
J. Fluid Mech. (2015), vol. 772, pp. 272–294. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.210

272
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A methodology is developed for modelling entrainment in two-layer shallow water
flows using non-standard conserved quantities, replacing layerwise mass conservation
by global energy conservation. Thus, the energy that the standard model would
regularly dissipate at internal shocks is instead available to exchange fluid between
the layers. Two models are considered for the upper boundary of the flow: a rigid lid
and a free surface. The latter provides a selection principle for choosing physically
relevant conservation laws among the infinitely many that the former possesses, when
the ratio between the baroclinic and barotropic speeds tends to zero. Solutions of
the equations are studied analytically and numerically, applied to the lock-exchange
problem, and compared with other closures.
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1. Introduction
Most geophysical flows are density-stratified: although the fluid can be modelled by

incompressible equations, density differences due to concentration of salt, sediment,
moisture or temperature differences drive its motion. This motion may be calm
enough that the density remains constant along fluid particles in the time scales of
gravity-driven motions, but it may also become violent and turbulent, for example
at breaking waves and plumes. In this case, small-scale chaotic motion ensues and
mixing processes such as diffusion or dispersion occur more rapidly. The aim of this
paper is to propose a framework to quantify this mixing over the large scales without
resolving the small-scale motion.

The hydrostatic balance applies when the horizontal length scales of motion
are much longer than the vertical scales. In this case, the vertical acceleration
may be neglected and the problems reduced to hyperbolic systems of equations
in the horizontal plane. Probably the simplest example is provided by the shallow
water equations of water waves. From smooth initial data, these systems typically
develop breaking waves in finite time, and one must then decide how to continue
the dynamics to model the physics. In many cases, a robust procedure is known: one
allows discontinuities – shocks – and models their evolution by choosing appropriate
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Conservation laws and entrainment in layered hydrostatic flows 273

conserved quantities of the original system and imposing that they must be conserved
also in the presence of shocks. For the shallow water equations (Stoker 1958),
choosing volume and momentum conservation yields a physically and mathematically
sound description of one-layer hydraulics, with energy dissipated at shocks. It is
important to note that the original system may have many conserved quantities –
even infinitely many – and that the appropriate choice may not be obvious. In this
paper, we discuss the various conservation laws and propose a choice to model
mixing shocks in multilayer shallow water equations.

The two-layer shallow water model was proposed by Long (1956); together with
extensions to multiple layers, this model is often used in ocean applications, for
instance with one layer representing either the mixed layer or the thermocline,
and the other the deep waters below. The fluids are confined above and below by
horizontal lids, and there is only one interface between two layers of different density.
The model has been shown to be nonlinearly well posed and equivalent – in smooth
parts and for interfaces not crossing the midline of the channel – to the shallow water
equations (Chumakova et al. 2009; Esler & Pearce 2011). However, waves may break,
and shock conditions to model entrainment between the layers have not been derived
from first principles. In fact, infinitely many conservation laws are consistent with
the equations describing the smooth evolution. Even without mixing, the exchange
of momentum between the two layers yields a closure problem for shock waves,
which has been addressed in a number of works, including Wood & Simpson (1984),
Klemp, Rotunno & Skamarock (1994) and Klemp, Rotunno & Skamarock (1997),
where non-entraining closures are proposed based on physical considerations regarding
the layer in which energy is dissipated. In Li & Cummins (1998), a more inclusive
scenario is considered where energy may be dissipated in both layers, providing, in
lieu of a fixed closure, a range of allowable shock speeds.

A more complex interfacial problem is the ‘two-and-a-half’-layer problem, where
the upper wall is replaced by a free surface with an infinitely deep quiescent
fluid above it. This problem has two interfaces and four modes: two barotropic,
with interfaces displacing in unison, and two baroclinic, with opposite interfacial
displacement. Remarkably, the system has only six possible independent conservation
laws Barros (2006). This suggests adopting, as a selection principle for allowable
conservation laws in the case with a rigid lid, the limit of these six, restricted to the
baroclinic dynamics, which uncouples from barotropic dynamics when the internal
stratification is weak. In particular, in order to model entrainment, we propose
substituting the conservation of volume for each layer by the conservation of total
energy. This is consistent with the energy conservation closure developed for internal
bores in Jacobsen, Milewski & Tabak (2008) in the context of ‘one-and-a-half’-layer
flows. In contrast, internal hydraulic jumps are quite different in this respect: as shown
in Holland et al. (2002), they necessarily dissipate energy; alternative closures for
internal hydraulic jumps include dissipating as much energy as the stratification allows
Holland et al. (2002) and maximizing mixing through adopting the largest shock
speed consistent with the entropy conditions Jacobsen et al. (2008). In this paper,
we concentrate our attention on internal bores, such as those associated with gravity
currents, and our results thus yield an upper bound for entrainment in this case.

One of the simplest unsteady problems involving two-layer flows is the lock-
exchange problem. This is the idealized situation where two fluids of different
densities are initially confined to the left and right of a barrier, which is removed
at t = 0. (The analogue with just one layer and a free surface is the dam-breaking
problem.) We study the lock exchange as an application of the closure proposed in
this article.
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274 P. A. Milewski and E. G. Tabak

FIGURE 1. Sketch of the physical problem. Shown are the free surfaces and a baroclinic
entraining shock. The horizontal bottom is at z= 0.

The paper is organized as follows. In § 2 we derive the governing equations for
both the free-surface and the rigid-lid-bounded two-layer flows and their connection
in the asymptotic limit of infinitely separated time scales. In § 3 we propose
conservation-law-based mixing closures for both cases, and compute free-surface
lock-exchange solutions. The consequences of using the energy closures in steady
bores is also discussed. In § 4 we study the lock-exchange rigid-lid problem
analytically under two extreme closures: volume conservation and energy conservation,
corresponding to null and maximal mixing, respectively.

