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Abstract

Let G be a split connected reductive group over a finite field of characteristic p > 2 such
that Gder is absolutely almost simple. We give a geometric construction of perverse
Fp-sheaves on the Iwahori affine flag variety of G which are central with respect to
the convolution product. We deduce an explicit formula for an isomorphism from the
spherical mod p Hecke algebra to the center of the Iwahori mod p Hecke algebra. We
also give a formula for the central integral Bernstein elements in the Iwahori mod
p Hecke algebra. To accomplish these goals we construct a nearby cycles functor for
perverse Fp-sheaves and we use Frobenius splitting techniques to prove some properties
of this functor. We also prove that certain equal characteristic analogues of local models
of Shimura varieties are strongly F -regular, and hence they are F -rational and have
pseudo-rational singularities.
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1. Introduction

1.1 Motivation
Let E be a local field of characteristic p > 0 with ring of integers OE and residue field Fq where
q is a power of p. Let G be a split connected reductive group defined over E, and fix a maximal
torus and a Borel subgroup T ⊂ B ⊂ G. Let X∗(T ) be the group of cocharacters of G and let
X∗(T )+ be the monoid of dominant cocharacters. For a compact open subgroup H ⊂ G(E) let

HH := {f : G(E)→ Fp : f has compact support and is H bi-invariant}.
The multiplication on HH is by convolution of functions. The mod p Hecke algebras HH are
important in the study of smooth admissible representations of G(E).
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As G is split we may let K = G(OE). Then Herzig [Her11b] (and Henniart and Vignéras
[HV15] for more general coefficients) constructed a mod p Satake isomorphism

S : HK
∼−→ Fp[X∗(T )+].

We note that the mod p Satake isomorphism is related to the usual Satake isomorphism by
an integral Satake isomorphism constructed by Zhu in [Zhu20]. In [Cas19] we constructed a
symmetric monoidal category of perverse Fp-sheaves on the affine Grassmannian of G which
gives a geometrization of the inverse of S.

Now let I ⊂ K be the Iwahori subgroup determined by B and let Z(HI) be the center of HI .
If 1K ∈ HI is the function which is 1 on K and 0 elsewhere then by work of Vignéras [Vig05]
and Ollivier [Oll14] there is an isomorphism of Fp-algebras

C : Z(HI)
∼−→ HK , f �→ f ∗ 1K .

In this paper we will construct a functor on perverse Fp-sheaves which geometrizes the inverse
of C. This allows us to give geometric proofs of certain combinatorial identities in Iwahori mod
p Hecke algebras.

This paper is the next step in a project aimed at providing a categorification of the represen-
tation theory of affine mod p Hecke algebras. In future joint work with C. Pépin and T. Schmidt
we plan to apply the results in this paper as well as [PS20] to construct a mod p version of
Bezrukavnikov’s equivalence in [Bez16], which we expect will have applications to a mod p local
Langlands correspondence. In particular, we hope to give a geometric construction of some
instances of Grosse-Klönne’s functor [GK16] from supersingular mod p Hecke modules to Galois
representations. We refer the reader to the introduction in [Cas19] for more information on the
relation between the objects studied in this paper and the p-adic Langlands program.

1.2 Main results
Let G be a connected reductive group over an algebraically closed field k of characteristic p > 2
such that Gder is almost simple. Fix a maximal torus and a Borel subgroup T ⊂ B ⊂ G. Let
I ⊂ L+G be the Iwahori group given by the fiber of B under the projection L+G→ G (see § 2.1
for the definitions). Let Gr be the affine Grassmannian of G, let F� be the Iwahori affine flag
variety, and let π : F�→ Gr be the projection.

In [Cas19, § 6] we defined the categories of equivariant perverse Fp-sheaves PL+G(Gr, Fp)
and PI(F�, Fp) as well as a convolution product ∗ on PL+G(Gr, Fp). The convolution prod-
uct on PL+G(Gr, Fp) preserves the full subcategory of semisimple objects PL+G(Gr, Fp)ss ⊂
PL+G(Gr, Fp). In § 2.3 we define the convolution product F•

1 ∗ F•
2 ∈ Db

c(F�ét, Fp) of two
I-equivariant perverse sheaves F•

1 , F•
2 ∈ PI(F�, Fp).

Let W be the Weyl group of G and let W̃ be the Iwahori–Weyl group of G(k((t))). For
μ ∈ X∗(T )+ let Gr≤μ ⊂ Gr be the corresponding reduced L+G-orbit closure, and for w ∈ W̃ let
F�w ⊂ F� be the corresponding reduced I-orbit closure. Let ICμ ∈ PL+G(Gr, Fp)ss be the shifted
constant sheaf Fp[dim Gr≤μ] supported on Gr≤μ (see Theorem 2.10).

Given μ ∈ X∗(T )+, let Adm(μ) ⊂ W̃ be the μ-admissible set defined in (2.1). Set

A(μ) :=
⋃

w∈Adm(μ)

F�w ⊂ F�.

Let ZA(μ) ∈ Db
c(F�ét, Fp) be the shifted constant sheaf Fp[dimA(μ)] supported on A(μ).

Our main theorem is as follows.
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Theorem 1.1. There exists an exact functor Z : PL+G(Gr, Fp)ss → PI(F�, Fp) that satisfies the
following assertions.

(i) For all μ ∈ X∗(T )+ there is a canonical isomorphism

Z(ICμ) ∼= ZA(μ).

(ii) For all F• ∈ PL+G(Gr, Fp)ss there is a canonical isomorphism

Rπ!(Z(F•)) ∼= F•.

(iii) For all F•
1 ∈ PL+G(Gr, Fp)ss and F•

2 ∈ PI(F�, Fp) the convolution product

Z(F•
1 ) ∗ F•

2

is perverse and I-equivariant.
(iv) For all F•

1 ∈ PL+G(Gr, Fp)ss and F•
2 ∈ PI(F�, Fp) there is a canonical isomorphism

Z(F•
1 ) ∗ F•

2
∼= F•

2 ∗ Z(F•
1 ).

(v) For all F•
1 , F•

2 ∈ PL+G(Gr, Fp)ss there is a canonical isomorphism

Z(F•
1 ∗ F•

2 ) ∼= Z(F•
1 ) ∗ Z(F•

2 ).

Our method is analogous to the case of Q�-coefficients considered in [Gai01] and [Zhu14], but
it involves some new ideas because we use a different notion of the nearby cycles functor which is
well suited for our purposes (see Remark 2.9 for the usual definition). As in [Cas19], we exploit
subtle properties of the singularities of affine Schubert varieties. In particular, we use Frobenius
splitting techniques to verify that our ad-hoc construction of the nearby cycles functor satisfies
the necessary properties. This requires us to prove some new results on the F -singularities of
affine Schubert varieties, which will be explained in § 1.4.

The relevant facts from the theory of F -singularities are that if X is an integral F -rational
variety of dimension d then the shifted constant sheaf Fp[d] ∈ Db

c(Xét, Fp) is a simple per-
verse sheaf by [Cas19, 1.7], and that F -rational singularities are pseudo-rational by a result of
Smith [Smi97]. We will combine these facts with a result of Kovács [Kov17] to deduce that our
nearby cycles functor commutes with pushforward along birational morphisms between certain
F -rational varieties.

Remark 1.2. The functor Z in Theorem 1.1 can be defined on the category PL+G(Gr, Fp), but
then it is not clear that this functor is exact. This is why we restrict to the subcategory
PL+G(Gr, Fp)ss.

1.3 Applications to mod p Hecke algebras
Let G be a split connected reductive group defined over a local field E of characteristic p > 2
and residue field Fq. Fix a maximal torus and a Borel subgroup T ⊂ B ⊂ G. We assume that T
and B are defined over Fq and that Gder is absolutely almost simple. Let K = G(OE) and let t
be a uniformizer of E. Then HK has a natural basis {1μ} indexed by the dominant cocharacters
X∗(T )+ where 1μ is the characteristic function of the double coset Kμ(t)K. Similarly, if I ⊂ K is
the Iwahori subgroup determined by B then HI has a basis {1w} indexed by W̃ . Let 1K ∈ HI be
the function which is 1 on K and 0 elsewhere. In § 4 we will show that a version of Theorem 1.1
also holds when we view Gr and F� as ind-schemes over the finite field Fq. Then by applying
the function-sheaf correspondence we will derive the following explicit formula for C−1 : HK →
Z(HI).
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Theorem 1.3. Let C be the isomorphism Z(HI)→ HK such that C(f) = f ∗ 1K . Then

C−1

(∑
λ≤μ

1λ

)
=

∑
w∈Adm(μ)

1w.

For μ ∈ X∗(T )+ let tμ be the element μ regarded as an element of W̃ , and let Λμ ⊂ X∗(T )
be the W -orbit of μ. In [Vig05], Vignéras constructed integral Bernstein elements B(λ) ∈ HI

for λ ∈ X∗(T ) and showed that {∑λ∈Λμ
B(λ)}μ∈X∗(T )+ is an Fp-basis for Z(HI). Ollivier [Oll14]

showed that these Bernstein elements give rise to an isomorphism of Fp-algebras

B : Fp[X∗(T )+]→ Z(HI), μ �→
∑

λ∈Λμ

B(λ).

Ollivier also showed that B is compatible with the mod p Satake isomorphism in the sense that
B = C−1 ◦ S−1.

For our last application, we note that by [Oll14, 2.3] the coefficient of 1w appearing in∑
λ∈Λμ

B(λ) ∈ HI is 0 if w /∈ Adm(μ) and is 1 if w ∈ Adm(μ) and �(w) = �(tμ), where � is the
length function on W̃ . Using Theorem 1.3, we can compute the rest of the coefficients (cf. [Oll15,
5.2]).

Corollary 1.4. Let μ ∈ X∗(T )+. Then the integral Bernstein elements satisfy∑
λ∈Λμ

B(λ) =
∑

w∈Adm(μ)

1w.

Remark 1.5. Let Ĩ ⊂ I be the pro-p Sylow subgroup. The integral Bernstein elements are usually
defined in the larger Hecke algebra HĨ . There is a central idempotent ε1 ∈ HĨ such that HI =
ε1HĨ (see [Oll14, 2.14]). The Bernstein elements we are considering in this paper are the images
of the Bernstein elements in [Oll14] after multiplication by ε1. The integral Bernstein elements
in [Oll14] also depend on a choice of a sign (±) and a Weyl chamber, but the central integral
Bernstein elements

∑
λ∈Λμ

B(λ) do not depend on these choices by [Oll14, 3.4].

1.4 F-singularities of local models
During the course of proving Theorem 1.1 we will also prove a result about the singularities
of equal characteristic analogues of local models of Shimura varieties. Following the notation
in § 1.3, let Gr be the affine Grassmannian of G viewed as an ind-scheme over Fq. Then for
μ ∈ X∗(T )+ there is an associated local model Mμ → Spec(OE) such that the generic fiber of
Mμ is isomorphic to Gr≤μ×Spec(E) and the reduced special fiber is isomorphic to A(μ) (see
Definition 2.3).

