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ABSTRACT

Let G be a split connected reductive group over a finite field of characteristic p > 2 such
that Gger is absolutely almost simple. We give a geometric construction of perverse
F)-sheaves on the Iwahori affine flag variety of G which are central with respect to
the convolution product. We deduce an explicit formula for an isomorphism from the
spherical mod p Hecke algebra to the center of the Iwahori mod p Hecke algebra. We
also give a formula for the central integral Bernstein elements in the Iwahori mod
p Hecke algebra. To accomplish these goals we construct a nearby cycles functor for
perverse [F)-sheaves and we use Frobenius splitting techniques to prove some properties
of this functor. We also prove that certain equal characteristic analogues of local models
of Shimura varieties are strongly F-regular, and hence they are F-rational and have
pseudo-rational singularities.
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1. Introduction

1.1 Motivation

Let E be a local field of characteristic p > 0 with ring of integers Of and residue field F, where
q is a power of p. Let G be a split connected reductive group defined over F, and fix a maximal
torus and a Borel subgroup T' C B C G. Let X,(T) be the group of cocharacters of G and let
X,(T)" be the monoid of dominant cocharacters. For a compact open subgroup H C G(E) let

Hy :={f: G(E) — F, : f has compact support and is H bi-invariant}.

The multiplication on Hp is by convolution of functions. The mod p Hecke algebras Hy are
important in the study of smooth admissible representations of G(E).
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As G is split we may let K = G(Op). Then Herzig [Herl11b] (and Henniart and Vignéras
[HV15] for more general coefficients) constructed a mod p Satake isomorphism

S: Hig = Fp[X.(T)"].

We note that the mod p Satake isomorphism is related to the usual Satake isomorphism by
an integral Satake isomorphism constructed by Zhu in [Zhu20]. In [Cas19] we constructed a
symmetric monoidal category of perverse [F)-sheaves on the affine Grassmannian of G which
gives a geometrization of the inverse of S.

Now let I C K be the Iwahori subgroup determined by B and let Z(H) be the center of H.
If 1x € Hy is the function which is 1 on K and 0 elsewhere then by work of Vignéras [Vig05]
and Ollivier [Oll14] there is an isomorphism of F-algebras

C: Z(H1) = Hi, fr— f*1k.

In this paper we will construct a functor on perverse F,-sheaves which geometrizes the inverse
of C. This allows us to give geometric proofs of certain combinatorial identities in Iwahori mod
p Hecke algebras.

This paper is the next step in a project aimed at providing a categorification of the represen-
tation theory of affine mod p Hecke algebras. In future joint work with C. Pépin and T. Schmidt
we plan to apply the results in this paper as well as [PS20] to construct a mod p version of
Bezrukavnikov’s equivalence in [Bez16], which we expect will have applications to a mod p local
Langlands correspondence. In particular, we hope to give a geometric construction of some
instances of Grosse-Klonne’s functor [GK16] from supersingular mod p Hecke modules to Galois
representations. We refer the reader to the introduction in [Cas19] for more information on the
relation between the objects studied in this paper and the p-adic Langlands program.

1.2 Main results

Let G be a connected reductive group over an algebraically closed field k of characteristic p > 2
such that Gger is almost simple. Fix a maximal torus and a Borel subgroup T'C B C G. Let
I C L*G be the Iwahori group given by the fiber of B under the projection LTG — G (see §2.1
for the definitions). Let Gr be the affine Grassmannian of G, let F¢ be the Iwahori affine flag
variety, and let m: F¢ — Gr be the projection.

In [Casl9, §6] we defined the categories of equivariant perverse F,-sheaves Pj+q(Gr,F))
and Pr(F¢,F,) as well as a convolution product * on Pp+5(Gr,F,). The convolution prod-
uct on Pr+q(Gr,[F,) preserves the full subcategory of semisimple objects Pp+q(Gr,Fp)* C
Prig(Gr,Fp). In §2.3 we define the convolution product FpxFy € DY(Flg,F,) of two
I-equivariant perverse sheaves F7, F5 € Pr(F(,F,).

Let W be the Weyl group of G and let W be the Iwahori-Weyl group of G(k((t))). For
p € X (T)" let Gr<, C Gr be the corresponding reduced LT G-orbit closure, and for w € W let
Fly, C Fbe the corresponding reduced I-orbit closure. Let IC,, € Pp+q(Gr,F,)% be the shifted
constant sheaf Fp,[dim Gr<,] supported on Gr<, (see Theorem 2.10).

Given p € X,(T)*, let Adm(p) C W be the p-admissible set defined in (2.1). Set

Ap) == |J FlwcFe
weAdm(p)

Let Z4(,) € DY(Fla,Fp) be the shifted constant sheaf Fy[dim A(u)] supported on A(u).
Our main theorem is as follows.
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THEOREM 1.1. There exists an exact functor Z: Pp+q(Gr,F,)*® — Pr(F(,F,) that satisfies the
following assertions.

(i) For all p € X.(T)" there is a canonical isomorphism
Z(IC,) = 24
(ii) For all F* € Pr+q(Gr,F))* there is a canonical isomorphism
Rm(Z(F*)) = F°.
(iii) For all 7} € Pr+q(Gr,Fp)* and F5 € Pr(F¢,F,) the convolution product
Z(F) * F3

is perverse and I-equivariant.
(iv) For all F} € Pr+q(Gr,Fp)* and F3 € Pr(F(,F,) there is a canonical isomorphism

Z(F1) + F3 = Fy + Z(F7).
(v) For all 7}, 73 € Pp+g(Gr,F,)® there is a canonical isomorphism
Z(F1 + F3) = Z2(F) * Z2(F3).

Our method is analogous to the case of Q-coefficients considered in [Gai01] and [Zhu14], but
it involves some new ideas because we use a different notion of the nearby cycles functor which is
well suited for our purposes (see Remark 2.9 for the usual definition). As in [Cas19], we exploit
subtle properties of the singularities of affine Schubert varieties. In particular, we use Frobenius
splitting techniques to verify that our ad-hoc construction of the nearby cycles functor satisfies
the necessary properties. This requires us to prove some new results on the F-singularities of
affine Schubert varieties, which will be explained in §1.4.

The relevant facts from the theory of F-singularities are that if X is an integral F-rational
variety of dimension d then the shifted constant sheaf F,[d] € DY(Xg,F,) is a simple per-
verse sheaf by [Casl9, 1.7], and that F-rational singularities are pseudo-rational by a result of
Smith [Smi97]. We will combine these facts with a result of Kovécs [Kov17] to deduce that our
nearby cycles functor commutes with pushforward along birational morphisms between certain
F-rational varieties.

Remark 1.2. The functor Z in Theorem 1.1 can be defined on the category Pp+q(Gr,F,), but
then it is not clear that this functor is exact. This is why we restrict to the subcategory
PL+G(GT,FP)SS.

1.3 Applications to mod p Hecke algebras

Let G be a split connected reductive group defined over a local field E of characteristic p > 2
and residue field IF,. Fix a maximal torus and a Borel subgroup 7' C B C G. We assume that T
and B are defined over F; and that G, is absolutely almost simple. Let K = G(Og) and let ¢
be a uniformizer of E. Then Hg has a natural basis {1, } indexed by the dominant cocharacters
X.(T)" where 1, is the characteristic function of the double coset K (¢) K. Similarly, if I C K is
the Iwahori subgroup determined by B then H; has a basis {1,,} indexed by W. Let 1x € H; be
the function which is 1 on K and 0 elsewhere. In §4 we will show that a version of Theorem 1.1
also holds when we view Gr and F/ as ind-schemes over the finite field F,. Then by applying
the function-sheaf correspondence we will derive the following explicit formula for C™': Hx —
Z(Hy).
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THEOREM 1.3. Let C be the isomorphism Z(H;) — Hy such that C(f) = f * 1. Then

c—1<§h>: >l

weAdm(p)

For y1 € X.(T)" let t, be the element ;i regarded as an element of W, and let A, C X.(T)
be the W-orbit of u. In [Vig05], Vignéras constructed integral Bernstein elements B(\) € H;
for A € X.(T) and showed that {ZAGAH B(M}uex, )+ is an Fp-basis for Z(H;). Ollivier [O1114]
showed that these Bernstein elements give rise to an isomorphism of [F)-algebras

B:Fy[Xo(T)"]| = Z(Hr), n— Y B.
AEA,

Ollivier also showed that B is compatible with the mod p Satake isomorphism in the sense that
B=C1o8"1.

For our last application, we note that by [Oll14, 2.3] the coefficient of 1,, appearing in
ZAeAu B(A\) € Hyis 0 if w ¢ Adm(p) and is 1 if w € Adm(p) and €(w) = £(t,), where £ is the

length function on . Using Theorem 1.3, we can compute the rest of the coefficients (cf. [Ol15,
5.2]).

COROLLARY 1.4. Let € X.(T)". Then the integral Bernstein elements satisfy

d BN = >

AEA, weAdm(u)

Remark 1.5. Let I C I be the pro-p Sylow subgroup. The integral Bernstein elements are usually
defined in the larger Hecke algebra Hj. There is a central idempotent €; € H; such that H; =
e1H; (see [Oll14, 2.14]). The Bernstein elements we are considering in this paper are the images
of the Bernstein elements in [Oll14] after multiplication by €;. The integral Bernstein elements
in [Ol114] also depend on a choice of a sign (£) and a Weyl chamber, but the central integral
Bernstein elements A B (M) do not depend on these choices by [Oll14, 3.4].

