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UNIVERSALMINIMAL FLOWS OF GENERALIZED WAŻEWSKI
DENDRITES

ALEKSANDRAKWIATKOWSKA

Abstract. We study universal minimal flows of the homeomorphism groups of generalized Ważewski
dendritesWP ,P ⊆ {3, 4, . . . , �}. IfP is finite, we prove that the universal minimal flow of the homeomor-
phism groupH (WP) is metrizable and we compute it explicitly. This answers a question of Duchesne. If P
is infinite, we show that the universal minimal flow ofH (WP) is not metrizable. This provides examples of
topological groups which are Roelcke precompact and have a nonmetrizable universal minimal flow with
a comeager orbit.

§1. Introduction. The order of a point x in a topological space is the number of
connected components we obtain after removing x. A ramification point is a point
which has order at least 3. An endpoint is a point of order 1. A continuum is a
compact connected topological space. A dendrite is a locally connected continuum
that contains no simple closed curve. All dendrites we consider in this article will be
metrizable. AWażewski dendriteW� is a dendrite such that each ramification point
ofW� is of order � and each arc I contained inW� contains a ramification point.
Moreover, for every P ⊆ {3, 4, . . . , �}, there exists a generalized Ważewski den-
drite WP , that is, a dendrite such that each ramification point of WP is of order
that belongs to P and for every p ∈ P and an arc I contained inWP , I contains a
ramification point of order p. For every P ⊆ {3, 4, . . . , �}, a generalized Ważewski
dendrite is unique up to homeomorphism, see Charatonik-Dilks [6, Theorem 6.2].
Duchesne-Monod [9] studied structural properties of homeomorphism groups of
generalized Ważewski dendrites, in particular, they showed that these groups are
simple.
The homeomorphism group of a generalizedWażewski dendrite is isomorphic (as
a topological group) to the automorphism group of a certain Fraı̈ssé-HP structure
(i.e., the Fraı̈ssé limit of a family of finite first-order structures, which has the joint
embedding and the amalgamation properties, but not necessarily the hereditary
property), which we now describe. Let P be fixed and considerWP . LetMP be the
set of all ramification points ofWP . Let LP be the first-order language that consists
of a 4-ary relation symbol D and of unary relation symbols Kp for every p ∈ P.
We letMP to be the structure with universeMP , DMP (a, b, c, d ) iff the path inWP

Received December 17, 2017.
2010Mathematics Subject Classification. 05D10, 37B05, 54F15, 03C98.
Key words and phrases. universal minimal flows, homeomorphism groups of Ważewski dendrites,
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connecting a and b and the path connecting c and d do not intersect (we emphasize
that we allow here trivial paths, i.e., we allow a = b or c = d ), and let KMPp (a) iff a
is a ramification point of the order equal to p.
Instead of coding the tree structure using theD relation, we could use the ternary
betweenness relation B, where B(a, b, c) iff b belongs to the path ac. Indeed,
B(a, b, c) holds iff D(a, c, b, b) does not hold, and D(a, b, c, d ) does not hold iff
there exists e such that B(a, e, b) and B(c, e, d ). Later on, we will also work with
a C relation, which will be defined using the D relation, moreover, the D relation
is used to describe boron trees, see [13], therefore we decided to work in this article
with theD relation rather than with the B relation.
Propositions 2.4 and 6.1 in [9] imply:

Proposition 1.1. The homeomorphismgroup of the generalizedWażewski dendrite
WP , equipped with the uniform metric, is isomorphic (as a topological group) to the
automorphism group ofMP , equipped with the pointwise convergence metric.

A tree is an acyclic connected undirected graph. For a tree T we denote by V (T )
the set of vertices and by E(T ) the set of edges of T . A degree of a vertex in a
graph is the number of edges that come out of that vertex. An endpoint is a vertex
of degree 1. A path is a tree such that each vertex either is an endpoint or it has
degree 2. Note that for any two vertices in a tree there is exactly one path joining
them. A path joining vertices a and b we will often denote by ab. A rooted tree is
a tree with a distinguished point, which we call the root. On a rooted tree T with
the root r we consider the tree order ≤T letting x ≤T y iff x belongs to the path
ry. A branch in a rooted tree is a path ra, where r is the root and a is an endpoint.
The meet of a, b ∈ T is the greatest lower bound of a and b with respect to ≤T . In
a rooted tree we can talk about the height of each vertex. The root has the height
equal to 0 and the height of x ∈ T is taken to be the maximum plus 1 of heights of
{v ∈ T : v <T x}. The height of a rooted tree T is the maximum of the heights of
all of its vertices, we denote it by ht(T ). Note that the height of x ∈ T is equal to
the length of the path rx, where the length of a path is defined to be the number of
edges in the path. A successor of a vertex x is any point y �= x such that x ≤T y. A
vertex y is an immediate successor of a vertex x if it is a successor of x and there is
no successor w �= y of x such that x ≤T w ≤T y.
Let FP be the family of all finite structures in the language LP such that the
universe is a finite tree and the degree of each vertex is different from 2. If A ∈ FP ,
we let DA(a, b, c, d ) iff the path ab and the path cd , do not intersect. TakeKp such
that for every a ∈ A there is exactly one p ∈ P such thatKAp (a), and if KAp (a) then
the degree of a is not greater than p.
A first-order structure M is ultrahomogeneous with respect to a family of finite
substructures F if for any finite substructures A,B ⊆ M , A,B ∈ F , and an
isomorphism p : A→ B, there is an automorphism ofM extending p.
Proposition 6.1 in [9] together with Proposition 1.1 imply:

Proposition 1.2. For every P ⊆ {3, 4, . . . , �}, the structureMP is ultrahomoge-
neous with respect to FP .

The proposition above implies that FP has the joint embedding property and
the amalgamation property. Note that FP does not have the hereditary property.

https://doi.org/10.1017/jsl.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.26


1620 ALEKSANDRAKWIATKOWSKA

Moreover, as additionally for every finite subsetX ⊆MP there is A ∈ FP such that
X ⊆ A ⊆MP , we have thatMP is the Fraı̈ssé limit of FP .

