be found in [10, 16, 24, 26, 28, 29].

Let G be an infinite countable discrete group. Denote by FG the set of all non-empty
finite subsets of G. G is called amenable if for each K ∈ FG and any δ > 0, there
exists F ∈ FG such that |F1KF |< δ|F |, where | • | is the counting measure, KF =
{k f : k ∈ K , f ∈ F} and F1KF = (F\KF) ∪ (KF\F). Let K ∈ FG and δ > 0. Set
K−1
= {k−1

: k ∈ K }. A ∈ FG is called (K , δ)-invariant if |K−1 A ∩ K−1(G\A)|< δ|A|.
A sequence {Fn}n∈N in FG is called a Følner sequence for G if for each K ∈ FG and δ > 0,
Fn is (K , δ)-invariant whenever n ∈ N is sufficiently large. It is not hard to see that G is
amenable if and only if G has a Følner sequence.

Throughout the paper, let G denote an infinite countable discrete amenable group and 0
an infinite subgroup of G (and so 0 is also amenable). Let eG denote the unit of the
group G. Throughout this section, we take {Fn}n∈N to be a Følner sequence for G.

2.1. Topological dynamical systems. Let X be a compact metric space. By a TDS
(topological dynamical G-system) (X, G) we mean that G is a group of homeomorphisms
of X with eG acting as the identity map. When X is not a singleton, we say that the TDS
(X, G) is non-trivial.

For ∅ 6=W ⊆ X , denote the diameter of W by diam(W ). Given a family of non-
empty subsets W of X , we set diam(W)= sup{diam(W ) :W ∈W}, and denote by B X

the Borel σ -algebra of X . Denote by M(X) the set of all Borel probability measures
on X , M(X, G) the set of all G-invariant elements in M(X) and Me(X, G) the set of
all ergodic elements in M(X, G), respectively. Note that the amenability of G ensures
M(X, G)⊇Me(X, G) 6= ∅. A cover of X is a finite family of Borel subsets of X whose
union is X , a partition of X is a cover of X whose elements are pairwise disjoint, and a
finite open cover of X is a cover of X whose elements are all open subsets of X . Denote
by C X , P X and C o

X the set of all covers, partitions and finite open covers of X , respectively.
Let U , V ∈ C X . U is said to be finer than V (denoted by U � V or V � U ) if each element
of U is contained in some element of V . We set U ∨ V = {U ∩ V :U ∈ U , V ∈ V} and
U F =

∨
g∈F g−1 U for each F ∈ FG .

Let (X, G) be a TDS, U ∈ C o
X , and take N (U) to be the minimum among cardinalities

of all subfamilies of U covering X . We may define the topological entropy of U by

htop(G, U)= lim
n→+∞

1
|Fn|

log N (U Fn ) (≤log N (U)).

(Observe that the limit in the above expression always exists and the value of the limit is
independent of the choice of the Følner sequence {Fn}n∈N.) The topological entropy of
(X, G) may be defined as

htop(G, X)= sup
U∈C o

X

htop(G, U).
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The following basic facts are easy to obtain.

PROPOSITION 2.1. Let (X, G) be a TDS, U1, U2 ∈ C o
X and F ∈ FG . Then:

(1) htop(G, (U1)F )= htop(G, U1);
(2) htop(G, U1 ∨ U2)≤ htop(G, U1)+ htop(G, U2);
(3) htop(G, U1)≤ htop(G, U2) if U1 � U2; and
(4) if {Vn}n∈N ⊆ C o

X satisfies limn→+∞ diam(Vn)= 0 then limn→+∞ htop(G, Vn)=

htop(G, X).

Let (X, G) be a TDS. For non-empty subsets U, V of X , we introduce NG(U, V )=
{g ∈ G : gU ∩ V 6= ∅}. We say that (X, G) is minimal if Gx

.
= {gx : g ∈ G} is dense in

the space X for each x ∈ X ; transitive if NG(U, V ) 6= ∅ whenever U and V are both non-
empty open subsets of X ; weakly mixing if (Xn, G) is transitive for each n ∈ N, here
Xn
= X × · · · × X (n times); mildly mixing if (X × Y, G) is transitive whenever (Y, G) is

a transitive TDS containing no isolated points; strongly mixing if G\NG(U, V ) is a finite
set whenever U and V are both non-empty open subsets of X .

LEMMA 2.1. Suppose that (X, G) is a transitive TDS without isolated points and that
U, V are non-empty open subsets of X. Then NG(U, V ) is an infinite subset of G.

Proof. Assume on the contrary that NG(U, V ) is a finite subset of G; let NG(U, V )=
{g1, . . . , gn}, n ∈ N. As X contains no isolated points, there exists a non-empty open
subset V ∗ ⊆ V such that U\

⋃n
i=1g−1

i V ∗ has a non-empty interior. Since (X, G)
is transitive and V ∗ ⊆ V , we may choose g ∈ NG(U\

⋃n
i=1g−1

i V ∗, V ∗)⊆ NG(U, V ).
However, by definition, g /∈ {g1, . . . , gn}, a contradiction. Thus, NG(U, V )⊆ G is an
infinite set. 2

Remark 1. Note that there exists an infinite transitive TDS (X, G) containing an isolated
point such that NG(U, V ) is a finite subset of G for some non-empty open subsets U, V
of X . In fact, let G∗ be the one point compactification of G; then G has a natural action on
G∗ and it is easy to check that (G∗, G) is such a TDS.

It is easy to deduce the following basic facts from the definitions:
(1) strong mixing H⇒ weak mixing H⇒ transitivity;
(2) mild mixing H⇒ transitivity (as there exists a transitive TDS containing no isolated

points, for example, take Y to be the compact metric space {0, 1}G and let G act on
Y naturally, then (Y, G) is a transitive TDS containing no isolated points (note that
G is an infinite group));

(3) for a space containing no isolated points, mild mixing H⇒ weak mixing; and
(4) strong mixing H⇒ mild mixing (a direct corollary of Lemma 2.1).

Let (X1, G) and (X2, G) be TDSs. A factor map π : (X2, G)→ (X1, G) is a
continuous surjective map satisfying πg = gπ for each g ∈ G. In this case, we say that
(X1, G) is a factor of (X2, G) and (X2, G) is an extension of (X1, G).

2.2. Measurable dynamical systems. Let (X, B, µ) be a standard Lebesgue space. By
an MDS (measurable dynamical G-system) (X, B, µ, G) we mean that G is a group of
invertible measure-preserving transformations of (X, B, µ) with eG acting as the identity
transformation.
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Let (X, B, µ) be a standard Lebesgue space. As above in the case of a TDS, we
introduce C X and P X . Let α ∈ P X and A⊆ B a sub-σ -algebra. Set

Hµ(α|A)=
∑
A∈α

∫
X
−Eµ(1A|A) log Eµ(1A|A) dµ,

where Eµ(1A|A) is the µ-expectation of the characteristic function 1A with respect to A.
It is a standard fact that Hµ(α|A) increases with α and decreases as A increases. Note
that β ∈ P X naturally generates a sub-σ -algebra F(β) of B; where there is no ambiguity,
we write F(β) as β. Observe that Hµ(α|A)= 0 if and only if α ⊆A (up to µ-null sets).
Set N X = {∅, X}, Hµ(α)= Hµ(α|N X )=

∑
A∈α −µ(A) log µ(A). It is easy to check, for

α, β ∈ P X , that Hµ(α|β) (i.e. Hµ(α|F(β)))= Hµ(α ∨ β)− Hµ(β). More generally, for
a sub-σ -algebra A⊆ B, we have

Hµ(α ∨ β|A)= Hµ(β|A)+ Hµ(α|β ∨A). (1)

Now let (X, B, µ, G) be an MDS with α ∈ P X and A⊆ B a sub-σ -algebra. If A is
invariant, i.e. g−1 A=A (up to µ-null sets) for each g ∈ G, then we may define the
measure-theoretic µ-entropy of α with respect to A by

hµ(G, α|A)= lim
n→+∞

1
|Fn|

Hµ(αFn |A)
(
= inf

F∈FG

1
|F |

Hµ(αF |A)≤ Hµ(α|A)
)
, (2)

where the limit always exists; the second identity is to be proved later. (In particular, the
limit is independent of the choice of the Følner sequence {Fn}n∈N.) Then the measure-
theoretic µ-entropy of (X, G) with respect to A is defined by

hµ(G, X |A)= sup
α∈P X

hµ(G, α|A).

