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SUMMARY
This paper proposes a shared control scheme which aims to achieve a stable control of the speed and
turn of a bipedal robot during a delayed bilateral teleoperation. The strategy allows to get a delay-
dependent damping value that must be injected to assure a bounded response of the hybrid system,
while simultaneously, the human operator receives a force feedback that help him to decrease the
synchronism error. Furthermore, a test where a human operator handles the walking of a simulated
bipedal robot, to follow a curve path in front of varying time delay, is performed and analyzed.
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1. Introduction
The humanoid robots can perform several tasks in an automatic way with diverse field applications
encouraged by the technological permanent advance. To ensure that a humanoid robot will be a viable
option to achieve these goals, one of the main problems concerns the capability of the robot to move
from one location to another. Thus, it is important to develop schemes to ensure stable walk with
forward velocity and to control the turn of the bipedal robot.1, 2 There are several ways in the literature
to generate the references for each actuator,1, 3, 4 even based on the observation and measurement of
the standard human walk.4 On the other hand, a relevant amount of technology has been developed
to build bipedal or humanoid robots, such as the QRIO, ONDA, NAO, and ASIMO robots. Those
projects had been constantly improving and adding capabilities such as the ability to evade obstacles
by turning around them and follow various curve paths in many directions with the ability to move
forward, backward, left, right, or even up and down stairs on even and uneven terrains.2 Most papers
presented in the state of the art are based on the use of the zero-moment point (ZMP) criterion, which
states that the stability of the robot is conditioned by the existence of the ZMP within the support
polygon of the robot.1 ZMP refers to a point on the ground on which the horizontal component
of the movement resulting from the ground reaction force is zero. Besides, artificial intelligence
methods, as the one in ref. [5], are also used, where an adaptive neural-fuzzy walking control of an
autonomous biped is proposed, using a prefeeding neural network based on linear regression to build
the controller. In ref. [6], a zero-moment trajectory generator with neuronal-fuzzy that reduces the
movement of the trunk and therefore significantly improve the stability of the bipedal robot walk
is proposed. On the other hand, in truly dynamic methods, the hypothetical ZMP may be outside
the support polygon and even then, the biped does not experience instability. The strict conditions
of the use of ZMP limit the speed that can be achieved and result in an inefficient passage cycle.
A different philosophy, called the hybrid zero dynamics (HZD) method,1, 4 has been proposed to
generate periodic dynamic walks for underactuated bipeds; the purpose of this method is to reduce
the size of the system and facilitate stability analysis. In this method, input–output linearization is
implemented to design a controller that produces a walking step when zeroing a set of appropriate
outputs designed as virtual holonomic constraints. In order to ensure a proper turn control of the
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634 Bilateral teleoperation of a bipedal robot

humanoid robot, a diverse set of methods have been studied, such as the HZD, this method has been
used to stabilize periodic gaits for 3D bipeds7 and to steer the robot along paths with mild curvature
following a single predefined periodic motion.2 There are other techniques like geometric reduction
and passivity-based control to stable walking and steering of fully actuated 3D robots,8, 9 turning
motion of a bipedal robot by slipping the feet on the ground,10 and using policy gradient method.
This last method has many advantages including smooth walking patterns and modulation during
walking to increase or decrease its speed,11 among others.

On the other hand, robot teleoperation allows to extend and transport the capabilities and skills of
a human operator toward remote work environments. In these systems, a human operator located at
a local site sends speed or position commands to a robot that is navigating in a distant environment,
which could be dangerous, harmful, and perhaps physically inaccessible for a human operator. In
addition, both sites are connected through a communication channel such as the Internet that adds
time-varying delays that could decrease the performance and transparency of the system.12 Regarding
teleoperation of bipedal and/or humanoid robots, ref. [13] uses the human sensorimotor learning
ability to teach a humanoid robot how to compliantly interact with the environment, in ref. [14],
an operator was fed back with force signals informing him of the position of the ZMP within the
humanoid support polygon, this measurement was used to give the operator an idea of the balance of
the robot using a vibrotactile belt for providing cutaneous haptic balance feedback. During the tests
performed, the operator is informed trough haptic signals coming from the vibrotactile belt about the
stability while commanding the humanoid’s hands, and in ref. [15], a balance feedback interface is
introduced using a kinesthetic system that applies forces to the operator’s waist to inform him of his
proximity to the edges of the support polygon. Also there are many strategies based on the use of
motion capture devices such as the Kinect in order to map the movements of a human operator to the
robot,16, 17 but this case is nonbilateral, that is, without force feedback.

To the best knowledge of the authors, there are not proposals in the state of the art addressed to the
bilateral teleoperation of bipedal robots that consider time-varying delays. In this paper, we present
a control scheme addressed to delayed bilateral teleoperation of the forward velocity and turn of a
bipedal robot keeping a stable walking. A shared control strategy is proposed where some degrees of
freedom are teleoperated and other automatically controlled. The proposed strategy links a bilateral
controller for teleoperation, a walking control scheme for handling the forward velocity and turn-
ing angle, and an automatic control for the lateral (roll) and frontal (pitch) equilibriums through the
torso pose. The bipedal robot is modeled by a hybrid dynamic system and it is linked with the the-
ory of delayed bilateral teleoperation (delayed nonlinear continuous systems) via a continuous virtual
slave, which is coupled with the bipedal robot through a spring-damper link impedance. Furthermore,
human-inspired references are applied based on common human foot trajectories in cartesian coor-
dinates, modulated by the hip velocity reference, and the turn references are based on partial hybrid
zero dynamics (PHZD). As result to apply this proposal, we get a delay-dependent condition for the
damping that must be injected into the master and bipedal robot to assure a bounded response of the
hybrid system, while simultaneously the human operator receives a force feedback that cause slower
motions of the master as the time delay is higher and impulsing the human operator hand to direc-
tions of lower errors between the master position and the velocity and turn angle of the bipedal slave.
Besides, a test of bilateral teleoperation of an NAO robot simulated in VREP, including time-varying
delay, is performed. This paper is organized as follows: Section 2 presents the preliminaries and mod-
els used, describing the hybrid model of a bipedal robot. In Section 3, a novel controller for delayed
bilateral teleoperation of a bipedal robot is proposed, and its stability is analyzed in Section 4. Then,
Section 5 shows the results achieved where a human operator drives a 3D bipedal robot-like NAO
using the V-REP simulation environment. Finally, conclusions are exposed in Section 6.