Theorem 1.6. Suppose that p > 2 and that Gder is absolutely almost simple and simply con-
nected. Then for any μ ∈ X∗(T )+, every local ring in Mμ is strongly F -regular, F -rational, and
has pseudo-rational singularities.

In the mixed characteristic case, local models are used to study the étale local structure of
integral models of Shimura varieties with parahoric level structure. In the equal characteristic case
they are related to moduli spaces of shtukas. We refer the reader to [HR19] for more information
on local models, where it is also shown that certain local models are Cohen–Macaulay by using
Frobenius splittings of global affine Schubert varieties constructed in [Zhu14].

We prove Theorem 1.6 by combining the same Frobenius splittings in [Zhu14] with our
previous results on the global F -regularity of affine Schubert varieties in [Cas19]. In fact, we prove
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that certain global affine Schubert varieties are strongly F -regular (Theorem 2.17) and then we
deduce the local statement in Theorem 1.6. We also show that Schubert subvarieties in related
Beilinson–Drinfeld and convolution Grassmannians are strongly F -regular in Theorem 3.6.

2. Construction of the functor Z
2.1 Local affine Schubert varieties
Let k be a perfect field of characteristic p > 0. For a smooth affine group scheme G over the
power series ring k[[t]] we define the loop group LG as the functor on k-algebras

LG : R �→ G(R((t))).

The positive loop group L+G is the functor

L+G : R �→ G(R[[t]]).

For each integer n > 0 we also have the nth jet group

LnG : R �→ G(R[t]/tn).

We now specialize to the case where G is a split connected reductive group defined over k
(note that G can also be viewed as a constant group scheme over k[[t]]). Let T ⊂ B ⊂ G be a
maximal torus and a Borel subgroup. Let I ⊂ L+G be the Iwahori group given by the fiber of B
under the projection L+G→ G. The affine Grassmannian is the fpqc-quotient Gr := LG/L+G
and the affine flag variety is the fpqc-quotient F� := LG/I. Both Gr and F� are represented by
ind-projective k-schemes.

The left L+G-orbits in Gr are indexed by the set of dominant cocharacters X∗(T )+ and the
left I-orbits in F� are indexed by the Iwahori–Weyl group W̃ of G(k((t))). Given μ ∈ X∗(T )+,
let Grμ = L+G · μ(t) be the corresponding reduced orbit. The reduced closure of Grμ is denoted
Gr≤μ, and it is the union of those Grλ for λ ≤ μ. For w ∈ W̃ we define C(w) to be the correspond-
ing reduced I-orbit and we denote its reduced closure by F�w. The scheme C(w) is isomorphic
to A

�(w)
k . If λ ∈ X∗(T ) we denote by tλ the element λ viewed as an element of W̃ . Note that

μ− λ is a sum of positive coroots with non-negative integer coefficients if and only if tλ ≤ tμ
in the Bruhat order on W̃ by [Zhu14, 9.4], so there is no ambiguity in the choice of order on
X∗(T )+. See [Zhu17] or [Cas19, § 5.1] for more details on these affine Schubert varieties. Note
that we used the notation Sw in [Cas19, § 5.1] instead of F�w.

We now give the definition of the μ-admissible set appearing in Theorem 1.1. Given μ ∈ X∗(T )
let Λμ = W · μ ⊂ X∗(T ) be the orbit of μ in X∗(T ) under the action of the Weyl group W . The
μ-admissible set is

Adm(μ) := {w ∈ W̃ | w ≤ tλ for some λ ∈ Λμ}. (2.1)

By [Fal03] and [PR08], affine Schubert varieties are normal, Cohen–Macaulay, Frobenius split
and have rational singularities if p � |π1(Gder)|. Additionally, we have the following theorem.

Theorem 2.1 [Cas19, 1.4]. If p � |π1(Gder)| the affine Schubert varieties Gr≤μ and F�w are
globally F -regular, strongly F -regular, and F -rational.

We refer the reader to [Smi00] for the definition of global F -regularity and to [HH94] for
the definitions of strong F -regularity and F -rationality. Global F -regularity is a property of
projective k-schemes. Strong F -regularity is defined for noetherian rings R of characteristic
p > 0 that are F -finite (meaning F∗R is a finite R-module). If R is reduced then R is F -finite if
and only if R1/p is a finite R-module. A finitely generated k-algebra is F -finite since k is perfect.
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By [HH89, 3.1(a)], R is strongly F -regular if and only if RP is strongly F -regular for every
prime ideal P , so it makes sense to say a locally noetherian scheme is strongly F -regular if all
of its local rings are strongly F -regular. The property of F -rationality is defined for noetherian
rings of characteristic p > 0, and we say that a locally noetherian scheme is F -rational if all of
its local rings are F -rational. If R is a homomorphic image of a Cohen–Macaulay ring, then R
is F -rational if and only if all of its local rings are F -rational by [HH94, 4.2(e)]. We have the
following chain of implications for projective k-schemes (or more generally projective schemes
over an F -finite field):

Globally
F -regular

[Smi00, 3.10]
=⇒ Strongly

F -regular
[HH89, 3.1]

=⇒ F -rational

[Smi97, 3.1]

[HH94, 4.2]

=⇒
Pseudo-rational
singularities, normal,
Cohen–Macaulay.

Remark 2.2. We will also use the notion of pseudo-rationality as defined in [Kov17]. Using [Smi97,
1.13] and the flat base change theorem, one can verify the following assertion. If X is a k-scheme
of finite type such that every local ring of X is pseudo-rational as defined in [Smi97, 1.8], then
X is also pseudo-rational as defined in [Kov17, 1.2].

2.2 Global affine Schubert varieties
We continue using the notation introduced in § 2.1. Let C = A1

k. Throughout this paper we will
denote by 0 the origin viewed as a closed point in C. Let Ô0 be the completed local ring of C at
0 and let C◦ = C − 0. Let G be a Bruhat–Tits group scheme over C equipped with isomorphisms

G∣∣
C◦ ∼= G× C◦, L+(G∣∣Ô0

) ∼= I. (2.2)

See [Zhu14, § 3.2] for more information on the construction of G.
For any smooth group scheme H over C (including G) we let E0 be H regarded as a trivial

H-torsor. For a k-algebra R let CR = C ×Spec(k) Spec(R). If x ∈ C(R) let Γx ⊂ CR be the

graph of x, that is, the closed subscheme Spec(R)
(x,id)−−−→ C ×Spec(k) Spec(R). The global affine

Grassmannian GrG is the functor on k-algebras defined by

GrG(R) =
{

(x, E , β) | x ∈ C(R), E is a G-torsor on CR, β : E∣∣
CR−Γx

∼= E0
∣∣
CR−Γx

}
.

In the above definition we really mean the set of such objects up to the equivalence relation
(x, E , β) ∼ (x, E ′, β′) if there is an isomorphism E ∼= E ′ which respects the trivializations, but we
will suppress this detail. The functor GrG is represented by an ind-projective scheme over C by
[PZ13, 5.5].

Given x ∈ C(R) let Γ̂x be the formal completion of CR along Γx and let Γ̂◦
x = Γ̂x − Γx. The

global analogue of LG is the functor

LG(R) = {(x, β) : x ∈ C(R), β ∈ G(Γ̂◦
x)}.

The global analogue of L+G is the functor

L+G(R) = {(x, β) : x ∈ C(R), β ∈ G(Γ̂x)}.
As in [Zhu14, 3.1], a lemma of Beauville and Laszlo [BL95] implies that there is a natural bijection

GrG(R) ∼=
{

(x, E , β) | x ∈ C(R), E is a G-torsor on Γ̂x, β : E∣∣
Γ̂◦

x

∼= E0
∣∣
Γ̂◦

x

}
.

Then L+G acts on GrG by changing the trivialization β, and there is an isomorphism

LG/L+G ∼= GrG .
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Our choice of isomorphisms in (2.2) induces isomorphisms

GrG
∣∣
C◦ ∼= Gr×C◦, (GrG)0 ∼= F�, (2.3)

and

L+G∣∣
C◦ ∼= L+G× C◦, (L+G)0 ∼= I. (2.4)

Via the isomorphisms (2.3) and (2.4), the action of L+G on GrG is compatible with the action
of L+G on Gr and the action of I on F�.

We define GrG,μ to be the reduced closure of Gr≤μ×C◦ in GrG . The scheme GrG,μ is stable
under the action of L+G, and our definition agrees with that in [Zhu14, 3.1] because G is split.
We can now define the local model Mμ.

Definition 2.3. The local model Mμ is the fiber of GrG,μ over the completed local ring at
0 ∈ C.

Thus the generic fiber of Mμ is isomorphic to Gr≤μ×Spec(k((t))). The following theorem is
due to Zhu in the case where Gder is absolutely almost simple and simply connected and was
extended by Haines and Richarz to the general case.

Theorem 2.4 ([Zhu14, Theorem 3], [HR20, 5.14], [HR19, 2.1]). If p � |π1(Gder)| the fiber
(GrG,μ)0 is reduced. Without any assumptions on p, the reduced fiber satisfies

(GrG,μ)0, red
∼= A(μ).

For each integer n > 0 let Γx,n be the nth nilpotent thickening of Γx. The nth jet group of
G is

L+
nG(R) = {(x, β) : x ∈ C(R), β ∈ G(Γx,n)}.

This functor is represented by a smooth affine group scheme over C. For each μ ∈ X∗(T )+ the
action of L+G on GrG,μ factors through L+

nG for sufficiently large n depending on μ. If x ∈ C◦(k)
then (L+

n G)x
∼= LnG and (L+

nG)0 ∼= Ln(G∣∣Ô0
).

Finally, let G be the constant group scheme G× C. By replacing G with G in the above
definitions we get the ind-scheme GrG, which is naturally isomorphic to Gr×C. There is a
natural morphism G → G which induces a morphism πG : GrG → GrG. By taking the fibers of
πG over C◦ and 0 we get the following diagram with Cartesian squares.

GrG
∣∣
C◦

jG
��

∼
��

GrG

πG
��

F�
iG

��

π

��
GrG

∣∣
C◦

jG
�� GrG Gr

iG
��

2.3 The definition of Z
For this section we assume that k is an algebraically closed field of characteristic p > 0. We refer
the reader to [Cas19, § 2] for an introduction to the category P b

c (X, Fp) of perverse Fp-sheaves
on a separated scheme X of finite type over k. This is an abelian subcategory of Db

c(Xét, Fp) in
which every object has finite length. As in the case of perverse Q�-sheaves, there are operations
such as the intermediate extension functor and pullback along smooth morphisms.

Now suppose X is a separated scheme of finite type over C. Let j : U → X be the inclu-
sion of the fiber of X over C◦ and let i : Z → X be the inclusion of the fiber of X over 0.
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For F• ∈ P b
c (U, Fp) we define the nearby cycles of F• by

ΨX(F•) := Ri∗(j!∗F•)[−1].

This defines an additive functor

ΨX : P b
c (U, Fp)→ Db

c(Zét, Fp).