To simplify the notation, when A=N X , we shall omit the qualification ‘with respect
to A’ or ‘|A’. For example, we shall write hµ(G, α)= hµ(G, α|N X ), hµ(G, X)=
hµ(G, X |N X ).

By the proof of [16, Lemma 3.1], we obtain the following lemma.

LEMMA 2.2. Let (X, B, µ, G) be an MDS, α ∈ P X , A⊆ B a sub-σ -algebra of B and
E, F ∈ FG . Then

Hµ(αF |A)≤
∑
g∈F

1
|E |

Hµ(αEg|A)+ |F\{g ∈ G : E−1g ⊆ F}| log |α|.

Here, |α| denotes the cardinality of α.

Proof of the second identity in (2). Recall that if {Fn}n∈N is a Følner sequence of G,
gµ= µ and g−1 A=A (up to µ-null sets) for each g ∈ G; here, (gµ)(B)= µ(g−1 B)
for each B ∈ B. Now let E ∈ FG and n ∈ N. By Lemma 2.2, one has

1
|Fn|

Hµ(αFn |A) ≤
1
|Fn|

∑
g∈Fn

1
|E |

Hµ(αEg|A)+
1
|Fn|
|Fn\{g ∈ G : E−1g ⊆ Fn}| log |α|

=
1
|E |

Hµ(αE |A)+
1
|Fn|
|Fn\{g ∈ G : E−1g ⊆ Fn}| log |α|. (3)
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Note that Fn\{g ∈ G : E−1g ⊆ Fn} = Fn ∩ E(G\Fn)⊆ K−1 Fn ∩ K−1(G\Fn), where
K = E−1

∪ {eG}. Thus, if n ∈ N is sufficiently large then

1
|Fn|
|Fn\{g ∈ G : E−1g ⊆ Fn}|

is arbitrarily small, which implies hµ(G, α|A)≤ (1/|E |)Hµ(αE |A) (using (3)). Now the
conclusion follows since E ∈ FG was chosen arbitrarily. 2

Remark 2. The above proof is a re-working of the proof of [16, Lemma 3.1(4)]. We include
it here for completeness.

The following basic facts are easy to see.

PROPOSITION 2.2. Let (X, B, µ, G) be an MDS, α, β ∈ P X , F ∈ FG and A⊆ B an
invariant sub-σ -algebra. Then:
(1) hµ(G, αF |A)= hµ(G, α|A)≤ hµ(0, α|A)≤ Hµ(α|A)≤ log |α|;
(2) hµ(G, α|A)≤ hµ(G, β|A)+ Hµ(α|β ∨A);
(3) hµ(G, α ∨ β|A)≤ hµ(G, α|A)+ hµ(G, β|A); and
(4) hµ(G, α|A)≤ hµ(G, β|A) if α � β.

Let (X1, B1, µ1, G) and (X2, B2, µ2, G) be MDSs. A factor map π :

(X2, B2, µ2, G)→ (X1, B1, µ1, G) is a measurable map satisfying πµ2 = µ1 and πg =
gπ (up to µ2-null sets) for each g ∈ G. In this case, we say that (X1, B1, µ1, G) is a factor
of (X2, B2, µ2, G) and (X2, B2, µ2, G) is an extension of (X1, B1, µ1, G).

2.3. A variational principle for entropy. Observe that if (X, G) is a TDS and there is a
measure µ ∈M(X, G) then (X, Bµ

X , µ, G) is an MDS, where Bµ
X is the µ-completion of

B X . For simplicity, we also denote this by B X if there is no ambiguity.
The following variational relationship for topological and measure-theoretic entropy is

established in [16, 19, 27].

THEOREM 2.1. Let (X, G) be a TDS. Then

htop(G, X)= sup
µ∈M(X,G)

hµ(G, X)= sup
µ∈Me(X,G)

hµ(G, X).

We also have (see [16], for example) the following proposition.

PROPOSITION 2.3. Let (X, G) be a TDS, α ∈ P X and µ ∈M(X, G). Then • 7→
h•(G, α) and • 7→ h•(G, X) are both affine functions on M(X, G). Moreover, if the
ergodic decomposition of µ is µ=

∫
Me(X,G) θ dλ(θ) then

hµ(G, α)=
∫

Me(X,G)
hθ (G, α) dλ(θ) and hµ(G, X)=

∫
Me(X,G)

hθ (G, X) dλ(θ).

3. Relative c.p.e. for measurable dynamical systems
In this section, we shall introduce and discuss the Pinsker algebra of a given MDS and the
property of relative c.p.e. These will both be important in later sections.
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Let (X, B, µ, G) be an MDS and A⊆ B an invariant sub-σ -algebra of B. Define
P A(X, B, µ, G) to be the sub-σ -algebra of B generated by {α ∈ P X : hµ(G, α|A)= 0}.
This is called the Pinsker algebra of (X, B, µ, G) with respect to A. In the case where A
is the algebra N X of µ-null sets, we write P(X, B, µ, G)= P N X (X, B, µ, G) and call it
the Pinsker algebra of (X, B, µ, G).

It is easy to check that P A(X, B, µ, G) is invariant, A ∨ P(X, B, µ, G)⊆
P A(X, B, µ, G) and, for α ∈ P X ,

hµ(G, α)= hµ(G, α|P(X, B, µ, G)). (4)

We say that (X, B, µ, G) has A-relative c.p.e. if P A(X, B, µ, G)=A (up to µ-null sets),
and c.p.e. if it has N X -relative c.p.e.

The main result of this section is the following theorem.

THEOREM 3.1. Let (X, B, µ, G) be an MDS and A⊆ B an invariant sub-σ -algebra of
B. Then (X, B, µ, G) has A-relative c.p.e. if and only if for each α ∈ P X , and for any
ε > 0, there exists K ∈ FG such that if F ∈ FG satisfies FF−1

∩ (K\{eG})= ∅ then∣∣∣∣ 1
|F |

Hµ(αF |A)− Hµ(α|A)
∣∣∣∣< ε. (5)

Proof. The implicationH⇒ is just [5, Theorem 0.1]. We shall prove⇐H using some ideas
from the proof of [7, Theorem 4.2].

Choose α ∈ P X with Hµ(α|A) > 0. By assumption, for ε
.
=

1
2 Hµ(α|A) > 0, there

exists K ∈ FG such that (5) holds for each F ∈ FG satisfying FF−1
∩ (K\{eG})= ∅.

Now let E ∈ FG and g ∈ E . Obviously, there exists S ∈ FG such that g ∈ S ⊆ E,
SS−1

∩ (K\{eG})= ∅ and (S ∪ {g′})(S ∪ {g′})−1
∩ (K\{eG}) 6= ∅ for any g′ ∈ E\S. It

is not hard to check that E\S ⊆ (K\{eG})S ∪ (K\{eG})
−1S = (K ∪ K−1

\{eG})S, hence
S ⊆ E ⊆ (K ∪ K−1

∪ {eG})S, and one has |E | ≤ (2|K | + 1)|S|. It follows that

1
|E |

Hµ(αE |A)≥
1

(2|K | + 1)|S|
Hµ(αS|A)≥

1
2(2|K | + 1)

Hµ(α|A) (using (5)) > 0.

In the above inequality, let E vary over all elements in FG and then combine with (2) to
obtain hµ(G, α|A) > 0. We have shown that (X, B, µ, G) has A-relative c.p.e. 2

Remark 3. Let (X, B, µ, G) be an MDS. Note that if A⊆ B is an invariant sub-σ -algebra
such that (X, B, µ, G) has A-relative c.p.e. then P(X, B, µ, G)⊆A (in the sense of µ),
and (X, B, µ, G) has P(X, B, µ, G)-relative c.p.e.

As an application of Theorem 3.1, we have the following corollary.