2. Preliminaries
In this section, we present the mathematical tools that are used in this paper as the mathematical
models for the devices that are used to describe the model of the master and the slave to perform
teleoperation control.

2.1. Mathematical preliminaries
To clarify the mathematic procedure exposed in the next sections, the main notation is described
below. If x is a scalar, w is a vector, and Y is a matrix, then |x| is the absolute value of x,|w| is a vector
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Table I. Nomenclature.

Variable Definition

xm = [xmv xmδ

]T
Master position

v Virtual linear velocity
vhip Bipedal linear velocity
δ Virtual turn angle
δNAO Bipedal turn angle
fs Force and torque applied to the virtual slave
fv External virtual force
fm Force applied to the master device
˙̃y1 Linear velocity error
ỹ2 Joints velocity error
ỹ3 Turn angle error

where each component is the value absolute of each component of the vector w, ‖x‖ is the Euclidean
norm of x, Y > 0(Y < 0) means that Y is positive definite (negative definite). In addition, ‖w‖2 and
‖w‖∞ represent the L2-norm and L∞- norm of w, respectively. Table I shows the nomenclature used
in this paper.

Lemma 1. (Ref. [18]) For vector functions a (.) and b (.) and a time-varying scalar h (t) with
0 ≤ h (t) ≤ h̄, the following inequality holds:

−2aT (t)

t∫
t−h(t)

b (ξ)dξ −
t∫

t−h(t)

bT (ξ)b (ξ) dξ ≤ h (t) aT (t) a (t),

≤ h̄ (t) aT (t) a (t).

(1)

Definition 1. (Ref. [19]) For the system,

ẋ = f (x, z) + g(x, z)uε(x, z), (2)

a parameter family of continuously differentiable functions Vε : X →R is said to be a rapidly
exponentially stabilizing control Lyapunov function, if there exist positive constants c1, c2, c3 > 0
that for all, (x, z) ∈ X × Z, hold the following conditions:

c1‖x‖2 ≤ Vε(x) ≤ c2‖x‖2, (3)

inf
u∈U

[
Lf Vε(x, z) + LgVε(x, z)uε + c3Vε(x)

]≤ 0, (4)

where the controller becomes to:

Kε(x, z) = {uε ∈ U : Lf Vε(x, z) + LgVε(x, z)uε + c3Vε(x) ≤ 0
}

. (5)

Consisting of the control actions that result in V̇ε(x, z, uε) ≤ −c3Vε(x). For any Lipschitz continu-
ous feedback control law uε(x, z) ∈ Kε , the solutions of the close-loop system satisfy an exponential
response given by:

Vε(x(t)) ≤ e−c3tVε(x(0)), (6)

‖x(t)‖ <

√
c2

c1
e−c3t‖x(0)‖. (7)

2.2. Models of master and virtual slave
The master can have serial- or parallel-type configuration. In the paper, a Novint Falcon is used,
which has a kinematics model described in ref. [20], and this model can be represented in the task
space as follows:

Mm (xm) ẍm + Cm (xm,ẋm) ẋm + gm (xm) = fm + fh, (8)
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636 Bilateral teleoperation of a bipedal robot

The Novint Falcon haptic device has three degrees of freedom, where two of them are used to
teleoperate a bipedal robot, and the third degree of freedom is not used but a gravity compensa-
tion was applied. Furthermore, xm = [xmv xmδ

]T ∈ Rn×1 and ẋm are the master position and velocity,
Mm (xm) ∈ Rn×n is the inertia matrix, Cm (xm,ẋm) is the matrix representing centripetal and Coriolis
forces, gm (xm) is the gravitational force, fh is the force caused by the human operator, and fm is the
control force applied to the master which will be computed by the controller.

For the remote virtual robot, the following 2D virtual dynamic model to represent their linear
velocity and turn angle is used:

Dη̇ = fs − fv, (9)

where η = [v δ
]T

is a vector that link the linear virtual velocity of the robot represented with v and
the turn angle of the virtual slave represented with δ, D is the mass of the virtual robot, the control
action fs involves a force and torque applied to the virtual robot, and fv is the external virtual force
that holds fv ∈L∞ ∩L2 with ‖fv‖ ≤ f̄v (positive constant).

2.3. Assumptions and properties
The following ordinary properties and assumptions will be used in this paper:18, 21

Property 1. The inertia matrices Mm (xm) and D are symmetric positive defined.

Property 2. The matrix Ṁm (xm) − 2Cm (xm, ẋm) is skew-symmetric, that is, Ṁm (xm) =
Cm (xm,ẋm) + CT

m (xm,ẋm).

Property 3. For all ẋm, ẍm ∈ R, there exists a κm, κs > 0 such that Cm (xm, ẋm) ẋm ≤ κm |ẋm| for
all time t.