2. Formulation and governing equations
2.1. Two interfaces

Consider the configuration shown in figure 1, sometimes called the ‘two-and-a-half’-
layer problem. We denote the height of the lower and upper active layers h(x, t) and
H(x, t), respectively, and their densities ρl and ρu. The semi-infinite ‘passive’ layer
above has reference density ρ0. The pressure is assumed to be in hydrostatic balance,
and also to be uniform in x for large enough values of z; it is therefore given by

p=
{
ρlg(h− z)+ ρugH + ρ0g(H0 −H − h), 0< z< h,
ρug(h+H − z)+ ρ0g(H0 − h−H), h< z< h+H.

(2.1)

The vertically integrated pressures in each layer yield the hydrostatic forces∫
layer

p dz=
{

Pl
s = 1

2(ρl − ρ0)gh2 + (ρu − ρ0)gHh+ ρ0g(H0 − 1
2 h)h, lower layer,

Pu
s = 1

2(ρu − ρ0)gH2 + ρ0g(H0(H − h)+ h2), upper layer.
(2.2)

The form drag on each interface is

Fd =
{

Fh
d = (ρugH + ρ0g(H0 −H − h))hx, lower interface,

Fh+H
d = ρ0g(H0 − h−H)(h+H)x, upper interface.

(2.3)

Thus, the resultant force in each layer F=−Ps + Fd is

F=
{−Pl

s,x + Fh
d =−(ρl − ρ0)ghhx − (ρu − ρ0)ghHx, lower layer,

−Pu
s,x + Fh+H

d − Fh
d =−(ρu − ρ0)gHHx − (ρu − ρ0)gHhx, upper layer.

(2.4)
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We can write the conservation of volume and momentum in each layer, introducing
the corresponding velocities u(x, t) and U(x, t). For simplicity, we make the
Boussinesq approximation, which is a scaling limit of the dynamics valid for small
density differences between layers and used in many geophysical applications. The
approximation entails using the densities of each layer in the ‘buoyancy’ terms
derived above, but replacing them by a reference density (such as ρ0) in the inertial
terms. We consider an approximation where the density changes resulting from
entrainment and mixing do not affect the conservation laws. The more general case
for ‘one-and-a-half’-layer models is discussed in Jacobsen et al. (2008).

Thus, defining

b≡ g
ρl − ρ0

ρ0
, B≡ g

ρu − ρ0

ρ0
, (2.5a,b)

the conservation laws for volume and the momentum equations read

ht + (hu)x = 0, (2.6)
(hu)t + (hu2)x + b( 1

2 h2)x + BhHx = 0, (2.7)
Ht + (HU)x = 0, (2.8)

(HU)t + (HU2)x + B( 1
2 H2)x + BHhx = 0. (2.9)

These equations, valid in smooth parts of the flow, can be manipulated in various
convenient ways. For example, the two momentum equations may be replaced by

ut + ( 1
2 u2 + bh+ BH)x = 0, (2.10)

Ut + ( 1
2 U2 + B(h+H))x = 0. (2.11)

The system (2.6)–(2.9) has six physically motivated scalar conservation laws of the
form

vt + [Q(v)]x = 0, (2.12)

where the conserved quantities forming the vector v are functions of the physical
variables, and the Q are their fluxes: the two volume conservation equations (2.6) and
(2.8), the two conservation laws for circulation U and w=u−U around each interface,
resulting in (2.11) and the difference of (2.10) and (2.11),

wt + ( 1
2 u2 − 1

2 U2 + (b− B)h)x = 0, (2.13)

and laws for conservation of total momentum and total energy. These are, respectively,
the sum of (2.7) and (2.9),

Pt + (hu2 +HU2 + 1
2 bh2 + BhH + 1

2 BH2)x = 0, (2.14)

where P= hu+HU, and

Et + [hu3 +HU3 + 2(b− B)h2u+ 2B(hu+HU)(h+H)]x = 0, (2.15)

where E = hu2 + HU2 + (b− B)h2 + B(h+ H)2. It was proved in Barros (2006) that
these are the only linearly independent conserved quantities. Whilst any set of four
independent combinations of the above six laws yields identical dynamics for smooth
solutions, once shocks form, the solutions differ considerably. In the remainder of the
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276 P. A. Milewski and E. G. Tabak

H, U

FIGURE 2. Schematic of the two-layer one-interface flow. A shock is shown entraining
lighter fluid into heavier fluid, a situation considered later in the paper.

paper, we discuss various combinations of the above conservation laws that may be
used to model problems in which the two fluids mix.

The characteristic speeds λ of the system (2.6)–(2.9) satisfy

[(λ− u)2 − bh][(λ−U)2 − BH] − B2Hh= 0, (2.16)

corresponding to two baroclinic and two barotropic modes. We will use this expression
later when we show that the rigid-lid system results from an asymptotic decoupling of
these modes. Notice that the speeds are real when the heights h and H are positive and
b> B and the shear between the layers |u−U| is sufficiently small. At larger values
of the shear, the system is ill-posed in time, a reflection of the Kelvin–Helmholtz
instability criterion being achieved in the long-wave limit. In Chumakova et al. (2009)
it was shown that this type of instability threshold may be naturally reached during
the smooth evolution of similar systems of 4 × 4 equations, whereas this is not the
case under the rigid-lid approximation.