Remark 1.3. Let i : (S,DS ) → (T,DT ) be an embedding of trees S and T in
which each vertex has degree �= 2. Then every edge in S is mapped to a path in T
and T is obtained from S in a sequence of the following simple steps:
1. Start with a tree T ′. Pick an edge [a, b] in T ′. Let c and d be points not in T ′.
Get S′ by removing edge [a, b], and by adding points c and d , and edges [a, c], [c, b]
and [c, d ].
2. Start with a tree T ′. Pick an endpoint e in T ′. Let c and d be points not in T ′.
Get S′ by adding points c and d , and edges [e, c] and [e, d ].
3. Start with a tree T ′. Pick an vertex v in T ′ which is not an endpoint. Let c be a
point not in T ′. Get S′ by adding the point c and the edge [v, c].

Remark 1.4. Note that the relation D remembers which pairs of vertices are
joined by an edge. Given a tree T and a, b ∈ T , a �= b. Then there is an edge
between a and b iff for every c ∈ T , c �= a, b we have that c does not belong to the
path ab iff for every c ∈ T , c �= a, b, DT (a, b, c, c) holds.

Remark 1.5. LetT be a tree and letE be the set of endpoints ofT . ThenDT � E
on the set E is an example of a D-relation, as defined in [1, Section 22]. Moreover,
DT on the tree T satisfies (D1)–(D3) in the definition of aD-relation, but not (D4).

§2. The universal minimal flow—preliminaries. Our goal is to compute univer-
sal minimal flows of the homeomorphism groups H (WP), equivalently, of the
automorphism groups Aut(MP).
We will work in the framework provided by Kechris–Pestov–Todorcevic. Let us
recall relevant definitions and theorems. The presentation below is essentially copied
from [2], Section 3.6. Lemma 2.3, Theorem 2.6, and Corollary 2.7 are proved there.
A topological group G is extremely amenable if every G-flow has a fixed point.
A coloring of a set X is any function c : X → {1, 2, . . . , r}, for some r ≥ 2; we say
that Y ⊆ X is c-monochromatic (or just monochromatic) if r � Y is constant.
Let G be a family of finite structures in a languageL. ForA,B ∈ G writeA ≤ B if
A embeds into B. For A,B in G, let

(
B
A

)
denotes the set of all embeddings of A into

B. We say that A ∈ G is a Ramsey object if for every B ∈ G with A ≤ B and every
integer r ≥ 2 there exists C ∈ G such that for every coloring c :

(
C
A

)
→ {1, 2, . . . , r}

there exists h ∈
(
C
B

)
such that {h ◦ f : f ∈

(
B
A

)
} is monochromatic. Note that to

check thatA is a Ramsey object it suffices to check it only for r = 2.We say that G is
a Ramsey class (or that it has Ramsey property) if every structure in G is a Ramsey
object.
A structure A ∈ G is rigid if it has trivial automorphism group.
Kechris–Pestov–Todorcevic [14] worked with Fraı̈ssé families and their ordered
Fraı̈ssé expansions, their work was generalized by Nguyen Van Thé [17] to
Fraı̈ssé families and to arbitrary relational Fraı̈ssé expansions. TheKechris–Pestov–
Todorcevic correspondence remains true forFraı̈ssé-HP families,whichwas checked
by several people, and it appears in [22], see also [2].
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Theorem 2.1 (Kechris–Pestov–Todorcevic [14], see Theorem 5.1 in [22]). Let G
be a Fraı̈ssé-HP family, let G be its Fraı̈ssé limit, and let G = Aut(G). Then the
following are equivalent:
(1) The groupG is extremely amenable.
(2) The family G is a Ramsey class and it consists of rigid structures.
Let G be a Fraı̈ssé-HP family in a language L, let G be its Fraı̈ssé limit, and let
G = Aut(G). Let G∗ be a Fraı̈ssé-HP family in a languageL∗ ⊇ L,L∗ \L relational,
such that the map defined on G∗ and given by A∗ 
→ A∗ � L is onto G. In that case
we say thatA∗ is an expansion of A∗ � L and that A∗ � L is a reduct of A∗, and that
G∗ is an expansion of G. Let G∗ be the Fraı̈ssé limit of G∗, and let G∗ = Aut(G∗).
We say that the expansion G∗ of G is reasonable if for anyA,B ∈ G, an embedding
α : A → B and an expansion A∗ ∈ G∗ of A, there is an expansion B∗ ∈ G∗ of B
such thatα : A∗ → B∗ is an embedding. It is precompact if for everyA ∈ G there are
only finitely many A∗ ∈ G∗ such that A∗ � L = A. We say that G∗ has the expansion
property relative to G if for any A∗ ∈ G∗ there is B ∈ G such that for any expansion
B∗ ∈ G∗, there is an embedding α : A∗ → B∗. The following proposition explains
the importance of the notion of reasonability.
Proposition 2.2 ([14], [17], see Proposition 5.3 in [22]). The expansion G∗ of G
is reasonable if and only if G∗ � L = G.
We say that G∗ has the relative HP (the relative hereditary property) with respect
to G if for every A,B ∈ G such that A is a substructure of B and for B∗ ∈ G∗, an
expansion of B, we have B∗ � A ∈ G∗. This is equivalent to saying that for any
A ∈ G and an embedding i : A → G there is an expansion A∗ ∈ G∗ of A such that
i : A∗ → G∗ is an embedding. The relative HP property is used to show that when
an expansion G∗ of G is precompact, then Aut(G)/Aut(G∗) is precompact in the
quotient of the right uniformity, the proof is contained in Section 3.6 in [2].