Proposition 2.5. Suppose f : X ′ → X is a smooth, separated morphism over C of relative
dimension d and that X ′ has fibers U ′ and Z ′ over C◦ and 0, respectively. Then there is a
natural isomorphism of functors

R(f
∣∣
Z′)∗[d] ◦ΨX

∼= ΨX′ ◦R(f
∣∣
U ′)∗[d] : P b

c (U, Fp)→ Db
c(Z

′
ét, Fp).

Proof. This follows from the fact that pullback along a smooth morphism commutes with taking
intermediate extensions by [Cas19, 2.16]. �
Remark 2.6. If f : X ′ → X is a proper morphism then the functor Rf! does not preserve perver-
sity in general. However, if F• ∈ P b

c (U ′, Fp) and R(f
∣∣
U ′)!(F•) happens to be perverse, then it

makes sense to ask whether R(f
∣∣
Z′)!(ΨX′(F•)) and ΨX(R(f

∣∣
U ′)!(F•)) are isomorphic. We will

see examples (such as the proof of Theorem 1.1(ii)) where the presence of F -rational singularities
allows us to prove there is such an isomorphism, but we are unsure about the general case. By
[SGA7II, Exp. XIII 2.1.7.1], the analogous fact is true for the usual definition of the nearby
cycles functor (see Remark 2.9) due to the proper base change theorem.

Remark 2.7. We note that by [Cas19, 2.7(ii)], ΨX(F•) ∈ pD≤0(Zét, Fp). By [BBD82, 4.4.2], the
same is true for F�-sheaves with � �= p using the usual definition of the nearby cycles functor. As
the usual nearby cycles functor commutes with Verdier duality for F�-sheaves by [Ill94, 4.2], it
preserves perversity. There is no duality functor for Fp-sheaves, and we do not know if ΨX(F•)
is always perverse, but it is perverse in all of the examples we have computed.

By the following lemma, we can naturally extend the definition of the nearby cycles functor
to the ind-scheme GrG .

Lemma 2.8. Suppose h : X ′ → X is a closed immersion of separated C-schemes of finite type
and that X ′ has fibers U ′ and Z ′ over C◦ and 0, respectively. Then there is a natural isomorphism
of functors

R(h
∣∣
Z′)∗ ◦ΨX′ ∼= ΨX ◦R(h

∣∣
U ′)∗ : P b

c (U ′, Fp)→ Db
c(Zét, Fp).

Proof. By taking the fibers of h over C◦ and 0 we get the following diagram with Cartesian
squares.

U ′ j′
��

��

X ′

h
��

Z ′i′��

��
U

j
�� X Z

i��

Because the intermediate extension functor agrees with the usual pushforward functor for closed
immersions, by [Cas19, 2.6] we have

Rh∗ ◦ j′!∗ ∼= j!∗ ◦R(h
∣∣
U ′)∗.

Now the lemma follows by applying Ri∗ and the proper base change theorem. �
Remark 2.9. Following [SGA7II, Exp. XIII § 1.3], there is another nearby cycles functor Ψ′

X

defined as follows. Replace C with the henselization of its local ring at 0. Let η̄ be the spectrum
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of an algebraic closure of the function field of C, and let C̄ be the normalization of C in η̄. Let
XC̄ = X ×C C̄ and Xη̄ = X ×C η̄. Then there are natural morphisms j̄ : Xη̄ → XC̄ and ī : Z →
XC̄ . If F•∣∣

η̄
is the restriction of F• ∈ Db

c(Uét, Fp) to Xη̄, one can define

Ψ′
X(F•) := Ri

∗
Rj∗(F•∣∣

η̄
).

For F�-sheaves with � �= p, the functor Ψ′
X preserves constructibility by [SGA41

2 , Exp. 7, Th.
3.2] and commutes with smooth base change as in Proposition 2.5 by [SGA7II, Exp. XIII 2.1.7].
The proofs make essential use of the hypothesis � �= p, and part of our original motivation for
defining ΨX was to give short proofs of these two facts for Fp-sheaves. It would be interesting to
compare the functors ΨX and Ψ′

X for Fp-sheaves.

In [Cas19, § 6] we defined the category PL+G(Gr, Fp) of L+G-equivariant perverse Fp-sheaves
on Gr. We also defined the category PI(F�, Fp) and proved the following theorem.

Theorem 2.10 [Cas19, 1.5]. The simple objects in PL+G(Gr, Fp) and PI(F�, Fp) are the shifted
constant sheaves

ICμ := Fp[dim Gr≤μ] ∈ Db
c(Gr≤μ,ét, Fp), ICF�

w := Fp[dimF�w] ∈ Db
c(F�w,ét, Fp),

for μ ∈ X∗(T )+, w ∈ W̃ .

Let F• ∈ PL+G(Gr, Fp)ss. Since C is smooth, F• L
� Fp[1] ∈ P b

c (Gr×C, Fp) by [Cas19, 2.15].

Via the isomorphism GrG
∣∣
C◦ ∼= Gr×C◦ we view F• L

� Fp[1]
∣∣
C◦ as a perverse sheaf on GrG

∣∣
C◦ .

We set

Z(F•) := ΨGrG

(
F• L

� Fp[1]
∣∣
C◦

)
∈ Db

c(F�ét, Fp).

In [Cas19, § 6] we defined the convolution product F•
1 ∗ F•

2 of F•
1 , F•

2 ∈ PL+G(Gr, Fp). We
now define the convolution product of two perverse sheaves in PI(F�, Fp). Since the situation is
analogous to PL+G(Gr, Fp) we will be brief. To begin, we have the following convolution diagram.

F�×F�
p←− LG×F�

q−→ LG×I F�
m−→ F� (2.5)

Here p is the quotient map LG→ F� on the first factor and the identity map on the second
factor. The map q is the quotient by the diagonal action of I given by g · (g1, g2) = (g1g

−1, gg2),
and m is the multiplication map. We will also use the notation F�

∼×F� for LG×I F�.

Given F•
1 , F•

2 ∈ PI(F�, Fp) we claim that there is a unique perverse sheaf F•
1

∼
� F•

2 ∈
PI(LG×I F�, Fp) such that Rp∗(F•

1

L
� F•

2 ) ∼= Rq∗(F•
1

∼
� F•

2 ). The proof of this is analogous to
the case of the affine Grassmannian in [Cas19, 6.2], so we omit it. We are also suppressing the
fact that because LG×F� is not of ind-finite type, we must replace the I-torsors p and q by
torsors for a finite type quotient of I depending on the support of F•

1 and F•
2 .

The convolution of F•
1 and F•

2 is

F•
1 ∗ F•

2 = Rm!(F•
1

∼
� F•

2 ) ∈ Db
c(F�ét, Fp).

We may also write Rm∗ instead of Rm! because F•
1

∼
� F•

2 is supported on a proper scheme. As
in the case of Q̄�-coefficients, F•

1 ∗ F•
2 is not perverse in general. However, if F•

1 ∗ F•
2 is perverse

then it is also I-equivariant by [Cas19, 3.2].

Remark 2.11. Using the method in [Cas19, 3.13], we can define the category PL+G(GrG , Fp) of
L+G-equivariant perverse Fp-sheaves on GrG . By the same reasoning we can define other cate-
gories of equivariant perverse sheaves on ind-schemes we introduce later, such as PL+G(Grconv

G , Fp)
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(see § 3.1). As L+
nG → C has geometrically connected fibers for every n then PL+G(GrG , Fp) is a

full subcategory of P b
c (GrG , Fp).

2.4 First properties of Z
In this section we prove parts (i) and (ii) of Theorem 1.1. The main ingredient will be
the F -rationality of GrG,μ. We assume that k is a perfect field of characteristic p > 2 until
Proposition 2.19, where we require k to be algebraically closed. Throughout this section we also
assume that Gder is absolutely almost simple and simply connected. We will explain how to
remove the simple connectedness hypothesis in Remark 3.9. To begin, we recall the following
results.

Theorem 2.12 ([PZ13, 9.1], [HR19, 2.1]). The schemes GrG,μ and GrG,μ are integral, normal,
and Cohen–Macaulay.

Corollary 2.13. The fiber (GrG,μ)0 is Cohen–Macaulay, connected, and equidimensional of
dimension equal to that of Gr≤μ.

Proof. Since GrG,μ is Cohen–Macaulay and integral, (GrG,μ)0 is also Cohen–Macaulay by [Sta21,
OC6G]. Note that the morphism GrG,μ → C is flat by [Har77, III 9.7]. Now because the generic
fiber of GrG,μ → C is connected, then so is (GrG,μ)0 by [EGAIV3, 15.5.4]. Finally, (GrG,μ)0 is
equidimensional because it is Cohen–Macaulay and connected, and dim (GrG,μ)0 = dim Gr≤μ by
[Har77, III 9.6]. �

Lemmas 2.14–2.16 below are well known to experts, but because we could not find detailed
proofs in the literature we provide them here. These three lemmas are also valid if p = 2.

Lemma 2.14. Let A and B be domains that are strongly F -regular k-algebras of finite type.
Then if A⊗k B is a domain it is strongly F -regular.

Proof. This is proven in [Has03, 5.2] when A and B are graded rings, but the same proof works
in general. Let R = A⊗k B and let a ∈ A and b ∈ B be such that the localizations Aa and Bb are
smooth. Then Aa ⊗k Bb is smooth and hence strongly F -regular by [HH89, 3.1(c)], so by [HH89,
3.3(a)] it suffices to construct a splitting of R[(a⊗ b)1/q] ⊂ R1/q for some q = pe. Because k is
perfect, such a splitting can be constructed from splittings of A[a1/q] ⊂ A1/q and B[b1/q] ⊂ B1/q,
which exist for some common q because Aa and Bb are strongly F -regular. �
Lemma 2.15. Let R be a domain that is a strongly F -regular k-algebra of finite type and let E
be an F -finite field containing k. Then if R⊗k E is a domain it is strongly F -regular.

Proof. Let RE = R⊗k E and let c ∈ R be such that the localization Rc is a smooth k-algebra.
Since Rc ⊗k E is a smooth E-algebra, it is regular. Hence by [HH89, 3.1(c)], Rc ⊗k E is strongly
F -regular. Thus, to prove RE is strongly F -regular, by [HH89, 3.3(a)] it suffices to show that
the inclusion RE [c1/q ⊗ 1] ⊂ R

1/q
E splits for some q = pe. Because k is perfect, such a splitting

can be constructed from splittings of R[c1/q] ⊂ R1/q and E ⊂ E1/q. A splitting of R[c1/q] ⊂ R1/q

exists for some q because R is strongly F -regular, and a splitting of E ⊂ E1/q exists because E
is F -finite and it is a field. �
Lemma 2.16. Let f : Y → X be a smooth surjective morphism between reduced k-schemes of
finite type. Then X is strongly F -regular if and only if Y is strongly F -regular.

Proof. If Y is strongly F -regular then X is strongly F -regular by [HH89, 3.1(b)]. Con-
versely, if X is strongly F -regular then Y is strongly F -regular by [Abe01, 3.6]. In order to
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apply [Abe01, 3.6] we are using the fact that the local rings of a smooth scheme over a field are
regular, and hence they are Gorenstein and F -rational by [HH94, 3.4]. �

We can now prove that the global Schubert varieties are strongly F -regular.