1.4 F-singularities of local models

During the course of proving Theorem 1.1 we will also prove a result about the singularities
of equal characteristic analogues of local models of Shimura varieties. Following the notation
in §1.3, let Gr be the affine Grassmannian of G viewed as an ind-scheme over [F,. Then for
p € X (T)" there is an associated local model M, — Spec(O) such that the generic fiber of
M,, is isomorphic to Gr<, x Spec(E) and the reduced special fiber is isomorphic to A(p) (see
Definition 2.3).

THEOREM 1.6. Suppose that p > 2 and that Gge, is absolutely almost simple and simply con-
nected. Then for any p € X, (T)*, every local ring in M, is strongly F-regular, F-rational, and
has pseudo-rational singularities.

In the mixed characteristic case, local models are used to study the étale local structure of
integral models of Shimura varieties with parahoric level structure. In the equal characteristic case
they are related to moduli spaces of shtukas. We refer the reader to [HR19] for more information
on local models, where it is also shown that certain local models are Cohen—Macaulay by using
Frobenius splittings of global affine Schubert varieties constructed in [Zhul4].

We prove Theorem 1.6 by combining the same Frobenius splittings in [Zhul4] with our
previous results on the global F-regularity of affine Schubert varieties in [Cas19]. In fact, we prove
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that certain global affine Schubert varieties are strongly F-regular (Theorem 2.17) and then we
deduce the local statement in Theorem 1.6. We also show that Schubert subvarieties in related
Beilinson—Drinfeld and convolution Grassmannians are strongly F-regular in Theorem 3.6.

2. Construction of the functor Z

2.1 Local affine Schubert varieties
Let k be a perfect field of characteristic p > 0. For a smooth affine group scheme G over the
power series ring k[t] we define the loop group LG as the functor on k-algebras

LG: Rw— G(R(1)).
The positive loop group L*G is the functor
LTG: R+ G(R[t]).
For each integer n > 0 we also have the nth jet group
L"G: R w— G(R[t]/t").

We now specialize to the case where G is a split connected reductive group defined over k
(note that G can also be viewed as a constant group scheme over k[t]). Let T'C B C G be a
maximal torus and a Borel subgroup. Let I C LG be the Iwahori group given by the fiber of B
under the projection LTG — G. The affine Grassmannian is the fpqc-quotient Gr := LG/L+TG
and the affine flag variety is the fpqc-quotient F¢ := LG/I. Both Gr and F/ are represented by
ind-projective k-schemes.

The left Lt G-orbits in Gr are indexed by the set of dominant cocharacters X,(T)* and the
left, I-orbits in F/ are indexed by the Iwahori-Weyl group W of G(k((t))). Given u € X.(T)*,
let Gr, = LTG - u(t) be the corresponding reduced orbit. The reduced closure of Gr,, is denoted
Gre,,, and it is the union of those Gry, for A < . For w € W we define C(w) to be the correspond-
ing reduced I-orbit and we denote its reduced closure by FZ,,. The scheme C(w) is isomorphic
to Ai(w). If A\ € X.(T) we denote by ty the element \ viewed as an element of 1. Note that
p— A is a sum of positive coroots with non-negative integer coefficients if and only if ¢\ <¢,
in the Bruhat order on W by [Zhul4, 9.4], so there is no ambiguity in the choice of order on
X,(T)". See [Zhul7] or [Cas19, §5.1] for more details on these affine Schubert varieties. Note
that we used the notation S, in [Casl9, §5.1] instead of F,,.

We now give the definition of the p-admissible set appearing in Theorem 1.1. Given p € X, (T')
let A, =W - pu C X, (T) be the orbit of p in X, (T") under the action of the Weyl group W. The
p-admissible set is

Adm(p) := {w € W | w < t, for some \ € A,}. (2.1)

By [Fal03] and [PRO0S], affine Schubert varieties are normal, Cohen-Macaulay, Frobenius split
and have rational singularities if p { |m1(Gqer)|. Additionally, we have the following theorem.

THEOREM 2.1 [Casl9, 1.4]. If p{|m1(Gger)| the affine Schubert varieties Gr<, and F¢, are
globally F'-regular, strongly F-regular, and F-rational.

We refer the reader to [Smi00] for the definition of global F-regularity and to [HH94] for
the definitions of strong F-regularity and F-rationality. Global F-regularity is a property of
projective k-schemes. Strong F-regularity is defined for noetherian rings R of characteristic
p > 0 that are F-finite (meaning Fi R is a finite R-module). If R is reduced then R is F-finite if
and only if RY/? is a finite R-module. A finitely generated k-algebra is F-finite since k is perfect.
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By [HH89, 3.1(a)], R is strongly F-regular if and only if Rp is strongly F-regular for every
prime ideal P, so it makes sense to say a locally noetherian scheme is strongly F-regular if all
of its local rings are strongly F-regular. The property of F-rationality is defined for noetherian
rings of characteristic p > 0, and we say that a locally noetherian scheme is F-rational if all of
its local rings are F-rational. If R is a homomorphic image of a Cohen—Macaulay ring, then R
is F-rational if and only if all of its local rings are F-rational by [HH94, 4.2(e)]. We have the
following chain of implications for projective k-schemes (or more generally projective schemes
over an F-finite field):

[Smi97, 3.1]
Pseudo-rational
Globall Smi00, 3.10] St 1 HHS89, 3.1 . [HH94, 4.2] ) <
obally — [Smi } rongly | — } F-rational — singularities, normal,

F-regular F-regular Cohen-Macaulay.

Remark 2.2. We will also use the notion of pseudo-rationality as defined in [Kov17]. Using [Smi97,
1.13] and the flat base change theorem, one can verify the following assertion. If X is a k-scheme
of finite type such that every local ring of X is pseudo-rational as defined in [Smi97, 1.8], then
X is also pseudo-rational as defined in [Kov17, 1.2].

2.2 Global affine Schubert varieties
We continue using the notation introduced in §2.1. Let C' = A}. Throughout this paper we will

denote by 0 the origin viewed as a closed point in C'. Let Oy be the completed local ring of C at
0 and let C° = C' — 0. Let G be a Bruhat—Tits group scheme over C equipped with isomorphisms

Gloe 2GxC° LT(G|p) =1 (2.2)

See [Zhul4, §3.2] for more information on the construction of G.
For any smooth group scheme H over C (including G) we let & be H regarded as a trivial
H-torsor. For a k-algebra R let Cr = C Xgpec(r) Spec(R). If z € C(R) let I'y; C Cgr be the

graph of z, that is, the closed subscheme Spec(R) (eid), C Xgpec(k) Spec(R). The global affine
Grassmannian Grg is the functor on k-algebras defined by

Grg(R) = {(x,é’,ﬂ) | z € C(R), £ is a G-torsor on Cr, 3: g}CRsz = Eo‘chpz} .

In the above definition we really mean the set of such objects up to the equivalence relation
(x,&,B) ~ (x,&', ) if there is an isomorphism £ = & which respects the trivializations, but we
will suppress this detail. The functor Grg is represented by an ind-projective scheme over C' by
[PZ13, 5.5].
Given = € C(R) let ', be the formal completion of Cr along I';, and let I', =T', — I';.. The

global analogue of LG is the functor

LG(R) = {(z,B) 1z € C(R), B G(I})}.
The global analogue of L™G is the functor

LYG(R) = {(x,8) : x € C(R), B € G(T)}.

Asin [Zhul4, 3.1], a lemma of Beauville and Laszlo [BL95] implies that there is a natural bijection

f;}'

Then £1G acts on Grg by changing the trivialization 3, and there is an isomorphism

LG/LTG =~ Grg.

Grg(R) = {(:L’,E,ﬁ) |z € C(R), € is a G-torsor on 'y, (: &

~
e =&
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Our choice of isomorphisms in (2.2) induces isomorphisms

Grg Co = GrxC°, (Grg)o = FU, (2.3)

and

LG

0o ELTGXC°, (LYG)=1. (2.4)

Via the isomorphisms (2.3) and (2.4), the action of LG on Grg is compatible with the action
of LTG on Gr and the action of I on F/.

We define Grg,, to be the reduced closure of Gr<, xC® in Grg. The scheme Grg,, is stable
under the action of LG, and our definition agrees with that in [Zhul4, 3.1] because G is split.
We can now define the local model M,,.

DEFINITION 2.3. The local model M, is the fiber of @g# over the completed local ring at
0eC.

Thus the generic fiber of M), is isomorphic to Gr<,, x Spec(k((t))). The following theorem is
due to Zhu in the case where Gy, is absolutely almost simple and simply connected and was
extended by Haines and Richarz to the general case.

THEOREM 2.4 ([Zhul4, Theorem 3|, [HR20, 5.14], [HR19, 2.1]). If p{|m1(Gqer)| the fiber
(@g’“)o is reduced. Without any assumptions on p, the reduced fiber satisfies

(Grg.u)o,red = A(p).
For each integer n > 0 let I';, ,, be the nth nilpotent thickening of I',. The nth jet group of
gis
LyG(R) ={(z,8) :x € C(R), B€G(Tun)}.

This functor is represented by a smooth affine group scheme over C. For each p € X.(T)" the
action of £L*G on Grg,, factors through £ G for sufficiently large n depending on p. If z € C°(k)
then (£}G), = L"G and (£ G)o = “(g|@0).

Finally, let G be the constant group scheme G x C. By replacing G with G in the above
definitions we get the ind-scheme Grg, which is naturally isomorphic to Gr xC. There is a
natural morphism G — G which induces a morphism 7g: Grg — Grg. By taking the fibers of
mg over C° and 0 we get the following diagram with Cartesian squares.