Lemma 2.3. Suppose that G∗ is a reasonable precompact expansion of G and that
the relative HP holds. Then the right uniform space Aut(G)/Aut(G∗) is precompact.
Below (G, �R) denotes an expansion of G to a structure in L∗. Instead of (G, �R)
we will often just write �R.
Define

XG∗ = { �R : for every A ∈ G, and an embedding i : A→ G there exists

A∗ ∈ G∗, such that i : A∗ → (G, �R) is an embedding}.
The relative HP implies that the space XG∗ contains G∗.
We make XG∗ a topological space by declaring sets

Vi,A∗ = { �R ∈ XG∗ : the map i : A∗ → (G, �R) is an embedding},
where i : A→ G is an embedding, A∗ ∈ G∗, andA∗ � L = A, to be open. The group
Aut(G∗) acts continuously on XG∗ via

g · �R(ā) = �R(g−1(ā)).
Reasonability and precompactness of the expansion G∗ of G imply that the space
XG∗ is compact and zero-dimensional.
From now on till the end of this section, we will assume that the expansion G∗ of G
is reasonable, precompact, and satisfies the relative HP.
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Theorem 2.4 ([14], [17], see Proposition 5.5 in [22]). The following are
equivalent:
(1) The flow G � XG∗ is minimal.
(2) The family G∗ has the expansion property relative to G.
Theorem 2.5 (Kechris–Pestov–Todorcevic [14], Nguyen Van Thé [17], see
Theorem 5.7 in [22]). The following are equivalent:
(1) The flow G � XG∗ is the universal minimal flow of G .
(2) The family G∗ is a rigid Ramsey class and has the expansion property relative
to G.

A proof of Theorem 2.6 is contained in Section 3.6 in [2].
Let �RG be such thatG∗ = (G, �RG).

Theorem 2.6. The map gAut(G∗) 
→ g · �RG from Aut(G)/Aut(G∗) to XG∗ is a
uniform isomorphism.
We will say that flows G � X and G � Y are isomorphic if there is a
homeomorphism from X onto Y which is a G-map.

Corollary 2.7. The flow G � Aut(G)/Aut(G∗)
∧

is isomorphic to the flow G �

XG∗ .

§3. The universal minimal flow—construction. In this section, we show:
Theorem 3.1. For anyP ⊆ {3, . . . , �} there is a reasonable Fraı̈ssé-HP expansion

F∗
P of FP, which has the relative HP, the expansion, and the Ramsey properties. In
the case when P is finite, this expansion F∗

P is also precompact.
Then using the Kechris–Pestov–Todorcevic correspondence and Proposition 1.1,
we obtain a description of the universal minimal flow of the homeomorphism
group of the generalized Ważewski dendriteWP , for all finite P. In particular, we
will obtain that this universal minimal flow is metrizable, when P is finite. This
answers a question of Duchesne asked during his talk at the Workshop “Structure
and Geometry of Polish groups” in Oaxaca in 06/2017. In the special case, when
P = {�}, the universal minimal flow ofH (W{�}), independently of our work, was
identified by Duchesne in [8].
Given FP in the language LP , we first construct a family T ∗

P of rooted trees with
ordered and labeled branches, and then we construct the required family F∗

P that is
Ramsey and has the expansion property with respect to FP .
The family T ∗

P .TakeLT ∗
P
= LP∪{C,≺, G1, G2, . . .}, whereC is a ternary relation

symbol, ≺, G1, G2, . . . are binary relation symbols. If P is finite, it suffices to take
G1, . . . , Gm−1, where m = max(P \ {�}).
Let A ∈ FP .
Step 1. Choosing the root for A.

Let x be an edge of A or a vertex of A such that its degree is strictly less than p
satisfying KAp (x). In the case when x is a vertex, denote r = x and consider A with
the distinguished point r, which we call the root. Denote this rooted tree by TA,r .
In the case when x = [a, b] is an edge, remove x from A, take a new point r and
add edges [a, r] and [r, b]. The obtained tree with the distinguished point r, which
we call the root, denote by TA,r as before.
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For simplicity, write T = TA,r . Similarly as before, we let for a, b, c, d ∈ T ,
DT (a, b, c, d ) iff the pathsab and cd do not intersect. Let for a, b, c ∈ T ,CT (a, b, c)
iff DT (a, b, c, r). (The relation CT “remembers” that the root r of T is the smallest
with respect to ≤T element of T .)
It is crucial that we are allowed to choose the root both with respect to edges and
with respect to vertices. Otherwise, the relative HP would fail, see Remark 3.5.

Remark 3.2. Let T be a tree and let E be the set of endpoints of T . Then
CT � E is an example of a C -relation on the set E, as defined in [1, Section 10].
Moreover,CT on the treeT satisfies (C1)–(C3) in the definition of aC -relation, but
not (C4).

Step 2. Labeling the root r.
If r ∈ A (which is exactly in the case when in Step 1 the x we picked was a vertex)
then already there is p ∈ P such that KAp (r), i.e., KTp (r). Otherwise, if r /∈ A, we
pick some p ∈ P and let KTp (r).
Step 3. Ordering and labeling branches of T .

Here we have to do two things: we will introduce a binary relation that induces
an order of branches of T , and then for every a ∈ T such that for a finite p ∈ P we
have KTp (a), we will put additional labels on the successors of a.
The binary relation ≺T : For every a ∈ T we fix a strict linear order ≺Ta of its
immediate successors. Then we let c ≺T d iff for some a ∈ T there are i < j such
that ai ≤T c and aj ≤T d , where a1 ≺Ta · · · ≺Ta an are immediate successors of a,
for some n.
The binary relations GTi : If a ∈ T and p ∈ P \ {�} are such that KTp (a), and
a1 ≺T · · · ≺T an are the immediate successors of a, fix an increasing injection
k : {1, . . . , n} → {1, . . . , p − 1}. We let for b ∈ T , GT

k(i)(a, b) iff ai ≤T b.
Clearly ≺T induces an ordering of branches of T . Moreover, if � /∈ P, then

≺T can be recovered from GT1 , GT2 , . . . . Note that if n < p − 1 in the definition
of an injection k, GT1 , G

T
2 , . . . carry more information that just ≺T . The reason

why we include ≺T rather than just work with GT1 , GT2 , . . . is that in the case when
� ∈ P and P is finite, we do not want to work with infinitely many Gi ’s (otherwise
precompactness will fail); in the case� /∈ P, it suffices towork onlywithGT1 , GT2 , . . .
and not introduce ≺T .
Finally, put into T ∗

P any structure obtained from A (in a very nonunique way) in
the procedure described in Steps 1–3. Note that every vertex in a T ∗ ∈ T ∗

P , except
possibly the root, has the degree different from 2.