Theorem 2.17. The schemes GrG,μ and GrG,μ are strongly F -regular, F -rational, and have
pseudo-rational singularities.

Proof. By the implications following Theorem 2.1 it suffices to prove these schemes are strongly
F -regular. By [Cas19, 1.4], Gr≤μ is globally F -regular and hence also strongly F -regular. As C
is smooth, it is strongly F -regular by [HH89, 3.1(c)]. Thus since GrG,μ

∼= Gr≤μ×C, it follows
that GrG,μ is strongly F -regular by Theorem 2.12 and Lemma 2.14.

Since GrG
∣∣
C◦ ∼= GrG

∣∣
C◦ , we have that GrG

∣∣
C◦ is strongly F -regular. Hence by [HH89, 3.3(a)],

to prove GrG,μ is strongly F -regular it suffices to prove GrG,μ is Frobenius split along the effective
Cartier divisor (GrG,μ)0. As GrG,μ is Frobenius split compatibly with (GrG,μ)0 by [Zhu14, 6.5],
it is also Frobenius split along (GrG,μ)0 (see, for example, [Cas19, 5.7]). �
Remark 2.18. We expect that by essentially the same proof, Theorem 2.17 is true more generally
for any parahoric subgroup of a tamely ramified connected reductive group G over k((t)) such that
p > 2 and Gder is absolutely almost simple and simply connected. This is because the necessary
inputs from [PR08] and [Zhu14] are proved under these more general assumptions.

Before proceeding, we prove Theorem 1.6. Recall that in the setup of Theorem 1.6, E is a
local field of characteristic p > 2 with ring of integers OE and residue field Fq. The group G is
a split connected reductive group defined over E such that Gder is absolutely almost simple and
simply connected. We assume that G is the base extension of a split Chevalley group over Z and
that T and B are defined over Fq. Let Gr be the affine Grassmannian of G viewed as a group
scheme over Fq. After choosing an isomorphism Fq[[t]] ∼= OE we can view Mμ as a projective
OE-scheme.

Proof of Theorem 1.6. Let x ∈Mμ and let Ox be the local ring at x. As OE is an excellent ring
and Mμ is a projective OE-scheme, Ox is excellent. Hence by [Smi97, 3.1] pseudo-rationality will
follow if we prove that Ox is F -rational. The residue field of Ox is F -finite because it is finitely
generated as a field over the perfect field k. Thus Ox is F -finite by [Kun76, 2.6]. By [HH89,
3.1(d)] it suffices to show Ox is strongly F -regular.

First suppose x ∈Mμ lies in the closed fiber of Mμ → Spec(OE). The completion Ôx is excel-
lent and has an F -finite residue field, so it is F -finite by [Kun76, 2.6]. To prove Ox is strongly
F -regular it suffices to prove Ôx is strongly F -regular by [HH89, 3.1(b)]. The ring Ôx is isomor-
phic to the completion of a local ring in GrG,μ. Thus, it suffices to take y ∈ GrG,μ and show that
the completion Ôy of the local ring Oy is strongly F -regular. Note that the map Oy → Ôy is a
flat map between F -finite noetherian local rings. Since Oy is reduced and excellent, Ôy is also
reduced. Moreover, the fibers of this map are regular by [EGAIV2, 7.8.3 (v)]. Thus, since Oy is
strongly F -regular (Theorem 2.17), Ôy is strongly F -regular by [Abe01, 3.6]. This shows that
Ox is strongly F -regular if x lies in the closed fiber of Mμ → Spec(OE).

To complete the proof we need to show that the generic fiber Mμ ×Spec(OE) Spec(E) =
GrFq ,≤μ×Spec(Fq) Spec(E) is strongly F -regular. The property of strong F -regularity is Zariski
local by definition, so it suffices to take an arbitrary open affine Spec(R) ⊂ GrFq ,≤μ and show
that R⊗Fq E is strongly F -regular. Thus by Lemma 2.15 we are reduced to showing that GrFq ,≤μ

is geometrically integral.
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We first show that the orbit GrFq ,μ is geometrically integral. Let F/Fq be a field extension and
let GF = G×Spec(Fq) Spec(F ). By definition GrF,μ is the scheme-theoretic image of the orbit map
Ln(GF )→ GrF , g �→ g · μ(t) for n� 0. Since LnG is geometrically integral and taking scheme
theoretic images commutes with flat base change it follows that GrFq ,μ×Spec(Fq) Spec(F ) ∼= GrF,μ

is integral.
Now assume F is an algebraic closure of Fq. Because the Cartan decompositions of G(Fq((t)))

and G(F ((t))) are both indexed by X∗(T )+, the reduced subscheme of GrFq ,≤μ×Spec(Fq) Spec(F )
is isomorphic to GrF,≤μ. Thus GrFq ,≤μ is geometrically irreducible by [Sta21, 038I]. Finally, since
Fq is perfect, GrFq ,≤μ is geometrically reduced and hence also geometrically integral. �

We now begin proving parts (i) and (ii) of Theorem 1.1. For the rest of this section we assume
that k is an algebraically closed field of characteristic p > 2 and that G is a connected reductive
group over k such that Gder is almost simple and simply connected.

Proposition 2.19. The perverse sheaf jG,!∗(ICμ

L
� Fp[1]

∣∣
C◦) is isomorphic to the shifted con-

stant sheaf Fp[dimGrG,μ] supported on GrG,μ.

Proof. Since GrG,μ is integral and F -rational, Fp[dimGrG,μ] is a simple perverse sheaf by
[Cas19, 1.7]. Now the lemma follows by applying loc. cit. on GrG,μ

∣∣
C◦ and using the fact that

jG,!∗(ICμ

L
� Fp[1]

∣∣
C◦) is simple by [Cas19, 2.9]. �

Proposition 2.20. The functor Z is exact and preserves perversity, and Z(ICμ) ∼= ZA(μ).

Proof. The isomorphism Z(ICμ) ∼= ZA(μ) follows from Theorem 2.4 and Proposition 2.19,
and the fact that dimA(μ) = dim Gr≤μ. As A(μ) is Cohen–Macaulay and equidimensional
(Corollary 2.13), ZA(μ) is perverse by [Cas19, 1.6]. Since PL+G(Gr, Fp)ss is semisimple, Z is
also exact and preserves perversity. �
Proposition 2.21. Z(F•) is I-equivariant.

Proof. Note that F• L
� Fp[1]

∣∣
C◦ is equivariant for the action of L+G∣∣

C◦ = L+G× C◦ on
GrG,μ

∣∣
C◦ = Gr≤μ×C◦. Using the fact that taking intermediate extensions commutes with

smooth pullback ([Cas19, 2.16]), one can check that the perverse sheaf jG,!∗(F• L
� Fp[1]

∣∣
C◦) ∈

P b
c (GrG,μ, Fp) is L+G-equivariant. By taking the fiber over 0 it follows that Z(F•) is

I-equivariant. �
This completes the proof of the properties of Z asserted at the beginning of Theorem 1.1

and also part (i).

Proof of Theorem 1.1(ii). We first show that Rπ!(ZA(μ)) ∼= ICμ. Since GrG,μ and GrG,μ are nor-
mal, Cohen–Macaulay, and have pseudo-rational singularities, we have RπG,∗(OGrG,μ

) ∼= OGrG,μ

by [Kov17, 1.8]. Because πG,∗ = πG,! as functors on Fp-sheaves, it follows by applying the
Artin–Schreier sequence and Proposition 2.19 that

RπG,!

(
jG,!∗

(
ICμ

L
� Fp[1]

∣∣
C◦

)) ∼= ICμ

L
� Fp[1].

Now by semisimplicity, for general F• ∈ PL+G(Gr, Fp)ss there exists an isomorphism

RπG,!

(
jG,!∗

(
F• L

� Fp[1]
∣∣
C◦

)) ∼= F• L
� Fp[1].
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We can select a canonical isomorphism by requiring that it restricts to the identity map over C◦.
By restricting this canonical isomorphism to 0 and applying the proper base change theorem we
get a canonical isomorphism

Rπ!(Z(F•)) ∼= F•. �

3. Proofs

3.1 Beilinson–Drinfeld and convolution Grassmannians
In this section we establish some F -regularity results that we will use to prove the remaining
parts of Theorem 1.1. Let k be an algebraically closed field of characteristic p > 2 and let G be
a connected reductive group over k such that Gder is almost simple. We also assume that Gder is
simply connected until Remark 3.9. In our proofs we will use the same geometric objects as in
[Zhu14]. First, we have the Beilinson–Drinfeld Grassmannian for G over C defined by the functor

GrBD
G (R) =

{
(x, E , β) : x ∈ C(R), E is a G-torsor on CR, β : E∣∣

C◦
R−Γx

∼= E0
∣∣
C◦

R−Γx

}
.

This is an ind-proper scheme over C by [Zhu14, 6.2.1]. By arguments similar to those in [Gai01,
Prop. 5],

GrBD
G

∣∣
C◦ ∼= Gr×C◦×F�, (GrBD

G )0 ∼= F�.

Let GrBD
G,μ,w be the reduced closure of Gr≤μ×C◦ ×F�w in GrBD

G .
The global convolution Grassmannian for G is the functor

Grconv
G (R) =

{
(x, E1, E2, β1, β2) :

x ∈ C(R), E1, E2 are G-torsors on CR,
β1 : E1

∣∣
CR−Γx

∼= E0
∣∣
CR−Γx

, β2 : E2
∣∣
C◦

R

∼= E1
∣∣
C◦

R

}
.

This is an ind-projective scheme over C by [Zhu14, 6.2.3]. There is a map mG : Grconv
G → GrBD

G
which sends (x, E1, E2, β1, β2) to (x, E2, β1 ◦ β2). The map mG is an isomorphism over C◦.
By taking the fibers over C◦ and 0 we get the following diagram with Cartesian squares.

Grconv
G

∣∣
C◦

jconv

��

∼
��

Grconv
G

mG
��

LG×I F�
iconv

��

m

��
GrBD

G
∣∣
C◦

jBD

�� GrBD
G F�

iBD

��

(3.1)

We define Grconv
G,μ,w to be the reduced closure of Gr≤μ×C◦ ×F�w in Grconv

G . In Theorem 3.6

we will show that GrBD
G,μ,w and Grconv

G,μ,w are strongly F -regular. Before we can prove this, we need

to show that GrBD
G,μ,w is Frobenius split compatibly with (GrBD

G,μ,w)0. Zhu proved such a splitting
exists for w ∈ X∗(T )+ sufficiently dominant [Zhu14, 6.5], and our argument will require only a
minor modification of Zhu’s argument.

In our proofs we will use the following facts and notation. Recall that for λ ∈ X∗(T )+ we
write tλ for the element λ viewed as an element of W̃ . If we write W̃ = X∗(T ) � W , then

π−1(Gr≤λ) = F�t
w0
λ

, where tw0
λ := (λ, w0) ∈ W̃ .