COROLLARY 3.1. For each i ∈ I , let (X i , Bi , µi , G) be an MDS and Ai ⊆ Bi an
invariant sub-σ -algebra of Bi such that (X i , Bi , µi , G) has Ai -relative c.p.e., where I
is an index set which is at most countable. Then (

∏
i∈I X i ,

∏
i∈I Bi ,

⊗
i∈I µi , G) has∏

i∈I Ai -relative c.p.e. In particular,

P
(∏

i∈I

X i ,
∏
i∈I

Bi ,
⊗
i∈I

µi , G

)
=

⊗
i∈I

P(X i , Bi , µi , G). (6)
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Proof. First, we prove that (
∏

i∈I X i ,
∏

i∈I Bi ,
⊗

i∈I µi , G) has
∏

i∈I Ai -relative c.p.e.
Let α ∈ P∏

i∈I X i and ε > 0. It is not hard to choose a finite subset ∅ 6= J ⊆ I and
β ∈ P∏

i∈I X i , α j ∈ P X j , j ∈ J such that, for γ
.
=
∏

j∈J α j ×
∏

i∈I\J N X i ,

γ � β and H⊗
i∈I µi (α|β)+ H⊗

i∈I µi (β|α) <
ε

2
. (7)

Note that for each j ∈ J , (X j , B j , µ j , G) has A j -relative c.p.e., by Theorem 3.1, hence
there exists K j ∈ FG such that if F ∈ FG satisfies FF−1

∩ (K j\{eG})= ∅ then∣∣∣∣ 1
|F |

Hµ j ((α j )F |A j )− Hµ j (α j |A j )

∣∣∣∣< ε

2|J |
. (8)

Thus, if F ∈ FG satisfies FF−1
∩ (
⋃

j∈J K j\{eG})= ∅ then, for each j ∈ J , (8) holds for
F . Summing over all j ∈ J , we obtain the following estimate:∣∣∣∣ 1

|F |
H⊗

j∈J µ j

((∏
j∈J

α j

)
F

∣∣∣∣∏
j∈J

A j

)
− H⊗

j∈J µ j

(∏
j∈J

α j

∣∣∣∣∏
j∈J

A j

)∣∣∣∣< ε

2
. (9)

Now recall that

H⊗
i∈I µi

(
γF

∣∣∣∣∏
i∈I

Ai

)
= H⊗

j∈J µ j

((∏
j∈J

α j

)
F

∣∣∣∣∏
j∈J

A j

)
(10)

and

H⊗
i∈I µi

(
γ

∣∣∣∣∏
i∈I

Ai

)
= H⊗

j∈J µ j

(∏
j∈J

α j

∣∣∣∣∏
j∈J

A j

)
. (11)

Combining (9) with (10) and (11), one has∣∣∣∣ 1
|F |

H⊗
i∈I µi

(
γF

∣∣∣∣∏
i∈I

Ai

)
− H⊗

i∈I µi

(
γ

∣∣∣∣∏
i∈I

Ai

)∣∣∣∣< ε

2
, (12)

and this implies

H⊗
i∈I µi

(
β

∣∣∣∣∏
i∈I

Ai

)
−

1
|F |

H⊗
i∈I µi

(
βF

∣∣∣∣∏
i∈I

Ai

)
= H⊗

i∈I µi

(
γ

∣∣∣∣∏
i∈I

Ai

)
−

1
|F |

H⊗
i∈I µi

(
γF

∣∣∣∣∏
i∈I

Ai

)
− H⊗

i∈I µi

(
γ

∣∣∣∣∏
i∈I

Ai ∨ β

)
+

1
|F |

H⊗
i∈I µi

(
γF

∣∣∣∣∏
i∈I

Ai

)
−

1
|F |

H⊗
i∈I µi

(
βF

∣∣∣∣∏
i∈I

Ai

)
(using (1), as γ � β)

≤ H⊗
i∈I µi

(
γ

∣∣∣∣∏
i∈I

Ai

)
−

1
|F |

H⊗
i∈I µi

(
γF

∣∣∣∣∏
i∈I

Ai

)
(using (1) again). (13)

We deduce that

H⊗
i∈I µi

(
α

∣∣∣∣∏
i∈I

Ai

)
−

1
|F |

H⊗
i∈I µi

(
αF

∣∣∣∣∏
i∈I

Ai

)
≤ H⊗

i∈I µi

(
β

∣∣∣∣∏
i∈I

Ai

)
−

1
|F |

H⊗
i∈I µi

(
βF

∣∣∣∣∏
i∈I

Ai

)
+ H⊗

i∈I µi (α|β)

+ H⊗
i∈I µi (β|α) (using (1))

< ε (using (7), (12) and (13)).

This implies that (
∏

i∈I X i ,
∏

i∈I Bi ,
⊗

i∈I µi , G) has
∏

i∈I Ai -relative c.p.e.
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To finish the proof, it remains to prove (6). Using Remark 3, we obtain the containment
⊆. As for ⊇, it is easy to check that

h⊗
i∈I µi

(
G,
∏
j∈J

α j ×
∏

i∈I\J

N X i

)
=

∑
j∈J

hµ j (G, α j ),

which implies

P
(∏

i∈I

X i ,
∏
i∈I

Bi ,
⊗
i∈I

µi , G

)
⊇

∏
j∈J

P(X j , B j , µ j , G)×
∏

i∈I\J

N X i

whenever ∅ 6= J ⊆ I is finite and α j ∈ P X j , j ∈ J , and hence the opposite containment
holds. 2

Let (X, B, µ, G) be an MDS and A⊆ B an invariant sub-σ -algebra. We say that
(X, B, µ, G) is A-relatively Bernoulli if there exists a sub-σ -algebra A⊆ E ⊆ B such that
{g−1 E : g ∈ G} generate B and are independent relative to A (that is

Eµ
(

1⋂n
i=1 g−1

i Ei

∣∣∣∣A
)
=

n∏
i=1

Eµ(1Ei |A) (in the sense of µ) (14)

whenever E1, . . . , En ∈ E, {g1, . . . , gn} ⊆ G, n ∈ N) and Bernoulli if it is N X -relatively
Bernoulli. This coincides with the standard definition of a Bernoulli MDS.

The next result is a relative version of the well-known fact that each Bernoulli MDS has
c.p.e.

PROPOSITION 3.1. Let (X, B, µ, G) be an MDS and A⊆ B an invariant sub-σ -algebra
of B such that (X, B, µ, G) is A-relatively Bernoulli. Then (X, B, µ, G) has A-relative
c.p.e.

Proof. Suppose that the MDS (X, B, G, µ) is A-relatively Bernoulli. Suppose further that
E ⊆ B is a sub-σ -algebra of B such that A⊆ E and {g−1 E : g ∈ G} generate B and are
independent relative to A. Let β ∈ P X and ε > 0. By the assumptions on E , there exist
S ∈ FG and α, γ ∈ P X , γ ⊆ E such that

γS � α and Hµ(α|β)+ Hµ(β|α) < ε. (15)

Using (14), it is not hard to check that Hµ(γS|A)= |S|Hµ(γ |A), and if F ∈ FG satisfies
FF−1

∩ (S−1S\{eG}) then s1 f1 6= s2 f2 whenever s1, s2 ∈ S, s1 6= s2 and f1, f2 ∈ F,
f1 6= f2, and so Hµ((γS)F |A)= |S||F |Hµ(γ |A); thus,

Hµ(γS|A)=
1
|F |

Hµ((γS)F |A). (16)

It follows that if F ∈ FG satisfies FF−1
∩ (S−1S\{eG}) then

Hµ(β|A)−
1
|F |

Hµ(βF |A)

≤ Hµ(α|A)−
1
|F |

Hµ(αF |A)+ (Hµ(α|β)+ Hµ(β|α)) (using (1))

≤ Hµ(γS|A)−
1
|F |

Hµ((γS)F |A)+ (Hµ(α|β)+ Hµ(β|α))

(recall γS � α, by a reasoning similar to (13))
< ε (using (15) and (16)), (17)

that is (X, B, µ, G) has A-relative c.p.e. (using Theorem 3.1). 2
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4. Co-induction for topological dynamical systems
Let H be a subgroup of G and πH\G : G→ H\G, g 7→ Hg the natural projection. By an
H-section we mean a map s : H\G→ G such that πH\G ◦ s is the identity map.

From now on, let s denote a 0-section sending 0eG to eG . In this section, we shall
define co-induction for both measurable and topological dynamical systems.

