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The aim of this note is to study octahedrality in vector-valued Lipschitz-free Banach
spaces on a metric space, under topological hypotheses on it, by analysing the
weak-star strong diameter 2 property in Lipschitz function spaces. Also, we show an
example that proves that our results are optimal and that octahedrality in
vector-valued Lipschitz-free Banach spaces actually relies on the underlying metric
space as well as on the Banach one.
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1. Introduction

Lipschitz function spaces (denoted by Lip(M)) and their preduals [23], Lipschitz-
free Banach spaces (denoted by F(M)), have recently been studied from a topo-
logical point of view (see, for example, [9, 13, 17]). Geometrical properties in such
spaces have also been considered, such as the Daugavet property. Indeed, the Dau-
gavet property in Lipschitz functions spaces has been characterized in [15] in terms
of ‘locality’ in the compact case, and provides examples of metric spaces whose
Lipschitz-free Banach space has an octahedral norm. On the other hand, in [8] it
was recently proved that given an infinite metric space M , the free space F(M)
contains a complemented copy of �1 and, consequently, F(M) has an equivalent
norm that is an octahedral norm [12].

447
c© 2017 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210517000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000373
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Motivated by these kinds of results, the aim of this note is to go further and
analyse octahedrality in vector-valued Lipschitz-free Banach spaces. Indeed, we
introduce the Banach space of vector-valued Lipschitz-free Banach spaces, which,
to the best of our knowledge, has not been previously considered, and we prove (see
theorem 2.4) that such spaces have an octahedral norm whenever their underlying
metric space satisfies some topological assumptions, such as being unbounded or not
being uniformly discrete, and a condition of existence of extension of vector-valued
Lipschitz functions (see definition 2.3). Consequently, such Banach spaces cannot
have any point of Fréchet differentiability. Moreover, we will exhibit an example of
a metric space such that, depending on the underlying Banach space, the geometry
of the vector-valued Lipschitz-free Banach space changes its behaviour from having
a point of Fréchet differentiability to having an octahedral norm. This will have
two important consequences: on the one hand, as there are vector-valued Lipschitz-
free Banach spaces that contain points of Fréchet differentiability, we prove that
our results on octahedrality are optimal; on the other hand, this proves that the
geometry of the vector-valued Lipschitz-free Banach spaces is determined by the
underlying metric space as well as by the target Banach space. We will end by
exhibiting some consequences of theorem 2.4 and open problems in § 3

We shall now introduce some notation. We consider only real Banach spaces.
Given a Banach space X, BX (respectively SX) stands for the closed unit ball
(respectively, the unit sphere) of X. Given a Banach space X, we will mean by a
slice of BX a subset of the form

S(BX , f, α) := {x ∈ BX : f(x) > 1 − α},

where f ∈ SX∗ and α > 0. If X is a dual space, say X = Y ∗, by a weak-star slice
of BX∗ we will mean a slice S(BX , y, α), where y ∈ Y .

We recall that the projective tensor product of two Banach spaces X and Y ,
denoted by X⊗̂πY , is the completion of X ⊗ Y under the norm given by

‖u‖ := inf
{ n∑

i=1

‖xi‖‖yi‖
∣∣∣∣ n ∈ N, xi ∈ X, yi ∈ Y ∀i ∈ {1, . . . , n}, u =

n∑
i=1

xi ⊗yi

}

for every u ∈ X ⊗ Y .
We recall that the space L(X, Y ∗) of bounded and linear Y ∗-valued operators on

X is linearly isometric to the topological dual of X⊗̂πY .
Given a metric space M with a designated origin 0 and a Banach space X, we

will denote by Lip(M, X) the Banach space of all X-valued Lipschitz functions on
M that vanish at 0 under the standard Lipschitz norm

‖f‖ := sup
{

‖f(x) − f(y)‖
d(x, y)

∣∣∣∣ x, y ∈ M, x �= y

}
.