Gl"g co i Grg 0 Fv

CL T
Ja ig

GI‘Q co GI‘Q Gr

2.3 The definition of Z
For this section we assume that k is an algebraically closed field of characteristic p > 0. We refer
the reader to [Cas19, §2] for an introduction to the category P’(X,F,) of perverse F,-sheaves
on a separated scheme X of finite type over k. This is an abelian subcategory of Dg(Xét,Fp) in
which every object has finite length. As in the case of perverse Q,-sheaves, there are operations
such as the intermediate extension functor and pullback along smooth morphisms.

Now suppose X is a separated scheme of finite type over C. Let j: U — X be the inclu-
sion of the fiber of X over C° and let i: Z — X be the inclusion of the fiber of X over 0.
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For F* € P’(U,F,) we define the nearby cycles of F* by
U (F*) = R () 1]
This defines an additive functor
Ux: PY(U,F,) — D2(Ze, Fyp).

PROPOSITION 2.5. Suppose f: X' — X is a smooth, separated morphism over C of relative
dimension d and that X' has fibers U’ and Z' over C° and 0, respectively. Then there is a
natural isomorphism of functors

R(f] ;)" [d] o Wx = Wy 0 R(f|,)*[d]: PL(U,Fp) — D2(Z, Fp).
Proof. This follows from the fact that pullback along a smooth morphism commutes with taking
intermediate extensions by [Cas19, 2.16]. U

Remark 2.6. If f: X’ — X is a proper morphism then the functor Rf) does not preserve perver-
sity in general. However, if F* € P2 (U',F,) and R(f o 1(F*®) happens to be perverse, then it
makes sense to ask whether R(f|, )((¥x/(F*®)) and ¥x(R(f|, )1(F*)) are isomorphic. We will
see examples (such as the proof of Theorem 1.1(ii)) where the presence of F-rational singularities
allows us to prove there is such an isomorphism, but we are unsure about the general case. By
[SGATII, Exp. XIII 2.1.7.1], the analogous fact is true for the usual definition of the nearby
cycles functor (see Remark 2.9) due to the proper base change theorem.

Remark 2.7. We note that by [Cas19, 2.7(ii)], Ux(F*) € PD=(Z,F,). By [BBD82, 4.4.2], the
same is true for Fy-sheaves with £ # p using the usual definition of the nearby cycles functor. As
the usual nearby cycles functor commutes with Verdier duality for Fy-sheaves by [I1194, 4.2], it
preserves perversity. There is no duality functor for F)-sheaves, and we do not know if ¥x (F*)
is always perverse, but it is perverse in all of the examples we have computed.

By the following lemma, we can naturally extend the definition of the nearby cycles functor
to the ind-scheme Grg.

LEMMA 2.8. Suppose h: X' — X is a closed immersion of separated C-schemes of finite type
and that X' has fibers U’ and Z' over C° and 0, respectively. Then there is a natural isomorphism
of functors

R(h

)k oWy =2 Wy oR(h

U’)*: Pcb(Ulva) - ch)(Zét’Fp)'

Proof. By taking the fibers of h over C° and 0 we get the following diagram with Cartesian
squares.

-/ .
J i’
U —— X' ~— 7

b,

U X Z

Because the intermediate extension functor agrees with the usual pushforward functor for closed
immersions, by [Cas19, 2.6] we have

Rh, o jl, = ji. o R(h
Now the lemma follows by applying R:i* and the proper base change theorem. U

Remark 2.9. Following [SGATII, Exp. XIII §1.3], there is another nearby cycles functor ¥
defined as follows. Replace C' with the henselization of its local ring at 0. Let 7 be the spectrum

U’)*'
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of an algebraic closure of the function field of C, and let C' be the normalization of C' in 7. Let
Xe=X x¢ C and X575 = X X¢ 7. Then there are natural morphisms g X; — Xg and I~
Xea I ‘7:.‘77 is the restriction of F* € Db(Us, F,) to X, one can define

Uy (F*) == Ri Rj.(F*|).
For Fy-sheaves with ¢ # p, the functor W'y preserves constructibility by [SGA4%, Exp. 7, Th.
3.2] and commutes with smooth base change as in Proposition 2.5 by [SGAT7II, Exp. XIII 2.1.7].
The proofs make essential use of the hypothesis ¢ # p, and part of our original motivation for
defining ¥ x was to give short proofs of these two facts for Fj,-sheaves. It would be interesting to
compare the functors ¥y and ¥y for F-sheaves.

In [Cas19, § 6] we defined the category Pr+q(Gr,F,) of LT G-equivariant perverse F)-sheaves
on Gr. We also defined the category P;(F¢,F,) and proved the following theorem.

THEOREM 2.10 [Casl9, 1.5]. The simple objects in Py +q(Gr,F,) and Pr(F¢,F,) are the shifted
constant sheaves

IC,, := F,[dim Gr<,] € D%(Gre,e,Fp), ICL' :=TFy[dim Fe,) € DY(Flya,Fp),
for pe X (T)", we W.
L
Let F* € Pp+q(Gr,F,)®. Since C is smooth, F* X F,[1] € P’(Gr xC,F,) by [Cas19, 2.15].
L
oo = Gr xC° we view F* K Fy[1]

Via the isomorphism Grg
We set

as a perverse sheaf on Grg

(o ce

L
Z(F*) = Vg, (f' X F,[1] CO) € Db(Fle, ).

In [Casl9, §6] we defined the convolution product F7 % Fy of Fy, F3 € Pr+q(Gr,F,). We
now define the convolution product of two perverse sheaves in Pr(F¢,IF,). Since the situation is
analogous to Pp+g(Gr,F,) we will be brief. To begin, we have the following convolution diagram.

Fix FlE LG x Ft L LG x! Fo & Fu (2.5)

Here p is the quotient map LG — F{ on the first factor and the identity map on the second
factor. The map ¢ is the quotient by the diagonal action of I given by ¢ - (g1, 92) = (9197", 992),
and m is the multiplication map. We will also use the notation F¢ X F¢ for LG x! F.

Given F7, Fy € Pi(F¢,Fp) we claim that there is a unique perverse sheaf .7-"{%].7:2' €

Pr(LG x! F¢,F,) such that Rp*(Fp é F3) = Rq*(Fy W F3). The proof of this is analogous to
the case of the affine Grassmannian in [Casl9, 6.2], so we omit it. We are also suppressing the
fact that because LG x F/ is not of ind-finite type, we must replace the I-torsors p and ¢ by
torsors for a finite type quotient of I depending on the support of 77 and F3.

The convolution of 7 and F3 is

FP o« F3 = Rmy(F? B F3) € DY(Fle, Fy).

We may also write Rm, instead of Rm, because F7 X F3 is supported on a proper scheme. As
in the case of Q-coefficients, F7 * F3 is not perverse in general. However, if F7 * F3 is perverse
then it is also I-equivariant by [Cas19, 3.2].

Remark 2.11. Using the method in [Casl9, 3.13], we can define the category P,+g(Grg,F)y) of

LT G-equivariant perverse F-sheaves on Grg. By the same reasoning we can define other cate-

gories of equivariant perverse sheaves on ind-schemes we introduce later, such as P+ g(Grg™", ;)
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(see §3.1). As L;7G — C has geometrically connected fibers for every n then Pq+g(Grg,Fp) is a
full subcategory of P?(Grg,TF,).

2.4 First properties of Z

In this section we prove parts (i) and (ii) of Theorem 1.1. The main ingredient will be
the F-rationality of Grg,. We assume that k is a perfect field of characteristic p > 2 until
Proposition 2.19, where we require k to be algebraically closed. Throughout this section we also
assume that Gge, is absolutely almost simple and simply connected. We will explain how to
remove the simple connectedness hypothesis in Remark 3.9. To begin, we recall the following
results.

THEOREM 2.12 ([PZ13, 9.1], [HR19, 2.1]). The schemes Grg,, and Grg,, are integral, normal,
and Cohen—Macaulay.

COROLLARY 2.13. The fiber (Grg,)o is Cohen-Macaulay, connected, and equidimensional of
dimension equal to that of Gr,,.

Proof. Since Grg,, is Cohen-Macaulay and integral, (Grg ,)o is also Cohen-Macaulay by [Sta21,
OC6G]. Note that the morphism Grg, — C' is flat by [Har77, III 9.7]. Now because the generic
fiber of Grg, — C is connected, then so is (Grg,)o by [EGAIVs, 15.5.4]. Finally, (Grg,)o is
equidimensional because it is Cohen-Macaulay and connected, and dim (Grg,,)o = dim Gr<,, by
[Har77, III 9.6]. O

Lemmas 2.14-2.16 below are well known to experts, but because we could not find detailed
proofs in the literature we provide them here. These three lemmas are also valid if p = 2.

LEMMA 2.14. Let A and B be domains that are strongly F-regular k-algebras of finite type.
Then if A®y, B is a domain it is strongly F-regular.

Proof. This is proven in [Has03, 5.2] when A and B are graded rings, but the same proof works
in general. Let R = A ®; B and let a € A and b € B be such that the localizations A, and B, are
smooth. Then A, ®; By is smooth and hence strongly F-regular by [HH89, 3.1(c)], so by [HH89,
3.3(a)] it suffices to construct a splitting of R[(a ® b)'/9] c R/ for some ¢ = p°. Because k is
perfect, such a splitting can be constructed from splittings of A[a/9] ¢ AY9 and B[b'/9] ¢ B4,
which exist for some common ¢ because A, and By, are strongly F-regular. O

LEMMA 2.15. Let R be a domain that is a strongly F-regular k-algebra of finite type and let E
be an F-finite field containing k. Then if R ®j E is a domain it is strongly F-regular.