Additionally, for μ ∈ X∗(T )+ we have

tμ · tw0
λ = (μ, 1) · (λ, w0) = (μ + λ, w0) = tw0

μ+λ.
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In this case, if � is the length function on W̃ we have

�(tμ) + �(tw0
λ ) = �(tw0

μ+λ).

This can be proved using the formula for � in [Gör10, § 1.1] (see also [Zhu14, § 9.1]).

Proposition 3.1. Let μ, λ ∈ X∗(T )+ and let w = tw0
λ ∈ W̃ . Then GrBD

G,μ,w is normal, and the

fiber (GrBD
G,μ,w)0 is reduced and isomorphic to F�t

w0
μ+λ

.

Proof. Let GrBD
G be the functor

GrBD
G (R) =

{
(x, E , β) : x ∈ C(R), E is a G-torsor on CR, β : E∣∣

C◦
R−Γx

∼= E0
∣∣
C◦

R−Γx

}
.

Then by [Gai01, 3.1.1], GrBD
G is ind-projective, and there are isomorphisms

GrBD
G

∣∣
C◦
∼= Gr×C◦×Gr, (GrBD

G )0 ∼= Gr .

The map G → G induces a map πBD : GrBD
G → GrBD

G . Over closed points in C◦ this is the map

id×π : Gr×F�→ Gr×Gr, and over 0 this is π : F�→ Gr. Let GrBD
G,μ,λ ⊂ GrBD

G be the reduced
closure of Gr≤μ×C◦ ×Gr≤λ.

The fiber (GrBD
G,μ,λ)0 is reduced and isomorphic to Gr≤μ+λ by [Zhu09, 1.2.4] (see also

[Zhu17, 3.1.14]). As GrBD
G,μ,w ⊂ π−1

BD(GrBD
G,μ,λ), we have that (GrBD

G,μ,w)0, red ⊂ F�t
w0
μ+λ

. Furthermore,

GrBD
G,μ,w → C is flat by [Har77, 9.7], and hence by [Har77, 9.6] the irreducible components

of (GrBD
G,μ,w)0, red all have dimension equal to dim Gr≤μ + dimF�t

w0
λ

. Thus, since dimF�t
w0
μ+λ

=

dim Gr≤μ + dimF�t
w0
λ

, it follows that (GrBD
G,μ,w)0, red = F�t

w0
μ+λ

and (π−1
BD(GrBD

G,μ,λ))red = GrBD
G,μ,w.

As F� is a G/B fibration over Gr, we have that (π−1
BD(GrBD

G,μ,λ))0 is a G/B fibration over

(GrBD
G,μ,λ)0. Since (GrBD

G,μ,λ)0 is reduced, so is (π−1
BD(GrBD

G,μ,λ))0. As (GrBD
G,μ,w)0 is a closed subscheme

of (π−1
BD(GrBD

G,μ,λ))0, and these two schemes have the same reductions, (GrBD
G,μ,w)0 is reduced.

Finally, since F�t
w0
μ+λ

is normal and GrBD
G,μ,w

∣∣∣
C◦
∼= Gr≤μ×C◦ ×F�t

w0
λ

is also normal, GrBD
G,μ,w is

normal by Hironaka’s lemma [EGAIV2, 5.12.8]. �
Remark 3.2. The functors GrBD

G and GrBD
G can also be described as the restrictions to C × {0}

of quotients of global loop groups over C2 which are similar to LG and L+G from § 2.2 (see also
[Zhu17, § 3.1]). The referee has pointed out that it is possible to use this fact to show that πBD

is a G/B fibration, and in particular it is smooth. Since normality and reducedness are local in
the smooth topology, this leads to an alternative proof of Proposition 3.1.

The following proposition is well known, but because we could not find a complete proof in
the literature we provide one here.

Proposition 3.3. Let w, w′ ∈ W̃ be such that �(w) + �(w′) = �(w · w′). Then the convolution

morphism m : LG×I F�→ F� maps C(w) ∼× C(w′) isomorphically onto C(w · w′).

Proof. Let Waff be the affine Weyl group of G and let Ω ⊂ W̃ be the subgroup of length 0 ele-
ments. Then we have a decomposition W̃ = Waff � Ω. First suppose that w, w′ ∈Waff. Let w =
s1 · · · s�(w) and w′ = s′1 · · · s′�(w′) be reduced expressions for w and w′ as products of simple reflec-
tions. For each i let Pi be the parahoric group scheme corresponding to si. Then L+(Pi)/I ∼= F�si ,
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and each F�si is abstractly isomorphic to P1. There is an affine Demazure resolution

πw·w′ :
(

∼×F�si

)
∼×

(
∼×F�s′j

)
→ F�w·w′ .

By [Fal03, § 3], since the product of the si and the s′j gives a reduced expression for w · w′, the
morphism πw·w′ induces an isomorphism(

∼×C(si)
)

∼×
(

∼×C(s′j)
)

∼−→ C(w · w′).

As πw·w′ = m ◦ (πw
∼× πw′), we see by also applying loc. cit. to the factors ∼×F�si and ∼×F�s′j that

m maps C(w) ∼× C(w′) isomorphically onto C(w · w′).
For the general case, write w = τwa and w′ = w′

aτ
′ for wa, w′

a ∈Waff and τ , τ ′ ∈ Ω. Then
�(w) = �(wa), �(w′) = �(w′

a) and �(w · w′) = �(wa · w′
a). Because Ω normalizes I, we have that

Ω acts on both F� and LG×I F� by right multiplication. Furthermore, any lift τ̇−1 ∈ LG(k)
induces isomorphisms on both of these ind-schemes by left multiplication, and all of these
isomorphisms send I-orbits to I-orbits. In particular, there is a commutative diagram as follows.

C(w) ∼× C(w′)
τ̇−1 (·) τ ′−1

∼
��

m

��

C(wa)
∼× C(w′

a)

m

��
C(w · w′)

τ̇−1 (·) τ ′−1

∼
�� C(wa · w′

a)

We have shown the morphism on the right is an isomorphism, thus so is the morphism on the
left. �
Proposition 3.4. For any μ ∈ X∗(T )+ and w ∈ W̃ the scheme GrBD

G,μ,w is Frobenius split

compatibly with (GrBD
G,μ,w)0.

Proof. If w = tν for ν ∈ X∗(T )+ sufficiently dominant then this is [Zhu14, 6.5]. If λ < ν is also
dominant then this splitting is compatible with the closed subscheme GrBD

G,μ,tλ
⊂ GrBD

G,μ,tν by

[Zhu14, 6.8] and [BK05, 1.1.7 (ii)]. A splitting of GrBD
G,μ,tν compatible with GrBD

G,μ,tλ
and (GrBD

G,μ,tν )0
induces a splitting of GrBD

G,μ,tλ
compatible with (GrBD

G,μ,tλ
)0. This proves the proposition when

w = tλ for any dominant cocharacter λ.
For the general case, note that for every w′ ∈ W̃ there exists λ ∈ X∗(T )+ such that w′ ≤ tw0

λ ,
so it suffices to show GrBD

G,μ,t
w0
λ

is compatibly Frobenius split with (GrBD
G,μ,t

w0
λ

)0 and GrBD
G,μ,w′ for

all λ ∈ X∗(T )+ and w′ ≤ tw0
λ . Henceforth we fix λ ∈ X∗(T )+ and w = tw0

λ ∈ W̃ .
We will proceed by a similar argument to that in [Zhu14, 6.7]. More precisely, we will

construct an open subscheme U ⊂ Grconv
G,μ,w such that the following assertions hold.

(i) The scheme U maps isomorphically onto its image under m : Grconv
G,μ,w → GrBD

G,μ,w.

(ii) The complement of m(U) in GrBD
G,μ,w has codimension two.

(iii) The scheme U is Frobenius split. Since GrBD
G,μ,w is normal, by [BK05, 1.1.7] the spitting of

m(U) extends to a splitting of GrBD
G,μ,w. We will complete the proof of the proposition by

showing
(iv) The resulting splitting of GrBD

G,μ,w is compatible with (GrBD
G,μ,w)0 and GrBD

G,μ,w′ for all w′ < w.
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As in [Zhu14], we define U1 ⊂ Grconv
G,μ,w to be the open subscheme which is Grμ×C◦ ×F�w

over C◦ and C(tμ) ∼×F�w over 0. We also define U ⊂ U1 to be the open subscheme which is
Grμ×C◦ ×F�w over C◦ and C(tμ) ∼× C(w) over 0. Since the lengths of tμ and w add, C(tμ) ∼×
C(w) maps isomorphically onto C(tw0

μ+λ) by Proposition 3.3. Thus (U)0 maps isomorphically
onto m(U)0. Hence the morphism from U to m(U) is a bijective birational morphism between
normal integral k-schemes, so it is an isomorphism by Grothendieck’s reformulation of Zariski’s
main theorem [EGAIII1, 4.4.3].

As Gr≤μ−Grμ has codimension two in Gr≤μ, the complement of m(U)
∣∣
C◦ = Grμ×C◦ ×

F�w has codimension two in GrBD
G,μ,w

∣∣∣
C◦

= Gr≤μ×C◦ ×F�w. By Proposition 3.1, (GrBD
G,μ,w)0 −

m(U)0 = F�t
w0
μ+λ
− C(tw0

μ+λ) has codimension one, so we conclude that U satisfies (ii). Finally,
(iii) and (iv) follow from the fact that U1 is Frobenius split compatibly with (U1)0 and U1 ∩
(Grμ×C◦ ×F�w′) for all w′ ≤ w by [Zhu14, 6.8]. �

Corollary 3.5. For any μ ∈ X∗(T )+ and w ∈ W̃ the scheme (GrBD
G,μ,w)0 is reduced,

Cohen–Macaulay, Frobenius split, and equidimensional of dimension dim Gr≤μ + dimF�w.

Proof. A Frobenius splitting of GrBD
G,μ,w compatible with (GrBD

G,μ,w)0 induces a Frobenius split-

ting of (GrBD
G,μ,w)0. Thus (GrBD

G,μ,w)0 is reduced by [BK05, 1.2.1]. Furthermore, as GrBD
G,μ,w

∣∣∣
C◦
∼=

Gr≤μ×C◦ ×F�w is Cohen–Macaulay, GrBD
G,μ,w is Cohen–Macaulay by [BS13, 5.4] (see also

[HR19, 5.5]). Thus (GrBD
G,μ,w)0 is also Cohen–Macaulay by [Sta21, OC6G]. Finally, the morphism

GrBD
G,μ,w → C is flat by [Har77, III 9.7], so by [Har77, III 9.6] the fiber (GrBD

G,μ,w)0 is equidimensional
of dimension dim Gr≤μ + dimF�w. �

Theorem 3.6. For any μ ∈ X∗(T )+ and w ∈ W̃ the schemes GrBD
G,μ,w and Grconv

G,μ,w are strongly
F -regular, F -rational, and have pseudo-rational singularities.