First of all, notice that we can consider every point of M as an origin with no loss
of generality. Indeed, given x, y ∈ M , let Lipx(M, X) (Lipy(M, X)) be the space of
X-valued Lipschitz functions that vanish at x (respectively, at y). Then the map

Lipx(M, X) → Lipy(M, X)
f �→ f − f(y),

defines an onto linear isometry. So the designated origin will be freely chosen.
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From a straightforward application of the Ascoli–Arzelà theorem it can be check-
ed that BLip(M,X∗) is a compact set for the pointwise topology. Hence Lip(M, X∗)
is itself a dual Banach space. In fact, the map

δm,x : Lip(M, X∗) → R

f �→ f(m)(x)

defines a linear and bounded map for each m ∈ M and x ∈ X. In other words,
δm,x ∈ Lip(M, X∗)∗. So if we define

F(M, X) := span({δm,x | m ∈ M, x ∈ X}),

then we have that F(M, X)∗ = Lip(M, X∗). Furthermore, a bounded net {fs} in
Lip(M, X∗) converges in the weak-star topology to a function f ∈ Lip(M, X∗) if
and only if {fs(m)} → f(m) for each m ∈ M , where the last convergence is in the
weak-star topology of X∗. Now we have the following identification.

Proposition 1.1. F(M, X) and F(M)⊗̂πX are isometric Banach spaces for every
metric space M and for every Banach space X.

Proof. Note that given a Lipschitz map f : M → X∗, there exists a linear operator
Tf : F(M) → X∗ such that Tf ◦ δm = f(m) for each m ∈ M . This map

Φ : Lip(M, X∗) → L(F(M), X∗)
f �→ Tf

is an isometric isomorphism (see, for example, [16]). Then it is enough to prove that
Φ is w∗ − w∗ continuous, where the weak-star topologies are respectively induced
by F(M, X) on Lip(M, X∗) and by F(M)⊗̂πX on L(F(M), X∗).

Note that Φ is w∗ −w∗ continuous if and only if for every z ∈ F(M)⊗̂πX one has
that z◦Φ is a weak-star continuous functional. By [11, corollary 3.94] it is enough to
prove that, given z ∈ F(M)⊗̂πX, we have that Ker(z ◦Φ)∩BLip(M,X∗) is weak-star
closed. So, pick z ∈ F(M)⊗̂πX and consider a net {fs} in Ker(z ◦ Φ) ∩ BLip(M,X∗)
that is weak-star convergent to f , and let us prove that (z ◦Φ)(f) = 0. To this end,
pick a positive number ε > 0. Note that z can be expressed as

z :=
∞∑

n=1

γn ⊗ xn,

where γn ∈ F(M) and xn ∈ X verify that
∑∞

n=1 ‖γn‖‖xn‖ < ∞ [21, proposi-
tion 2.8]. Now, consider a sequence {εn} in R

+ such that
∑∞

n=1 εn < ε/3 and con-
sider, for each n ∈ N, an element ψn ∈ span{δm : m ∈ M} verifying ‖γn−ψn‖‖xn‖ <
εn/2 for each n ∈ N. As it is clear that

∑∞
n=1 ‖ψn‖‖xn‖ < ∞, consider k ∈ N

such that
∑∞

n=k+1 ‖ψn‖‖xn‖ < ε/6. Finally, in view of the weak-star topology of
Lip(M, X∗), it is obvious that {fs(ψn)(xn)} → f(ψn)(xn) for each n ∈ N, and
hence we can find s such that |(f − fs)(ψn)(xn)| < ε/3k for each n ∈ {1, . . . , k}.
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Now, keeping in mind that ‖f − fs‖ � 2, one has

|(z ◦ Φ)(f)| = |(z ◦ Φ)(f − fs)|

=
∣∣∣∣

∞∑
n=1

Tf−fs
(γn)(xn)

∣∣∣∣
�

∣∣∣∣
∞∑

n=1

Tf−fs(ψn)(xn)
∣∣∣∣ + ‖f − fs‖

∞∑
n=1

‖γn − ψn‖‖xn‖

�
k∑

n=1

|(f − fs)(ψn)(xn)| + ‖f − fs‖
∞∑

n=k+1

‖ψn‖‖xn‖ +
ε

3

<

k∑
n=1

ε

3k
+

2ε

3
= ε.

Since ε > 0 was arbitrary we conclude that (z ◦ Φ)(f) = 0, so we are done.