Proof. Let R = R®; E and let ¢ € R be such that the localization R, is a smooth k-algebra.
Since R, ®j F is a smooth E-algebra, it is regular. Hence by [HH89, 3.1(c)|, R. ® E is strongly
F-regular. Thus, to prove R is strongly F-regular, by [HH89, 3.3(a)] it suffices to show that

the inclusion Rplc/?7®1] C R}E/q splits for some g = p°. Because k is perfect, such a splitting
can be constructed from splittings of R[¢!/9] ¢ RY7 and E C E'Y/4. A splitting of R[c'/9] ¢ R'/4
exists for some ¢ because R is strongly F-regular, and a splitting of E C E'/4 exists because E
is F-finite and it is a field. O

LEMMA 2.16. Let f: Y — X be a smooth surjective morphism between reduced k-schemes of
finite type. Then X is strongly F-regular if and only if Y is strongly F-regular.

Proof. If 'Y is strongly F-regular then X is strongly F-regular by [HH89, 3.1(b)]. Con-
versely, if X is strongly F-regular then Y is strongly F-regular by [Abe0l, 3.6]. In order to
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apply [Abe01, 3.6] we are using the fact that the local rings of a smooth scheme over a field are
regular, and hence they are Gorenstein and F-rational by [HH94, 3.4]. O

We can now prove that the global Schubert varieties are strongly F-regular.

THEOREM 2.17. The schemes @Q,u and @g,# are strongly F-regular, F-rational, and have
pseudo-rational singularities.

Proof. By the implications following Theorem 2.1 it suffices to prove these schemes are strongly
F-regular. By [Casl9, 1.4], Gr<,, is globally F-regular and hence also strongly F-regular. As C
is smooth, it is strongly F-regular by [HH89, 3.1(c)]. Thus since Grg, = Gr<, xC, it follows
that Grg,, is strongly F-regular by Theorem 2.12 and Lemma 2.14.

i oo = Grg oo 18 strongly F-regular. Hence by [HH89, 3.3(a)],
to prove Grg, u is strongly F-regular it suffices to prove Grg, u is Frobenius split along the effective
Cartier divisor (Grg,,)o. As Grg,, is Frobenius split compatibly with (Grg ,)o by [Zhul4, 6.5],
it is also Frobenius split along (Grg,,)o (see, for example, [Casl9, 5.7]). O

Remark 2.18. We expect that by essentially the same proof, Theorem 2.17 is true more generally
for any parahoric subgroup of a tamely ramified connected reductive group G over k((t)) such that
p > 2 and Gge is absolutely almost simple and simply connected. This is because the necessary
inputs from [PRO8] and [Zhul4] are proved under these more general assumptions.

Before proceeding, we prove Theorem 1.6. Recall that in the setup of Theorem 1.6, E is a
local field of characteristic p > 2 with ring of integers Op and residue field F,. The group G is
a split connected reductive group defined over F such that Gge, is absolutely almost simple and
simply connected. We assume that G is the base extension of a split Chevalley group over Z and
that T and B are defined over [F,. Let Gr be the affine Grassmannian of G' viewed as a group
scheme over ;. After choosing an isomorphism F,[t] = O we can view M, as a projective
Og-scheme.

Proof of Theorem 1.6. Let x € M,, and let O, be the local ring at x. As OF is an excellent ring
and M), is a projective Og-scheme, O, is excellent. Hence by [Smi97, 3.1] pseudo-rationality will
follow if we prove that O, is F-rational. The residue field of O, is F-finite because it is finitely
generated as a field over the perfect field k. Thus O, is F-finite by [Kun76, 2.6]. By [HHS89,
3.1(d)] it suffices to show O, is strongly F-regular.

First suppose x € M), lies in the closed fiber of M,, — Spec(Of). The completion O, is excel-
lent and has an F-finite residue field, so it is F-finite by [Kun76, 2.6]. To prove O, is strongly
F-regular it suffices to prove O, is strongly F-regular by [HH89, 3.1(b)]. The ring O, is isomor-
phic to the completlon of a local ring in Grg ;. Thus, it suffices to take y € Grg,, and show that
the completion (9 of the local ring O, is strongly F-regular. Note that the map O, — Oy is a
flat map between F finite noetherian local rings. Since O, is reduced and excellent Oy is also
reduced. Moreover, the fibers of this map are regular by [EGAIVy, 7.8.3 (v)]. Thus, since O, is
strongly F-regular (Theorem 2.17), @y is strongly F-regular by [Abe01, 3.6]. This shows that
O, is strongly F-regular if z lies in the closed fiber of M, — Spec(Op).

To complete the proof we need to show that the generic fiber M), Xgpec(0,) SPeC(E) =
Grr,,<u XSpec(F,) Spec(E) is strongly F-regular. The property of strong F-regularity is Zariski
local by definition, so it suffices to take an arbitrary open affine Spec(R) C Grp,, <, and show
that R @, E is strongly F-regular. Thus by Lemma 2.15 we are reduced to showing that Grr, <,
is geometrically integral.
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We first show that the orbit Grg, , is geometrically integral. Let F'/IF, be a field extension and
let GF = G Xgpec(r,) Spec(F). By definition Grp,, is the scheme-theoretic image of the orbit map
L"(Gr) — Grp, g +— g - u(t) for n > 0. Since L"G is geometrically integral and taking scheme
theoretic images commutes with flat base change it follows that Grr, ;; Xgpec(r,) Spec(F') = Grp,,
is integral.

Now assume F' is an algebraic closure of F,. Because the Cartan decompositions of G(F((t)))
and G(F((t))) are both indexed by X.(T)", the reduced subscheme of Grg, <, Xpec(r,) SPec(F)
is isomorphic to Grp,<,. Thus Grp, <, is geometrically irreducible by [Sta21, 038I]. Finally, since
[, is perfect, Grp, <, is geometrically reduced and hence also geometrically integral. ([l

We now begin proving parts (i) and (ii) of Theorem 1.1. For the rest of this section we assume
that k is an algebraically closed field of characteristic p > 2 and that G is a connected reductive
group over k such that Gge, is almost simple and simply connected.

L
PROPOSITION 2.19. The perverse sheaf jg 1. (1C, X F,[1]
stant sheaf Fp[dim Grg ;| supported on Grg,,.

o) 18 isomorphic to the shifted con-

Proof. Since Grg,, is integral and F-rational, F,[dim Grg,] is a simple perverse sheaf by

[Cas19, 1.7]. Now the lemma follows by applying loc. cit. on Grg .. and using the fact that

CO
L
jg,!*(lcu X Fp[l]

o) is simple by [Cas19, 2.9]. O

PROPOSITION 2.20. The functor Z is exact and preserves perversity, and Z(IC,) = Z 4(,,).
Proof. The isomorphism Z(IC,) = Z 4,y follows from Theorem 2.4 and Proposition 2.19,
and the fact that dimA(p) = dim Gr<,. As A(p) is Cohen-Macaulay and equidimensional

(Corollary 2.13), Z 4, is perverse by [Cas19, 1.6]. Since Pr+g(Gr,[F,)® is semisimple, Z is
also exact and preserves perversity. O

PROPOSITION 2.21. Z(F*) is I-equivariant.

L
Proof. Note that F*XFy[1]|,, oo =LTG xC° on
co = Gr<y XC°. Using the fact that taking intermediate extensions commutes with

is equivariant for the action of £1§G

@Q 3z

L
smooth pullback ([Casl9, 2.16]), one can check that the perverse sheaf jg . (F* K F,[1]]..) €
P?(Grg,,Fp) is L*G-equivariant. By taking the fiber over 0 it follows that Z(F*®) is
I-equivariant. O

This completes the proof of the properties of Z asserted at the beginning of Theorem 1.1
and also part (i).

Proof of Theorem 1.1(ii). We first show that Rm(Z4(,)) = IC,. Since Grg,, and Grg,, are nor-
mal, Cohen—Macaulay, and have pseudo-rational singularities, we have R’/Tg’*(O@g N) = O, .
by [Kovl7, 1.8]. Because mg ., = mg, as functors on F,-sheaves, it follows by applying the

Artin—Schreier sequence and Proposition 2.19 that

C)) ~ 1C, K F,[1].

Now by semisimplicity, for general F* € Pp+5(Gr,F,)® there exists an isomorphism

Rmg,) (jg,!* (ICu < Fp[1]

Rrg, (jg’!* (]—"‘ 1] C)) ~ F* R[]
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We can select a canonical isomorphism by requiring that it restricts to the identity map over C°.
By restricting this canonical isomorphism to 0 and applying the proper base change theorem we
get a canonical isomorphism

Rm(Z(F*)) = F°. 0

3. Proofs

3.1 Beilinson—Drinfeld and convolution Grassmannians

In this section we establish some F-regularity results that we will use to prove the remaining
parts of Theorem 1.1. Let k be an algebraically closed field of characteristic p > 2 and let G be
a connected reductive group over k such that Gge, is almost simple. We also assume that Gge, is
simply connected until Remark 3.9. In our proofs we will use the same geometric objects as in
[Zhul4]. First, we have the Beilinson-Drinfeld Grassmannian for G over C' defined by the functor

i}

This is an ind-proper scheme over C' by [Zhul4, 6.2.1]. By arguments similar to those in [Gai01,
Prop. 5],

~ &,

Grg°(R) = {(x,c‘:,ﬁ) rx € C(R), € is a G-torsor on Cg, 3: €|
R x

BD
(}rg

oo = GrxCxFL,  (GrgP)o = FL.