4.1. Co-induction for measurable dynamical systems. Let (X, B, µ, 0) be an MDS
and s a 0-section in G. By the co-induced action from (X, B, µ, 0) we mean the G-
action defined by the MDS (Y, D, ν, G), where (Y, D, ν)=

∏
0\G(X, B, µ) and (gy)θ =

s(θ)gs(θg)−1 yθg whenever g ∈ G, y = (yζ )ζ∈0\G ∈ Y, θ ∈ 0\G. It is not hard to check
that this is well defined and independent of the particular choice of 0-sections sending 0eG

to eG .
Let (X, B, µ, 0) be an MDS and (Y, D, ν, G) the co-induced action as above. For

convenience, we set

VAi ,θi ;1≤i≤n = {(xθ )θ∈0\G : xθi ∈ Ai , 1≤ i ≤ n} ∈D

and
Pαi ,θi ;1≤i≤n = {VBi ,θi ;1≤i≤n : Bi ∈ αi , 1≤ i ≤ n} ∈ PY

whenever {θ1, . . . , θn} ⊆ 0\G, A1, . . . , An ∈ B, α1, . . . , αn ∈ P X , n ∈ N. It has been
proved that (Y, D, ν, G) is Bernoulli if and only if (X, B, µ, 0) is Bernoulli [7, Coroll-
ary 3.3], and (Y, D, ν, G) has c.p.e. if and only if (X, B, µ, 0) has c.p.e. [7, Theo-
rem 5.2]. Moreover, the following theorem has been shown [7, Proposition 3.4].

THEOREM 4.1. Let (X, B, µ, 0) be an MDS and (Y, D, ν, G) the co-induced action.
Then hν(G, Y )= hµ(0, X).

It is now easy to see the following lemma.

LEMMA 4.1. Let (X1, B1, µ1, 0) and (X2, B2, µ2, 0) be MDSs and

πX : (X2, B2, µ2, 0)→ (X1, B1, µ1, 0)

a factor map. Denote by (Yi , Di , νi , G) the co-induced actions from (X i , Bi , µi , 0),

i = 1, 2, respectively. Then (Y1, D1, ν1, G) is a factor of (Y2, D2, ν2, G) via the factor
map

πY : ((x2)θ )θ∈0\G 7→ (πX ((x2)θ ))θ∈0\G .

Proof. It is easy to check that πY : (Y2, D2, ν2)→ (Y1, D1, ν1) is a measurable map and
πY ν2 = ν1. It remains to show that πY commutes with the actions of G over (Y2, D2, ν2)

and (Y1, D1, ν1). Let g ∈ G, ((x2)θ )θ∈0\G ∈ Y2 and s a 0-section sending 0eG to eG .

gπY (((x2)θ )θ∈0\G) = g((πX ((x2)θ ))θ∈0\G)

= (s(θ)gs(θg)−1πX ((x2)θg))θ∈0\G

= (πX (s(θ)gs(θg)−1(x2)θg))θ∈0\G (as s(θ)gs(θg)−1
∈ 0)

= πY (s(θ)gs(θg)−1(x2)θg)θ∈0\G = πY g(((x2)θ )θ∈0\G).

This finishes our proof. 2
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4.2. Co-induction for topological dynamical systems. Let (X, 0) be a TDS and s a
0-section. By the co-induced action of (X, 0) we mean the TDS (Y, G), where Y =∏
0\G X and (gy)θ = s(θ)gs(θg)−1 yθg whenever g ∈ G, y = (yζ )ζ∈0\G ∈ Y, θ ∈ 0\G.

Arguing as in [7], it is not hard to check that this is well defined and independent of the
particular choice of 0-sections sending 0eG to eG . For convenience, set

UBi ,θi ;1≤i≤n = {(xθ )θ∈0\G : xθi ∈ Bi , 1≤ i ≤ n} ∈ BY

and
UUi ,θi ;1≤i≤n = {UUi ,θi ;1≤i≤n :Ui ∈ Ui , 1≤ i ≤ n}

whenever {θ1, . . . , θn} ⊆ 0\G, B1, . . . , Bn ∈ B X , U1, . . . , Un ∈ C o
X , n ∈ N.

By the arguments of Lemma 4.1, one easily sees the following lemma.

LEMMA 4.2. Let (X1, 0) and (X2, 0) be TDSs and πX : (X2, 0)→ (X1, 0) a factor
map. Denote by (Yi , G) the co-induced actions from (X i , 0), i = 1, 2, respectively. Then
(Y1, G) is a factor of (Y2, G) via the factor map πY : ((x2)θ )θ∈0\G 7→ (πX ((x2)θ ))θ∈0\G .

We can obtain a counterpart of Theorem 4.1 in the topological setting.

THEOREM 4.2. Let (X, 0) be a TDS and (Y, G) the co-induced action. Then
htop(G, Y )= htop(0, X).

Proof. The inequality ≥ follows from Theorems 2.1 and 4.1. Now we prove ≤.
Let π0eG : Y → X, (xθ )θ∈0\G 7→ x0eG . In P X , we may choose a sequence ξ1 �

ξ2 � · · · with limn→+∞ diam(ξn)= 0 and set ηn = Pξn ,0eG ∈ PY for each n ∈ N.

CLAIM 1. BY is generated by {(ηn)F : F ∈ FG , n ∈ N}.

Proof of Claim 1. Let n ∈ N, {θ1, . . . , θn} ⊆ 0\G, and let U1, . . . ,Un be non-empty
open subsets of X . We only need to show that there exist F ∈ FG and m ∈ N such
that some element of (ηm)F is contained in UUi ,θi ;1≤i≤n . For each 1≤ i ≤ n, and
fi ∈ θi , a suitable choice of {ξn}n∈N implies that for m ∈ N large enough such that
each fi s(θi )

−1Ui , 1≤ i ≤ n contains some element of ξm (say Bi ). Obviously, F
.
=

{ f1, . . . , fn} ∈ FG and
⋂n

i=1 f −1
i VBi ,0eG is an element of (ηm)F . Now we have to check

that
⋂n

i=1 f −1
i VBi ,0eG ⊆UUi ,θi ;1≤i≤n . In fact, if (xθ )θ∈0\G ∈

⋂n
i=1 f −1

i VBi ,0eG then,
for each 1≤ i ≤ n, fi (xθ )θ∈0\G ∈ VBi ,0eG ; equivalently, s(0eG) fi s(0 fi )

−1x0 fi ∈ Bi , i.e.
fi s(θi )

−1xθi ∈ Bi , thus, xθi ∈ s(θi ) f −1
i Bi ⊆Ui (recall that Bi ⊆ fi s(θi )

−1Ui ). 2

CLAIM 2. hν(G, ηn)≤ htop(0, X) for each n ∈ N and any ν ∈M(Y, G).

Proof of Claim 2. Denote by F0 the set of all non-empty finite subsets of 0. Let n ∈ N
and ν ∈M(Y, G). Set µ= π0eGν. It is not hard to check that µ ∈M(X, 0). Then

hν(G, ηn) ≤ inf
F∈F0

1
|F |

Hν((ηn)F ) (using (2))= inf
F∈F0

1
|F |

Hν(P(ξn)F ,0eG )

= inf
F∈F0

1
|F |

Hµ((ξn)F ) (as µ= π0eGν)

= hµ(0, ξn) (using (2))≤ htop(0, X),

where the last inequality follows from Theorem 2.1. 2

https://doi.org/10.1017/S0143385711000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000083


930 A. H. Dooley and G. H. Zhang

Now let ν ∈M(Y, G) and choose E1 ⊆ E2 ⊆ · · · in FG with
⋃

n∈N En = G. Then

hν(G, Y ) = lim
n→+∞

hν(G, (ηn)En ) (by Claim 1, as (η1)E1 � (η2)E2 � · · · )

= lim
n→+∞

hν(G, ηn) (using Proposition 2.2)

≤ htop(0, X) (by Claim 2). (18)

Letting ν vary over all elements of M(Y, G) and using Theorem 2.1, we obtain
htop(G, Y )≤ htop(0, X). This completes our proof. 2

Let (X, 0) be a TDS and (Y, G) the co-induced action. Generally, we cannot expect
M(Y, G) to be the set of all G-invariant elements in

⊗
0\G M(X). However, the

following is a direct corollary of Theorems 2.1, 4.1 and 4.2.

COROLLARY 4.1. Let (X, 0) be a TDS and (Y, G) the co-induced action. Then

htop(G, Y )= sup
µ∈M(X,0)

h⊗
0\G µ

(G, Y )= sup
µ∈Me(X,0)

h⊗
0\G µ

(G, Y ).