Property 4. If ẋm, ẍm are bounded, then Ċm is bounded.

Assumption 1. The communication channel adds a forward time delay h1(from the master to the
slave) and a backward time delay h2 (from the slave to the master). These delays are time varying,
bounded, and asymmetric. Therefore, there exist positive values h̄1 and h̄2 such that 0 ≤ h1 (t) ≤ h̄1

and 0 ≤ h2 (t) ≤ h̄2 for all t.

Assumption 2. The user is represented by a damping-like model plus a nonmodeled signal of
finite energy, or with a simplification of it22:

fh = −αhẋm + fah, (10)

where αh > 0 is the damping-like intrinsic parameter of the human operator, and fah ∈L∞ ∩L2 and
holds

∥∥fah

∥∥≤ f̄ah with
∥∥ḟah

∥∥ bounded,where f̄ah is a positive constant value.

2.4. Model of bipedal robot
A bipedal robot can be modeled in a simplified way on a sagittal plane (longitudinal plane that
divides the body into left and right) for walk references while the turn is included using the hip’s
yaw angles of the 3D bipedal robot, taking into consideration the invariance property in front of yaw
rotations.2 The robot used in this work is the NAO that includes a torso, hip, and two identical legs
with knees and ankles. When only one leg is in contact with the ground, the contacting leg is known
as the stance leg and other is known as the swing leg. Then, when a foot is on the ground it is defined
as the single or swing phase. On the contrary, when both feet are on the ground, it is known as a
double-support phase.1 The presence of impacts and the variant nature of the contact conditions at
the end of the legs with the environment during the walking cycle (due to the torque and lifting of
the foot and possibly the heel strike and rotation) necessarily generate models that have multiple
phases, and therefore they are hybrids. So that a hybrid system representing a bipedal robot involves
a behavior continuous (when the leg moves forward) and discrete (when the foot touches the ground
which generates impulsive responses).1

The bipedal robot’s continuous dynamics between successive impacts is modeled in a similar way
to two robotic manipulators with n = 4 actuators for each leg. The bipedal robot state is featured by
x = [q q̇

]T
its position q ∈ R2n and velocity q̇ ∈ R2n which is represented by the following state-space

model:
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Fig. 1. Location of the angles in a bipedal robot.

[
q̇
q̈

]
= f (q, q̇) + g (q) uε,

f (q, q̇) =
[

q̇
−M−1(q)

[
C(q, q̇) + G(q)

]], g(q) =
[

0
M−1(q)B(q)

]
,

(11)

where M represents the inertia matrix, C represents the Coriolis and centripetal torques, G is the
gravity vector, and B is the input matrix. In addition, it is defined: q = [q1 q2 q3 q4 q5 q6 q7 q8

]T
and

uε = [u1 u2 u3 u4 u5 u6 u7 u8
]T

, where the ui = 1, ..., 8 torques are applied to the left ankle whose
pitch angle is q1, the left knee’s pitch angle q2, the left hip’s pitch angle q3, the right hip’s pitch angle
q4, the right knee’s pitch angle q5, the right ankle’s pitch angle q6, the right hip’s yaw angle q7, and
the left hip’s yaw angle q8, respectively, as shown in Fig. 1.

It is important to remark that a stable continuous dynamic does not ensure a stable dynamic of the
hybrid system. When an impact is produced between one or both legs and the floor, an environment
force appears modeled like an impulse, changing the joint’s velocities instantly. Hybrid systems are
also known as systems with impulsive effects, and in general they can be used to model a bipedal
robot. In addition, we assume that there exists a hybrid dynamics represented by:1, 19

Wε =

⎧⎪⎪⎨
⎪⎪⎩

ẋ = f (x, z) + g (x, z) uε (x, z) if (x, z) ∈ D \ S
ż = w (x, z)
x+ = �X

(
x−, z−) if

(
x−, z−) ∈ S

z+ = �Z
(
x−, z−) , (12)

where x ∈ X, z ∈ Z represents the hip velocity that depends on the joint velocities and z+ := (x+; z+)

(resp. z− := (x−; z−)) is the state value just after (resp. just before) impact, D is a sub-space of
R4n+1 defined as D = {[x z

] ∈ R4n+1 : l (q) ≥ 0
}
, S ⊂ D is an proper sub-set of D called switching

surface, defined by S = {[x z
] ∈ R4n+1 : l (q) = 0, dl (q) q̇ < 0

}
, with l as the height of the oscillating

foot respect to the floor in cartesian coordinates and dl (q) is the partial derivate of l respect to
q, and U ⊆ R2n+1 is the control’s action set with uε ∈ Kε (Definition 1). Besides, �X : S → D is a
mapping that produces a switching between the stand and oscillation legs changing the impact angles
accordingly, while �Z determines how velocity changes according to the foot-floor impact front.