Let @gz,w be the reduced closure of Gr<, xC° x F/{,, in GrgD.
The global convolution Grassmannian for G is the functor

x € C(R), &1,& are G-torsors on Cg,
Grg™(R) = {(13,51,52,517@)3 By (R), &1, f CO}-
R

1 51‘CR—FZ. = EO‘CR_sz B2: &

C;:gl

This is an ind-projective scheme over C' by [Zhul4, 6.2.3]. There is a map mg: Grg™" — GrgD
which sends (z,&1,&, (1, 02) to (z,&2,P10P2). The map mg is an isomorphism over C°.
By taking the fibers over C° and 0 we get the following diagram with Cartesian squares.

sconv .conv
J conv !

Gy | e — G§™ ~—— LG x! Fe

S

GrgD ; GrgD ’ o

Ce

We define @Zﬂosz to be the reduced closure of Gre,, xC° x Fl,, in Grg™". In Theorem 3.6
we will show that @Sz,w and ﬁzoivw are strongly F-regular. Before we can prove this, we need

to show that @SB’W is Frobenius split compatibly with (@gi,w)o' Zhu proved such a splitting
exists for w € X, (T)" sufficiently dominant [Zhul4, 6.5], and our argument will require only a
minor modification of Zhu’s argument.

In our proofs we will use the following facts and notation. Recall that for A € X, (T)" we
write ty for the element \ viewed as an element of W. If we write W = X, (T) x W, then

71 (CGrey) = fﬂt?o, where ) := (X, wp) € w.
Additionally, for p € X,(T)" we have

t# : tfo = (:uv 1) : ()‘7w0) = (M + )\,QU()) = tﬁi)\'
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In this case, if £ is the length function on W we have
Uty) + 80) = (22,
This can be proved using the formula for ¢ in [G6r10, §1.1] (see also [Zhul4, §9.1]).

PROPOSITION 3.1. Let 1, A € X.(T)* and let w = t{° € W. Then @Siw is normal, and the
fiber (@glz w)o 1s reduced and isomorphic to ]—'Etwok.
N nt

Proof. Let GrgD be the functor

~ &

GrgD(R) = {(w,g,ﬂ) :x € C(R), & is a G-torsor on Cg, (: &

ir )

co-T,
Then by [Gai01, 3.1.1], GrrgD is ind-projective, and there are isomorphisms
GrgP| .. = GrxC°x Gr, (GrgP)o = Gr.

The map G — G induces a map 7gp: GrgD — GrgD. Over closed points in C° this is the map
id x7: Gr xF¢ — Gr x Gr, and over 0 this is 7: F¢ — Gr. Let @gi,/\ - GIED be the reduced
closure of Gr<, xC° x Grey.

The fiber (@23/\)0 is reduced and isomorphic to Gr<u+)\ by [Zhu09, 1.2.4] (see also

[Zhul7, 3.1.14]). As @gi,w C WBD(GI‘G ))» we have that (Grg ww)o,red C FU, £ - Furthermore,
@gaw — (' is flat by [Har77, 9.7], and hence by [Har77, 9.6] the irreducible components

of (Gl"g]zw)o red all have dimension equal to dim Gr<,, + dim F¢ 700 Thus, since dim F¥, o, =
1%

dim Gr<,, +dim fﬁt;uo, it follows that (Gfg,u,w)o,red = FY, £ and (TrBD(GrG i )red = Grg -
As F? is a G/B fibration over Gr, we have that (WBD(GrGuA))O is a G/B fibration over
(@(B;DM \)o- Since (@gz »)o is reduced, so is (Tqp (@(B; a))o- As (Grg uw)o is a closed subscheme

——BD ——BD .
of (ﬂ'BD(GI‘G a))o, and these two schemes have the same reductions, (Grg ,,)o is reduced.

BD ~BD .
Finally, since F¥¢ 0 is normal and Grg | .. = Grey xC° X }Yt;m is also normal, Grg ,,, is

normal by Hironaka’s lemma [EGAIV,, 5.12. 8] O

Remark 3.2. The functors Grg and GrQ can also be described as the restrictions to C' x {0}

of quotients of global loop groups over C2 which are similar to £G and £*G from §2.2 (see also
[Zhul7, §3.1]). The referee has pointed out that it is possible to use this fact to show that mpp
is a G/B fibration, and in particular it is smooth. Since normality and reducedness are local in
the smooth topology, this leads to an alternative proof of Proposition 3.1.

The following proposition is well known, but because we could not find a complete proof in
the literature we provide one here.

PROPOSITION 3.3. Let w, w' € W be such that {(w) + £(w') = £(w - w’). Then the convolution
morphism m: LG x! F¢ — F¢ maps C(w) X C(w') isomorphically onto C(w - w').

Proof. Let Wag be the affine Weyl group of GG and let Q2 C W be the subgroup of length 0 ele-
ments. Then we have a decomposition W = Wg % Q. First suppose that w, w’ € Wag. Let w =
51+ Sp(w) and w' = 57 - - Slz(w') be reduced expressions for w and w’ as products of simple reflec-

tions. For each i let P; be the parahoric group scheme corresponding to s;. Then Lt (P;)/I = Fi,,
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and each F/s, is abstractly isomorphic to P1. There is an affine Demazure resolution

Twaw' (Q]—'&Z) X <§.7:€53_> — Flypy! -

By [Fal03, § 3], since the product of the s; and the s;- gives a reduced expression for w - w’, the
morphism 7., induces an isomorphism

(;0(&)> > <§0(s;.)) = Ofw - w).

AS Ty = m o (Ty X Ty ), We see by also applying loc. cit. to the factors X Fls, and %.7:55} that
m maps C(w) X C(w') isomorphically onto C(w - w').

For the general case, write w = 7w, and w' = w7’ for wg, w), € Wag and 7, 7" € Q. Then
U(w) = L(wy), L(w') =4(w],) and f(w - w') = L(w, - w),). Because Q normalizes I, we have that
Q acts on both F¢ and LG x! F¢ by right multiplication. Furthermore, any lift 7—! € LG(k)
induces isomorphisms on both of these ind-schemes by left multiplication, and all of these
isomorphisms send I-orbits to I-orbits. In particular, there is a commutative diagram as follows.

7-.71 () 7_/71

v C(wa) X C(wy)

i -1 () /=1 i

Cw-w') C(wg - wh)

~

We have shown the morphism on the right is an isomorphism, thus so is the morphism on the
left. ([l
PROPOSITION 3.4. For any p € X.(T)* and w € W the scheme @gz,w is Frobenius split
compatibly with (@giw)o.

Proof. If w =t, for v € X, (T)" sufficiently dominant then this is [Zhul4, 6.5]. If A < v is also
dominant then this splitting is compatible with the closed subscheme @237“ C @gi,tu by
[Zhul4, 6.8] and [BKO05, 1.1.7 (ii)]. A splitting of Grg,,,, compatible with Grg., , and (Grg.,,, )o
induces a splitting of @SB’U compatible with (@gi,tx)o' This proves the proposition when

w = t) for any dominant cocharacter A. .
For the general case, note that for every w’ € W there exists A € X,(T)* such that w' < ¢{°,

so it suffices to show @22,&0 is compatibly Frobenius split with (@2275;0 )o and @gzm for
all A € X, ()" and w’ < t}°. Henceforth we fix A € X,.(T)" and w = t}° € W.

We will proceed by a similar argument to that in [Zhul4, 6.7]. More precisely, we will
construct an open subscheme U C Grgz’w such that the following assertions hold.

. . . o — ——BD
(i) The scheme U maps isomorphically onto its image under m: Grgiz\fw — Grg ) 0

(ii) The complement of m(U) in ﬁgz,w has codimension two.
(iii) The scheme U is Frobenius split. Since @gi,w is normal, by [BKO05, 1.1.7] the spitting of

m(U) extends to a splitting of @Siw' We will complete the proof of the proposition by
showing

. . e —BD . . ..1. /~—BD ——BD p

(iv) The resulting splitting of Grg , ,, is compatible with (Grg ,,,)o and Grg , , for all w" < w.
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As in [Zhul4], we define U; C @Cg(jz’vw to be the open subscheme which is Gr, xC° x F,,
over C° and C(t,) X Fl,, over 0. We also define U C U; to be the open subscheme which is
Gry, XxC° x Fl,, over C° and C(t,) X C(w) over 0. Since the lengths of ¢, and w add, C(t,) X
C(w) maps isomorphically onto C(t,9,) by Proposition 3.3. Thus (U)o maps isomorphically
onto m(U)g. Hence the morphism from U to m(U) is a bijective birational morphism between
normal integral k-schemes, so it is an isomorphism by Grothendieck’s reformulation of Zariski’s
main theorem [EGAIII;, 4.4.3].

As Gr<, — Gry, has codimension two in Gr<,, the complement of m(U)

oo = Gr, xC° x
F, has codimension two in Grgo | = Gre, xC° x Fl,. By Proposition 3.1, (Grg
w has codimension two in Grg , o <y X x Fly. By Proposition 3.1, ( rg,#,w)o -

m(U)o = fﬁtwg T C(t" ) has codimension one, so we conclude that U satisfies (ii). Finally,
o

JT5 2N
(iii) and (iv) follow from the fact that U; is Frobenius split compatibly with (Uj)p and Uy N
(Gry xC° x Flyy) for all w’ < w by [Zhul4, 6.8]. O

COROLLARY 3.5. For any p€ X, (T)" and w €W the scheme (@SBM)O is reduced,
Cohen—Macaulay, Frobenius split, and equidimensional of dimension dim Gr<,, + dim F/,,.