The family F∗
P . Take L∗

P = LT ∗
P
∪ {Rp}p∈P ∪ {Hij}1≤i<j , where each Rp andHij

is a binary relation symbol, and i, j ∈ N.
Start with A ∈ FP and let T ∗ ∈ T ∗

P be any rooted tree obtained from A. The
universes of A and of T ∗ either are equal or there is an extra point, the root r of
T ∗, which is not in A. All the relations in LT ∗

P
we simply restrict from T ∗ to A.

However, note that in the case r /∈ A, we “forgot” this way for which p ∈ P it holds
KT

∗
p (r) and for which 1 ≤ i it holds GT

∗
i (r, a), whenever a ∈ T ∗, a �= r. In order

to remember these two pieces of information after removing the root, we set for any
two incomparable with respect to≤T∗

elements a, b ∈ A and c equal to the meet of
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a and b in the rooted tree T ∗:RAp (a, b) iffK
T∗
p (c) and we setH

A
ij (a, b) iff G

T∗
i (c, a)

and GT
∗
j (c, b).

Proposition 3.3. Let f : S → T be an injection between finite rooted trees S and
T with roots rS and rT , respectively. Then the following are equivalent:
(1) f preserves the relations C (defined with respect to rS and rT ) andD;
(2) f preserves the relation C ;
(3) f preserves the meet (i.e., for each a, b ∈ S and their meet c, f(c) is the meet
of f(a) and f(b)).

Proof. Clearly (1) implies (2).Assume now (2). First notice that thenf preserves
≤S and ≤T . Then note that if for some a, b ∈ S and c, the meet of a and b, we
had that f(c) is strictly lower with respect to ≤T than the meet of f(a) and f(b),
then ¬CS(a, b, c) andCT (f(a), f(b), f(c)), which is impossible. Therefore we get
(3). Now if we assume (3), then f also preserves ≤S and ≤T . Essentially from the
definitions of the relations C and D it follows that if (3) holds then f preserves C
and D, and hence we get (1). 

Proposition 3.4. The category F∗

P with embeddings and the category T ∗
P with

embeddings are equivalent via a covariant functor.
Proof. To A∗ ∈ F∗

P assign T
∗ ∈ T ∗

P by adding the root if it is not already in A
∗.

From the relation CA
∗
we can recover where the root is. Recover the information

needed about the root using the relations Rp andHij . To T ∗ ∈ T ∗
P assign A

∗ ∈ F∗
P

by removing the root if it was added (which is exactly when the degree of the root
is equal to 2).
To an embedding f : A∗ → B∗ assign an embedding g : S∗ → T ∗, where S∗

corresponds to A∗ and T ∗ corresponds to B∗ in the following way. If S∗ contains
the root r which is not already in A∗ and this root was added with respect to an
edge x = [a, b], we take g to be the extension of f in which r is mapped to the meet
of f(a) and f(b). Again the relations Rp and Hij remember all the information
needed for such a g to be an embedding. On the other hand, having an embedding
g : S∗ → T ∗, we obtain an embedding f : A∗ → B∗ by simply removing the root
from S∗, in case it was added, and restricting g. 

Let TP denote the set of reducts of elements in T ∗

P to the language LP ∪ {C}. We
now prove that the family F∗

P has all the properties required in Theorem 3.1.

3.1. F∗
P is reasonable. LetA,B ∈ FP such thatA is a substructure ofB, be given,

and fix an expansion A∗ ∈ F∗
P of A. We will define B

∗ ∈ F∗
P , an expansion of B

which when restricted to A is equal to A∗. If the root r = rA∗ of A∗ is a vertex such
that there is no b ∈ B \ A and an edge [r, b] in B, we let r to be the root of B. If r
is a vertex such that there is b0 ∈ B \A and an edge [r, b0] in B, we let the vertex of
B to be any endpoint e of B such that b0 belongs to the path er in B. The resulted
rooted tree denote by T and note that T ∈ TP . If the root of A∗ was added with
respect to an edge [x1, x2] in A, then take any edge [y1, y2] ⊆ [x1, x2] in B, and add
the root to B with respect to [y1, y2]. Take T ∈ TP equal to B with the root rT
added with respect to [y1, y2] and let for every p ∈ P, KTp (rT ) iff KS

∗
p (rS∗), where

S∗ ∈ T ∗
P with the root rS∗ corresponds to A

∗.
View S ∈ TP equal to the reduct of S∗ as embedded in T . In the case when
the root rS∗ is not in A, this embedding takes rS∗ to rT . We still have to define
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≺T and GT1 , GT2 , . . . , which extend ≺S
∗
and GS

∗
1 , G

S∗
2 , . . . . For this, for any b ∈ T

and its immediate successors b1, . . . , bn, it is enough to define ≺T on {b1, . . . , bn}
and specify for each i and k whether GTi (b, bk) holds or not. Let p ∈ P be such
that KBp (b). In case b /∈ S∗, we define ≺T and GT1 , . . . , GTp−1 in an arbitrary way
that Step 3 in the construction allows us. In the case b ∈ S∗, we define ≺T and
GT1 , . . . , G

T
p−1 in any way allowed in Step 3 so that additionally if for some c ∈ S∗,

bk ≤T c and GS
∗
i (b, c) then G

T
i (b, bk) and if for some c, d ∈ S∗, bk ≤T c, bl ≤T d

and c ≺S∗ d then bk ≺T bl . This defines T ∗ ∈ T ∗
P , which corresponds to B

∗ ∈ F∗
P

we are looking for.