Proof. As in the proof of Theorem 2.17, it suffices to prove these schemes are strongly
F -regular. Since GrBD

G,μ,w

∣∣∣
C◦
∼= Gr≤μ×C◦ ×F�w, it follows that GrBD

G,μ,w

∣∣∣
C◦

is strongly F -regular

by Lemma 2.14 and Theorem 2.1. Now as in the proof of Theorem 2.17, it follows that GrBD
G,μ,w

is strongly F -regular because it is Frobenius split compatibly with (GrBD
G,μ,w)0.

To prove Grconv
G,μ,w is strongly F -regular, we first note that GrG,μ ×F�w is strongly F -regular

by Lemma 2.14. By the isomorphism proceeding [Zhu14, 6.2.3], Grconv
G,μ,w and GrG,μ ×F�w have a

common smooth cover. Since the property of strong F -regularity is local in the smooth topology
(Lemma 2.16), Grconv

G,μ,w is strongly F -regular. �

3.2 Proofs of main results
We continue using the notation introduced in § 3.1. For μ ∈ X∗(T )+ and w ∈ W̃ , let Zμ,w be
the shifted constant sheaf Fp[dim(GrBD

G,μ,w)0] supported on (GrBD
G,μ,w)0. Parts (iii) and (iv) of

Theorem 1.1 follow from the following proposition.

Proposition 3.7. For F•
1 ∈ PL+G(Gr, Fp)ss and F•

2 ∈ PI(F�, Fp) there are natural
isomorphisms

(i) ΨGrBD
G

(ICμ

L
� Fp[1]

∣∣
C◦

L
� ICF�

w ) ∼= Zμ,w,

(ii) ΨGrBD
G

(F•
1

L
� Fp[1]

∣∣
C◦

L
� F•

2 ) ∼= Z(F•
1 ) ∗ F•

2 ,
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(iii) ΨGrBD
G

(F•
1

L
� Fp[1]

∣∣
C◦

L
� F•

2 ) ∼= F•
2 ∗ Z(F•

1 ).

Furthermore, each of these complexes is perverse and I-equivariant.

Proof. Since GrBD
G,μ,w is integral and F -rational, jBD

!∗ (ICμ

L
� Fp[1]

∣∣
C◦

L
� ICF�

w ) is the constant sheaf

Fp[dimGrBD
G,μ,w] supported on GrBD

G,μ,w by [Cas19, 1.7]. Hence the isomorphism in (i) follows. As

(GrBD
G,μ,w)0 is Cohen–Macaulay and equidimensional, Zμ,w is perverse by [Cas19, 1.6].
For (ii), suppose that F•

1 is supported on Gr≤μ and F•
2 is supported on F�w. Let In :=

Ln(G∣∣Ô0
). As in [Zhu14, 6.2.3], for some n there is an In-torsor GrG,0,n over GrG such that

Grconv
G,μ,w

∼= GrG,μ ×GrG GrG,0,n×InF�w.

Let ϕconv
n : GrG,μ ×GrG GrG,0,n×F�w → Grconv

G,μ,w be the resulting In-torsor over Grconv
G,μ,w.

By similar reasoning to that in [Cas19, 6.2] we can form the perverse sheaf

jG,!∗
(
F•

1

L
� Fp[1]

∣∣
C◦

) ∼
� F•

2 ∈ PL+G(Grconv
G,μ,w, Fp).

The key point is that jG,!∗(F•
1

L
� Fp[1]

∣∣
C◦)

L
�F•

2 is perverse when F•
1 and F•

2 are simple

because then jG,!∗(F•
1

L
� Fp[1]

∣∣
C◦)

L
� F•

2 is a constant sheaf supported on an equidimensional

Cohen–Macaulay scheme. Thus jG,!∗(F•
1

L
� Fp[1]

∣∣
C◦)

L
�F•

2 is perverse for general F•
1 and F•

2 by
induction on their lengths.

We claim there is an isomorphism

Riconv,∗[−1]
(
jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

) ∼
� F•

2

) ∼= Z(F•
1 )

∼
� F•

2 . (3.2)

Let ϕn : GrG,μ ×GrG GrG,0,n → GrG,μ be the pullback of GrG,0,n → GrG along GrG,μ → GrG
and let ϕ0,n : (GrG,μ)0,n → (GrG,μ)0 be the fiber of ϕn over 0. By taking the fiber of ϕconv

n over 0
we get the following Cartesian diagram.

GrG,μ ×GrG GrG,0,n×F�w

ϕconv
n

��

(GrG,μ)0,n ×F�w

iconv
n��

ϕconv
0,n

��

Grconv
G,μ,w (GrG,μ)0

∼×F�w

iconv

��

Then (3.2) follows from the following calculation:

Rϕconv,∗
0,n

(
Riconv,∗[−1]

(
jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

) ∼
� F•

2

))
∼= Riconv,∗

n [−1]
(
Rϕ∗

n

(
jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

)) L
� F•

2

)
∼= Rϕ∗

0,n

(
Ri∗G [−1]

(
jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

))) L
� F•

2
∼= Rϕ∗

0,n(Z(F•
1 ))

L
� F•

2 .

To finish the proof of (ii) it suffices to construct a natural isomorphism

Rm∗
(
Riconv,∗[−1]

(
jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

) ∼
� F•

2

))
→ ΨGrBD

G

(
F•

1

L
� Fp[1]

∣∣
C◦

L
� F•

2

)
. (3.3)
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By the proper base change theorem, to establish an isomorphism as in (3.3) it suffices to construct
an isomorphism

RmG,∗
(
jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

) ∼
� F•

2

)
→ jBD

!∗
(
F•

1

L
� Fp[1]

∣∣
C◦

L
� F•

2

)
. (3.4)

Since mG is an isomorphism over C◦ then the left-hand side of (3.4) is naturally an extension

of F•
1

L
� Fp[1]

∣∣
C◦

L
� F•

2 , so we just have to show it is the intermediate extension. Indeed, once we
know the left-hand side is isomorphic to the intermediate extension, then by [Cas19, 2.11] there

is a unique isomorphism as in (3.4) which restricts to the identity map on F•
1

L
� Fp[1]

∣∣
C◦

L
� F•

2 .
Since the middle term in an exact triangle is an intermediate extension if the outer terms

are intermediate extensions (see the proof of [Cas19, 7.8]), by induction on the lengths of F•
1

and F•
2 we reduce to the case F•

1 = ICμ and F•
2 = ICF�

w . Because all of the schemes appearing

are integral and F -rational, both jG,!∗(ICμ

L
� Fp[1]

∣∣
C◦)

∼
� ICF�

w and jBD
!∗ (ICμ

L
� Fp[1]

∣∣
C◦

L
� ICF�

w )
are constant sheaves.

The map m : Grconv
G,μ,w → GrBD

G,μ,w is a birational map between normal, Cohen–Macaulay
k-schemes having pseudo-rational singularities. Thus by [Kov17, 1.8], Rm∗(OGr

conv
G,μ,w

) ∼= O
Gr

BD
G,μ,w

.

By applying the Artin–Schreier sequence we complete the proof of (3.4) and (ii). Applying (i),
this also shows that Z(F•

1 ) ∗ F•
2 is perverse if F•

1 = ICμ and F•
2 = ICF�

w . Convolution on the
left by Z(F•

1 ) sends short exact sequences in PI(F�, Fp) to exact triangles in Db
c(F�ét, Fp) by a

proof analogous to the one in [Cas19, 6.7]. Thus, by induction on the lengths of F•
1 and F•

2 we
conclude that Z(F•

1 ) ∗ F•
2 is perverse in general. For equivariance, we note that because Z(F•

1 )

is I-equivariant, Z(F•
1 )

∼
� F•

2 is I-equivariant for the action of I on the left factor of LG×I F�.
As the map m is I-equivariant, Z(F•

1 ) ∗ F•
2 I-equivariant by [Cas19, 3.2].

To prove (iii) we use the functor

Grconv′
G (R) =

{
(x, E1, E2, β1, β2) :

x ∈ C(R), E1, E2 are G-torsors on CR,
β1 : E1

∣∣
C◦

R

∼= E0
∣∣
C◦

R
, β2 : E2

∣∣
CR−Γx

∼= E1
∣∣
CR−Γx

}
.

By [Zhu14, 7.2.6], Grconv′
G is ind-proper over C. There is also a map m′

G : Grconv′
G → GrBD

G which
sends (x, E1, E2, β1, β2) to (x, E2, β1 ◦ β2). The map m′

G is an isomorphism over C◦ and it restricts
to the convolution map m : LG×I F�→ F� over 0.

Suppose F•
1 is supported on Gr≤μ and F•

2 is supported on F�w. Let n be an integer large
enough so that L+G acts on GrG,μ through the quotient L+

nG. Then as in the proof of [Zhu14,

7.4 (ii)] there is an L+
nG-torsor Pn over F�w × C such that Pn ×L+

nG GrG,μ ⊂ Grconv′
G is a closed

subscheme with

Pn ×L+
nG GrG,μ

∣∣∣
C◦
∼= F�w × C◦×Gr≤μ, (Pn ×L+

nG GrG,μ)0 ∼= F�w
∼× (GrG,μ)0.

The scheme Pn ×L+
nG GrG,μ is strongly F -regular by Lemma 2.14 and because this property is

local in the smooth topology by Lemma 2.16. Let ϕconv′
n : Pn ×C GrG,μ → Pn ×L+

nG GrG,μ be the
resulting L+

nG-torsor.

Since jG,!∗(F•
1

L
� Fp[1]

∣∣
C◦) is L+

n G-equivariant (see the proof of Proposition 2.21), by
arguments analogous to those in the proof of (ii) we can form the perverse sheaf(

F•
2

L
� Fp[1]

) ∼
� jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

)
∈ P b

c (Grconv′
G , Fp),
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which is supported on Pn ×L+
nG GrG,μ. Here we are applying the operation

∼
� with respect

to the fiber product of C-schemes rather than k-schemes. If F•
1 = ICμ and F•

2 = ICF�
w then

(ICF�
w

L
� Fp[1])

∼
� jG,!∗(ICμ

L
� Fp[1]

∣∣
C◦) is a constant sheaf. Let F�w,n be the In-torsor (Pn)0 over

F�w. By taking the fiber over 0 we get the following Cartesian diagram.

Pn ×C GrG,μ

ϕconv′
n

��

F�w,n × (GrG,μ)0
iconv′
n��

ϕconv′
0,n

��

Pn ×L+
nG GrG,μ F�w

∼× (GrG,μ)0
iconv′

��

Now we can finish the proof by following arguments analogous to those in the proof of (ii)
to establish isomorphisms

Riconv′,∗[−1]
((
F•

2

L
� Fp[1]

) ∼
� jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

)) ∼= F•
2

∼
� Z(F•

1 )

and

Rm∗
(
Riconv′,∗[−1]

((
F•

2

L
� Fp[1]

) ∼
� jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

))) ∼= ΨGrBD
G

(
F•

1

L
� Fp[1]

∣∣
C◦

L
� F•

2

)
.