The norm on a Banach space X is said to be octahedral if for every ε > 0 and
for every finite-dimensional subspace M of X there is some y in the unit sphere of
X such that

‖x + λy‖ � (1 − ε)(‖x‖ + |λ|)

holds for every x ∈ M and for every scalar λ (see [10]).
We recall that a Banach space X satisfies the slice diameter 2 property (respec-

tively, diameter 2 property, strong diameter 2 property) if every slice (respectively,
non-empty weakly open subset, convex combination of slices) of the closed unit ball
has diameter 2. If X is itself a dual Banach space, then the weak-star slice diam-
eter 2 property (respectively, weak-star diameter 2 property and weak-star strong
diameter 2 property) can be defined as usual, invoking weak-star slices (respec-
tively, non-empty weakly-star open subset, convex combination of weak-star slices)
of the unit ball of X. These properties, which are extremely opposite to the Radon–
Nikodým property, have been deeply studied over the last few years. For instance,
it was recently proved [3, 4] that each one of the above properties is different from
the rest in an extreme way.

Several Banach spaces that satisfy some of the diameter 2 properties are infinite-
dimensional uniform algebras [20], Banach spaces satisfying the Daugavet property
[22], non-reflexive M-embedded spaces [19], among others.

It is known that the norm on a Banach space X is octahedral if and only if X∗

satisfies the weak-star strong diameter 2 property [2, theorem 2.1]. It is also known
that if a Banach space X has an octahedral norm, then X contains an isomorphic
copy of �1 [12].

Finally, given a Banach space X and a point x ∈ X, we say that x is a point of
Fréchet differentiability if, for each h ∈ X, we have that

f ′(x)(h) := lim
t→0

‖x + th‖ − ‖x‖
t

uniformly for h ∈ SX , and f ′(x) : X → R is a continuous and linear functional
(see [12]).
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It is clear that a Banach space that has an octahedral norm does not have any
point of Fréchet differentiability.

2. Main results

Let M be a metric space and let X be a Banach space. Notice that we have a useful
description of F(M, X) because we know a dense subspace of it. This fact will play
an important role in the following because diameter 2 properties actually rely on
dense subspaces in the following sense.

Proposition 2.1. Let X be a Banach space. Let Y ⊆ X∗ a norm dense subspace.
Then the following hold.

(1) If for each f ∈ SY and α ∈ R
+ the slice S(BX , f, α) has diameter 2, then X

has the slice diameter 2 property.

(2) If for each f1, . . . , fn ∈ SY and α1, . . . , αn ∈ R
+ such that

W :=
n⋂

i=1

S(BX , fi, αi) �= ∅

it follows that W has diameter 2, then X has the diameter 2 property.

(3) If for each f1, . . . , fn ∈ SY , α1, . . . , αn ∈ R
+ and λ1, . . . , λn ∈]0, 1] with∑n

i=1 λi = 1 the convex combination of slices
∑n

i=1 λiS(BX , fi, αi) has diam-
eter 2, then X satisfies the strong diameter 2 property

Proof. We will prove statement (1), the proof of (2) and (3) being analogous.
Pick a slice S := S(BX , f, α) of BX . As Y is norm dense in X∗ we can find

ϕ ∈ SY such that ‖f − ϕ‖ < 1
2α.

By hypothesis, given an arbitrary δ ∈ R
+ we can find x, y ∈ S(BX , ϕ, 1

2α) such
that ‖x − y‖ > 2 − δ. Let us prove that x ∈ S, the proof of y ∈ S being similar.
Bearing in mind that ϕ(x) > 1 − 1

2α and that ‖f − ϕ‖ < 1
2α, we deduce that

f(x) = ϕ(x) + (f − ϕ)(x) � ϕ(x) − ‖f − ϕ‖ > 1 − α.

On the other hand, as x, y ∈ S, we conclude that

2 − δ < ‖x − y‖ � diam(S).

As δ ∈ R
+ was arbitrary we conclude that X has the slice diameter 2 property, as

desired.

We now we consider the weak-star version of proposition above.

Proposition 2.2. Let X be a Banach space and let Y ⊆ X be a dense subspace.
Then the following hold.

(1) If for each y ∈ SY and α ∈ R
+ the slice S(BX∗ , y, α) has diameter 2, then X

has the weak-star slice diameter 2 property.

https://doi.org/10.1017/S0308210517000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000373
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(2) If for each y1, . . . , yn ∈ SY and α1, . . . , αn ∈ R
+ such that

W :=
n⋂

i=1

S(BX∗ , yi, αi) �= ∅

one has that W has diameter 2, then X has the weak-star diameter 2 property.