Remark 4. Let (X, 0) be a TDS and (Y, G) the co-induced action. Dooley et al [7,
Proposition 3.6] tell us that {

⊗
0\G µ : µ ∈Me(X, 0)} ⊆Me(Y, G), and if [G : 0] =

+∞ then {
⊗

0\G µ : µ ∈M(X, 0)} ⊆Me(Y, G). Thus, for the co-induced action
(Y, G), Corollary 4.1 is a stronger statement than Theorem 2.1.

PROPOSITION 4.1. Let (X, 0) be a TDS and (Y, G) the co-induced action.
(1) Let ν ∈M(Y, G). For each θ ∈ 0\G, define νθ by νθ (A)= ν(UA,θ ) for each

A ∈ B X . Then νθ = s(θ)gs(θg)−1νθg ∈M(X) whenever θ ∈ 0\G and g ∈ G.
(2) Assume that {νθ : θ ∈ 0\G} ⊆M(X) satisfies νθ = s(θ)gs(θg)−1νθg whenever θ ∈

0\G and g ∈ G. Then:
(a) µ

.
=
⊗

θ∈0\G νθ ∈M(Y, G); and
(b) νθ ∈M(X, 0) for each θ ∈ 0\G and is independent of θ ∈ 0\G.

Proof. (1) Let θ ∈ 0\G and g ∈ G. It is easy to check that νθ ∈M(X). Let A ∈ B X . Then

νθ (A) = ν(UA,θ )= ν(g
−1(UA,θ )) (as ν ∈M(Y, G))

= ν(U(s(θ)gs(θg)−1)−1 A,θg)= νθg((s(θ)gs(θg)−1)−1 A)

= (s(θ)gs(θg)−1νθg)(A).

This equality means that νθ = s(θ)gs(θg)−1νθg .
(2) (a) It is obvious that µ ∈M(Y ). Now let ∅ 6=2⊆ 0\G be a finite subset,

{Aθ : θ ∈2} ⊆ B X and g ∈ G. By the definition, one directly has

(gµ)(UAθ ,θ;θ∈2) = µ(g
−1(UAθ ,θ;θ∈2))= µ(U(s(θ)gs(θg)−1)−1 Aθ ,θg;θ∈2)

=

∏
θ∈2

νθg((s(θ)gs(θg)−1)−1 Aθ )

=

∏
θ∈2

νθ (Aθ ) (as νθ = s(θ)gs(θg)−1νθg)= µ(UAθ ,θ;θ∈2).

This gives gµ= µ (since {Aθ : θ ∈2} ⊆ B X and ∅ 6=2⊆ 0\G are arbitrary). Moreover,
letting g vary over all elements of G, we obtain µ ∈M(Y, G).
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(b) Let θ ∈ 0\G. It is easy to check that Gθ
.
= {g ∈ G : θ = θg} = s(θ)−10s(θ) and

so, for each g ∈ Gθ , νθ = s(θ)gs(θ)−1νθ , i.e. νθ ∈M(X, 0). Moreover, observe that, for
θ ∈ 0\G, s(θ)gs(θg)−1

∈ 0 for each g ∈ G and {θg : g ∈ G} = 0\G, which implies that
νθ is independent of θ ∈ 0\G. This completes the proof. 2

Remark 5. Note that in general ν 6≈
⊗

θ∈0\G νθ , as not every invariant measure on a
product space is an invariant product measure.

5. The Pinsker algebra of the co-induced measurable dynamical system
The main result of this section is given in the following theorem.

THEOREM 5.1. Let (X, B, µ, 0) be an MDS and (Y, D, ν, G) the co-induced action.
Then P(Y, D, ν, G)=

∏
0\G P(X, B, µ, 0).

One direction of Theorem 5.1 is easy to obtain.

LEMMA 5.1. Under the assumption of Theorem 5.1,

P(Y, D, ν, G)⊇
∏
0\G

P(X, B, µ, 0).

Proof. Set A= P(X, B, µ, 0). Since (X, A, µ, 0) is a factor of (X, B, µ, 0), the co-
induced action from (X, A, µ, 0) is a factor of (Y, D, ν, G) (by Lemma 4.1). In fact,
(Y,

∏
0\G A, ν, G) is the co-induced action from (X, A, µ, 0) and, by Theorem 4.1,

the measure-theoretic ν-entropy of (Y,
∏
0\G A, ν, G) equals zero, the measure-theoretic

µ-entropy of (X, A, µ, 0), which implies
∏
0\G A⊆ P(Y, D, ν, G), which gives the

result. 2

The other direction of Theorem 5.1 follows from the following proposition.

PROPOSITION 5.1. Let (X, B, µ, 0) be an MDS, A⊆ B an invariant sub-σ -algebra of
B, and (Y, D, ν, G) the co-induced action. If (X, B, µ, 0) has A-relative c.p.e. then
(Y, D, ν, G) has

∏
0\G A-relative c.p.e.

Proof. Set C =
∏
0\G A. We shall use ideas from the proof of [7, Theorem 5.2].

Let ξ ∈ PY and ε > 0. By Theorem 3.1, it suffices to prove that there exists K ∈ FG

such that if F ∈ FG satisfies FF−1
∩ (K\{eG})= ∅ then

Hν(ξ |C)−
1
|F |

Hν(ξF |C) < ε. (19)

Suppose that D X = B ×
∏
(0\G)\0eG

N X . Then s(θ)−1 D X = B ×
∏
(0\G)\θ N X for

each θ ∈ 0\G, and so D is generated by s(θ)−1 D X , θ ∈ 0\G. Moreover, we may choose
α ∈ P X and {θ1, . . . , θn} ⊆ 0\G, n ∈ N such that

Hν(ξ |η)+ Hν(η|ξ) <
ε

2
(20)

for some η � ζM , where ζ = Pα,0eG and M = {s(θ1), . . . , s(θn)} ∈ FG . As (X, B, µ, 0)
has A-relative c.p.e., by Theorem 3.1, there exists J ∈ F0 such that if S ∈ F0 satisfies
SS−1

∩ (J\{eG})= ∅ then ∣∣∣∣ 1
|S|

Hµ(αS|A)− Hµ(α|A)
∣∣∣∣< ε

2n
, (21)
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where F0 denotes the set of all non-empty finite subsets of 0. Moreover, we may assume
without loss of generality that eG ∈ J . First, note the following.

CLAIM. Equation (19) holds for K
.
= M−1 J M ∈ FG when we replace ε by ε/2 and ξ by

ζM .

Proof of claim. Let F ∈ FG with FF−1
∩ (K\{eG})= ∅. Observe that if there exist

fi , f j ∈ F, 1≤ i, j ≤ n such that s(θi ) fi (s(θ j ) f j )
−1
∈ J , or, equivalently, if fi f −1

j ∈

s(θi )
−1 Js(θ j )⊆ K , then fi f −1

j = eG since FF−1
∩ (K\{eG})= ∅. This implies that

s(θi )s(θ j )
−1
∈ J ⊆ 0, hence s(θi ) ∈ 0s(θ j ) and so θi = θ j . Thus, s(θi )= s(θ j ).

Summing up, and using the fact that eG ∈ J , we obtain:

|MF | = n|F | and (MF)(MF)−1
∩ (J\{eG})= ∅. (22)

Now set 2= {θ1, . . . , θn}F . For each θ ∈2, note that 2θ s(θ)−1
∈ F0 and

(2θ s(θ)−1)(2θ s(θ)−1)−1
∩ (J\{eG})⊆ (MF)(MF)−1

∩ (J\{eG})= ∅ (using (22)),
where 2θ = {s(θi )g : 1≤ i ≤ n and g ∈ F satisfy θi g = θ}. Thus, by (21),∣∣∣∣ 1

|2θ s(θ)−1|
Hµ(α2θ s(θ)−1 |A)− Hµ(α|A)

∣∣∣∣< ε

2n
. (23)

Now we may deduce the following:

Hν((ζM )F |C) = Hν(ζMF |C)

= Hν

(∨
g∈F

n∨
i=1

P(s(θi )gs(θi g)−1)−1α,θi g|C
)

= Hν

(∏
θ∈2

∨
g∈2θ

(gs(θ)−1)−1α ×
∏

(0\G)\2

N X |C
)

=

∑
θ∈2

Hµ

( ∨
g∈2θ

(gs(θ)−1)−1α|A
) (

as ν =
⊗
0\G

µ

)

>
∑
θ∈2

|2θ |

(
Hµ(α|A)−

ε

2n

)
(using (23))

= |MF |

(
Hµ(α|A)−

ε

2n

)
= |F |

(
nHµ(α|A)−

ε

2

)
(using (22)). (24)

However, since ν =
⊗

0\G µ, we have

Hν(ζM |C)= Hν

( n∨
i=1

s(θi )
−1 Pα,0eG |C

)
= Hν(Pα,θi ;1≤i≤n|C)= nHµ(α|A).