3.2. F∗
P is precompact with respect to FP. Clear. P has to be finite.

3.3. F∗
P has the JEP. For this we can instead work with the family T ∗

P . Take
S∗, T ∗ ∈ T ∗

P . Let rS∗ be the root of S
∗, and let rT∗ be the root of T ∗. Pick a new

element r, pick p ∈ P, and if p < � pick 1 ≤ i < j ≤ p − 1. Let R∗ ∈ T ∗
P be

obtained as follows. We take the union of S∗ and T ∗ together with the point r
and vertices [r, rS∗ ] and [r, rT∗ ]. We declare r to be the root of R∗, i.e., we define
CR

∗
(a, b, c) iff DR

∗
(a, b, c, r), and let KR

∗
p (r). For any rS∗ ≤S∗ a and rT∗ ≤T∗ b,

let a ≺R∗
b. If p < �, then if rS∗ ≤S∗ a, we let GR

∗
i (r, a) and if rT∗ ≤T∗ a, we let

GR
∗
j (r, a). We also make sure that the degrees of rS∗ and rT∗ in R∗ are at least 3 by
adding additional edges and extending ≺R∗

and GR
∗
i , if needed. Then this R

∗ is as
required for S∗ and T ∗. (Note that in this proof we used that the degree of rS∗ in
S∗ is strictly less than p0 ∈ P such that KS

∗
p0 (rS∗), and similarly for T

∗.)

3.4. F∗
P has the AP. One can show it directly, but it also follows from the rigidity

of each A ∈ F∗
P together with the JEP and the Ramsey properties for F∗

P. The
proof of this fact is essentially due to Nešetřil-Rödl (see [16, p. 294, Lemma 1]),
the framework in which they work is somewhat different from ours. Their proof
is for families of structures which are rigid, hereditary, have the JEP and Ramsey
properties, see also [14, p. 129]. Nevertheless, for a Fraı̈ssé-HP family F , whenever
A ∈ F then every structure isomorphic to A is also in F . Therefore the proof
presented byKechris–Pestov–Todorcevic [14] applies to Fraı̈ssé-HP families as well.

3.5. F∗
P has the relative HP. Fix A,B ∈ FP and B∗ ∈ F∗

P extending B. Take
T ∗ ∈ T ∗

P that corresponds to B
∗ and view A as embedded in the LP-reduct of

T ∗. There are either one or two minimal elements in A ⊆ (T ∗,≤T∗). Let r be this
minimal element, if there is exactly one, and otherwise let r be the meet of the two
minimal elements. Take S = A ∪ {r}, a rooted tree with the root r. Let S∗ be
the substructure of T ∗ such that the universe is S. Then S∗ ∈ T ∗

P and hence the
corresponding structure A∗ ∈ F∗

P satisfies B
∗ � A ∈ F∗

P .

Remark 3.5. It is possible to haveA,B ∈ FP,A embedded intoB, the expansion
B∗ ∈ F∗

P of B, such that its root was added with respect a vertex, but the root of
A∗, the restriction of B∗ to A, has the root added with respect to an edge. Let for
example B∗ be the rooted tree that consists of 4 vertices: r, a, b, c, where r is the
root, and edges [r, a], [r, b], [r, c], and let A be the subtree that consists of 2 vertices
a, b and the edge [a, b]. Similarly, it is not hard to give an example of B∗ andA such
that B∗ has the root added with respect to an edge and A∗ has the root added with
respect to a vertex.
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3.6. F∗
P has the expansion property with respect to FP . Let A∗ ∈ F∗

P be given.
Without loss of generality, let the root of A∗ belong toA∗ (as we can always embed
the A∗ we started with in an element of F∗

P with such a property). Therefore we can
think that A∗ ∈ T ∗

P . Take a rooted tree T ∈ TP which has the property that all its
expansions to an element in T ∗

P are isomorphic, the degree of the root is ≥ 2, and
A∗ embeds in some/every expansion of T . (For this, note that any treeV ∈ TP with
the properties: (1) if x and y have the same height, KVp (x) and K

V
q (y) hold, then

p = q; (2) if x is not an endpoint, p < �, and KVp (x), then x has exactly p − 1
immediate successors; (3) there isM ≥ 2 such that every x which is not an endpoint
and KV� (x), has exactlyM immediate successors; is such that all its expansions to
an element in T ∗

P are isomorphic.) Finally, let B be obtained as follows. Take T
′

and T ′′, two disjoint copies of T . Denote their roots by rT ′ and rT ′′ , respectively.
The disjoint union of T ′ and T ′′ together with the edge [rT ′ , rT ′′ ] is a required B.
This is because whenever we expand B to a B∗ ∈ F∗

P then we can embed T
∗ (the

unique expansion of T ) into B∗. If, say, the vertex or edge with respect to which is
added the root of B∗ lies in T ′, then the unique expansion of T ′′ embeds into B∗.

3.7. F∗
P has the Ramsey property. We generalize theRamsey theorems byDeuber

[7] and by Sokić [18] (Theorems 2.2 and 6.1). For related Ramsey theorems, where
it is additionally assumed that endpoints of a rooted tree are mapped to endpoints,
see [4,13,20].

Theorem 3.6. For any nonempty P ⊆ {3, . . . , �}, the family T ∗
P , and hence the

family F∗
P, is Ramsey.

Consider T ∈ T ∗
P with the root rT and let q be such that K

T
q (rT ). Let V ∈ T ∗

P

and let M be the maximum of 2 and the number of immediate successors of all
vertices in V labeled with �. We are going to define V [T ] ∈ T ∗

P . First consider
V ′ ∈ T ∗

P defined as follows. For every endpoint e ∈ V take pe such thatKVpe (e) and
take new points xe1 , . . . , x

e
p′e
, where p′e = pe − 1 if pe < � and p′e = M if pe = �,

and add edges [e, xei ], i = 1, . . . , p
′
e . Then let V

′ ∈ T ∗
P be the tree we obtain by

letting KV
′

q (x
e
i ) for each endpoint e, and each i , and (uniquely) choosing ≺V

′
and

GV
′

i . To obtain V [T ], to each endpoint of V
′ attach the tree T by identifying this

endpoint with the root rT .