2.2. One interface and rigid lid
The simplest set of evolution equations for interfacial waves arises in the situation
in which the flow is bounded by two horizontal rigid lids as shown in figure 2.
The formulation then differs somewhat, since a reference pressure is unknown
a priori: the pressure at the top rigid lid follows not from the weight of fluid
above it, but instead from enforcing incompressibility below. In the Boussinesq limit,
the non-dimensional equations in smooth parts of the flow reduce to (see Long 1956;
Milewski et al. 2004)

ht + (uh)x = 0, (2.17)

ut + 1− 3h
1− h

uux +
(
(1− h)− 1

(1− h)2
u2

)
ux = 0. (2.18)

Here the dynamics has been expressed in terms of the lower layer only, and upper-
layer quantities can be recovered using the constraints

h+H = 1, uh+UH = 0. (2.19a,b)

The second constraint above corresponds to conservation of total momentum in
the Boussinesq approximation and is used throughout this paper. For non-mixing
layers (i.e. when each layer’s volume is conserved), this conservation of momentum
is a consequence of volume conservation, the rigid-lid assumption and either
the Boussinesq approximation or appropriate boundary conditions Boonkasame &
Milewski (2011). The equations above have been non-dimensionalized as follows:
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Conservation laws and entrainment in layered hydrostatic flows 277

layer depths with the total depth D0, velocities with C = √g((ρl − ρu)/ρl)D0 and
lengths and time with D0 and D0/C, respectively.

These equations are similar to their one-layer shallow water counterparts, but with
an apparently more complex nonlinearity. However, it was shown in Chumakova et al.
(2009) that, using the system’s Riemann invariants, one can build a nonlinear map
between the smooth solutions of the two-layer flow system and those of one-layer
shallow waters, providing a surprising connection between one- and two-layer flows.
This connection was further explored in Esler & Pearce (2011) in the study of non-
mixing internal dam-break and lock-exchange flows, where it was found that, owing to
the nature of the map, not all two-layer solutions can be uniquely mapped to one-layer
flows. Whilst the system has similarities with one-layer shallow water, there are many
differences: for example, the momentum in individual layers is not conserved, and, at
shocks, the possibility of mixing must be considered.

Introducing the interfacial displacement and shear variables

d≡ h−H = 2h− 1, w≡ u−U = u
1− h

, (2.20a,b)

one can symmetrize the system with volume and circulation conservation laws
(Chumakova et al. 2009):

dt + ( 1
2 w(1− d2))x = 0, (2.21)

wt + ( 1
2 d(1−w2))x = 0. (2.22)

This system has characteristic speeds

λ± = dw± 1
2

√
(1− d2) (1−w2), (2.23)

and can be written in the characteristic form as

R±t + λ±R±x = 0, (2.24)

where
R± = sin−1(d)∓ sin−1(w) (2.25)

are the system’s Riemann invariants. The solutions were proved in Milewski et al.
(2004) to remain in the hyperbolic region |d|< 1, |w|< 1 for all time. This is a sharp
‘nonlinear stability’ criterion for the equations, as it guarantees solutions to exist up to
breaking, providing the initial shear is everywhere within the stability threshold |w|<1
(w plays the role of a local Richardson number in this problem).

2.3. Decoupling of the baroclinic modes
Whilst the rigid-lid equations can be derived by assuming a priori the rigid-lid
configuration in figure 2, they can also be found in the limit of the two-interface
equations through the decoupling of the barotropic and baroclinic modes when their
time scales are well separated. The separation of time scales occurs when the density
difference at the lower interface is much smaller than that at the upper one:

b= B+ g
ρl − ρu

ρ0
≡ B+ ε. (2.26)
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278 P. A. Milewski and E. G. Tabak

Introducing the variables

d= h−H, w= u−U, D= h+H, P= hu+HU, (2.27a−d)

the shallow water equations (2.6)–(2.9) become

Dt + Px = 0, (2.28)

Pt +
(

P2

D
+ w2

4D
(D2 − d2)+ 1

2
BD2 + ε 1

8
(D+ d)2

)
x

= 0, (2.29)

dt +
(

P
D

d+ 1
2D
(D2 − d2)w

)
x

= 0, (2.30)

wt +
(

P
D

w+ 1
2D
(εD−w2)d+ ε 1

2
D
)

x

= 0. (2.31)

These equations can be linearized about a quiescent state, resulting in characteristic
speeds satisfying

λ4 − (BD0 − εh0)λ
2 + εBh0H0 = 0. (2.32)

Thus the speeds separate into two pairs:

λ2 = BD0 +O(ε) and λ2 = ε h0H0

D0
+O(ε2). (2.33a,b)

In order to consider the limiting case ε→0 and retain only the slow baroclinic modes,
we rescale the fully nonlinear equations with

t= 1√
ε

t̃, w=√ε w̃, D= 1+ ε D̃, P= ε3/2 P̃. (2.34a−d)

Dropping the tildes, the leading-order terms in the equations now read

dt + ( 1
2(1− d2)w)x = 0, (2.35)

wt + ( 1
2(1−w2)d)x = 0, (2.36)(

w2

4
(1− d2)+ BD+ 1

8
(1+ d)2

)
x

= 0, (2.37)

Dt + Px = 0. (2.38)

The first two equations are the ones presented in the previous section for the baroclinic
modes. Equation (2.37) defines an induced instantaneous barotropic height adjustment
D, whilst the last equation (2.38) defines an induced barotropic mean flow P. The
instantaneous nature of the adjustment of the barotropic variables D and P to the
baroclinic ones d and w is a consequence of the scale separation between the two:
in terms of the baroclinic time scale, the barotropic wave speed is effectively infinite.