Now, using (24), we see that the claim holds. 2
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Now, if F ∈ FG satisfies FF−1
∩ (K\{eG})= ∅, we may argue, as for (17),

Hν(ξ |C)−
1
|F |

Hν(ξF |C) ≤ Hν(η|C)−
1
|F |

Hν(ηF |C)+ (Hν(ξ |η)+ Hν(η|ξ))

≤ Hν(ζM |C)−
1
|F |

Hν((ζM )F |C)+ (Hν(ξ |η)+ Hν(η|ξ))

< ε (using (20) and claim).

This proves (19) and so completes the proof of the theorem. 2

Now we give a proof of Theorem 5.1.

Proof of Theorem 5.1. As mentioned in Remark 3, (X, B, µ, 0) has P(X, B, µ, 0)-
relative c.p.e., and so, by Proposition 5.1, (Y, D, ν, G) has

∏
0\G P(X, B, µ, 0)-relative

c.p.e. Thus, using Remark 3 again, P(Y, D, ν, G)⊆
∏
0\G P(X, B, µ, 0). Combining

with Lemma 5.1, we conclude the proof. 2

6. U.p.e. and c.p.e. for topological co-induction
In [16], local entropy theory for a countable discrete infinite amenable group action
was introduced and systematically studied. In particular, the properties of u.p.e. and
c.p.e. and the concept of entropy tuples were studied in both the measure-theoretic and
the topological settings. In this section, we shall discuss them for co-induced actions of
topological dynamical systems.

Let (X, G) be a TDS and n ∈ N\{1}. We say that (X, G) has u.p.e. of order n if any
cover of X by n non-dense open sets has positive topological entropy; u.p.e. if (X, G) has
u.p.e. of order two; u.p.e. of all orders if (X, G) has u.p.e. of order m for each m ∈ N\{1};
and c.p.e. if each non-trivial factor of (X, G) has positive entropy.

As shown in [16], these properties can be characterized by entropy tuples.
Let (X, G) be a TDS,µ ∈M(X, G), n ∈ N\{1} and (x1, . . . , xn) ∈ Xn

\1n(X), where
1n(X)= {(z1, . . . , zn) ∈ Xn

: z1 = · · · = zn}. We say that U ∈ C X is admissible with
respect to (x1, . . . , xn) if {x1, . . . , xn} is not contained in the closure of U for any U ∈ U .
(x1, . . . , xn) is called a topological entropy n-tuple of (X, G) if htop(G, U) > 0 whenever
U ∈ C o

X is admissible with respect to (x1, . . . , xn), and a µ-entropy n-tuple of (X, G)
if hµ(G, α) > 0 whenever α ∈ P X is admissible with respect to (x1, . . . , xn). Denote
by En(X, G) and Eµn (X, G) the set of all topological entropy n-tuples and µ-entropy n-
tuples of (X, G), respectively. It is easy to check that both En(X, G) and Eµn (X, G)
are invariant. In fact, Eµn (X, G) can be characterized by supp(λn(µ)), the support of an
invariant probability measure λn(µ) over (Xn, (B X )

n), where λn(µ) is given by

λn(µ)

( n∏
i=1

Ai

)
=

∫
X

n∏
i=1

Eµ(1Ai |P(X, B X , µ, G)) dµ (25)

whenever Ai ∈ B X , i = 1, . . . , n and (B X )
n
= B X × · · · × B X (n times).

It is not too hard to obtain [16, Proposition 6.3(3)].

PROPOSITION 6.1. Let π : (Z , G)→ (X, G) be a factor map between TDSs and n ∈
N\{1}. Then

En(X, G)⊆ {(π z1, . . . , π zn) : (z1, . . . , zn) ∈ En(Z , G)} ⊆ En(X, G) ∪1n(X).
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Let (X, G) be a TDS. The support supp(X, G) of (X, G) is defined as ∪{supp(µ) : µ ∈
M(X, G)}. We say that (X, G) is fully supported if supp(X, G)= X .

The most important properties concerning entropy tuples in both measure-theoretic and
topological settings are given by the following variational relationship.

PROPOSITION 6.2. Let (X, G) be a TDS. Then:
(1) En(X, G)⊇ Eµn (X, G)= supp(λn(µ))\1n(X) whenever µ ∈M(X, G) and n ∈

N\{1};
(2) (supp(µ))n ⊇ supp(λn(µ))= Eµn (X, G) ∪1µn (X)wheneverµ ∈M(X, G) and n ∈

N\{1}, where 1µn (X)= {(x1, . . . , xn) ∈ (supp(µ))n : x1 = · · · = xn};
(3) there existsµ ∈M(X, G) such that En(X, G)= Eµn (X, G) (and hence En(X, G)⊆

(supp(X, G))n) for all n ∈ N\{1};
(4) for each n ∈ N\{1}, (X, G) has u.p.e. of order n if and only if En(X, G)=

Xn
\1n(X); and

(5) (X, G) has c.p.e. if and only if X2 is the closed invariant equivalence relation
generated by E2(X, G). In particular, if (X, G) has c.p.e. then it is fully supported.

Proof. (1) and (3) are [16, Theorem 6.16] (except En(X, G)⊆ (supp(X, G))n); (4) and
(5) are proved in [16, §7]. Now let µ ∈M(X, G) and n ∈ N\{1}. It is easy to check
that (supp(µ))n ⊇ supp(λn(µ)) and supp(λn(µ)) ∩1n(X)=1

µ
n (X) from (25), and so

(2) follows from (1). Moreover, En(X, G)⊆ (supp(X, G))n follows from (2) and the
definition of supp(X, G). 2

To proceed with the proof of Theorem 6.1, we need the following lemma.

LEMMA 6.1. Let (X, G) be a TDS and U ∈ C o
X . Then

htop(G, U) > 0⇐⇒ inf
F∈FG

1
|F |

log N (U F ) > 0. (26)

In particular, if htop(G, U) > 0 then htop(0, U) > 0. Here, htop(0, U) denotes the
topological entropy of U under the action of the subgroup 0 on X.

Proof. We need only prove (26). The implication⇐H follows directly from the definition.
To prove H⇒ we use some ideas from the proof of [16, Lemma 7.9].

By that proof, there exist µ ∈Me(X, G), α ∈ P X and ε > 0 such that, for β ∈ P X , if
β � U ,

Hµ(α|β ∨ P(X, B X , µ, G))≤ Hµ(α|P(X, B X , µ, G))− ε. (27)

Note that there exists K ∈ FG such that if F ∈ FG satisfies FF−1
∩ (K\{eG})= ∅ then∣∣∣∣ 1

|F |
Hµ(αF |P(X, B X , µ, G))− Hµ(α|P(X, B X , µ, G))

∣∣∣∣< ε

2
(28)

(using Theorem 3.1 and Remark 3). For E ∈ FG , as in the proof of Theorem 3.1, there
exists S ∈ FG such that SS−1

∩ (K\{eG})= ∅, S ⊆ E and (2|K | + 1)|S| ≥ |E |. Thus,∣∣∣∣ 1
|S|

Hµ(αS|P(X, B X , µ, G))− Hµ(α|P(X, B X , µ, G))

∣∣∣∣< ε

2
(using (28)). (29)

https://doi.org/10.1017/S0143385711000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000083


Co-induction in dynamical systems 935

Moreover, we can choose m
.
= N (US) elements V1, . . . , Vm from US covering the space

X and set β = {V1, V2\V1, . . . , Vm\(V1 ∪ · · · ∪ Vm−1)} ∈ P X . Obviously, β � US and so
gβ � U for each g ∈ S. It follows that