Proof. A Frobenius splitting of @SBM compatible with (@giw)o induces a Frobenius split-
ting of (@giw)o. Thus (@giw)o is reduced by [BKO05, 1.2.1]. Furthermore, as @Siw o =

Gre, xC° x Fi,, is Cohen-Macaulay, @gz,w is Cohen—Macaulay by [BS13, 5.4] (see also
[HR19, 5.5]). Thus (@giw)o is also Cohen-Macaulay by [Sta21, OC6G]. Finally, the morphism

Grg.p,, — C s flat by [Har77, 1119.7), so by [Har77, I11 9.6] the fiber (G, ,,)o is equidimensional
of dimension dim Gr<,, + dim F/,,. O

~ 7BD —_
THEOREM 3.6. For any i € X.(T)" and w € W the schemes Grg , ,, and Grg?i’w are strongly
F-regular, F-rational, and have pseudo-rational singularities.

Proof. As in the proof of Theorem 2.17, it suffices to prove these schemes are strongly
F-regular. Since @Siw o = Grey, xC° x Fly, it follows that @giw oo is strongly F-regular

by Lemma 2.14 and Theorem 2.1. Now as in the proof of Theorem 2.17, it follows that @g}i,w

is strongly F-regular because it is Frobenius split compatibly with (@Siw)o.

To prove @Cgosz is strongly F-regular, we first note that @i u X Fly isitrongly F-regular
by Lemma 2.14. By the isomorphism proceeding [Zhul4, 6.2.3], Grgﬁw and Grg,, x Ft, have a
common smooth cover. Since the property of strong F-regularity is local in the smooth topology

(Lemma 2.16), @Cg(jzt’w is strongly F-regular. g

3.2 Proofs of main results )

We continue using the notation introduced in §3.1. For p € X, (T)" and w € W, let Z,,, be
the shifted constant sheaf Fp[dim(Grgng)o] supported on (Grgiw)o. Parts (iii) and (iv) of
Theorem 1.1 follow from the following proposition.

PrOPOSITION 3.7. For F} € Pr+q(Gr,Fp,)® and F3 € Pi(F(¢,F,) there are natural
isomorphisms

L
o WICTH = 2,0,

L
(i) Wgyo (1, W, [1]

L L
(i) Weumn (F} W, [1]| o, K FP) = Z(F}) + 73,
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L
0o B F3) 2 F3 + Z(FY).

L
(i) Wm0 (FF B E[1]
Furthermore, each of these complexes is perverse and I-equivariant.

_ L L
Proof. Since Grgz’w is integral and F-rational, jEP(IC,, K F,[1] oo X ICZ*) is the constant sheaf

Fp[dim@giw] supported on @SB@ by [Casl9, 1.7]. Hence the isomorphism in (i) follows. As

(@Szw)o is Cohen-Macaulay and equidimensional, Z,, ,, is perverse by [Cas19, 1.6].
For (ii), suppose that F7 is supported on Gre, and F3 is supported on F/,. Let I, :=
L"(g|@0). As in [Zhul4, 6.2.3], for some n there is an I),-torsor Grg g, over Grg such that

—~—-conv

_ I
Gr(],mw = Grg# X Grg Grg,O,n X Fly.

—~_conv

Let 5o @g,u Xarg Grgom XFly — Grg’u’w be the resulting I,,-torsor over @Cgosz
By similar reasoning to that in [Casl9, 6.2] we can form the perverse sheaf

—_conv

L ~
Jase (F BF 1| ) B € Prag(Grgty, ).

L L
The key point is that jg . (Fy KFpy[1]| .. )XFs is perverse when F? and Fy are simple

ce)

L L
because then jg . (F7 K F,[1]|,,) X F5 is a constant sheaf supported on an equidimensional

L L
Cohen-Macaulay scheme. Thus jg 1.(F7 K Fy[1]| .. )X F3 is perverse for general 77 and F3 by
induction on their lengths.

We claim there is an isomorphism

L
R[] (jg,,* (]-'1' X F,[1]

CO) %ﬁ;) ~ Z(FH) R FS. (3.2)

Let ¢n: Grgy Xarg Grgon — Grg, be the pullback of Grgo, — Grg along Grg, — Grg
and let pon: (Grgu)on — (Grg,)o be the fiber of ¢, over 0. By taking the fiber of ¢S over 0
we get the following Cartesian diagram.

7:COI’!V

@gﬂ XGrg Grg,om ><.7:€w I (§97M)01n X f@w

i oo l i

(Grg,u)o X Fly

——conv ?

Then (3.2) follows from the following calculation:
o) 5 73))

L ®
o)) B )

o)) B = Roj (2(F) B 73,

L
R (i =1 (jg . (77 B, 1

>~ Rig™* [—1] (R%’i (jg,!* (ff 5 Fp[1]

~ Rep ., (Rig [—1] (jg,l* (ﬂ' 5 Fp(1]

To finish the proof of (ii) it suffices to construct a natural isomorphism

Rm., (Rimnv’*[—u (ng* (]—"1' K, [1] Co) X ]—"2‘)) — Wgum (]—"1‘ R F,[1] o éfg). (3.3)
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By the proper base change theorem, to establish an isomorphism as in (3.3) it suffices to construct
an isomorphism

L ®
o B F3 ) (3.4)

Rimg. (josu (71 B, (1) o) B75) — 380 (71 07, 1]

Since mg is an isomorphism over C° then the left-hand side of (3.4) is naturally an extension

L L
of F7 W Fy[1]| . B F3, so we just have to show it is the intermediate extension. Indeed, once we
know the left-hand side is isomorphic to the intermediate extension, then by [Cas19, 2.11] there

is a unique isomorphism as in (3.4) which restricts to the identity map on F} é Fpll]] o é F3.

Since the middle term in an exact triangle is an intermediate extension if the outer terms
are intermediate extensions (see the proof of [Casl9, 7.8]), by induction on the lengths of F7
and F3 we reduce to the case 77 =1C, and F3 = ICZEE. Because all of the schemes appearing

~ L L
co) RICTY and jBP(IC, K F,[1]] .. KICLY)

are integral and F-rational, both jg 1.(IC, éﬁ?p[l]
are constant sheaves.

The map m: @g)sz — @giw is a birational map between normal, Cohen-Macaulay
k-schemes having pseudo-rational singularities. Thus by [Kov17, 1.8], Rm*(O@fJfow) =~ 0

@BD w.
By applying the Artin—Schreier sequence we complete the proof of (3.4) and (ii). Applyingu(yi),
this also shows that Z(F}) * F3 is perverse if Fp =1C, and F3 = ICZ’. Convolution on the
left by Z(F}) sends short exact sequences in P;(F¢,F,) to exact triangles in D%(Ffg,F,) by a
proof analogous to the one in [Casl9, 6.7]. Thus, by induction on the lengths of 7 and F3 we
conclude that Z(F7) = Fy is perverse in general. For equivariance, we note that because Z(F7)

is I-equivariant, Z(F7) % F3 is I-equivariant for the action of I on the left factor of LG x! F/.
As the map m is I-equivariant, Z(F7) = F3 I-equivariant by [Casl9, 3.2].
To prove (iii) we use the functor

conv’ x € C(R), &1,& are G-torsors on Cg,
Grg™ (R) = {(33751,52751,52) C B 51( : }

oo = €o csy Pa: 52|C’R—Fm = gl‘cR—rm

By [Zhul4, 7.2.6], Grcgon"/ is ind-proper over C'. There is also a map my;: Grg’nvl — GrgD which
sends (z, &1, &2, 1, B2) to (z, &2, B1 0 B2). The map myg is an isomorphism over C° and it restricts
to the convolution map m: LG x! F¢ — F{ over 0.

Suppose F7 is supported on Gre, and F3 is supported on F¥,. Let n be an integer large
enough so that £TG acts on Grg, through the quotient £;/G. Then as in the proof of [Zhul4,

7.4 (ii)] there is an £} G-torsor P, over F{,, x C such that P, LG Grg, C @gmv is a closed
subscheme with

P xLn9 ﬁg#]m > Fly x C°x Grep,  (Po x99 Grg u)o & Fly X (Grg.p)o-

The scheme P, xLng @gyu is strongly F-regular by Lemma 2.14 and because this property is

local in the smooth topology by Lemma 2.16. Let cp%on"/: Py xc Grg,, — Py x L g Grg,y, be the
resulting £ G-torsor.

L
Since jg,1.(FT X Fp[1]| ) is L G-equivariant (see the proof of Proposition 2.21), by
arguments analogous to those in the proof of (ii) we can form the perverse sheaf

——conv’

(7 R, )) B g (71 @B )] .)€ PAGE™ F,),
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which is supported on P, x LG @gdﬁ. Here we are applying the operation X with respect
to the fiber product of C-schemes rather than k-schemes. If Ff =1C, and Fy =ICZ* then

L ~ L
(ICTERT,[1]) K jg1.(IC, XTF,[1] o) is a constant sheaf. Let F ¢y, be the I,-torsor (Pp)o over
F,. By taking the fiber over 0 we get the following Cartesian diagram.