Example 3.7. Let V = 2≤1 with KV5 (∅), KV3 (0), and KV� (1). Let T = 2≤1
with KT7 (∅), KT10(0), and KT6 (1). Then S = V [T ] = 2≤3 with KS5 (∅), KS3 (0),
KS� (1),K

S
7 (00),K

S
7 (01),K

S
7 (10),K

S
7 (11),K

S
10(000),K

S
10(010),K

S
10(100),K

S
10(110),

KS6 (001), K
S
6 (011), K

S
6 (101), and K

S
6 (111).

For a family G of first-order structures in some language denote by Gm the family
{(A1, . . . , Am) : Aj ∈ G}. We say that (A1, . . . , Am) embeds into (B1, . . . , Bm) if for
every j, Aj embeds into Bj .
In the inductive step of the proof of Theorem 3.6 we will be using the product
Ramsey theorem.

Theorem 3.8 (Sokić, Theorem 2 in [19]). Let G be a family of first-order structures
in some language, which is a Ramsey class. For any (A1, . . . , Am), (B1, . . . , Bm) ∈ Gm
such that (A1, . . . , Am) embeds into (B1, . . . , Bm) there is C ∈ G such that for any
coloring of embeddings of (A1, . . . , Am) in (C, . . . , C ) into finitely many colors there
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is a embedding h = (h1, . . . , hm) of (B1, . . . , Bm) in (C, . . . , C ) such that the set of
all functions h ◦ f, where f = (f1, . . . , fm) is an embedding of (A1, . . . , Am) into
(B1, . . . , Bm), is monochromatic.

Moreover, from the proof of Sokić’s theorem it follows that for every i : If every
A ∈ G with ht(A) ≤ i is a Ramsey object in G, then every (A1, . . . , Am) ∈ Gm with
each Aj satisfying ht(Aj) ≤ i , is a Ramsey object in Gm.
We show that T ∗

P is a Ramsey class, i.e., we show that for every S,T ∈ T ∗
P with

S ≤ T there exists U ∈ T ∗
P such that for every coloring c :

(
U
S

)
→ {blue, red} there

exists h ∈
(
U
T

)
such that {h ◦ f : f ∈

(
T
S

)
} is monochromatic.

Proof of Theorem 3.6. We show that every S ∈ T ∗
P is a Ramsey object by induc-

tion on the height of S. First let S ∈ T ∗
P be a one-element structure. Take T ∈ TP

such that S embeds into T . Without loss of generality, for any x ∈ T , which is not
an endpoint, and p ∈ P such that KTp (x), if p < �, then the number of immediate
successors of x is equal to p − 1. Moreover assume that there is M such that the
for any x, which is not an endpoint, such that KT� (x), the number of immediate
successors of x is exactly M . Suppose that S = {a} and let pS ∈ P be such that
KSpS (a).
Let T0 = T and Tk = Tk−1[T ], 1 ≤ k ≤ h = ht(T ), and we claim that U = Th
is as required. Denote the set of copies of T attached to Tk−1 in the construction
of Tk by Tk , and let T0 = {T0}. Color embeddings of S into U into two colors:
blue and red. If there is k and T ′ ∈ Tk such that all embeddings of S into T ′ are
in the same color, we are done. Otherwise, for each k and T ′ ∈ Tk there is a blue
embedding of S into T ′.
We construct the required embedding f of T into U by induction. First we
construct f(rT ), where rT denotes the root of T . Let pT ∈ P be such thatKTpT (rT ).
If pT �= pS , let f(rT ) = rU , where rU is the root of U . If pT = pS , let f(rT ) be an
image of any blue embedding of S into T ′ = T0 ∈ T0. Now let x ∈ T be of height
k and suppose that we constructed f(x) and that f(x) ∈ T ′ for some T ′ ∈ Tk
Let x1 ≺T · · · ≺T xm be the list of immediate successors of x, and we construct
f(x1), . . . , f(xm), each will be in a copy of T that lies in Tk+1. Suppose that p ∈ P
is such thatKTp (x) and that y1 ≺U · · · ≺U yp′ is the list of immediate successors of
f(x), where p′ = p − 1 if p < � and p′ = M when p = �. By the construction
of U , there are r1 ≺U · · · ≺U rp′ , such that rl is a successor of yl in U and rl is
the root of some T l ∈ Tk+1. For each l , let pl ∈ P be such that KTpl (xl ), and if
pl �= pS , let f(xl) be equal to the point in Tl corresponding to xl in the obvious
isomorphism betweenT andT l . Otherwise, if pl = pS , we letf(xl ) to be the image
of a blue embedding of S into T l ⊆ U . This gives a “blue” embedding of T intoU
and finishes the base step of the induction.
For the inductive step, let S,T ∈ T ∗

P such that S ≤ T be given. We assume that
every tree in T ∗

P of the height strictly less than the height of S is a Ramsey object.
Let V ∈ T ∗

P be such that whenever we color embeddings of {rS} into V into two
colors, then there exists an embedding g : T → V such that {g ◦ f : f ∈

(
T
S

)
} is

monochromatic. Without loss of generality, we assume that for any x ∈ V , which
is not an endpoint, and p ∈ P such that KVp (x), if p < �, then the number of
immediate successors of x is equal to p − 1. Let a1 ≺S · · · ≺S ak be the list of
immediate successors of rS , and let Si = Sai = {b ∈ S : ai ≤S b}.
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Using the well-founded recursion along V , for each x ∈ V we construct a tree
V x ∈ T ∗

P . The U = V
rV will be as needed for S and T and two colors. For an

endpoint x ∈ V , let V x = {x} with KVxp (x) iff KVp (x) for every p ∈ P. Now let
x ∈ V not be an endpoint, letx1 ≺V · · · ≺V xn be the list of all immediate successors
of x, and assume that we already defined V x1 , . . . , V xn . Let V x0 be obtained from
the disjoint union of {x} andV x1 , . . . , V xn , adding edges [x, rV xi ]. For a ∈ V xi and
t = 1, . . . , n we let GV

x
0
t (x, a) iff GVt (x, xi). Similarly, for a ∈ V xi and b ∈ V xj we

let a ≺V x0 b iff xi ≺V xj and let KV
x

p (x) iff K
V
p (x).