For the hybrid system, let φε
t (t, [x, z]) be a flow of the continuous dynamics of (12) then for

(x∗, z∗) ∈ S, φε
t is a hybrid periodic response with period T > 0 if φε

t (T, [�X (x∗, z∗), �Z (x∗, z∗)]) =
(x∗, z∗). O is a hybrid periodic orbit if O = {φε

t (t, [�X (x∗, z∗), �Z (x∗, z∗)]) : 0 ≤ t ≤ T
}

for a

https://doi.org/10.1017/S0263574720000636 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000636


638 Bilateral teleoperation of a bipedal robot

Fig. 2. Proposed shared control scheme for delayed bilateral teleoperation of a bipedal robot.

periodic solution φε
t . Besides, a Poincaré map Pε : S → S is defined in ref. [19] by Pε (x, z) =

φ
(
Tε

I (x, z), [�X (x, z), �Z (x, z)]
)
, where Tε

I (x, z) = inf
{
t ≥ 0 : φε

t (t, [�X (x, z), �Z (x, z)]) ∈ S
}

is the time-to-impact function, as in refs. [4, 19]. The Poincaré map is locally exponentially sta-
ble (as a discrete time system) at fixed point (x∗, z∗) if and only if the periodic orbit O is locally
exponentially stable.4

3. Controller for Delayed Bilateral Teleoperation of Bipedal Robot
The presented control scheme allows to bilaterally teleoperate the speed and turn angle of a
bipedal robot, where the torso pose is autonomously controlled to reach adequate lateral and frontal
equilibrium. Figure 2 shows the proposed shared control scheme whose main parts are the following:

• Bilateral controller for teleoperation, where the response of the bipedal robot must be bounded
by the evolution of a virtual continuous slave which is coupled to the bipedal robot one via an
elastic-damper system.

• Walking control scheme to drive the forward velocity, where the references for the knee and hip
are human inspired considering a constant walking cycle time, based on an analysis of a foot in a
common human walk in cartesian coordinates.

• Turning angle control, where the references are set based on the invariance property in front of
yaw rotations and hold a condition based on PHZD concept.

• Automatic control for the lateral (roll) and frontal (pitch) equilibriums through the torso pose is
necessary to have a stable walking.

• Controller based on inverse dynamics that allow linearize and decouple the bipedal robot.

https://doi.org/10.1017/S0263574720000636 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000636


Bilateral teleoperation of a bipedal robot 639

Additionally, the human operator simultaneously receives force feedback that improves the per-
ception to teleoperate the bipedal robot, preventing rapid movements of the master, depending on
the time delay, as well as pushing the human operator hand to directions of lower errors between the
master and bipedal robot.

3.1. P+d external controller
In this section, a controller for bilateral teleoperation of a bipedal robot is proposed and its stability
is analyzed considering the time delays added by the communication channel. As described in the
literature, the P+d controllers are simple and robust structures that work well for several applications
including bilateral teleoperation systems of manipulator robots21, 23 and bilateral teleoperation of
mobile robots24, 25 where a sufficiently high value of damping is injected to assure stability. The
following equations are based on the bilateral teleoperation of mobile robots,24 extended to bipedal
robots by using a spring-damper like impedance (16) to couple the bipedal robot with a virtual slave
depending on the difference between the bipedal robot velocity and the virtual slave velocity:

fm = −km
(
kgxm − η (t − h2)

)+ gm (xm) − αmẋm, (13)

fs = ks
(
kgxm (t − h1) − η

)− σs�, (14)

� = η̇(t − γ ), (15)

fv = � (·) f̄v tanh

(
1

f̄v

[
β1
(
vhip − η

)+ β2
(
v̇hip − �

)])
. (16)

The control parameters have positive values, where ks and km represent positive constant gain
values, kg linearly maps the master position to a speed and turn angle references of a virtual robot

represented by the η = [v δ
]T

, where v and δ are the speed and turn angle of the virtual bipedal robot,
αm and σs are coefficients of damping injected in the real master and virtual robot, vhip represents the
hip velocity of the bipedal robot, β1 is the elasticity coefficient, and β2 is the damping coefficient of
the coupling impedance. The function � (·) have a bounded output that tends to zero for t → ∞ in
order to assure that fv ∈ L2. On the other hand, the signal � represents the linear acceleration and the
angular velocity of virtual robot at an infinitesimal time γ → 0+ before t. Due to these signals are
from a virtual slave and not from a real system, such signals are available. In addition, in ref. [26], a
state variable observer is applied to avoid using acceleration measures which are generally noisy.

3.2. Generation of references
In the proposed scheme, some of the generated signals are teleoperated, while others have been
controlled automatically. All references used in the development of the control scheme for forward
velocity of the bipedal robot are human inspired and have been established through the study of the
walking patterns of test subjects, observing the foot trajectory in cartesian coordinates to track their
movement across the floor while walking. Meanwhile, the references for the turn are based on a
PHZD.

Focusing first on the references for forward velocity, according to ref. [27], each limb consumes
approximately 40% of the cycle as a single support leg, 20% as part of the double support, and
40% as a swinging leg. Once the foot trajectory data have been analyzed, human-inspired references
are obtained by using an approximation by a Bezier curve (17) plus a straight line. Such Bezier
function depends on coefficients α = [α1 α2 α3 α4

]
that featured a Bezier curve of order 3, where

these coefficients dependent on the speed reference. The Bezier function is defined by:[
xfoot

(
vref , α, tbezier

)
, yfoot

(
vref , α, tbezier

)] :=
3∑

i=0

(
3
i

)
(1 − tbezier)

3−i tbezier
iα, i = 0, ...3,

(17)

where tbezier = [0, 1] goes from 0 to 1. The α parameters are found by optimization to ensure that the
trajectory of the robot foot be as close as possible to the typical trajectory of a person (scaled to the
size of the robot used), this is the following cost function P is minimized respect to the α.
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Fig. 3. Foot path and joint angles of the bipedal robot.