Hµ(β) ≥ Hµ(β ∨ αS|P(X, B X , µ, G))− Hµ(αS|β ∨ P(X, B X , µ, G)) (using (1))

≥ Hµ(αS|P(X, B X , µ, G))−
∑
g∈S

Hµ(α|gβ ∨ P(X, B X , µ, G))

≥ Hµ(αS|P(X, B X , µ, G))− |S|(Hµ(α|P(X, B X , µ, G))− ε) (using (27))

≥
|S|ε

2
(using (29)), (30)

which implies

1
|E |

log N (U E ) ≥
1
|E |

log N (US)≥
1
|E |

Hµ(β) (using Proposition 2.2)

≥
|S|ε

2|E |
(using (30))

≥
ε

2(2|K | + 1)
(as (2|K | + 1)|S| ≥ |E |) > 0. (31)

Now the conclusion follows by letting E vary over all elements from FG in (31). 2

Remark 6. In fact, using the theory of [16] we can prove a stronger result, viz.
htop(G, U)≤ htop(0, U) for any TDS (X, G) with U ∈ C o

X (and so htop(G, X)≤
htop(0, X)). We shall not use this result, so we just give a sketch of the proof. In the
notation of [16], for U ∈ C o

X , select µ ∈M(X, G)⊆M(X, 0) such that

htop(G, U)= inf
α∈P X ,α�U

hµ(G, α). (32)

However, by (2) or Proposition 2.2, one has

inf
α∈P X ,α�U

hµ(G, α)≤ inf
α∈P X ,α�U

hµ(0, α)≤ htop(0, U). (33)

The last step uses the fact that µ ∈M(X, 0), and the theory built in [16]. Now, combining
(32) with (33), we obtain the desired inequality.

A useful corollary of Lemma 6.1 is the following.

COROLLARY 6.1. Let (X, G) be a TDS,µ ∈M(X, G) and n ∈ N\{1}. Then En(X, G)⊆
En(X, 0) and Eµn (X, G)⊆ Eµn (X, 0).

Proof. En(X, G)⊆ En(X, 0) and Eµn (X, G)⊆ Eµn (X, 0) follow from Lemma 6.1 and
the fact that hµ(G, α)≤ hµ(0, α) for each α ∈ P X (using (2)), respectively. 2

We shall also need the following lemma.

LEMMA 6.2. Let (X, 0) be a TDS and (Y, G) the co-induced action. Then supp(Y, G)=∏
0\G supp(X, 0).
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Proof. Obviously, supp(Y, G)⊇
∏
0\G supp(X, 0). Let ν ∈M(Y, G) and π0eG : Y →

X, (xθ )θ∈0\G 7→ x0eG . It is easy to check that π0eGν ∈M(X, 0), which implies that
supp(ν)⊆Usupp(π0eG ν),0eG ⊆Usupp(X,0),0eG , and so (by the invariance of supp(ν)),

supp(ν)⊆
⋂
g∈G

gUsupp(X,0),0eG =

∏
0\G

supp(X, 0). (34)

The result now follows since ν ∈M(Y, G) is arbitrary. 2

Putting these results together, we obtain the following proposition.

PROPOSITION 6.3. Let (X, 0) be a TDS, µ ∈M(X, 0), n ∈ N\{1} and (Y, G) the co-
induced action. Set 1s

n(X)=1n(X) ∩ (supp(X, 0))n . Then:
(1) supp(λn(

⊗
0\G µ))=

⊗
0\G supp(λn(µ)); and

(2) En(Y, G)=
∏
0\G(En(X, 0) ∪1s

n(X))\
∏
0\G 1

s
n(X).

Proof. (1) Observe that, by (25), on (Y n, Bn
Y ), λn(

⊗
0\G µ) is given by

λn

(⊗
0\G

µ

)( n∏
i=1

UAi, j ,θ j ;1≤ j≤m

)

=

∫
Y

n∏
i=1

E⊗
0\G µ

(
1UAi, j ,θ j ;1≤ j≤m

∣∣∣∣P
(

Y, BY ,
⊗
0\G

µ, G

))
d
⊗
0\G

µ

=

∫
∏m

j=1 X

n∏
i=1

E∏m
j=1 µ

(
1∏m

j=1 Ai, j

∣∣∣∣ m∏
j=1

P(X, B X , µ, 0)

)
d

m∏
j=1

µ

(using Theorem 5.1)

=

m∏
j=1

∫
X

n∏
i=1

Eµ(1Ai, j |P(X, B X , µ, 0)) dµ=
m∏

j=1

λn(µ)

( n∏
i=1

Ai, j

)
, (35)

where {θ1, . . . , θm} ⊆ 0\G, m ∈ N and Ai, j ∈ B X , i = 1, . . . , n, j = 1, . . . , m. The
conclusion follows readily.

(2) By Proposition 2.3 and Proposition 6.2(3), we may choose ω ∈M(X, 0) with
En(X, 0) = Eωn (X, 0) and 1s

n(X)=1
ω
n (X) (hence supp(λn(ω))= En(X, 0) ∪1s

n(X)).
Thus,

En(Y, G)

⊇ supp
(
λn

(⊗
0\G

ω

))∖
1n(Y ) (using Proposition 6.2)

=

∏
0\G

supp(λn(ω))

∖
1n(Y ) (using (1))

=

∏
0\G

supp(λn(ω))

∖∏
0\G

1s
n(X)

(
as
∏
0\G

supp(λn(ω)) ∩1n(Y )=
∏
0\G

1s
n(X)

)

=

∏
0\G

(En(X, 0) ∪1
s
n(X))

∖∏
0\G

1s
n(X) (as supp(λn(ω))= En(X, 0) ∪1

s
n(X)).

https://doi.org/10.1017/S0143385711000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000083


Co-induction in dynamical systems 937

We shall finish the proof by proving an equivalent version of the other direction:

En(Y, G)⊆
∏
0\G

(En(X, 0) ∪1
s
n(X)). (36)

Let (y1, . . . , yn) ∈ En(Y, G). Say yi = (x i
θ )θ∈0\G , 1≤ i ≤ n. Let ϑ ∈ 0\G. Observe

that (X, 0) is a factor of (Y, 0) via the factor map π0eG : Y → X, (xθ )θ∈0\G 7→ x0eG .
Furthermore, by Corollary 6.1, (y1, . . . , yn) ∈ En(Y, 0) and hence (x1

ϑ , . . . , xn
ϑ ) ∈

En(X, 0) ∪1n(X). It now follows that (x1
ϑ , . . . , xn

ϑ ) ∈ En(X, 0) ∪1s
n(X) when ϑ =

0eG (by Propositions 6.1, 6.2 and Lemma 6.2). Finally, using an argument similar to
(34), the invariance of En(Y, G) implies that (x1

ϑ , . . . , xn
ϑ ) ∈ En(X, 0) ∪1s

n(X), even if
ϑ 6= 0eG . This proves (36) and completes our proof. 2

Now we can prove the following theorem.

THEOREM 6.1. Let (X, 0) be a TDS and (Y, G) the co-induced action. Then:
(1) (Y, G) has c.p.e. if and only if (X, 0) has c.p.e.;
(2) for each n ∈ N\{1}, (Y, G) has u.p.e. of order n if and only if (X, 0) has u.p.e. of

order n; and
(3) (Y, G) has u.p.e. of all orders if and only if (X, 0) has u.p.e. of all orders.

Proof. Observe that (3) follows directly from (2). Thus, it suffices to prove (1) and (2).
(1) If (X, 0) does not have c.p.e., it is easy to check that (Y, G) does not have

c.p.e. (using Lemma 4.2). That is, if (Y, G) has c.p.e. then (X, 0) has c.p.e. Now, if (X, 0)
has c.p.e. then X2 is the closed 0-invariant equivalence relation generated by E2(X, 0)
(using Proposition 6.2), and so Y 2 is the closed G-invariant equivalence relation generated
by E2(Y, G) (using Proposition 6.3), thus (Y, G) has c.p.e. (using Proposition 6.2 again).