The inverse of the transformation, under the scalings assumed, yields

h= d+D
2
= d+ 1

2
+O(ε), H = D− d

2
= 1− d

2
+O(ε), (2.39a,b)

u= P
D
+ D− d

2D
w=√ε 1− d

2
w+O(ε3/2), U= P

D
− D+ d

2D
w=−√ε 1+ d

2
w+O(ε3/2).

(2.40a,b)
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Substituting these values in E gives

E= B+ ε
4
(2− (1−w2)(1− d2)+ 2d)+ 2εBD+ o(ε). (2.41)

In the entrainment and mixing problem, we shall use the order-ε correction to the
energy 2 − (1 − w2)(1 − d2) + 2d in the rigid-lid approximation to mimic the two-
interface flow. Note that BD, the last term of order ε, is omitted from this energy
because it enforces volume conservation in the two lower layers, which is the only
choice consistent with a rigid-lid limit.

3. Entrainment and mixing
In order to address flows with mixing and entrainment at shocks, one has to replace

the volume conservation law by other choices. In this section, this issue is discussed
for both the two-interface problem and the rigid-lid one-interface problem.

The general approach here extends and complements ideas presented in Jacobsen
et al. (2008), where we considered the ‘one-and-a-half’-layer model (one shallow
water layer with an infinite layer of passive lighter fluid above). Within that context,
we presented two main results: (i) For sufficiently supercritical flows, the maximum
amount of mixing allowed at a shock is given explicitly by assuming that the shock
has maximum speed, subject to the constraints provided by the conservation laws
and the Lax condition. This result provides a strict upper bound for mixing. (ii) For
subcritical flows, maximal mixing is attained by assuming that conservation of energy
replaces conservation of volume. This provides an elegant and simple way to evolve
mixing flows, an approach that we follow here. However, the problem here is more
subtle, since the choice of conserved quantities (from an infinite set) is not obvious.

3.1. Mixing in the two-interface configuration
In general, mixing may occur at both interfaces. The simplest situation would arise
when both layers’ volume conservation equations are discarded in favour of the
remaining four conservation equations: the two circulations, total momentum and
total energy. This is problematic though, since the four variables u,U, hu+HU and
E do not carry sufficient information to uniquely define the layer heights: if u=U= 0,
the transformation (u, h, U, H)←→ (u, P, U, E) is not invertible since P = 0 and
E= (b− B)h2 + B(h+H)2, providing one equation for the two heights.

Thus, one must instead make a priori assumptions relating the entrainment at both
interfaces by using a linear combination of the two volume conservations as one
of the laws. As an example, throughout this paper, we consider the case in which
entrainment occurs only at the lower interface, a physically reasonable scenario for
baroclinic flows. This can be accomplished by the following system of conservation
laws:

Dt + [hu+HU]x = 0, (3.1)
wt + [ 12 u2 − 1

2 U2 + (b− B)h]x = 0, (3.2)

Pt + [hu2 +HU2 + 1
2 bh2 + BhH + 1

2 BH2]x = 0, (3.3)

Et + [hu3 +HU3 + 2(b− B)h2u+ 2B(hu+HU)(h+H)]x = 0, (3.4)

corresponding to conservation of total volume, circulation around the interface, total
momentum and total energy. The entrainment is defined as the rate of increase of
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280 P. A. Milewski and E. G. Tabak

volume in the lower layer at a shock. (In smooth parts the entrainment is zero.) This
is given by

Q=−c[h]+− + [hu]+−, (3.5)

where c is the shock’s speed and [·]+− indicates the jump in the enclosed quantity from
left to right. The total rate of change of volume in the lower layer is then given by

d
dt

∫
h dx=

∑
shocks

Q. (3.6)

The change of density in the lower layer in response to this entrainment is given by

ρ1t + u1(ρ1)x =
∑
shocks

ρ2 − ρ1

h1
Q+(t) δ(x− s(t)), (3.7)

where s(t) is the position of the shock and Q+ is the positive part of Q. Notice,
though, that this is a diagnostic, a posteriori, calculation of ρ1 that does not affect
the dynamics: in models of the kind developed here, the densities are assumed
constant throughout each layer. This can be thought of as a first-order approximation,
quantitatively valid in situations where the density variations brought about by
entrainment are not very big. It is possible to build models that include the density
variation in the dynamics (see, for instance, Jacobsen et al. (2008) for one such
model in a ‘one-and-a-half’-layer setting). These models are more complex, and,
since each layer may have a horizontal density gradient, only valid on time scales
shorter than the resulting overturning circulations within each layer.

A general finite volume methodology for the numerical solution of general systems
of hyperbolic equations with arbitrary conserved quantities is discussed in Kurganov,
Noelle & Guergana (2001). This methodology is particularly appropriate for general
conservation laws because it does not require the solution of Riemann problems. In
addition to being conservative, this method automatically generated entropic solutions,
with shocks that satisfy the Lax conditions.

We show in figure 3 a typical solution arising from a form of the lock-exchange
problem in the case of (3.1)–(3.4). The figure shows the surface displacements and
velocities in each layer. This is a case where the density difference between the two
layers is smaller than with the ambient by a factor ε = 0.1. Thus, one sees a fast
barotropic adjustment (see figure 3b, where it is clear that at the first shown time a
velocity disturbance is reaching the boundary) and the slow baroclinic flow, which
consists of a buoyant gravity current propagating to the left and a heavy current
propagating to the right. The upper interface deforms only slightly, rising on the side
of the heavy current. Despite symmetric initial data, the asymmetry between the light
and heavy currents is clear. This is mainly due to the asymmetry of entrainment: there
is also a small contribution from the barotropic modes, but this source of asymmetry
disappears as the difference in buoyancy between the two layers is made arbitrarily
small.