P (α) =
∫ T

0

(
xfoot

(
vref , α, tbezier

)− Xref (tbezier)
)2

dt

+
∫ T

0

(
yfoot

(
vref , α, tbezier

)− Yref (tbezier)
)2

dt,

(18)

where Xref (t) and Yref (t) are the human-inspired waveforms obtained from ref. [28], which are
parameterized for t = [0, 0.4T], while the straight line is act due in the range [0.4T, T]. Next, to
obtain the join references from the generated cartesian trajectory, inverse kinematics29 is applied to
get the angles of knee and hip during a walk cycle of period T , see Fig. 3, as follows:

q2 = a tan 2
(
yfoot, xfoot

)− cos−1

⎛
⎝a2

1 + x2
foot + y2

foot − a2
2

2a1

√
x2

foot + y2
foot

⎞
⎠, (19)

q3 = cos−1

(
x2

foot + y2
foot − a2

1 − a2
2

2a1a2

)
, (20)

where a1, a2 are leg link lengths, as shown in Fig. 3.
Taking into account the percentages with respect to T of the support and double phase and consid-

ering that the legs are symmetrical, angles q4 and q5 are calculated using a phase shift of the angles
q2 and q3, while the ankle’s angles q1 and q6 are provided indirectly from the hip’s velocity for both
legs, as it will be described in Section 3.3.

Finally, the references Y = [ẏH
1 yH

2 y3
]

are defined by:

ẏH
1 (α) = kgxmv (t − h1) = vref , (21)

yH
2

(
t, vref

)= [q1
(
t, vref

)
q2
(
t, vref

)
q3
(
t, vref

)
q4
(
t, vref

)]T
, (22)

y3(t) = f
(
kgxmδ (t − h1)

)= δref (t), (23)

where vref is the hip velocity reference and δref (t) is the relative turn angle reference of the bipedal
robot, which is online computed by the following proposed equations:

 (t) =

⎧⎪⎨
⎪⎩

0

kgxmδ (t + 0.4T + kcT + kTturn) =
kgxmδ (0.4T + kcT + kTturn)

kcT ≤ t ≤ 0.4T + kcT

0.4T + kcT < t < T + kcT

δref (t) =
∫ t

0

( (t − h1 (t)) − δref (t − ξ)
)

dt,

(24)
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where ξ → 0, Tturn = 150[ms], k = 0, 1, .. 0.6T
Tturn

− 1 being reset in each change of kc = 0, 1, 2, 3..., and
δref (t) is obtained filtering the signal (t) to avoid abrupt changes of the reference.

3.3. Walk and turn control
To get the hip velocity, a linearization-based procedure used in ref. [4] is applied, where the hip’s
position depends on the stand foot’s angle qsf and stand leg’s knee angle qsk, and its derivative is
computed by:

vhip (q̇) = a1
(−q̇sf

)+ a2
(−q̇sf − q̇sk

)
. (25)

The stand foot’s angle qsf and the stand knee’s angle qsk are related alternately with (q̇1, q̇2) or
(q̇6, q̇5) depending on the walk stage (double support, single support – right foot, double support,
single support – left foot). Because (q2, q5) are established by the inverse kinematics (19), then
(q1, q6) depends indirectly of hip velocity reference.

The relative turn angle with respect to the angle of the last cycle has been obtained by using:

δNAO(t) = TurnNAO(t) − TurnNAO((kc − 1)T), (26)

where TurnNAO is the current turn of the bipedal robot, and (kc − 1)T is the time instant corresponding
to the last start of walking cycle.

The goal is to drive the outputs of the robot in order to hold the proposed references for
teleoperation, this is,

˙̃y1 (q̇) = vhip (q̇) − ẏH
1 (α), (27)

ỹ2 (q) = yr,2 (t, α) − yH
2

(
t, vref

)
, (28)

ỹ3 = δNAO − y3. (29)

The dynamics of ỹ = [∫ ˙̃y1 ỹ2 ỹ3

]
depends on (x, z), and it can be represented in general form

using the Lie derivative notation as follows:

¨̃y (x, z) = L2
f ỹ (x, z) + LgLf ỹ (x, z) uε (x, z). (30)

Now, the feedback linearization controller based on ref. [4] is stated as:

uε (x, z) = −LgLf ỹ (x, z)−1

⎛
⎜⎝L2

f ỹ (x, z) +
⎡
⎢⎣

ks
˙̃y1 (q̇) + σrealv̇hip + v̇ref

2ε2
˙̃y2 + ε2

2 ỹ2

kỹ3 + τ δ̇NAO + δ̈ref

⎤
⎥⎦
⎞
⎟⎠, (31)

where σreal and τ are the injected damping, k and ks are a proportional gain, and ε2 > 0 where ε2

is a control gain. If (31) is applied into (30), the following continuous dynamics is obtained:

v̇hip = − ks

1 + σreal

˙̃y1, (32)

¨̃y2 = −2ε2
˙̃y2 − ε2

2 ỹ2, (33)

δ̇NAO = − k

1 + τ
ỹ3. (34)

As a result of the closed-loop control, the vector ỹ2 does not depend on z (hip velocity), and it is
automatically driven as it is described in ref. [19], where ỹ2 → 0 exponentially at a rate of ε2. Besides
by ref. [2] states that small changes in desired rotation δref will not destabilize the robot, and if the
commanded rotation settles to a constant value, the robot will asymptotically tend to a new heading
corresponding to the rotation reference.
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3.4. Partial hybrid zero dynamics
The use of PHZD assumes that ỹ2 remains invariant despite impact, while the hip velocity ỹ1 changes,
thus in ref. [4], partial zero dynamic surface is defined by:

PZ1 =
{
(x, z) ∈ R4n+1 : ỹ2(q) = 0, ˙̃y2 = 0

}
. (35)

The condition ˙̃y2 = 0 is held because the foot arrives to the ground with an acceleration soft profile
causing a null joint velocity reference at the time that the foot reaches the ground. Therefore, PZ1 is
achieved in the closed-loop system with the controller defined in (31) and additionally it must ensure
that

[
q̇1 q̇2 q̇3 q̇4

]T
(22) are zero in the surface S to kept null the error despite the foot-floor impact.