(3) If for y1, . . . , yn ∈ SY , α1, . . . , αn ∈ R
+ and λ1, . . . , λn ∈]0, 1] with

∑n
i=1 λi =

1 the convex combination of weak-star slices
∑n

i=1 λiS(BX∗ , yi, αi) has diam-
eter 2, then X satisfies the strong diameter 2 property

Now we need the following definition.

Definition 2.3. Let M be a metric space and let X be a Banach space.
We will say that the pair (M, X) satisfies the contraction–extension property

(CEP) if given N ⊆ M and a Lipschitz function f : N → X there exists a Lipschitz
function F : M → X that extends to f such that

‖F‖Lip(M,X) = ‖f‖Lip(N,X).

On the one hand note that, in the particular case of M being a Banach space,
the definition given above agrees with the one given in [6].

On the other hand, let us give some examples of pairs that have the CEP. First
of all, given M a metric space, the pair (M, R) has the CEP [23, theorem 1.5.6].
In addition, in [6, ch. 2] we can find some examples of Banach spaces X such that
the pair (X, X) satisfies the CEP, such as Hilbert spaces and �n

∞. Finally, if Y
is a strictly convex Banach space such that there exists a Banach space X with
dim(X) � 2 and verifying that the pair (X, Y ) has the CEP, then Y is a Hilbert
space [6, theorem 2.11].

Let us explain roughly the key idea of the main result, which proves, for every
unbounded or not uniformly discrete metric space M , that the norm on F(M, X)
is octahedral whenever the pair (M, X∗) has the CEP, where X is a Banach space.
For this, it is enough to show that every convex combination of w∗-slices C in the
unit ball of Lip(M, X∗) has diameter exactly 2. What is done first is to observe that
it is enough to consider w∗-slices given by elements in span{δm,x | m ∈ M, x ∈
X}, which is based on proposition 2.2. Now, depending on the kind of metric
space considered, we construct a pair of Lipschitz functions for every w∗-slice of C.
Different pairs are defined on different finite metric subspaces so that each pair of
these functions have norm-preserving extensions to Lipschitz functions in a w∗-slice
of C from the CEP assumption, and we control the norm of each pair only on a
finite metric space so that the difference between the elements of every pair is also
controlled. Now the estimates for the extensions are possible and in this way we
get that C has diameter 2. Of course, there are details that depend on the kind of
metric space considered, but the existence of the above unified idea motivated to
us to show the following result in a joint way.

Theorem 2.4. Let M be an infinite pointed metric space and let X be a Banach
space. Assume that the pair (M, X∗) has the CEP. If M is unbounded or is not
uniformly discrete, then the norm on F(M, X) is octahedral. Consequently, the
unit ball of F(M, X) cannot have any point of Fréchet differentiability.
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Proof. We will prove that Lip(M, X∗) has the weak-star strong diameter 2 property,
which is equivalent to the thesis of the theorem. Let

C =
k∑

i=1

λiS(BLip(M,X∗), ϕi, α)

be a convex combination of weak-star slices in Lip(M, X∗) and let us prove that C
has diameter exactly 2. From proposition 2.1 we can assume that ϕi ∈ span{δm,x |
m ∈ M, x ∈ X} for each i ∈ {1, . . . , k}. So assume that

ϕi =
ni∑

j=1

λi
jδmi,j ,xi,j

for suitable ni ∈ N, mi,j ∈ M \ {0}, xi,j ∈ X, λi
j ∈ R for i ∈ {1, . . . , k}, j ∈

{1, . . . , ni}.
Pick gi ∈ S(BLip(M,X∗), ϕi, α) and δ0 ∈ R

+ verifying

0 < δ < δ0 =⇒ ϕi(gi)
1 + δ

> 1 − α ∀i ∈ {1, . . . , k}.

Fix 0 < δ < δ0.
Now, as a first step we will define for every i ∈ {1, . . . , k} a subspace Mi ⊂ M

and functions Fi and Gi in Lip(Mi, X
∗).

We will do this depending on following cases: M is unbounded, M is bounded,
discrete but not uniformly discrete, or M is bounded and 0 ∈ M ′. It is clear that
when M is unbounded or not uniformly discrete, it is enough to study each of these
three cases.

Assume that M is unbounded. Then there exists {mn} ⊆ M verifying

{d(mn, 0)} → ∞.