By comparing the results of figure 3 to the more classical model where conservation
of volume is retained, the consequence of our model for entrainment is shown in
figure 4. For this figure, we show the profiles from the entraining model and those
resulting from solving the conservation laws for layer volumes and circulations:
equations (2.6), (2.8), (2.10) and (2.11) with the same initial data. The results are
shown in dashed lines. In figure 3(a), the interfacial positions at the final time are
shown. Had the initial data been smooth, the evolution of the two solutions would
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FIGURE 3. Lock exchange in the two-interface flow with entrainment in the lower
interface. The bold curves show the initial data and the final time. For this plot b= 1.1,
B=1.0 and the initial data are h=0.95 for x<0 and h=0.05 for x>0, with h+H=1. At
the lateral boundaries we have imposed conditions modelling a vertical wall. The solution
is shown at times tj = j1t, with j= 0, . . . , 5 and 1t= 0.5/

√
0.1.

have been identical up to breaking; with discontinuous initial data, however, they
differ from t = 0. Clearly the solution of figure 3 has entrained fluid into the lower
layer. Figure 3(b) shows that the total volume of the lower layer is an increasing
function of time. Figure 3(c) shows the evolution of the total energy, which, in the
volume conservation case, is dissipated at shocks.

The simulation just described is clearly dominated by the baroclinic modes, with
the upper free surface barely deforming and slaved to the dynamics of the interface
between the two active layers. Thus it is unnecessary to model it with two-and-a-
half layers, whose computation is more expensive, principally because the fast modes
pose time-stepping constraints. In addition, the rigid-lid assumption corresponds to the
setting of many laboratory experiments. In § 4 we study the lock-exchange problem
in the rigid-lid case, where the simplified equations allow us to write down the exact
solution.

3.2. Conservation laws for the rigid-lid system
For 2× 2 systems, there are in general infinitely many choices for conservation laws,
where the conserved quantities themselves can be seen to obey a partial differential
equation in the state space d,w (see appendix A). From physical principles, one can
verify that

e≡− 1
4(1− d2)(1−w2)+ 1

2α(d+ 1) (3.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

21
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.210


282 P. A. Milewski and E. G. Tabak

0

0.5

1.0

0 1 2 3 4 5 6 7 8
3.275

3.280

3.285

t

E
ne

rg
y

0 1 2 3 4 5 6 7 8
1.55

1.60

1.65

1.70

M
as

s

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
x

(a)

(b)

(c)

FIGURE 4. Lock exchange in the two-interface flow. Comparison of entraining and
non-entraining cases. The dashed line is the non-entraining case and the solid line is the
entraining case of figure 3. (a) The final interfacial shapes; (b) the resulting total volume
of the lower layer and (c) the total energy of the system.

is the expression for the energy conserved by the system (2.21)–(2.22), where α is
related to the reference height level at which potential energy is being measured. If
one is intent on modelling mixing, the equation for volume conservation in each layer
must be discarded. Instead, we replace it with energy conservation, where α can be
used to control the relative strengths of entrainment into the layers.

This choice, for α 6= 0, breaks the symmetry imposed by the Boussinesq
approximation. From the sign of ∂e/∂d at constant circulation, one can show that, for
α > 1, the lower layer entrains fluid at shocks while the upper layer detrains it, and
vice versa for α6−1. Note that, for |α|< 1, e does not depend monotonically on d
and therefore the system is ambiguous, as all dynamical variables cannot be recovered
uniquely from the conserved quantities. In our entrainment simulations, we will make
the choice α = 1, corresponding to maximum entrainment into the lower layer. Note
that conservation of mass instead of energy corresponds to the limit α→∞.

The fact that ∂e/∂d > 0 provides a simple proof that energy-preserving shocks
maximize entrainment. Since energy cannot be created at the shock, the only
alternative to energy conservation is energy dissipation. This would lead to a smaller
volume in the lower layer due to the positive sign of ∂e/∂d. Hence energy-preserving
shocks are maximally entraining among entropic solutions. Amongst energy-preserving
shocks, the choice α = 1 is maximally entraining into the lower layer as ∂e/∂d is a
minimum.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

21
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.210


Conservation laws and entrainment in layered hydrostatic flows 283

c

Q

FIGURE 5. Schematic of steady shock travelling at speed c into a quiescent fluid of
density ρ+l . The shock entrains fluid of density ρu at rate Q, which is assumed to mix
behind the shock.

3.3. Steady bores
The simplest setting for the theory is that of an idealized bore, displayed in figure 5.
A fluid with lower layer of height h flows into a quiescent configuration with height
h0 6 h (equivalently d0 6 d) and u0 = w0 = 0. The two unknowns are the speed c
of the shock and the velocity u of the lower layer behind it (or the corresponding
circulation w). We shall now choose to conserve total energy and circulation (since
total momentum is conserved automatically). This gives rise to the jump conditions

−c[e]+− + [qe]+− = 0, (3.9)
−c[w]+− + [qw]+− = 0, (3.10)

where we choose α= 1 in (3.8) and thus e=−((1− d2)(1−w2))/4+ (d+ 1)/2, qe=
(wd(1− d2)(1− w2))/4+ w(1− d2) and qw = (d(1− w2))/2, and the square brackets
denote the jumps between the states ahead of and behind the shocks. Eliminating c
between the two jump conditions yields

−[qw]+−[e]+− + [w]+−[qe]+− = 0, (3.11)

which after some algebra becomes

{d(1− d2)}w4 + {−(1+ d)2 − (1− d2)(d0 + 1)+ d(d0 + 1)2}w2

+{(d0 − d)2(d0 + d+ 2)} = 0, (3.12)

a bi-quadratic equation for w with only one real positive root. Figure 6 displays the
Froude numbers u/

√
h and c/

√
h as functions of d0 and d. Also displayed is the curve

marking the boundary of the domain of entropic shocks satisfying the Lax condition,
whereby the characteristic speed λ+ behind the shock is greater than or equal to
the speed of the shock. Beyond this boundary, energy cannot be conserved without
violating causality. This corresponds to the conceptual distinction between internal
bores and hydraulic jumps proposed in Jacobsen et al. (2008) in the context of a
‘one-and-a-half’-layer model: for maximal mixing, the active constraint for bores is
energy conservation, while maximally mixing hydraulic jumps are constrained by the
Lax entropy conditions. Here, we shall not consider entraining and energy-dissipating
hydraulic jumps.