In this last isomorphism we are applying the natural isomorphism F�w × C◦ ×Gr≤μ
∼=

Gr≤μ×C◦ ×F�w. We leave the details to the reader. �
Before we finish the proof of Theorem 1.1 we introduce the functor

Grconv′′
G (R) =

{
(x, E1, E2, β1, β2) :

x ∈ C(R), E1, E2 are G-torsors on CR

β1 : E1
∣∣
CR−Γx

∼= E0
∣∣
CR−Γx

, β2 : E2
∣∣
CR−Γx

∼= E1
∣∣
CR−Γx

}
.

There are isomorphisms

Grconv′′
G

∣∣∣
C◦
∼= (LG×L+G Gr)× C◦, (Grconv′′

G )0 ∼= LG×I F�.

Moreover, by arguments similar to those proceeding [Zhu14, 6.2.3],

Grconv′′
G ∼= LG ×L+G GrG =: GrG

∼×GrG .

Thus Grconv′′
G is ind-proper over C. We define Grconv′′

G,μ,λ to be the reduced closure of the subscheme
Gr≤μ

∼×Gr≤λ×C◦ ⊂ Grconv′′
G .

Proposition 3.8. The scheme Grconv′′
G,μ,λ is Cohen–Macaulay, (Grconv′′

G,μ,λ )0 is reduced, and

Grconv′′
G,μ,λ

∼= (GrG,μ
∼×GrG,λ)red.

Proof. Note that Grconv′′
G,μ,λ is a closed subscheme of GrG,μ

∼×GrG,λ, and these two schemes are
isomorphic over C◦. Thus the isomorphism in the proposition will follow if we show that GrG,μ

∼×
GrG,λ is irreducible.

To prove that GrG,μ
∼×GrG,λ is irreducible, fix an integer n large enough so that L+G acts on

GrG,λ through the quotient L+
n G. Let LG≤μ be the preimage of GrG,μ under the quotient map

LG → LG/L+G ∼= GrG , and let

GrG,μ,n = LG≤μ ×L+G L+
nG.
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Then there is a right L+
nG-torsor ϕG,n : GrG,μ,n → GrG,μ such that

GrG,μ
∼×GrG,λ

∼= GrG,μ,n ×L+
nG GrG,λ.

Thus it suffices to show that GrG,μ,n ×C GrG,λ is irreducible.
Because L+

nG has geometrically irreducible fibers, to prove that GrG,μ,n ×C GrG,λ is irre-
ducible it suffices to prove that GrG,μ ×C GrG,λ is irreducible. Since GrG,μ and GrG,λ are
flat over C, it follows that GrG,μ ×C GrG,λ is flat over C. Thus since GrG,μ ×C GrG,λ

∣∣
C◦ =

Gr≤μ×Gr≤λ×C◦ is irreducible it follows that GrG,μ ×C GrG,λ is irreducible. Putting this all

together, we have shown that Grconv′′
G,μ,λ

∼= (GrG,μ
∼×GrG,λ)red.

By Corollary 2.13, the fibers (GrG,μ)0 and (GrG,λ)0 are reduced and Cohen–Macaulay. Hence
the product (GrG,μ)0 × (GrG,λ)0 is also reduced and Cohen–Macaulay. As these two properties
are local in the smooth topology, (GrG,μ)0

∼× (GrG,λ)0 is reduced and Cohen–Macaulay. Thus by

the isomorphism Grconv′′
G,μ,λ

∼= (GrG,μ
∼×GrG,λ)red it follows that (Grconv′′

G,μ,λ )0 ∼= (GrG,μ)0
∼× (GrG,λ)0

is reduced and Cohen–Macaulay. As Grconv′′
G,μ,λ

∣∣∣
C◦

is also Cohen–Macaulay then Grconv′′
G,μ,λ is

Cohen–Macaulay. �
Proof of Theorem 1.1(v). There is a morphism m′′

G : Grconv′′
G → GrG which sends the element

(x, E1, E2, β1, β2) to (x, E2, β1 ◦ β2). Over points in C◦(k) the morphism m′′
G is the convolution

morphism LG×L+G Gr→ Gr and over 0 the morphism m′′
G is m : LG×I F�→ F�. By taking

the fibers of m′′
G over C◦ and 0 we get the following diagram with Cartesian squares.

(LG×L+G Gr)× C◦ jconv′′
��

��

Grconv′′
G

m′′
G

��

LG×I F�
iconv′′

��

m

��
Gr×C◦ jG

�� GrG F�
iG

��

(3.5)

Because the schemes Grconv′′
G,μ,λ = (GrG,μ

∼×GrG,λ)red for μ, λ ∈ X∗(T )+ are Cohen–Macaulay, by
similar reasoning to that in [Cas19, 6.2] we can form the perverse sheaf

F•
1,2 := jG,!∗

(
F•

1

L
� Fp[1]

∣∣
C◦

) ∼
� jG,!∗

(
F•

2

L
� Fp[1]

∣∣
C◦

)
∈ P b

c (Grconv′′
G , Fp).

To complete the proof it suffices to construct natural isomorphisms

(i) Riconv′′,∗[−1](F•
1,2) ∼= Z(F•

1 )
∼
� Z(F•

1 ),
(ii) Rm∗(Riconv′′,∗[−1](F•

1,2)) ∼= Z(F•
1 ∗ F•

2 ).

Suppose F•
1 is supported on Gr≤μ and F•

2 is supported on Gr≤λ. As in the proof of
Proposition 3.8, fix an integer n large enough so that L+G acts on GrG,λ through the quotient
L+

nG. Let ϕG,n : GrG,μ,n → GrG,μ be the right L+
nG-torsor such that

GrG,μ
∼×GrG,λ

∼= GrG,μ,n ×L+
nG GrG,λ.

Let ϕconv′′
n : (GrG,μ,n ×C GrG,λ)red → Grconv′′

G,μ,λ be the resulting L+
nG-torsor over Grconv′′

G,μ,λ . Over
points in C◦ the map ϕG,n : GrG,μ,n → GrG,μ restricts to an LnG-torsor pn : Gr≤μ,n → Gr≤μ.
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By taking the fibers of ϕconv′′
n over C◦ and 0 we get the following diagram with Cartesian squares.

Gr≤μ,n×Gr≤λ×C◦ jconv′′
n ��

��

(GrG,μ,n ×C GrG,λ)red

ϕconv′′
n

��

(GrG,μ,n)0 × (GrG,λ)0

ϕconv′′
0,n

��

iconv′′
n��

Gr≤μ
∼×Gr≤λ×C◦ jconv′′

�� Grconv′′
G,μ,λ (GrG,μ)0

∼× (GrG,λ)0
iconv′′

��

An isomorphism as in (i) can be constructed in a manner similar to (3.2) by pulling everything
back to (GrG,μ,n)0 × (GrG,λ)0. We leave the details to the reader. By using the left-hand side of
the above diagram one can also prove that

Rjconv′′,∗(F•
1,2) ∼= F•

1

∼
� F•

2

L
� Fp[1]

∣∣
C◦ .

By the proper base change theorem, to prove (ii) it suffices to construct a natural
isomorphism

(iii) Rm′′
G,∗(F•

1,2) ∼= jG,!∗((F•
1 ∗ F•

2 )
L
� Fp[1]

∣∣
C◦).

By the description of m′′
G over C◦ there is a natural isomorphism

R(m′′
G
∣∣
C◦)∗(Rjconv′′,∗(F•

1,2)) ∼= (F•
1 ∗ F•

2 )
L
� Fp[1]

∣∣
C◦ .

Thus the left-hand side of (iii) is naturally an extension of (F•
1 ∗ F•

2 )
L
� Fp[1]

∣∣
C◦ , so we just

need to show it is isomorphic to the intermediate extension. By semisimplicity we reduce to the
case F•

i = ICμi for μi ∈ X∗(T )+. Note that m′′
G maps Grconv′′

G,μ1,μ2
onto GrG,μ, where μ = μ1 + μ2.

Moreover, ICμ1 ∗ ICμ2
∼= ICμ by [Cas19, 1.2]. Thus, F•

1,2 and the right-hand side of (iii) are shifted
constant sheaves.

Because the convolution morphism Gr≤μ1

∼×Gr≤μ2 → Gr≤μ is birational, the morphism

m′′
G : Grconv′′

G,μ1,μ2
→ GrG,μ is also birational. We claim that m′′

G : Grconv′′
G,μ1,μ2

→ GrG,μ is projective.
To prove this, note that GrG,μ is projective over C by [PZ13, 5.5]. As Grconv′′

G ∼= GrG
∼×GrG ∼=

GrG ×C GrG (see, for example, [Zhu17, 1.2.14]), Grconv′′
G,μ1,μ2

is also projective over C. Thus

m′′
G : Grconv′′

G,μ1,μ2
→ GrG,μ is projective. Therefore, since GrG,μ has pseudo-rational singularities

and Grconv′′
G,μ1,μ2

is Cohen–Macaulay we have Rm′′
G,∗(OGr

conv′′
G,μ1,μ2

) ∼= OGrG,μ
by [Kov17, 1.4]. Now

(iii) follows by applying the Artin–Schreier sequence. �
Remark 3.9. We have proved Theorem 1.1 under the hypothesis that Gder is simply connected
and almost simple. We now explain how to remove the simple connectedness hypothesis using
the same technique as in [Cas19, 7.12]. The same idea is also used in [Zhu14, 3.3].

Let G be a connected reductive group over k such that Gder is almost simple. By [MS82, 3.1]
there exists a central extension

1→ N → G′ → G→ 1

such that G′
der is simply connected and N is a connected torus. Since Gder is almost simple, so

is G′
der. Let T ′ ⊂ B′ ⊂ G′ be the maximal torus and Borel subgroup given by the preimages of

T and B, and let I ′ ⊂ L+G′ be the preimage of B′ under the projection L+G′ → G′. Let GrG

and GrG′ be the affine Grassmannians for G and G′, respectively. Similarly, let F�G and F�G′

be the Iwahori affine flag varieties.
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Because N is connected the map X∗(T ′)→ X∗(T ) is surjective. Hence the maps GrG′ →
GrG and F�G′ → F�G are surjective. Let ϕ1 : X∗(T ′)+ → X∗(T )+ be the induced surjection on
dominant cocharacters and let ϕ2 : W̃ ′ → W̃ be the induced surjection on Iwahori–Weyl groups.
Each connected component of GrG′ maps onto its image in GrG via a universal homeomorphism
by [HV18, 3.1]. The same is true of the map F�G′ → F�G.

There is also a Bruhat–Tits group scheme G′ over C satisfying the conditions (2.3) and
equipped with a natural map G′ → G. This induces a map GrG′ → GrG . By restricting this
map to C◦ and 0 one sees that GrG′ → GrG is surjective and maps each connected compo-
nent of GrG′ into its image via a universal homeomorphism. Similarly, there are maps GrBD

G′ →
GrBD

G , Grconv
G′ → Grconv

G , etc., which are surjective and restrict to universal homeomorphisms on
connected components.