If that so, it is possible through ref. [4] to represent the vhip dynamics between successive impacts as
a discrete system with the form:

z [k + 1] = ρε1 (z [k]), (36)

where ρε1 = S ∩ PZ1 ∩ Z → S ∩ PZ1 ∩ Z depends on ε1 = ks
1+σreal

from (32). As it is proven in

(Theorem 2 in [4]), there exists an ε > 0 such that for ε1 > ε,
∣∣ρ̇ε1 (z [k])

∣∣< 1 establishing the stabil-
ity of the periodic orbit for the PHZD. On the other hand, we use the PHZD concept into the yaw
turn in an analog way to how ref. [4] applies it to control ỹ2 forcing that ỹ2 remains invariant on the
impact and therefore the continuous controller can be applied to the hybrid dynamics. For the yaw
control, we define:

PZ2 =
{
(x, z) ∈ R4n+1 : ỹ3(q) = 0, ˙̃y3 = 0

}
. (37)

The turn reference proposed in (24) holds condition (37), since ˙̃y3 does not change because at the
moment of impact on the ground, the foot has a null yaw rate, due to the yaw reference is retained
constant for a sufficiently long time such that (q, q̇) belong to PZ2, before that foot-floor impact.

4. Stability of the Delayed Bilateral Teleoperation System

4.1. Stability of delayed virtual system
To begin the stability analysis, a positive definite functional V (t, x) = V1 + V2 + V3 + V4 + V5, with
x := [xm, ẋm, kgxm − η, η̇

]
, is built to evaluate the evolution of a virtual system from a finite initial

condition. The functional V is formed by:

V1 = 1

2
ẋT

mMm (xm) ẋm, (38)

V2 = 1

2

km

kg

(
kgxm − η

)T (
kgxm − η

)
, (39)

V3 = 1

2
κmxm

Txm, (40)

V4 = 1

2

km

kskg

t∫
0

η̇
T

(ξ) Dη̇ (ξ) dξ, (41)

V5 =
0∫

−h̄2

t∫
t+θ

η̇(ξ)Tη̇ (ξ)dξdθ +
0∫

−h̄1

t∫
t+θ

ẋm(ξ)Tẋm (ξ)dξdθ. (42)

Following the procedure described in Appendix A, V̇ along the trajectories of the closed- loop system,
considering the virtual robot dynamics, master dynamics, time delay, and the human operator and
environment forces, is bounded by:
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V̇ ≤ −λm ‖ẋm‖2
2 − λs

∥∥η̇∥∥2
2 +

t∫
0

ẋm (ε)T fah (ε) dε + km

kgks

t∫
0

η̇ (ε)T fv (ε) dε

≤ −λmẋT
mẋm − λsη̇

T
η̇ + ρm |ẋm| + ρs

∣∣η̇∣∣ ,
(43)

where

λm = (αm + αh) − h1 − k2
m

4
h2,

λs = σs
km

kskg
− h2 − k2

m

4
h1,

(44)

ρm = f̄ah,

ρs = km

kgks
f̄v.

(45)

Result 1. If αm and αs are sufficiently high damping to fulfill λm, λs > 0 of (44), then we can point
out from (43) that the variables ẋm, η̇ ∈ L∞. As λm, λs be higher, rising the damping injected, then
ẋm, η̇ will remain in a smaller origin-centered ball.

Result 2. Next, if (43) is integrated with respect to time, we get:

V (t, x) − V (0) ≤ −λm ‖ẋm‖2
2 − λs

∥∥η̇∥∥2
2 +

t∫
0

ẋm (ε)T fah (ε) dε

+ km

kgks

t∫
0

η̇ (ε)T fv (ε) dε.

(46)

The terms
t∫

0
ẋm (ε)T fah (ε) dε and km

kgks

t∫
0

η̇ (ε)T fv (ε) dε are bounded fv, fah ∈ L2 since

(Assumption 2) and ẋm, η̇ ∈ L∞ (Result 1). From (46), it is possible to get that V(t) (function
increasing respect to x ) is bounded for all t and therefore the state x is bounded, which implies
that xm, ẋm, kgxm − η, η, η̇ ∈ L∞.

4.2. Stability of hybrid real system
Next, the convergence rate of the hybrid dynamics of vhip is evaluated. First, from the explicit solution
of the continuous dynamics of (32), the convergence rate c3 can be found, see Definition 1,

c3 = ks

1 + σreal
. (47)

On the other hand, the velocity’s component v of the η vector is analyzed, where if fs (14) is
applied to the virtual bipedal robot (9), and considering (15), we have:

v̇ = c3virtual
(
vref − v

)
, (48)

where c3virtual = ks
(D+σs)

as it was proposed in ref. [19], it is possible to reach a stable exponentially
hybrid system if the continuous part (32) is sufficiently rapid through c3 (47) to hold the following
condition:

c1 − c2L2
�xe−c30.9T∗

> 0,

− 1

0.9T ln
(

c1

c2L2
�X

) < c3,
(49)

where T is the period of the orbit Oz, L�X the Lipschitz constant for �X that holds ‖�X (x, z)‖2 ≤
L2

�X
‖x‖2, and c1, c2, c3 depend on the continuous dynamics (32) like (3), (4) and (5). Therefore,
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Fig. 4. Block diagram of the delayed bilateral teleoperation.