. !
Zconv

’Pn Xc @g# <n7 fﬁwm X (@g,u)o

’ ’
conv' conv
i Pn l (pO,n
’

sconv

P xE49 g, = Fly % (Grg )0

Now we can finish the proof by following arguments analogous to those in the proof of (ii)
to establish isomorphisms

Ri' 1) (3 W 1)) 8 g (£ B, 1

o)) 2R REF)
and

Rm. <Ri°°nvl’*[—1] ((]—“2' & Fpu]) K jg.1s (]—“1' 5 (1] o % .7-“5).

o)) = Yo (7 8E, 1)

In this last isomorphism we are applying the natural isomorphism F/, x C° x Grg, =
Gre, xC° x Fl,,. We leave the details to the reader. D

Before we finish the proof of Theorem 1.1 we introduce the functor

x € C(R), &,& are G-torsors on Cg

Grg (R) = {($7817827ﬂ17/82) : /81: £1|CR_Fx ~ SO‘CR_FQ:, ﬁQ: SQ‘CR_Fw o 51‘CR_FQ} .

There are isomorphisms

conv’/
Grg

L =G x TG Gry x 0, (Gre™y = LG <! FL.
Moreover, by arguments similar to those proceeding [Zhul4, 6.2.3],
Gre™” = £G x£79 Grg =: Grg X Grg .

Thus Grg’n"” is ind-proper over C'. We define @CQOZVA to be the reduced closure of the subscheme
Gre, X Grey xC° C Grgm”.

—_ 1" - 1
PROPOSITION 3.8. The scheme Grcg(?i/)\ is Cohen—Macaulay, (Grg?z\f)\ )o is reduced, and

1
conv ~

Grg,u,)\ - (@g,u X @g,)\)red-

Proof. Note that @ZOEVA is a closed subscheme of Grg, X Grg ), and these two schemes are

isomorphic over C°. Thus the isomorphism in the proposition will follow if we show that @g# X
Grg,y is irreducible.

To prove that @g# X Grg y is irreducible, fix an integer n large enough so that £*G acts on
Grg,) through the quotient £}G. Let £G<, be the preimage of Grg,, under the quotient map
LG — LG/LTG = Grg, and let

Grgun = LG<y xE9Lhg.
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Then there is a right £} G-torsor ¢g ,: Grg ., — Grg,, such that
J— ~ — _ S
Grg,, X Grg = Grg un x 9 Grg .

Thus it suffices to show that Grg ., x¢ Grg, is irreducible.

Because £;'G has geometrically irreducible fibers, to prove that Grg G,um XC Grg \ 1s irre-
ducible it suffices to prove that Grgu xc Grg,y is irreducible. Since Grgﬂ and Grg A are
flat over C, it follows that Grg, x¢ Grg, is flat over C. Thus since Grg,

Gre<y, x Gr<y xC° is irreducible it follows that Grg u Xc Grg7 a is irreducible. Putting thls all

COHV

together, we have shown that Grg , \ = (Grg, X Grg \)red-

By Corollary 2.13, the fibers (Grg,,)o and (Grg »)o are reduced and Cohen-Macaulay. Hence
the product (Grg,,)o x (Grg,)o is also reduced and Cohen-Macaulay. As these two properties
are local in the smooth topology, (Grg,,)o X (Grg.)o is reduced and Cohen Macaulay. Thus by

COl’lV

the isomorphism Grg#;\ = (Grg, X Grg)red it follows that (Grg, y)o = (Grgu)o X (Grg.)o
is reduced and Cohen-Macaulay. As Grg;’)\ . is also Cohen-Macaulay then Grg%/\/ is
Cohen—Macaulay. O

Proof of Theorem 1.1(v). There is a morphism mg: Gr‘éom’” — Grg which sends the element
(z,&1,&2,B1,B2) to (x,E, 51 0 f2). Over points in C°(k) the morphism mg is the convolution
morphism LG xL"C¢ Gr — Gr and over 0 the morphism mg is m: LG x! Ft — Ft. By taking
the fibers of mg over C° and 0 we get the following diagram with Cartesian squares.

-conv’’ conv”

(LG xF7C Gr) x €° —— Gr™" <— LG x! Fl

l | lmg | lm (3.5)

J i
Gr xC° g Grg ¢ Fe

Because the schemes @Cgozv/\ = (Grg X Grg\)red for p, A € X, (T)" are Cohen-Macaulay, by
similar reasoning to that in [Cas19, 6.2] we can form the perverse sheaf

L ~ L 7"
Fro = o (F1 W1 0o ) B jgse (73 BF[1]] 0 ) € PAGHE™ ).

To complete the proof it suffices to construct natural isomorphisms
(i) Rio™"*[~1](Fry) = 2(F}) K Z(F}),
(if) R (Ri«™ > [=1](F},)) = Z(F7 * F3).

Suppose F7 is supported on Gre, and F3 is supported on Gr<). As in the proof of
Proposition 3.8, fix an integer n large enough so that £7G acts on Grg ) through the quotient
LG Let ¢g,: Grgun — Grg, be the right £ G-torsor such that

N ~ — P +r—
Gl“g“u X Gl“g7)\ = Grg%n x End Gl“g)\.

//

Let oo (Grg pn X GIg \)red — Grg L, "\ " be the resulting £ G-torsor over Grg u}\ Over
points in C° the map ¢g,: Grg,, — Grg, restricts to an L"G-torsor p,: Gr<,, — Gr<,.
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By taking the fibers of gocon" over C° and 0 we get the following diagram with Cartesian squares.

.conv’’ Zconv”

Grepn X Grax xC° “s (Grg un X Grga)red <—— (Grgpun)o X (Grg.a)o

1"
l l peon l e
1" 17
N
X

Grey X Gray xC° (Grg o X (Grg,)o

An isomorphism as in (i) can be constructed in a manner similar to (3.2) by pulling everything
back to (Grg un)o % (Grgx)o. We leave the details to the reader. By using the left-hand side of
the above diagram one can also prove that

" x ° ~ T® oo oL
Rj«™ > (]'—1,2) = Fr KT KFp[1] c

By the proper base change theorem, to prove (ii) it suffices to construct a natural
isomorphism

L
(i) Rm§ . (Fra) = jo1((Ff + F3) WF,[1]] o).

By the description of mg over C° there is a natural isomorphism

R(mg| o )«(Rj«™"*(F1,)) = (FF * F3) éFp[l] c

L
Thus the left-hand side of (iii) is naturally an extension of (Ff x F3) K Fp[1]| co» SO We just
need to show it is isomorphic to the intermediate extension By semisimplicity we reduce to the

//

case F? =1C,, for pu; € X.(T)". Note that mg maps Grg i1 ODEO Grg i, where 1 = pq + pio.
Moreover, ICM1 *1C,, =2 IC,, by [Cas19, 1.2]. Thus, F7, and the right-hand side of (iii) are shifted
constant sheaves.

Because the convolution morphism Gre,, QGr<M2 — Gr<u is birational the morphism

@gzm — Grg,, is also birational. We claim that m : Gr CgOZZ e Gl"g p 1s projective.

To prove this, note that Grg, is projective over C by [PZ13 5.5]. As Grmn" &~ Grg X Grg =

.
mg.

COI’lV

Grg X Grg (see, for example, [Zhul7, 1.2.14]), Grg , ., is also projective over C. Thus

: Gr Cgozz o — Grg,, is projective. Therefore, since Grg, has pseudo-rational singularities

and Grg 1o 18 Cohen—Macaulay we have Rmg ((’)CT;OLW1 112) = Oqy, by [Kov17, 1.4]. Now
(iii) follows by applying the Artin—Schreier sequence. U
Remark 3.9. We have proved Theorem 1.1 under the hypothesis that Gge, is simply connected
and almost simple. We now explain how to remove the simple connectedness hypothesis using
the same technique as in [Casl19, 7.12]. The same idea is also used in [Zhul4, 3.3].

Let G be a connected reductive group over k such that Gge, is almost simple. By [MS82, 3.1]
there exists a central extension

1-N—-G —-G—1
such that G/, is simply connected and N is a connected torus. Since Gger is almost simple, so
is Gl,- Let 7" C B’ C G’ be the maximal torus and Borel subgroup given by the preimages of
T and B, and let I’ C LG’ be the preimage of B’ under the projection LTG’ — G’. Let Grg
and Grg be the affine Grassmannians for G and G’, respectively. Similarly, let F¢g and Flg
be the Iwahori affine flag varieties.
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Because N is connected the map X, (7") — X.(T) is surjective. Hence the maps Grg —
Grg and Flg — Flg are surjective. Let ¢1: X, (T")T — X.(T)™ be the induced surjection on
dominant cocharacters and let ¢o: W’ — W be the induced surjection on Iwahori-Weyl groups.
Each connected component of Grgr maps onto its image in Grg via a universal homeomorphism
by [HV18, 3.1]. The same is true of the map Flg — Flg.

There is also a Bruhat-Tits group scheme G’ over C satisfying the conditions (2.3) and
equipped with a natural map G’ — G. This induces a map Grgr — Grg. By restricting this
map to C° and 0 one sees that Grgr — Grg is surjective and maps each connected compo-
nent of Grgs into its image via a universal homeomorphism. Similarly, there are maps Grg,D —
GrgD, Grgi™ — Grg™, etc., which are surjective and restrict to universal homeomorphisms on
connected components.

All of the diagrams of C-schemes we used in §§ 2 and 3 to prove Theorem 1.1 for G’ intertwine
with the corresponding diagrams for G. For example, we have the following commutative diagram.

Grg —— Grg

- -

Grg —— Grg

Thus, by the topological invariance of the étale site [Sta21, 04DY], our arguments in §§2 and 3
can be used to simultaneously prove Theorem 1.1 for both G’ and G.