The uniform shock wave solution is well suited to study the consequences of
entrainment. The calculations so far assumed that the lower layer has the same density
ahead of and behind the shock. However, there is upper-layer fluid entrainment Q at
the shock as given by (3.5), making the lower layer lighter behind the shock. Thus,
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FIGURE 6. Properties of an energy-conserving shock of amplitude d moving into a
quiescent state of amplitude d0. (a) Contours of the downstream (oncoming flow) Froude
number u/

√
h. (b) Contours of the shock Froude number c/

√
h. The upper bold curve

corresponds to the limiting shock satisfying the Lax condition. Thus allowable shocks are
inside the region bounded by the bold curves.

the lower-layer density ρl takes on two values, ρ+l ahead of and ρ−l behind the shock.
To first order, one can use, for the jump conditions, an intermediate lower-layer
density ρ̄, and then diagnose the actual densities before and after the shock in the
presence of entrainment, introducing a density variation 1ρ such that

ρ+l = ρ̄ +1ρ, ρ−l = ρ̄ −1ρ. (3.13a,b)

From mass conservation in a control volume in the lower layer, the density change
can be calculated, yielding

1ρ

ρ̄ − ρu
= c(h− h0)− hu

c(h+ h0)− hu
. (3.14)

The entrainment Q and the relative density change 1ρ/(ρ̄ − ρu) are displayed in
figure 7. (Note that the relative density change is also equal to the relative change
of the correspondingly defined buoyancies.) An extreme situation arises when h0 = 0,
corresponding to a gravity current intruding into a fluid of uniform density ρ0. Here
one obtains 1ρ = ρ̄ − ρu: behind the shock, the density is that of the upper layer.
Clearly, for such dramatic density variation, the first-order approximation of computing
the jump conditions as if there were no density change is not valid. The other limiting
situation is the weak shock limit h ≈ h0, with little entrainment. In this case the
first-order approximation of uniform densities is valid.

We note also that, in weakly non-hydrostatic long-wave models (such as Choi &
Camassa 1999), there are smooth non-entraining energy-conserving solutions called
‘solibores’ (Esler & Pearce 2011), linking particular pairs of upstream and downstream
depths.
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FIGURE 7. Properties of an energy-conserving shock of amplitude d moving into a
quiescent state of amplitude d0. (a) Contours of the entrainment of upper fluid into the
lower layer. (b) Contours of the density change across the shock in units of the mean
density difference between the layers. The allowable shocks are inside the region bounded
by the bold curves.

4. Lock exchange for the rigid-lid system
In the previous section, we considered the consequences of entraining conservation

laws on a steady bore. Here we turn our attention to an initial value problem. We
consider the consequences of two different choices of conservation laws in the
lock-exchange problem. In both cases we use conservation of circulation. This law
relates the rate of change of circulation around the interface – the lower plume
moving rightwards and the upper one moving leftwards – arising from the torque
due to the pressure difference between the heavy and light fluid sides. The second
conservation law is either layer volume (i.e. no entrainment) or energy, as used in the
previous section (i.e. maximally efficient entrainment into the lower layer). It turns
out that both scenarios can be solved in closed form, thus providing also a check on
the numerical procedures used throughout this article.

The initial condition for a lock exchange has w= 0 throughout and

d=
{

1, x< 0,
−1, x> 0.

(4.1)

(In a more general case, the heavier fluid is only partially filling the left of the domain
(see Ungarish 2010), i.e. d< 1 for x< 0; it can be treated similarly.)

4.1. Volume conservation
When (2.21)–(2.22) are adopted as the ruling conservation laws, the following jump
conditions hold at shocks:

−c[d]+− + [ 12 w(1− d2)]+− = 0, (4.2)

−c[w]+− + [ 12 d(1−w2)]+− = 0. (4.3)
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For the right-going shock, with state d =−1, w= 0 ahead and d+, w+ behind, the
equation for conservation of volume gives

c= 1
2 w+(1− d+), (4.4)

which, inserted into the conservation of circulation, yields

w2
+ = 1+ d+. (4.5)

We can now close the problem for the front by computing the characteristic speeds
for the system (2.21)–(2.22):

λ=−wd± 1
2

√
(1− d2)(1−w2). (4.6)

The speed c of the shock, given by (4.29), must agree with the right-going
characteristic speed immediately behind it. Thus,

c= 1
2 w+(1− d+)=−w+d+ + 1

2

√
(1− d2+)(1−w2+)= λ+. (4.7)

This results in the full solution of the shock state with

d+ =− 1
3 , w+ = ( 2

3)
1/2 ≈ 0.817, c+ = ( 2

3)
3/2 ≈ 0.544. (4.8a−c)

This corresponds to a lower-layer depth of h= 1/3 at the shock.
In order to proceed further and complete the solution for all x ant t, we use the

fact that, because of the invariance under stretching of the equations and the initial
conditions, the solution depends only on the similarity variable ξ = x/t. Substituting
this into the governing equations yields