joining (47) and (49) we get:

k

T
<

ks

1 + σreal
, (50)

where k = − 1
0.9T ln

(
c1

c2L2
�x

)
. From (50), we propose a virtual continuous system whose response has

a convergence rate that bounds the response of the hybrid dynamics of the robot speed. This concept
allows linking (48) and (50), considering the virtual mass D = 1, as follows:

ks

1 + σreal
− k

T
>

ks

(1 + σs)
. (51)

As a result we get the parameter ks that depends on the time delay and walking cycle time, while
the injected real damping σreal is a function of σs which in turn depends on the time delay from (44).
Thus, if the time delay increases, then the master damping as well as the virtual damping must be
raised too to hold (43) and therefore an increment of the real damping injected to the bipedal robot is
performed slowing thus the convergence rate ε1 of the continuous part. This procedure can be applied
while ε1 be greater that a minimum bound ε.4 It is important to remark that the time delay cannot be
controlled, but the designer can online change ks and T depending on the time delay.

5. Experimental Results
In this section, we present results of a test where a human operator drives a 3D simulated bipedal
robot in order to verify that a delayed bilateral teleoperation of a bipedal robot can be achieved.
The humanoid robot simulated in the Virtual Robot Experimentation Platform (VREP) 3D sim-
ulator is the NAO. The test performed consists of the teleoperator handling the NAO (simulated
humanoid) from a hand controller of 2DOF with force feedback in order to obtain a forward move-
ment driving its hip’s velocity and turn control, despite the presence of time-varying delay while
the humanoid robot follows the path remarked in red color. This delay has been modeled as a vari-
able represented by a time-varying signal plus a filtered Gaussian noise (M1 (t), M2 (t)). The delays
are h1 = (1.5 + 0.5sin (2π0.25t) + M1 (t)) and h2 = (1.5 + M2 (t)). The scheme used to perform the
human in the loop simulations is presented in Fig. 4, where the equations that are used in each block
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Fig. 5. Testing workspace (each square measures 50 cm side) and task to be perform.

Fig. 6. Angles used in the 3D stable walk control.

and their respective control parameters are displayed. Figure 5 shows a sequence of images of one of
the experiments developed, where the scenario and the execution of the test are displayed.

The control parameters km, kg, β1, and β2 are calibrated in tests without delay, while αm, σs, and ks

are coefficients of damping injected and proportional gain, depending on the time delay and walking
cycle time, as it is proposed in Eqs. (44) and (51). The walking cycle is performed on the sagittal
plane while turn control is applied to the 3D virtual NAO robot. Also, a lateral stability controller
is performed to maintain lateral balance through the walking step, where the lateral tilt of the robot
is measured and used to compute the left-right hip’s roll and ankle’s roll angles. Such controller is
defined by: q9 = q10 = q11 = q12 = −KrollθNAO, where Kroll = 0.1. Figure 6 shows all joints used in
the simulated humanoid (NAO).
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Fig. 7. Performance indexes of the tests.

Each experiment is repeated five times with one human operator, and the average values of syn-
cronization error, path error, and time-to-complete the task are computed as follows to analyze the
overall performance obtained in practice:

• Syncronization error, error between the position or reference speed (measured at the local site)
and the position or speed of the slave robot (measured at the remote site), εs = [εv εδ

]T
, which

measures both velocity and turning errors, and it is computed as follows:

εs = 1

n

n∑
i=1

1

tfi

tfi∫
0

∣∣kgxmi (t) − ηi (t)
∣∣dt.

• Path error εpath, error between the reference path and the path followed by the bipedal robot
teleoperated by the human operator.

• Average time to complete the task Ttask is defined by

Ttask = 1

n

n∑
i=1

tfi,

where n is the quantity of tests made for the following cases : (A) non-delay, (B) delayed without
force feedback, and (C) delayed with force feedback. Besides, tfi is the time consumed by the operator
to complete the task in each test.

For case A, the proposed controller in Eqs. (13) and (14) has αm = 0, σs = 0, and km = 0; which
means that there is no force feedback applied to the operator. The controller is calibrated in a similar
way for case B. Finally, in case C, a force is fed back to the human operator using the following

control parameters: αm = 0.5, σs = 0.01, and km =
[

1 0
0 0.1

]
.

The results of the simulations for cases A, B, and C are shown in Fig. 7, and the experiments of
cases A and C are shown in this video: https://youtu.be/gi80IfDccsM. It can be observed that as the
time delay is higher, the turn angle error, the path error, and the time to complete the task are worse.
When there is time delay, the indexes improve if force feedback is applied, since the human operator
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Fig. 8. (a) Robot linear velocity and reference from human operator. (b) Robot turn angle and command.

Fig. 9. Path error in the three schemes.

perception is enhanced, preventing rapid movements of the master and pressing the master toward a
less synchronization error.

Using the proposed scheme (C), bounded synchronization errors are obtained despite the time-
varying delay, which is shown in Fig. 8(a) and (b), which agrees with the theoretical result achieved
in Eq. (46). Besides, it is important to remark that in practice, the proposed control scheme allows to
get a path following more close to the non-delayed case A, as shown in Fig. 9.

Furthermore, from Figs. 10, 11, and 12, the angles of the real and reference trajectories of the
bipedal robot in joint coordinates for case C are shown, during an arbitrary time interval of 50 to
65 [s], where the joint trajectories change according to the speed reference. Figure 10 shows the
trajectory of the left and right ankle’s angles. Figure 11 shows the left and right knee’s angle which
in every cycle change between oscillation-leg and stand-leg, while Fig. 12 shows the left and right
hip’s angles. The proposed controller maintain bounded joint errors.