(2) Let n ∈ N\{1}. First, assume that (X, 0) has u.p.e. of order n. It follows that
En(X, 0)= Xn

\1n(X) and so En(Y, G)= Y n
\1n(Y ). This now implies that (Y, G)

has u.p.e. of order n (using Propositions 6.2 and 6.3). Now, if (Y, G) has u.p.e. of
order n, for each (x1, . . . , xn) ∈ Xn

\1n(X), we can select (y1, . . . , yn) ∈ Y n
\1n(Y )

with (yi )0eG = xi for each 1≤ i ≤ n. Note that if U ∈ C o
X is admissible with respect

to (x1, . . . , xn) then UU ,0eG ∈ C o
Y is admissible with respect to (y1, . . . , yn), and so

htop(G, UU ,0eG ) > 0. Thus,

0 < htop(0, UU ,0eG ) (using Lemma 6.1)

= htop(0, U) (following directly from the definitions).

Since U is arbitrary, one has (x1, . . . , xn) ∈ En(X, 0). Hence, En(X, 0)= Xn
\1n(X),

i.e. (X, 0) has u.p.e. of order n (using Proposition 6.2). 2

7. Co-induction for more general groups
The above definitions and some of the main theorems can be formulated for a general
countable discrete group G containing a subgroup 0 with a TDS (X, 0) and a 0-section s
sending 0eG to eG . In this section, we shall consider this situation.

LEMMA 7.1. Let 0 be a possibly finite subgroup of a countable discrete infinite group
G, (X, 0) a TDS and (Y, G) the co-induced action.
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(1) If 0 is infinite and (Y, G) is strongly mixing then (X, 0) is strongly mixing.
(2) Assume that K0K−1

= G for some K ∈ FG .
(a) If (Y, G) is transitive then (X, 0) is transitive.
(b) If (Y, G) is weakly mixing then (X, 0) is weakly mixing.
(c) If 0 is infinite and (X, 0) is strongly mixing then (Y, G) is strongly mixing.

(3) Assume that either one has
n⋃

i=1

n⋃
j=1

s(θi )
−1(0\N0(U j , Vi ))s(θ j )( G (37)

or there exists ∅ 6= A ⊆ {1, . . . , n}2 such that⋂
(i, j)∈A

s(θi )
−1 N0(U j , Vi )s(θ j )

∖ ⋃
(i, j)∈{1,...,n}2\A

s(θi )
−10s(θ j ) 6= ∅ (38)

whenever {θ1, . . . , θn} ⊆ 0\G, n ∈ N and U1, . . . ,Un, V1, . . . , Vn are non-empty
open subsets of X. Then:
(a) (Y, G) is transitive; and
(b) (X, 0) is transitive when K0K−1

= G for some K ∈ FG .
(4) If K0K−1 ( G for each K ∈ FG then (Y, G) is weakly mixing.
(5) If TDS (X, 0) can be extended to be another TDS (X, G) such that (X, G) is weakly

mixing then (Y, G) is weakly mixing.

Proof. Observe that if g ∈ G, {θ1, . . . , θn} ⊆ 0\G, n ∈ N and U1, . . . ,Un, V1, . . . , Vn ∈

B X then (Y n, G) is the co-induced action from TDS (Xn, 0) and

g(UUi ,θi ;1≤i≤n)=Us(θi g−1)gs(θi )
−1Ui ,θi g−1;1≤i≤n . (39)

(1) Let U and V be non-empty open subsets of X . The conclusion follows from the
assumption that (Y, G) is strongly mixing and the fact that

0\N0(U, V )⊆ G\NG(UU,0eG ,UV,0eG ).

(2) By the above observation, (b) follows directly from (a). It remains to prove (a) and
(c). As K0K−1

= G for some K ∈ FG , there exists {g1, . . . , gn} ⊆ G, n ∈ N such that
0gi 6= 0g j if 1≤ i < j ≤ n and G = {g1, . . . , gn}

−10{g1, . . . , gn}.
(a) Assume that (Y, G) is transitive. Let U and V be non-empty open subsets of X . As

(Y, G) is transitive, we can select

g ∈ NG(UU,0gi ;1≤i≤n,UV,0gi ;1≤i≤n). (40)

As G = {g1, . . . , gn}
−10{g1, . . . , gn}, there exist 1≤ i, j ≤ n such that 0g j g−1

= 0gi ,
which implies (combining (40) with (39)) that

s(0g j g
−1)gs(0g j )

−1U ∩ V 6= ∅.

In particular, s(0g j g−1)gs(0g j )
−1
∈ N0(U, V ). Thus, (X, 0) is transitive.

(c) Let {θ1, . . . , θm} ⊆ 0\G, m ∈ N with {0g1, . . . , 0gn} ⊆ {θ1, . . . , θm} and non-
empty open subsets U1, . . . ,Um, V1, . . . , Vm of X . It suffices to prove that

N
.
= G\NG(UUi ,θi ;1≤i≤m,UVi ,θi ;1≤i≤m)
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is a finite subset of G. Note that, as in (a) above, if g ∈ G then θ j g−1
= θi for some

1≤ i, j ≤ m, and g ∈ N if and only if there exist 1≤ i, j ≤ m such that θ j g−1
= θi and

s(θ j g−1)gs(θ j )
−1U j ∩ Vi = ∅ (i.e. g ∈ s(θi )

−1(0\N0(U j , Vi ))s(θ j )). Thus,

N ⊆
m⋃

i=1

m⋃
j=1

s(θi )
−1(0\N0(U j , Vi ))s(θ j ).

In particular, N is a finite subset of G, as (X, 0) is strongly mixing, which implies that
0\N0(U j , Vi ) is a finite subset of 0 whenever 1≤ i, j ≤ m. Hence, (Y, G) is strongly
mixing.

(3) We only need to prove (a), as (b) follows from (a) together with (2).
Let us first show that (Y, G) is transitive. If {θ1, . . . , θn} ⊆ 0\G, n ∈ N and

U1, . . . ,Un, V1, . . . , Vn are non-empty open subsets of X , it is not hard to see, similarly
to the proof of (2), that

∅ 6= G

∖ n⋃
i=1

n⋃
j=1

s(θi )
−1(0\N0(U j , Vi ))s(θ j )

∪

⋃
∅6=A⊆{1,...,n}2

⋂
(i, j)∈A

s(θi )
−1 N0(U j , Vi )s(θ j )

∖ ⋃
(i, j)∈{1,...,n}2\A

s(θi )
−10s(θ j )

⊆ NG(UUi ,θi ;1≤i≤n,UVi ,θi ;1≤i≤n).

This implies that (Y, G) is transitive.
(4) Clearly, if K0K−1 ( G for each K ∈ FG then (37) always holds for (Xm, 0), for

each m ∈ N. Hence, by (3), (Y m, G) is transitive and so (Y, G) is weakly mixing.
(5) Let {θ1, . . . , θn} ⊆ 0\G, n ∈ N and U1, . . . ,Un, V1, . . . , Vn be non-empty open

subsets of X . As (X, G) is weakly mixing, it is not hard to verify that

∅ 6=

n⋂
i=1

n⋂
j=1

NG(s(θ j )
−1U j , s(θi )

−1Vi )⊆ NG(UUi ,θi ;1≤i≤n,UVi ,θi ;1≤i≤n).

It follows that (Y, G) is transitive, and, as above, weakly mixing. 2

LEMMA 7.2. Let 0 be a (possibly finite) subgroup of the countable discrete infinite group
G and (X, 0) a TDS with (Y, G) the co-induced action. Assume that G = H ⊗ K for some
groups H and K , and 0 = H ⊗ {eK }( G. Then (Y, G) is minimal if and only if (X, 0) is
trivial.

Proof. Obviously, if (X, 0) is trivial then (Y, G) is also trivial and so minimal. Thus, it
remains to prove that if (X, 0) is not trivial then (Y, G) is not minimal.

We should note that the introduction of co-induction is independent of the particular
choice of 0-sections sending 0eG to eG . Suppose that s : 0\G→ G is the 0-section given
by 0(eH , k) 7→ (eH , k) for each k ∈ K . Then, whenever h ∈ H and k, k ∈ K ,

((h, k)(xθ )θ∈0\G)0(eH ,k)

= s(0(eH , k))(h, k)s(0(eH , k)(h, k))−1x0(eH ,k)(h,k)

= (eH , k)(h, k)(eH , kk)−1x0(eH ,kk) = (h, eK )x0(eH ,kk),

which implies that G(x∗)θ∈0\G = {(x)θ∈0\G : x ∈ 0x∗} for each x∗ ∈ X . Thus, (Y, G) is
not minimal if and only if (X, 0) is not trivial. 2
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