If S does not embed intoV x0 in a way that rS is mapped to rV x0 , the root ofV
x
0 , let

V x = V x0 . Otherwise, and if p such thatK
V
p (x) is finite, apply the product Ramsey

theorem to (S1, . . . , Sk) and (V xb(1) , . . . , V xb(k) ), where b : {1, . . . , k} → {1, . . . , n}
is an increasing injection such that for any t and i , GSt (rS , ai) iff G

V
t (x, xb(i)),

and let Ux ∈ T ∗
P be the structure we obtain from the product Ramsey theorem.

For each j ∈ rng(b), take any Uj ∈ T ∗
P such that U

x embeds into it and for
any p ∈ P, KUjp (rUj ) iff KV

xj

p (rV xj ). Finally, let V x be equal to V x0 with each
V xb(i) replaced by Ub(i). If KV� (x), take l such that whenever we color increasing
injections of {1, . . . , k} to {1, . . . , l} into two colors then there is an increasing injec-
tion g : {1, . . . , n} → {1, . . . , l} such that all maps g ◦ f, where f : {1, . . . , k} →
{1, . . . , n} is an increasing injection, are in the same color. Let Ux0 ∈ T ∗

P be any
structure that all V x1 , . . . , V xn embed into it. Enumerate increasing injections
of {1, . . . , k} to {1, . . . , l} into e1, . . . , em . Define recursively Uxi+1, i = 0, . . . ,
m − 1 to be the result of applying the product Ramsey theorem to (S1, . . . , Sk)
and (Uxi , . . . , U

x
i ). Define V

x to be the disjoint union of {x} and l many Uxm, we
add edges [x, rUxm ], and specify ≺U

x
m , and let KV

x

p (x) iff K
V
p (x).

Observe that for every x ∈ V with immediate successors x1 ≺V · · · ≺V xn, which
is not an endpoint, we have for every p ∈ P, KVp (x) iff KV

x

p (rV x ). If p is finite and
such that KVp (x) or if S does not embed into V

x in a way that rS is mapped to
rV x , then x has exactly n many immediate successors x′1 ≺V

x · · · ≺V x x′n in V x and
they are such that for any t and i , GV

x

t (rV x , x
′
i ) iff G

V
t (x, xi ), and for any p and

i , KV
x

p (x
′
i ) iff K

V
p (xi). Moreover, for any coloring into two colors of embeddings

of S into V x such that rS is mapped to rV x , there is an embedding g : V x0 → V x
taking rV x0 to rV x such that {g ◦ f : f ∈

(
V x0
S

)
taking rS to rV x0 } is monochromatic.

If KV� (x), set V
i = {a ∈ V x0 : xi ≤V x0 a}, where x1 ≺V x0 · · · ≺V x0 xn are the

immediate successors of x in V x0 . Then for any coloring into two colors of embed-
dings of S into V x such that rS is mapped to rV x , there are immediate successors
y1 ≺V

x · · · ≺V x yn of rV x and an embedding g : V x0 → V x taking rV x0 to rV x and sat-
isfying yi ≤V x g(V i), i = 1, . . . , n, such that {g ◦ f : f ∈

(
V x0
S

)
taking rS to rV x0 } is

monochromatic.
Color embeddings of S into U into two colors. Using the observations above,
find an embedding h : V → U such that any two embeddings g1, g2 : S → U whose
image is contained in h(V ) and with g1(rS) = g2(rS), are in the same color. Finally,
by the choice of V , for the induced coloring of embeddings of {rS} into V into
two colors, there exists an embedding g : T → V such that {g ◦ f : f ∈

(
T
S

)
} is

monochromatic. Then h ◦ g is as required. 

We finish this section relating Theorem 3.6 to the work of Sokić [18].
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A semilattice is a poset such that every 2 elements have an infimum. If A is a
semilattice, we define a binary operation ◦ on A by a ◦ b = inf(a, b) and a partial
order ≤A by a ≤A b iff a ◦ b = a. Say that (A, ◦A) is a treeable semilattice if the
induced poset is a rooted tree, i.e., it has the minimum, called the root, and for each
a ∈ A, the set {b ∈ A : b ≤A a} is linearly ordered by ≤A.
Let T be the family of all finite treeable semilattices in the language {◦}. Let
A ∈ T and say that �A is a convex ordering on A if for every a, b, c ∈ A with
a ◦ b = c, a �= c and b �= c, we have a �A b iff a′ �A b′, where a′, b′ are immediate
successors of c, a′ ≤A a and b′ ≤A b. Denote the set of all convex ordering on A
by co(A) and let

CT = {(A, ◦A,�A) : (A, ◦A) ∈ T ,�A∈ co(A)}.
Theorem 3.9 (Sokić, Theorem 2.2 in [18]). CT is a Ramsey class.
The theorem above is a special case of Theorem 3.6 and is equivalent to the
statement that T ∗

{�} is a Ramsey class. Indeed, the categories CT and T ∗
{�} are

equivalent via a covariant functor, which follows from Proposition 3.3 and an
observation that convex orderings on treeable semilattices correspond to binary
relations allowed in Step 3 of the definition of T ∗

P .
Similarly, Theorem 6.1 in [18] is equivalent to the statement that each T ∗

{k} is a
Ramsey class, k ≥ 3, therefore again it is a special case of Theorem 3.6.

§4. The generalized Ważewski dendriteWP , for an infinite P ⊆ {3, 4, . . . , �}. In
this section, we show that in the case P is infinite, the universal minimal flow of the
homeomorphism group of the generalizedWażewski dendriteWP is nonmetrizable,
and we point out two important consequences this fact (see Sections 4.1 and 4.2).
LetG bea family of finite structures. Say thatA ∈ G hasRamsey degree≥ t iff there
existA ≤ B such that for everyB ≤ C there exists a coloring c0 :

(
C
A

)
→ {1, 2, . . . , t}

such that for every g ∈
(
C
B

)
, {g ◦ f : f ∈

(
B
A

)
} assumes ≥ t colors.