−ξd′ + ( 1
2 w(1− d2))′ = 0, (4.9)

−ξw′ + ( 1
2 d(1−w2))′ = 0. (4.10)

The equations can be simplified by writing w=w(d), with

dw√
1−w2

=± dd√
1− d2

, (4.11)

resulting in
sin−1(w)=± sin−1(d)+ sin−1(w0), (4.12)

where w0=w|d=0, and the sign corresponds to the Riemann invariant that is preserved
across the rarefaction fan. Substituting the values we found previously behind the
shock, we obtain that, when d= 0 at the centre,

w0 = 5

3
√

3
≈ 0.962, λ=±λ0 =±1

6

√
2
3
≈±0.136. (4.13a,b)

Note that λ0 = c+/4. The full solution for x> 0 consists of the shock at x= c+t, an
expansion fan for x ∈ (λ0t, c+t), and a constant state d = 0, w = w0 for x ∈ [0, λ0t]
(refer to figure 8 for a schematic). The solution can be completed for x < 0 by an
odd extension of d and an even extension of w. Similar calculations of this type were
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FIGURE 8. Two-layer lock-exchange schematic. (a) Physical configuration showing
right- and left-going shocks trailed by expansions. The dotted line indicates the initial
configuration. (b) Corresponding characteristic lines in the x–t plane. The ± states are
immediately behind the shocks.

shown in Rotunno et al. (2011) for the non-Boussinesq volume-conservation case and
using the Benjamin (1968) gravity current closure.

Figure 9 shows the lock-exchange solution to (2.21)–(2.22) computed numerically
together with the exact solution derived above. In order to plot the lower-layer velocity,
we rescaled u with

√
ε, where ε = 0.1 to match the calculations of the full ‘two-

and-a-half’-layer free-surface flow shown previously. Notice the very good agreement
between the numerical and exact solutions shown at the last time in figure 9(b), as
well as the good agreement with the numerical results in figure 3, which include a
small barotropic fast mode.

4.2. Energy conservation and entrainment
We now consider an entraining case by replacing (4.2) with conservation of energy,
resulting in the system

wt + ( 1
2 d(1−w2))x = 0, (4.14)

(−(1− d2)(1−w2)+ 2d)t + (wd(1− d2)(1−w2)+w(1− d2))x = 0. (4.15)

The corresponding energy conservation jump condition is

−c[−(1− d2)(1−w2)+ 2(d+ 1)]+− + [wd(1− d2)(1−w2)+w(1− d2)]+− = 0. (4.16)

Eliminating c between this equation and (4.3) gives

w2
+ =

d+ + 1
1− d+

, c= 1
2

w+(1− 2d+). (4.17a,b)

Substituting these relations into the expression for the characteristic speeds, we
obtain a smaller-amplitude entraining hydraulic jump travelling faster than in the
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FIGURE 9. Lock exchange in the one-interface rigid-lid flow with volume and circulation
conservation. The bold curves show the initial data and the final time. The initial data
are d= 1 for x< 0 and d=−1 for x> 0, and w= 0. At the lateral boundaries, we have
imposed conditions modelling a vertical wall. The solution is shown at times tj= j1t, with
j= 0, . . . , 5 and 1t= 0.5.

volume conservation case:

d+ = 1−√3
2
≈−0.366, w+ =

√
3−√3

1+√3
≈ 0.681, c+ =

√
3

2

√
3−√3

1+√3
≈ 0.590.

(4.18a−c)
This corresponds to a lower-layer depth h= (3−√3)/4≈ 0.317 and an entrainment
rate into the lower layer of

−c[h]+− + [hu]+− =−
c
2
[d]+− +

[
1
4

w(1− d2)

]+
−
= 1

8

√
3−√3

1+√3
(2
√

3− 3)≈ 0.0395.

(4.19)
Unlike the non-entraining case, there is no right–left symmetry, and, in order to

complete the solution, we need to solve also for the left-moving shock, with values
ahead d= 1 and w= 0. We obtain the equations

d−(1+ d−)w4
− − (3+ d−)w2

− + (3+ d−)(1− d−)= 0, (4.20)

c= 1
2w−

(d−(1−w2
−)− 1), (4.21)

replacing (4.17) where d− and w− are the values behind the left-going shock. Solving
for the full shock conditions using the characteristic speeds must be done numerically
and results in

d− ≈ 0.337, w− ≈ 0.858, c− ≈−0.531, (4.22a−c)

with an upper-layer height H ≈ 0.332. This buoyant flow is mildly detraining, with

−c[H]+− − [HU]+− =
c
2
[d]+− −

[
1
4

w(1− d2)

]+
−
≈−0.014. (4.23)
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Next, we compute the interior structure between the two shocks: behind each shock
there is a rarefaction, and between the two rarefactions there is a constant state in the
middle (see figure 8). Since these structures are continuous, the Riemann invariants are
preserved along their corresponding characteristics, and thus the state in the middle
has one Riemann invariant in common with each of the two states behind the shocks.
Combining the + Riemann invariant from behind the left-moving shock with the −
Riemann invariant from behind the right-moving shock, we find the state (d0, w0) in
between the two rarefaction fans:

R+(d0,w0)= R+(d−,w−)= sin−1(d−)+ sin−1(w−), (4.24)
R−(d0,w0)= R−(d+,w+)= sin−1(d+)− sin−1(w+). (4.25)

It follows that

d0 = sin
(

R+ + R−
2

)
≈ 0.1253, h0 ≈ 0.5626, w0 = sin

(
R+ − R−

2

)
≈ 0.9488.