4. Applications

4.1 The function—sheaf correspondence

Let Xg be a separated scheme of finite type over I, and let F§ € DZCJ(X07ét, F,). Fix an embedding
of F, into an algebraic closure F, and let F* € Gal(F,/F,) be the inverse of the map which sends
a— al. Let X = Xo Xgpeo(r,) Spec(Fy) and let F* be the pullback of F§ to X. For x € Xo(F,)

let F7 be the pullback of F* along the composition Spec(F,) — Spec(F,) = Xo. Then each
HY(F?) is a representation of Gal(F,/F,) and it makes sense to take the trace Tr(F*, H (F2)).
We form a function Tr(F3): Xo(F,) — F, by setting

Te(F5)(2) = ) (—1)' Te(F*, H'(F})).

%

See also [SGA43, _Ch. 2, §1] for more information on the construction of the function Tr(Fg).
As in the case of Qy-coefficients, we have the following theorem.

THEOREM 4.1. Let Xo and Yy be separated schemes of finite type over IFy.

(i) Let F§ € Di(Xoet,Fp) and G§ € DE(Yoer, Fp). If € (Xo Xspec(r,) Yo)(Fy) has images
p1(z) € Xo(Fy) and pa(z) € Yo(F,) then

L
Te (78 W G5 ) (@) = Tr(F) (1 (2) Tr(G) (p2()).
(ii) Let f: Yy — Xo be a morphism. If F§ € D%(Xo.,F,) and y € Yo(F,) then

Tr(Rf*(F5))(y) = Te(F5)(f(y)-
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(iii) If 7§ € Db(Xoet,Fp) then
Y T(F)(x) =D (1) Te(F*, RT(X, F*)).

CIZEXo(Fq) i

Proof. Parts (i) and (ii) are immediate from the definitions, and part (iii) is [SGA4%, 41]. O

4.2 Perverse Fj-sheaves over finite fields

For the rest of §4 we assume G is a split connected reductive group defined over I, and that Gger
is absolutely almost simple. Let Grp, and F/p, denote the affine Grassmannian and affine flag
variety viewed as ind-schemes over F,. While we restricted to the case of an algebraically closed
ground field in [Cas19], our constructions also work over an arbitrary perfect field of characteristic
p > 0. In particular, we can construct the categories PL+G(Gr]Fq, F,) and PI(.’FKFq,IE‘p). The main
difference when working over F, is that there are more objects that are simple. In particular,
[Cas19, 3.18] needs to be revised in this setting, as there are non-trivial simple étale local systems
on Spec(F,).

As in the case of Q-coefficients in [Zhul7, 5.6], we will restrict ourselves to a certain sub-
category of Pr+q(Grp,,Fp) consisting of normalized perverse sheaves. More precisely, let £ be
the étale local system on Spec(F,) corresponding to the representation Gal(F,/F;) — GL1(F))
which sends F* to —1. If X is a scheme over F, then we can also view £ as a local system on
Xo by pulling back along X¢ — Spec(Fy).

Let p € X.(T)" be such that dim Gr<, has parity p(u) € {0,1}. Because [Casl9, 1.7] also
holds when k is perfect (with the same proof), IC, is isomorphic to the shifted constant sheaf
Fp[dim Gr<,,] supported on Grg,,<,. We define the normalized IC complex

L
ICY :=1C, ® L%*W) € Pp+q(Gry,,Fy).

Let PL+G(GrFq,IFp)N C Pp+¢(Grr,,Fp) be the Serre subcategory consisting of perverse sheaves
whose simple subquotients are all of the form ICEI for pe X (T)*.

We claim the subcategory PL+G(Gr]Fq,}Fp)N is monoidal. To prove this, we first note that the
identity IC,, *IC,, = IC,, 44, in [Casl9, 1.2] also holds over FF,. Indeed, this identity is derived
from the result of Kovédcs [Kov17, 1.4] which is independent of the ground field. From this fact

and the projection formula [Sta21, 0B54] it follows that ICE1 >kIC;1>I2 = Ic;ljl—i-ug‘

Using the same arguments as in [Cas19], one can show that Pr+g(Grp,,F,)N is a symmetric
monoidal category. For 7* € Pp+q(Grr,, ) let ¢, € Pr+q(Gr,Fp) be its pullback to Gr. Then
one can also show that

PL+G(GrFq,Fp)N — Vectp,, F*+ @Rif(]:ér)

is an exact, faithful, tensor functor.
For p € X.(T)7" let

L
ZE(M) = Z ) © LW € P(Flg,,Fp).

Let PL+G(GrFq,IFp)N S8 C PL+G(GrFq,Fp)N be the tensor subcategory consisting of semisimple
objects. If p > 2 the arguments in this paper also work over F, and give rise to a functor

Z: PL+G(G1"JFQ,FP)N755 — Pl(fqu,Fp)

which satisfies all parts of Theorem 1.1 and such that Z (ICE) = Zﬁ(u)'
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Remark 4.2. The functor Pr+q(Gry,,Fp)N — Pr+g(Gr,Fp) induced by pullback is faithful and
identifies the simple objects in these two categories, but it is not an equivalence of categories
in general. The issue is that due to the failure of smooth base change, the group of extensions
between two objects depends on the ground field (see the proof of [Cas19, 6.14]).

4.3 Proofs of applications to Hecke algebras
In this section we prove Theorem 1.3 and Corollary 1.4. We fix an isomorphism Fy[t] = Og.
Recall that if H C G(F) is a compact open subgroup then the multiplication on Hy is defined by

(fxg)@) = Y flaygly™).
yeG(E)/H

We now verify that the function—sheaf correspondence respects the convolution of perverse
sheaves and functions.

LEMMA 4.3. If 77, F5 € Pp+q(Gry,,Fy) then

Tr(F7 « Fg) = Te(F7) « Te(F3) € Hi.
Similarly, if 77, F3 € Pi(Flg,,F,) then

Tr(Fy « Fy) = Tr(F7) =« Tr(Fy) € Hy.

Proof. We will only consider the case 7, F35 € Pr(Flr,,Fp); the other case can be handled
by similar methods. The proof is essentially the same as that of [Zhul7, 5.6.1] in the case of
Qy-coefficients, but because this lemma is important for our applications we will reproduce
the details. Let m: LG x! F¢ — F be the multiplication map and let z € Ftg, (Fy) = G(E)/I.
There is a natural identification m™!(z)(F,) = {(zy,y™1) : y € G(E)/I}. By Theorem 4.1(iii)
and the proper base change theorem,

Te(F « F3)(z) = Y Te(F RF)(ay,y ).
yeG(E)/I

L as elements of G(E)/I and using Theorem 4.1(i) and (ii), we have

Now viewing xy and y~
Te(F3 R ) (ay,y™") = Te(FD) (a9) Te(F3) (5. O
LEMMA 4.4. Let F* € Pr(Flg,,Fp). Then
Tr(Rm(F®)) = Tr(F®) « 1g € Hik.
Proof. If z € Gry, (Fy) then 7~ (2)(F,) = {zy : y € K/I}. We claim that

Te(Rm(F*))(z) = Y Te(F)ay) = Y T(F)ay)lxly ') = (Tr(F*) * Lx)(2).

yeK/I yeG(E)/I
The first equality follows from Theorem 4.1(iii) and the proper base change theorem. The other
two equalities follow from the definitions. O
Since ICN * ICN = IC,I:I1 +y, there is a natural isomorphism of Fp-algebras

I Fp[X*(T) ] - KO(PLJrG(Gf]anFp)N) ®Fp= w— [ICE]-

The next proposition shows that this isomorphism is compatible with the mod p Satake
isomorphism.
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PROPOSITION 4.5. The composition
Tr
Fy[X.(D)*] £ Ko(Pps(Gre, Fp)N) @ Fy =5 Hac
is the inverse of the mod p Satake isomorphism S.

Proof. When Gy, is simply connected, Herzig [Herlla, 5.1] has computed

St <Z ]1A> — € Fp[X.(T)F].
A<p
While Herzig works with anti-dominant cocharacters, the formula above can be obtained from
Herzig’s formula by multiplying by the longest element of the Weyl group (see the proof of
[Casl9, 1.3]). Herzig only uses the hypothesis that Gge, is simply connected to reduce to the case
where the weight (a representation of G(Fy)) is trivial. As the weight is trivial in our situation,
the above formula is valid for any G. Since IC, is a constant sheaf supported on Grg, <, the
lemma now follows from our choice of normalized IC complexes ICE. O

Remark 4.6. In [Cas19] we worked over an algebraically closed field and described a natural map
of Fp-vector spaces Ko(Pp+q(Gr,Fp)) ® F,, — Hi which we proved is the inverse of the mod p
Satake isomorphism, and hence also an isomorphism of F,-algebras. It is possible to work over
an algebraically closed field because, for F* € PL+G(GrFq,IE‘p)N, Tr(F*®) essentially counts the
dimensions of the stalks of F*. However, one advantage of working over [, is that Lemma 4.3
allows us to prove the existence of an isomorphism of F,-algebras F,[X.(T)"] = Hx without
using the existence of the mod p Satake isomorphism.

Proof of Theorem 1.8 and Corollary 1.4. We observe that Theorem 1.3 follows immediately
from Theorem 1.1 and Lemmas 4.3, 4.4. By [Ol114] the central integral Bernstein elements are
uniquely determined by the identity B =C~! o S™!, so Corollary 1.4 follows from Theorem 1.3
and Proposition 4.5. O
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