Hence,

{d(mn, m)} → ∞

for each m ∈ M in view of the triangle inequality. Now pick an positive integer N
so that

d(mi,j , 0)
d(mN , mi,j)

+
‖gi(mi,j)‖

d(mN , mi,j)
< δ ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}. (2.1)

Choose x∗ ∈ SX∗ and define

Mi := F := {0} ∪
k⋃

i=1

ni⋃
j=1

{mi,j} ∪ {mN}

for every 1 � i � k. (In this case Mi does not depend on i.) Also, we define
Fi, Gi : Mi → X∗ given by

Fi(mi,j) = Gi(mi,j) = gi(mi,j), i ∈ {1, . . . , k}, j ∈ {1, . . . , ni},

Fi(0) = Gi(0) = 0, Fi(mN ) = −Gi(mN ) = d(mN , 0)x∗.

https://doi.org/10.1017/S0308210517000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000373
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Assume now that M is bounded and discrete, but not uniformly discrete. As M
is discrete we can find r > 0 such that

B(0, r) = {0}, B(mi,j , r) = {mi,j} ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}.

Also, as M is not uniformly discrete we can find a pair of sequences {xn}, {yn} in
M such that 0 < d(xn, yn) → 0. Pick n ∈ N satisfying d(xn, yn) < δ and so that

1 + d(xn, yn)/d(xn, v)
1 − d(xn, yn)/d(xn, v)

< 1 + δ ∀v ∈ {mi,j : 1 � i � k, 1 � j � ni} ∪ {0}. (2.2)

Note that such an n exists since {d(xn, v)−1} is a well-defined bounded sequence
because M is discrete and bounded in this case. Given i ∈ {1, . . . , k} and x∗ ∈ SX∗

define Mi := {0} ∪
⋃ni

j=1{mi,j} ∪ {xn, yn} and Fi, Gi := Mi → R given by

Fi(0) = gi(0) = 0, Fi(mi,j) = Gi(mi,j) = gi(mi,j) ∀j ∈ {1, . . . , ni},

and

Fi(xn) = Gi(xn) = gi(xn), Fi(yn) = gi(xn) + d(yn, xn)x∗,

Gi(yn) = gi(xn) − d(yn, xn)x∗.

Finally, we assume that M is bounded and 0 ∈ M ′. Then we can find a sequence
{mn} in M \ {0} such that {mn} → 0. So there exists a positive integer m such
that mn /∈ {mi,j : i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}} for every n � m. Now pick
x∗ ∈ SX∗ and, for each i ∈ {1, . . . , k}, we define Mi := {0, mn} ∪

⋃ni

j=1{mi,j} and
Fi, Gi : Mi → X∗ by the equations

Fi(mi,j) = Gi(mi,j) = gi(mi,j), i ∈ {1, . . . , k}, j ∈ {1, . . . , Ni}

and

Fi(mn) = −Gi(mn) = d(mn, 0)x∗, Fi(0) = Gi(0) = 0.

Now, for each unbounded or not uniformly discrete metric space M we have
defined the desired subspaces Mi and functions Fi and Gi in Lip(Mi, X

∗) for every
1 � i � k.

For the second step we claim that ‖Fi‖Lip(Mi,X∗) � 1 + δ for all i ∈ {1, . . . , k}.
For this we have three cases again: M is unbounded, M is bounded, discrete but
not uniformly discrete, or M is bounded and 0 ∈ M ′.

Assume that M is unbounded. Given u, v ∈ F , u �= v, and i ∈ {1, . . . , k} we have
two different possibilities.

(a) If u, v /∈ {mN}, then

‖Fi(u) − Fi(v)‖
d(u, v)

=
‖gi(u) − gi(v)‖

d(u, v)
� ‖gi‖ � 1.
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(b) If u = mN , then

‖Fi(u) − Fi(v)‖
d(u, v)

=
‖d(mN , 0)x∗ − Fi(v)‖

d(mN , v)

� d(mN , 0)
d(mN , v)

+
‖gi(v)‖

d(mN , v)

� 1 +
d(v, 0)

d(mN , v)
+

‖gi(v)‖
d(mN , v)

(2.1)
< 1 + δ.

Now, taking the supremum in u and v, one has

‖Fi‖Lip(Mi,X∗) � 1 + δ.

Assume now that M is bounded, discrete but not uniformly discrete. Again, given
u, v ∈ Mi, u �= v, and i ∈ {1, . . . , k} we have several different possibilities.