The contribution of this paper is the shared control scheme that includes a stable control of bilateral
teleoperation of a humanoid robot with time delay. The human operator can handle the speed and turn
of a bipedal robot while also receives a force feedback that helps him to drive the robot remotely.
This teleoperated control loop is integrated with an automatic control of balance of the torso to get a
walking keeping lateral and frontal equilibrium.
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Fig. 10. Trajectories of the left-right ankle.

Fig. 11. Trajectories of the left-right knee.

Fig. 12. Trajectories of the left-right hip.
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6. Conclusions
In this paper, a shared control scheme for delayed bilateral teleoperation of a biped robot has been
proposed. The strategy uses a coupling impedance to link the bipedal robot with the virtual robot.
The teleoperator drives the system from a 2D hand controller with force feedback. The joint angles
are modulated by the speed and turn references generated online for the human operator, and they are
based on human-inspired foot trajectories on the sagittal plane and a PHZD for the turn. The force
feedback allows avoiding sudden motions of the master device, but it is gradually released (injecting
lower viscous friction) as the time delay is smaller while also the human operator hand is pushed
to directions of lower synchronism error. Besides, another quantitative metrics is analyzed which
indirectly measures the system performance and allows us to know which test has the lowest error
when time delay is applied. Finally, a 3D NAO-simulated robot was satisfactorily teleoperated in
bilateral way despite a time-varying delay.
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A. Appendix
Given the functional V (t, x) = V1 + V2 + V3 + V4 + V5 represented by (38), (39), (40), (41), and
(42), its derivative along the system trajectories will be obtained.

First, V̇1 of (38), including the master dynamics (8), and taking into account properties 1 and 2, is
accomplished as follows:

V̇1 = 1

2
ẋT

mṀmẋm + ẋT
mMmẍm

= 1

2
ẋT

mṀmẋm + ẋT
mMmMm

−1 (fm + fh − g (xm) − Cmẋm)

= ẋT
m (fm + fh − gm (xm)).

(A1)

If the control action fm (13) and the human force fh (10) are included in (A1), and then grouping
terms by convenience considering also (15), it yields:

V̇1 = − κmẋT
mxm − αmẋT

mẋm − kmẋT
m

(
kgxm − η (t − h2)

)− αhẋT
mẋm + ẋT

mfah

≤ −κmẋT
mxm − (αm + αh) ẋT

mẋm − kmẋT
m

(
kgxm − η

)
− kmẋT

m

∫ t

t−h2

η̇ (ξ) dξ + ẋT
mfah.

(A2)

Next, V̇2 is attained from (39) as:

V̇2 = km

kg

(
kgxm − η

)T (
kgẋm − η̇

)= km
(
kgxm − η

)T
ẋm − km

kg

(
kgxm − η

)T
η̇. (A3)

Now, V̇3 is computed from (40):

V̇3 = κmxT
mẋm. (A4)

Besides, V̇4 from (41) including the virtual robot dynamics (9) as well as the control action fs (14),
is given by:

V̇4 = km

kskg
ηTDη̇ = km

kskg
η̇

TDD−1 [fs − fe]

= km

kskg
η̇

T [ks
(
kgxm (t − h1) − η

)− σs� − fv
]
,

(A5)

next, if the human force fh (10) is inserted into (A5), considering in there (15), the below expression
is reached:

V̇4 ≤ km

kg
η̇

T (kgxm − η
)− kmη̇

T
∫ t

t−h1

ẋm (ξ) dξ − σskm

kskg
η̇

T
η̇ − km

kskg
η̇

Tfv. (A6)
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The stability analysis is difficult because there are terms with delayed variables in (A2) and (A6).
For solving this, V5 (42) has been proposed whose derivative considering Assumption 1, is obtained
by:

V̇5 = h̄2η̇
T
η̇ −

∫ t

t−h̄2

η̇
T

(ξ) η̇ (ξ) dξ + h̄1ẋT
mẋm −

∫ t

t−h̄1

ẋT
m (ξ) ẋm (ξ) dξ

≤ h̄2η̇
T
η̇ −

∫ t

t−h2

η̇
T

(ξ) η̇ (ξ) dξ + h̄1ẋT
mẋm −

∫ t

t−h1

ẋT
m (ξ) ẋm (ξ) dξ,

(A7)

the terms with integrals of (A7) can be linked with others of (A2) and (A6) by using Lemma 1 (1),
yielding the relations

−kmẋT
m

∫ t

t−h2

η̇ (ξ)dξ −
∫ t

t−h2

η̇
T

(ξ)η̇ (ξ)dξ ≤ 1

4
h2k2

mẋT
mẋm, (A8)

−kmη̇
T
∫ t

t−h1

ẋm (ξ) dξ −
∫ t

t−h1

ẋT
m (ξ) ẋm (ξ) dξ ≤ 1

4
h1k2

mη̇
T
η̇. (A9)

Finally, V̇ can be built joining Equations from (A2) to (A7), considering the relations given by
(A8) and (A9) to avoid terms with integrals, and cancelling all opposing terms, as follows:

V̇ = V̇1 + V̇2 + V̇3 + V̇4 + V̇5

≤ ẋT
m

[
− (αm + αh) I + h1I + k2

m

4
h2I
]

ẋm + η̇
T
[
−σs

km

kskg
I + h2I + k2

m

4
h1I
]

η̇

+ f̄ah |ẋm| + km

kskg
f̄v
∣∣η̇∣∣ .

(A10)

The result achieved in (A10) is used to complete the stability proof and convergence analysis of
the motion error between master position and speed-turn of the bipedal robot.
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