The Ramsey degree is infinite if for every t it is ≥ t.
Theorem 4.1 (Zucker [22], Theorem 8.7). Let G be a Fraı̈ssé-HP family and let

G be its Fraı̈ssé limit. Then some A ∈ G has infinite Ramsey degree iff the universal
minimal flow of Aut(G) is nonmetrizable.
Theorems 4.1 and 4.2 imply that when P is infinite then the universal minimal
flow ofH (WP) is nonmetrizable.

Theorem 4.2. Suppose that P is infinite. Then there is A ∈ FP which has infinite
Ramsey degree.
Proof. Let p1 < p2 < · · · be the increasing enumeration of P \ {�}, let A =

{a, b} be such that V (A) = {a, b}, E(A) = {[a, b]}, KAp1 (a) and K
A
p1
(b), and let

t ≥ 2 be given. Take B constructed as follows. First let B1 consists of a single point
x0 such that KB1p1 (x0). Let B2 be the tree that consists of vertices x0, y1, . . . , yp1 and
edges [x0, yi ], KB2p1 (x0), and K

B2
p2
(yi ), i = 1, . . . , p1. Having constructed Bk , k ≤ t,

such that for every endpoint e in Bk it holdsKBkpk (e), we obtain Bk+1 from Bk in the
following way. For every endpoint e in Bk pick new points ye1 , . . . , y

e
pk−1 and add

vertices [e, yei ]. Note that e has degree pk in Bk+1. If k < t, we let K
Bk+1
pk+1 (y

e
i ), and if

k = t, let KBk+1p1 (y
e
i ). Take B = Bt .
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Now take any C ∈ FP such that B ≤ C . Pick an endpoint r in C and consider
C as a rooted tree with the root r. Let c0 :

(
C
A

)
→ {1, 2, . . . , t} be the following

coloring. For an embedding f : A → C , if f(a) and f(b) do not lie on the same
branch in the rooted tree C , let c0(f) = i iff KCpi (c), where c is the meet of f(a)
and f(b). Otherwise, if f(a) and f(b) do lie on the same branch, let c0(f) be an
arbitrary color from {1, . . . , t}.
Let g : B → C be an embedding. There are j1 and j2 such that g(x0) ≤C
g(yj1 ), g(yj2 ), yj1 , yj2 ∈ B2 (in fact, all j = 1, . . . , p1 except one have this property).
Clearly in the rooted tree B ′, obtained from B by removing all vertices z such that
some yj ∈ B2, j �= j1, j2, is on the path connecting z and x0 ∈ B1, we have that for
any i there are endpoints e1 and e2 in B ′ such that the meet of e1 and e2 is a vertex
c such thatKB

′
pi (c). That implies that g(B

′) and hence g(B) assumes all t colors. 

Corollary 4.3. Suppose that P is infinite. Then the universal minimal flow of
H (WP) is nonmetrizable.

4.1. H (WP) has a nonmetrizable universalminimal flowand isRoelcke precompact.
A subgroup H of S(X ), the group of all permutations of a countable set X with
the pointwise convergence topology, is oligomorpic when for every n, the diagonal
action of H on Xn has only finitely many orbits. Note that we do not assume that
H is a closed subgroup of S(X ). A topological group H is Roelcke precompact if
for every open neighbourhoodU of 1 ∈ H there exists a finite set F ⊆ H such that
H = UFU . As shown by Tsankov [21, Theorem 2.4] a subgroup of S(X ) is Roelcke
precompact if and only if it is an inverse limit of oligomorphic groups.
As observed by Todor Tsankov (private communication in 2013), Aut(MP), for
each P ⊆ {3, 4, . . . , �}, is a Roelcke precompact group. This is because when we
take

Mn = {m ∈MP : Kp(m) for some p ∈ {3, . . . , n, �}},

Gn = Aut(Mn) = Aut(Mn,DMn , (KMnp )p∈P∩{3,...,n,�}),

and

Hn = {h ∈ Gn : there exists f ∈ Aut(MP) such that h = f �Mn},

thenHn is an oligomorphic group and the inverse limit ofHn is equal to Aut(MP).
Melleray–Nguyen Van Thé–Tsankov [15] asked:

Question 4.4 (Question 1.5 in [15]). Is the universalminimal flow of every Roelcke
precompact Polish group metrizable?

Moreover, Bodirsky–Pinsker–Tsankov [5] asked if every �-categorical structure
has an �-categorical expansion which is Ramsey (which by the work of Zucker [22]
is equivalent to the question above with “Roelcke precompact Polish” replaced by
“oligomorphic”).
Evans–Hubička–Nešetřil [11] answered Question 4.4 in the negative. They pro-
vided an example of an oligomorphic groupwith a nonmetrizable universalminimal
flow. Their example is much more involved than ours, it is based on a very nontrivial
construction due to Hrushovski [12], see also [10].
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4.2. H (WP) has a nonmetrizable universal minimal flow with a comeager orbit.
Ben Yaacov–Melleray–Tsankov [3], generalizing a result of Zucker [22], showed:

Theorem 4.5 (Theorem 1.2 in [3]). Let G be a Polish group whose universal
minimal flowM (G) is metrizable. ThenM (G) has a comeager orbit.

They asked if the converse holds:

Question 4.6 (Question 1.3 in [3]). Suppose that G is a Polish group such that
M (G) has a comeager orbit. Is it true thatM (G) is metrizable?

After this preprint was posted on arXiv, Zucker [23] showed:

Theorem 4.7. Let G be a Fraı̈ssé-HP family. Suppose that there exists a reasonable
Fraı̈ssé-HP expansion G∗ of G, which has the relative HP, the expansion, and the
Ramsey properties, but the precompactness fails. Then the universal minimal flow of
Aut(G), where G is the Fraı̈ssé limit of G, has a comeager orbit.
Theorems 3.1 and 4.7, together with Corollary 4.3, provide the negative answer
to Question 4.6.
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