(a) If u �= yn and v �= yn, then we have

‖Fi(u) − Fi(v)‖
d(u, v)

=
‖gi(u) − gi(v)‖

d(u, v)
� ‖gi‖ � 1.

(b) If u = yn, v �= xn, then

‖Fi(u) − Fi(v)‖
d(u, v)

=
‖gi(xn) + d(xn, yn)x∗ − gi(v)‖

d(yn, v)

� ‖gi(xn) − gi(v)‖ + d(xn, yn)
d(yn, v)

<
d(xn, v) + d(xn, yn)
d(xn, v) − d(yn, xn)

=
1 + d(xn, yn)/d(xn, v)
1 − d(xn, yn)/d(xn, v)

< 1 + δ.

(c) If u = yn and v = xn, then

‖Fi(u) − Gi(v)‖
d(u, v)

=
d(xn, yn)‖x∗‖

d(xn, yn)
= 1.

Then, taking the supremum in u and v, one has

‖Fi‖Lip(Mi,X∗) � 1 + δ.

If M is bounded and 0 ∈ M ′, we can get also that

‖Fi‖Lip(Mi,X∗) � 1 + δ

using similar arguments to the ones of the above cases, taking n large enough.
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Similar computations also yield

‖Gi‖Lip(Mi,X∗) � 1 + δ ∀i ∈ {1, . . . , k}.

Now, we have defined subspaces Mi ⊂ M and functions Fi, Gi ∈ Lip(Mi, X
∗)

such that
max
1�i�k

{‖Fi‖Lip(Mi,X∗), ‖Gi‖Lip(Mi,X∗)} � 1 + δ.

As the pair (M, X∗) has the CEP, for each i ∈ {1, . . . , k} we can find extensions of
Fi and Gi to the whole of M , which we will again call Fi and Gi, respectively, such
that

‖Fi‖Lip(M,X∗) � 1 + δ, ‖Gi‖Lip(M,X∗) � 1 + δ.

So Fi/(1 + δ), Gi/(1 + δ) ∈ BLip(M,X∗) for each i ∈ {1, . . . , k}.
The final step of the proof is to see that

k∑
i=1

Fi

1 + δ
∈ C,

k∑
i=1

Gi

1 + δ
∈ C

and to conclude from here that C has diameter 2. We prove this fact for the case
in which M is unbounded. For the other cases, the arguments and estimates are
similar. So, assume that M is unbounded. Given i ∈ {1, . . . , k} one has

ϕi

(
Fi

1 + δ

)
=

∑ni

j=1 λi
jFi(mi,j)(xi,j)
1 + δ

=

∑ni

j=1 λi
jgi(mi,j)(xi,j)
1 + δ

=
gi(ϕi)
1 + δ

> 1 − α.

So
∑k

i=1 λiFi/(1 + δ) ∈ C. Similarly one has
∑k

i=1 λiGi/(1 + δ) ∈ C. Hence,

diam(C) �
∥∥∥∥

k∑
i=1

λi
Fi

1 + δ
−

k∑
i=1

λi
Gi

1 + δ

∥∥∥∥

� ‖
∑k

i=1 λiFi(mN )/(1 + δ) −
∑k

i=1 λiGi(mN )/(1 + δ)‖
d(mN , 0)

=
‖

∑k
i=1 2λid(mN , 0)x∗/(1 + δ)‖

d(mN , 0)

=
2

1 + δ
.

From the estimate above we deduce that diam(C) = 2 from the arbitrariness of
0 < δ < δ0.

Now let us end the section by analysing the vector-valued Lipschitz-free Banach
space over a concrete metric space. From here, we will get two interesting conse-
quences: on the one hand, we will get several examples of vector-valued Lipschitz-
free Banach spaces that not only fail to have an octahedral norm but also whose
unit ball contains points of Fréchet differentiability. On the other hand, we will
prove that such a construction depends strongly on the underlying target Banach
space. So, octahedrality in vector-valued Lipschitz-free Banach spaces relies on the
underlying metric spaces as well as on the target Banach one.
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For the construction of such a metric space, consider Γ to be an infinite set.
Define M := Γ ∪ {0} ∪ {z}. Consider on M the following distance:

d(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x, y ∈ Γ ∪ {0}, x �= y,

1 if x = z, y ∈ Γ or x ∈ Γ, y = z,

2 if x = z, y = 0 or x = 0, y = z,

0 otherwise.