All of the diagrams of C-schemes we used in §§ 2 and 3 to prove Theorem 1.1 for G′ intertwine
with the corresponding diagrams for G. For example, we have the following commutative diagram.

GrG′ ��

πG′
��

GrG

πG
��

GrG′ �� GrG

Thus, by the topological invariance of the étale site [Sta21, 04DY], our arguments in §§ 2 and 3
can be used to simultaneously prove Theorem 1.1 for both G′ and G.

4. Applications

4.1 The function–sheaf correspondence
Let X0 be a separated scheme of finite type over Fq and let F•

0 ∈ Db
c(X0,ét, Fp). Fix an embedding

of Fq into an algebraic closure Fq and let F ∗ ∈ Gal(Fq/Fq) be the inverse of the map which sends
α �→ αq. Let X = X0 ×Spec(Fq) Spec(Fq) and let F• be the pullback of F•

0 to X. For x ∈ X0(Fq)
let F•

x be the pullback of F• along the composition Spec(Fq)→ Spec(Fq)
x−→ X0. Then each

H i(F•
x) is a representation of Gal(Fq/Fq) and it makes sense to take the trace Tr(F ∗, H i(F•

x)).
We form a function Tr(F•

0 ) : X0(Fq)→ Fp by setting

Tr(F•
0 )(x) =

∑
i

(−1)i Tr(F ∗, H i(F•
x)).

See also [SGA41
2 , Ch. 2, § 1] for more information on the construction of the function Tr(F•

0 ).
As in the case of Q�-coefficients, we have the following theorem.

Theorem 4.1. Let X0 and Y0 be separated schemes of finite type over Fq.

(i) Let F•
0 ∈ Db

c(X0,ét, Fp) and G•0 ∈ Db
c(Y0,ét, Fp). If x ∈ (X0 ×Spec(Fq) Y0)(Fq) has images

p1(x) ∈ X0(Fq) and p2(x) ∈ Y0(Fq) then

Tr
(
F•

0

L
� G•0

)
(x) = Tr(F•

0 )(p1(x)) Tr(G•0)(p2(x)).

(ii) Let f : Y0 → X0 be a morphism. If F•
0 ∈ Db

c(X0,ét, Fp) and y ∈ Y0(Fq) then

Tr(Rf∗(F•
0 ))(y) = Tr(F•

0 )(f(y)).
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(iii) If F•
0 ∈ Db

c(X0,ét, Fp) then∑
x∈X0(Fq)

Tr(F•
0 )(x) =

∑
i

(−1)i Tr(F ∗, RiΓc(X,F•)).

Proof. Parts (i) and (ii) are immediate from the definitions, and part (iii) is [SGA41
2 , 4.1]. �

4.2 Perverse Fp-sheaves over finite fields
For the rest of § 4 we assume G is a split connected reductive group defined over Fq and that Gder

is absolutely almost simple. Let GrFq and F�Fq denote the affine Grassmannian and affine flag
variety viewed as ind-schemes over Fq. While we restricted to the case of an algebraically closed
ground field in [Cas19], our constructions also work over an arbitrary perfect field of characteristic
p > 0. In particular, we can construct the categories PL+G(GrFq , Fp) and PI(F�Fq , Fp). The main
difference when working over Fq is that there are more objects that are simple. In particular,
[Cas19, 3.18] needs to be revised in this setting, as there are non-trivial simple étale local systems
on Spec(Fq).

As in the case of Q�-coefficients in [Zhu17, 5.6], we will restrict ourselves to a certain sub-
category of PL+G(GrFq , Fp) consisting of normalized perverse sheaves. More precisely, let L be
the étale local system on Spec(Fq) corresponding to the representation Gal(Fq/Fq)→ GL1(Fp)
which sends F ∗ to −1. If X0 is a scheme over Fq then we can also view L as a local system on
X0 by pulling back along X0 → Spec(Fq).

Let μ ∈ X∗(T )+ be such that dim Gr≤μ has parity p(μ) ∈ {0, 1}. Because [Cas19, 1.7] also
holds when k is perfect (with the same proof), ICμ is isomorphic to the shifted constant sheaf
Fp[dim Gr≤μ] supported on GrFq ,≤μ. We define the normalized IC complex

ICN
μ := ICμ

L⊗ L⊗p(μ) ∈ PL+G(GrFq , Fp).

Let PL+G(GrFq , Fp)N ⊂ PL+G(GrFq , Fp) be the Serre subcategory consisting of perverse sheaves
whose simple subquotients are all of the form ICN

μ for μ ∈ X∗(T )+.
We claim the subcategory PL+G(GrFq , Fp)N is monoidal. To prove this, we first note that the

identity ICμ1 ∗ ICμ2 = ICμ1+μ2 in [Cas19, 1.2] also holds over Fq. Indeed, this identity is derived
from the result of Kovács [Kov17, 1.4] which is independent of the ground field. From this fact
and the projection formula [Sta21, 0B54] it follows that ICN

μ1
∗ ICN

μ2
= ICN

μ1+μ2
.

Using the same arguments as in [Cas19], one can show that PL+G(GrFq , Fp)N is a symmetric
monoidal category. For F• ∈ PL+G(GrFq , Fp) let F•

Gr ∈ PL+G(Gr, Fp) be its pullback to Gr. Then
one can also show that

PL+G(GrFq , Fp)N → VectFp , F• �→
⊕

i

RiΓ(F•
Gr)

is an exact, faithful, tensor functor.
For μ ∈ X∗(T )+ let

ZN
A(μ) := ZA(μ)

L⊗ L⊗p(μ) ∈ PI(F�Fq , Fp).

Let PL+G(GrFq , Fp)N,ss ⊂ PL+G(GrFq , Fp)N be the tensor subcategory consisting of semisimple
objects. If p > 2 the arguments in this paper also work over Fq and give rise to a functor

Z : PL+G(GrFq , Fp)N,ss → PI(F�Fq , Fp)

which satisfies all parts of Theorem 1.1 and such that Z(ICN
μ ) ∼= ZN

A(μ).
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Remark 4.2. The functor PL+G(GrFq , Fp)N → PL+G(Gr, Fp) induced by pullback is faithful and
identifies the simple objects in these two categories, but it is not an equivalence of categories
in general. The issue is that due to the failure of smooth base change, the group of extensions
between two objects depends on the ground field (see the proof of [Cas19, 6.14]).

4.3 Proofs of applications to Hecke algebras
In this section we prove Theorem 1.3 and Corollary 1.4. We fix an isomorphism Fq[[t]] ∼= OE .
Recall that if H ⊂ G(E) is a compact open subgroup then the multiplication on HH is defined by

(f ∗ g)(x) =
∑

y∈G(E)/H

f(xy)g(y−1).

We now verify that the function–sheaf correspondence respects the convolution of perverse
sheaves and functions.

Lemma 4.3. If F•
1 , F•

2 ∈ PL+G(GrFq , Fp) then

Tr(F•
1 ∗ F•

2 ) = Tr(F•
1 ) ∗ Tr(F•

2 ) ∈ HK .

Similarly, if F•
1 , F•

2 ∈ PI(F�Fq , Fp) then

Tr(F•
1 ∗ F•

2 ) = Tr(F•
1 ) ∗ Tr(F•

2 ) ∈ HI .

Proof. We will only consider the case F•
1 , F•

2 ∈ PI(F�Fq , Fp); the other case can be handled
by similar methods. The proof is essentially the same as that of [Zhu17, 5.6.1] in the case of
Q�-coefficients, but because this lemma is important for our applications we will reproduce
the details. Let m : LG×I F�→ F� be the multiplication map and let x ∈ F�Fq(Fq) = G(E)/I.
There is a natural identification m−1(x)(Fq) = {(xy, y−1) : y ∈ G(E)/I}. By Theorem 4.1(iii)
and the proper base change theorem,

Tr(F•
1 ∗ F•

2 )(x) =
∑

y∈G(E)/I

Tr(F•
1

∼
� F•

2 )(xy, y−1).

Now viewing xy and y−1 as elements of G(E)/I and using Theorem 4.1(i) and (ii), we have

Tr(F•
1

∼
� F•

2 )(xy, y−1) = Tr(F•
1 )(xy) Tr(F•

2 )(y−1). �

Lemma 4.4. Let F• ∈ PI(F�Fq , Fp). Then

Tr(Rπ!(F•)) = Tr(F•) ∗ 1K ∈ HK .

Proof. If x ∈ GrFq(Fq) then π−1(x)(Fq) = {xy : y ∈ K/I}. We claim that

Tr(Rπ!(F•))(x) =
∑

y∈K/I

Tr(F•)(xy) =
∑

y∈G(E)/I

Tr(F•)(xy)1K(y−1) = (Tr(F•) ∗ 1K)(x).

The first equality follows from Theorem 4.1(iii) and the proper base change theorem. The other
two equalities follow from the definitions. �

Since ICN
μ1
∗ ICN

μ2
= ICN

μ1+μ2
there is a natural isomorphism of Fp-algebras

f : Fp[X∗(T )+]→ K0(PL+G(GrFq , Fp)N)⊗ Fp, μ �→ [ICN
μ ].

The next proposition shows that this isomorphism is compatible with the mod p Satake
isomorphism.
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Proposition 4.5. The composition

Fp[X∗(T )+]
f−→ K0(PL+G(GrFq , Fp)N)⊗ Fp

Tr−→ HK

is the inverse of the mod p Satake isomorphism S.

Proof. When Gder is simply connected, Herzig [Her11a, 5.1] has computed

S−1

(∑
λ≤μ

1λ

)
= μ ∈ Fp[X∗(T )+].

While Herzig works with anti-dominant cocharacters, the formula above can be obtained from
Herzig’s formula by multiplying by the longest element of the Weyl group (see the proof of
[Cas19, 1.3]). Herzig only uses the hypothesis that Gder is simply connected to reduce to the case
where the weight (a representation of G(Fq)) is trivial. As the weight is trivial in our situation,
the above formula is valid for any G. Since ICμ is a constant sheaf supported on GrFq ,≤μ, the
lemma now follows from our choice of normalized IC complexes ICN

μ . �
Remark 4.6. In [Cas19] we worked over an algebraically closed field and described a natural map
of Fp-vector spaces K0(PL+G(Gr, Fp))⊗ Fp → HK which we proved is the inverse of the mod p
Satake isomorphism, and hence also an isomorphism of Fp-algebras. It is possible to work over
an algebraically closed field because, for F• ∈ PL+G(GrFq , Fp)N, Tr(F•) essentially counts the
dimensions of the stalks of F•. However, one advantage of working over Fq is that Lemma 4.3
allows us to prove the existence of an isomorphism of Fp-algebras Fp[X∗(T )+] ∼= HK without
using the existence of the mod p Satake isomorphism.

Proof of Theorem 1.3 and Corollary 1.4. We observe that Theorem 1.3 follows immediately
from Theorem 1.1 and Lemmas 4.3, 4.4. By [Oll14] the central integral Bernstein elements are
uniquely determined by the identity B = C−1 ◦ S−1, so Corollary 1.4 follows from Theorem 1.3
and Proposition 4.5. �
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