This is obviously an infinite, bounded and uniformly discrete metric space. More-
over, it is not difficult to prove that the pair (M, X) has the CEP for every Banach
space X. Consider a Banach space X, pick y ∈ SX and notice that δz,y is a 2-norm
functional, so define ϕ := 1

2δz,y ∈ SF(M,X). Given α ∈ R
+ consider

Sα := S(BLip(M,X∗), ϕ, 1
2α) = {f ∈ BLip(M,X∗) | f(z)(y) > 2 − α}.

Consider x ∈ Γ and f ∈ Sα. We claim that

f(x)(y) > 1 − α.

Indeed, assume by contradiction that f(x)(y) � 1 − α. Then

1 < f(z)(y) − f(x)(y) = (f(z) − f(x))(y) � ‖f(z) − f(x)‖ � d(z, x) = 1,

which is a contradiction.
We will prove that infα diam(Sα) depends on the target space X∗.

Proposition 2.5. If y is a point of Fréchet differentiability of BX , then

inf
α

Sα = 0.

Proof. Notice that, as y is a point of Fréchet differentiability, there exists (by Smu-
lian’s lemma) δ : R

+ → R
+ such that δ(ε) ε→0−−−→ 0 and such that

x∗, y∗ ∈ BX∗ ,

x∗(y) > 1 − α,

y∗(y) > 1 − α,

⎫⎪⎬
⎪⎭ =⇒ ‖x∗ − y∗‖ < δ(α). (2.3)

Pick f, g ∈ S(BLip(M,X∗), ϕ, 1
2α) and u, v ∈ M \ {0}, u �= v. Our aim is to estimate

‖f(u) − g(u) − (f(v) − g(v))‖
d(u, v)

� ‖f(u) − g(u) − (f(v) − g(v))‖

� ‖f(u) − g(u)‖ + ‖f(v) − g(v)‖
=: K.

If u = z, then we have

1
2f(u)(y) > 1 − 1

2α, 1
2g(u)(y) > 1 − 1

2α
(2.3)
=⇒ ‖f(u) − g(u)‖ � 2δ( 1

2α).

Similarly, if u ∈ Γ , then

f(u)(y) > 1 − α, g(u)(y) > 1 − α
(2.3)
=⇒ ‖f(u) − g(u)‖ � δ(α).

Hence, K � δ(α) + max{δ(α), 2δ( 1
2α)}.
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From the arbitrariness of f, g ∈ S(BLip(M), ϕ, 1
2α) we conclude that

diam(S(BLip(M), ϕ, 1
2α)) � δ(α) + max{δ(α), 2δ( 1

2α)}.

Finally, taking the infimum in α ∈ R
+, from the hypothesis on δ and the conti-

nuity of the map max we conclude the desired result.

Despite proposition 2.5, we will prove that F(M, X) has a dramatically different
behaviour whenever X∗ has the weak-star slice diameter 2 property.

Proposition 2.6. If X∗ has the weak-star slice diameter 2 property, then

inf
α

Sα = 2.

Proof. Pick two arbitrary numbers α > 0 and ε > 0. As X∗ has the weak-star slice
diameter 2 property, we can find x∗, y∗ ∈ S(BX∗ , x, 1

2α) such that ‖x∗−y∗‖ > 2−ε.
Now define f, g : M → X∗ by the equations

f(t) := d(t, 0)x∗, g(t) := d(t, 0)y∗ ∀t ∈ M.

Now, f , g are clearly norm-one Lipschitz functions. Moreover,

ϕ(f) = 1
2f(z)(x) = x∗(x) > 1 − 1

2α.

So f ∈ Sα. Analogously, g ∈ Sα. Consequently,

diam(Sα) � ‖f − g‖ � 1
2‖f(z) − g(z)‖ = ‖x∗ − y∗‖ > 2 − ε.

As ε and α were arbitrary we conclude that diam(Sα) = 2, so we are done.

From the two propositions above we can get the desired consequences. From
proposition 2.5 we get vector-valued Lipschitz-free Banach spaces with points of
Fréchet differentiability, which, keeping in mind that the pair (M, X∗) has the
CEP for every Banach space X, proves that theorem 2.4 is optimal. However,
from proposition 2.6 we conclude that the existence of such Fréchet differentiabil-
ity points depends on the target space. Indeed, we can even get octahedrality for
suitable choices of X in the example above. For instance, F(M, �1) = F(M)⊗̂π�1 =
�1(F(M)) has an octahedral norm.

3. Consequences and open questions

Under the assumptions of theorem 2.4 we have that Lip(M, X∗) has the weak-star
strong diameter 2 property. This gives rise to a natural question.

Question 3.1. If M and X satisfy the hypotheses of theorem 2.4, does Lip(M, X∗)
satisfy the strong diameter 2 property?

Note that in [15] we have a partial answer for the scalar case in terms of the
Daugavet property. Also, in the scalar case, when M is a compact metric space
such that lip(M) separates the points in M , it is known that lip(M)∗ = F(M) and
lip(M) is an M-embedded space (see the remark after theorem 6.6 in [17]), that is,
lip(M) is an M-ideal in Lip(M) (see [7] for the case in which M = [0, 1]). Then we
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get from [1] that lip(M) and Lip(M) satisfy the strong diameter 2 property. Recall
that lip(M) stands for the space of scalar Lipschitz functions on M such that

lim
ε→0

sup
{

|f(x) − f(y)|
d(x, y)

, x �= y ∈ M, d(x, y) < ε

}
= 0.

Moreover, in [14, theorems 1 and 2] Ivakhno obtained in the scalar case that
Lip(M) has the slice diameter 2 property whenever M satisfies the same assump-
tions as those of theorem 2.4.

Propositions 2.5 and 2.6 show that the geometry of vector-valued Lipschitz-free
Banach spaces does not only depend on the underlying scalar Lipschitz-free space
but also on the target Banach space. However, two natural questions arise.

Question 3.2. Let M be a pointed metric space and let X be a non-zero Banach
space.

(1) Does theorem 2.4 hold without assuming that the pair (M, X∗) has the CEP?

(2) Does F(M, X) have an octahedral norm whenever F(M) does?

Bearing in mind the identification F(M, X) = F(M)⊗̂πX, question 3.2(2) is
related to the problem of how octahedrality is preserved by projective tensor prod-
ucts. However, question 3.2(2) is an open problem recently posed in [18].

Finally, we have analysed octahedrality in F(M, X) whenever M is a metric
space and X is a Banach space. However, we did not get any result about the
dual properties (i.e. diameter 2 properties). More precisely, we have the following
question.

Question 3.3. Given a metric space M and a non-zero Banach space X, which
assumptions do we need over M and X in order to ensure that F(M, X) has the slice
diameter 2 property (respectively, diameter 2 property, strong diameter 2 property)?

Again, not only do we get a partial answer in the scalar case but also in the vector-
valued one. Indeed, again by [15] we know that F(M) has the strong diameter 2
property whenever M is a metrically convex metric space. Keeping in mind that
F(M, X) = F(M)⊗̂πX, the next proposition is an immediate application of [5,
corollary 3.6].

Proposition 3.4. Let M be a metric space with a designated origin 0 and let X
be a Banach space. If M is metrically convex and X has the strong diameter 2
property, then F(M, X) has the strong diameter 2 property.

Despite the above proposition, there are metric spaces whose free-Lipschitz Ban-
ach space fails to have any diameter 2 property. Indeed, it is well known that
F(M) has the Radon–Nikodým property whenever M is a totally discrete metric
space [17]. Related to the strong diameter 2 property we can even get vector-
valued free Lipschitz Banach spaces that fail to have such a property. Indeed, if
we consider a Banach space X failing to have the strong diameter 2 property and
a totally discrete metric space M , then F(M, X) = F(M)⊗̂πX does not have the
strong diameter 2 property [5, corollary 3.13].
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460 J. B. Guerrero, G. López-Pérez and A. Rueda Zoca

Acknowledgements

The authors thank an anonymous referee for pointing out the way to improve the
readability and usefulness of this paper.

J.B.G. was partly supported by MEC (Spain) Grant no. MTM2014-58984-P and
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8 M. Cúth, M. Doucha and P. Wojtaszczyk. On the structure of Lipschitz-free spaces. Proc.
Am. Math. Soc. 144 (2016), 3833–3846.

9 A. Dalet. Free spaces over some proper metric spaces. Mediterr. J. Math. 12 (2015), 973–
986.

10 R. Deville, G. Godefroy and V. Zizler. Smoothness and renormings in Banach spaces,
Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64 (Wiley, 1993).
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