(4.26a−c)

The back edges of the two expansion fans are given by

λ= λ=−d0w0 ± 1
2

√
(1− d2

0) (1−w2
0)≈

{
0.0378,
−0.2756.

(4.27)

Figure 10 shows the result of both the numerical solution of the entraining system
and (in panel b) the comparison with the exact solution derived above. The profile
of the interface can also be compared with the entrainment profile of the full ‘two-
and-a-half’-layer system shown in figure 4. In figure 11 the total energy and layer
volume of the entraining and non-entraining cases are shown as a function of time.
The linear growth of the lower-layer volume in the energy-conserving case and the
linear decrease in energy in the volume-conserving case are a consequence of the self-
similar nature of the solution.

Our solution to the lock-exchange problem gives rise to non-uniform gravity
currents entering a fluid of uniform density. In our model these have maximal
entrainment but no mixing: the head of the wave is composed exclusively of
entrained upper-layer fluid. In the self-similar scenario of the lock exchange, one
can compute the width of this head: it grows linearly in time at a rate equal to the
difference between the shock speed c= 0.59 and the fluid velocity behind the shock,
u= ((1− d)w)/2= 0.47. Even though this scenario (corresponding locally to d0=−1
in figures 6 and 7) is beyond the range of validity of the first-order closure that we
use, and which calculates speeds by keeping the density in the lower layer unaltered,
it provides speeds and solutions in good agreement with experimental observations.
For example, simulations (Rotunno et al. 2011) and experiments (Shin, Dalziel &
Linden 2004; Lowe, Rottman & Linden 2005) show that, in the Boussinesq limit, the
dimensionless right-going current speed is c≈0.5. One further interesting consequence
is the broken symmetry between left and right currents. The right-moving current
has a speed about 10 % larger than the left-going one (which does not entrain). Such
differences are observable in non-Boussinesq computations of the full Navier–Stokes
equations and in experiments (see references above and figure 2(a) in Shin et al.
2004).
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FIGURE 10. Lock exchange in the one-interface rigid-lid flow with entrainment.
Circulation and energy conservation were chosen in order to attempt to mimic the
two-interface model. The bold curves show the initial data and the final time. The initial
data are d = 1 for x< 0 and d =−1 for x> 0, and w= 0. At the lateral boundaries we
have imposed conditions modelling a vertical wall. The solution is shown at times tj= j1t,
with j= 0, . . . , 5 and 1t= 0.5.
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FIGURE 11. Comparison of volume and energy conservation in the two-layer flows shown
in figures 9 and 10.

4.3. Comparison to non-mixing theory of Benjamin
There are several proposed closures in the literature for the speed of a gravity
current (Benjamin 1968; Huppert & Simpson 1980; Shin et al. 2004). These have
been applied to the lock-exchange problems (Ungarish 2010; Rotunno et al. 2011) by
modelling the flow as two gravity currents. Here, we compare and contrast Benjamin’s
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FIGURE 12. Front speeds in gravity flows. The dotted line is Benjamin’s model, the solid
line is the non-entraining case and the dashed line is the entraining case. The front height
obtained using the characteristic speed condition (causality) is shown with circles.

original theory to ours. One may summarize Benjamin’s closure for the speed of a
steadily travelling front as a function of the front height h, through the formula

c√
h
= FB(h)=

√
(1− h)(2− h)

(1+ h)
. (4.28)

This formula is obtained, under the Boussinesq approximation, by assuming: (i) a
steady profile; (ii) conservation of volume; and (iii) conservation of momentum under
the hydrostatic approximation.

Instead, our closure for general unsteady hydrostatic flows yields, by combining
conservation of volume and circulation (i.e. (4.4) and (4.5)),

FV(h)=
√

2(1− h). (4.29)

By contrast, for the entrainment model with α = 1, the combination of conservation
of energy and circulation yields

FE(h)= 1
2
(3− 4h)√

1− h
. (4.30)

Both of these closures also have the assumption of conservation of momentum built
in, as this is an intrinsic feature of the Boussinesq approximation (Boonkasame &
Milewski 2011; Camassa et al. 2012), where total mass flux and total momentum are
equivalent. The comparison of these three closures is shown in figure 12.

Either of the three closures must be complemented by additional information to
determine the speed and height of the front. In our case we use causality: the fact
that the front cannot move faster than the speed of characteristics behind it. In the
case of Benjamin’s closure, it has been complemented in various ways, for example,
using conservation of energy in the original paper (Benjamin 1968), leading to h=1/2,
or also using causality in Rotunno et al. (2011), yielding h= 0.3473. The circles in
figure 12 mark the location of the front speeds and heights in our solutions above,
and the star marks the corresponding values in Rotunno et al. (2011).
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5. Conclusions
This article studies conservations laws for two-layer flows in hydrostatic balance

and their implications for modelling entrainment. The simplest model for two-layer
baroclinic flows has upper and lower rigid lids. The resulting system can be reduced
to two equations in two unknowns with appealing symmetries. A tradeoff of this
reduction is that the system admits infinitely many conservation laws, making the
choice of two for a closed model somewhat arbitrary. By contrast, the more complete
system with two layers and a free surface above has four degrees of freedom –
two baroclinic and two barotropic modes – and only six independent conservation
laws. Taking the limit of infinitely separated time scales between the barotropic and
baroclinic modes in the free-surface model leads to a mapping to the conservation
laws of physical relevance under the rigid-lid modelling assumption, which only
captures the latter modes.

The systems are studied analytically and numerically for steady bores and for the
unsteady lock-exchange problem, which has, as initial condition, fluids with different
densities at rest to the left and right of a vertical wall that is instantly removed at time
zero. In addition to this problem’s practical relevance, its extra symmetry under spatial
and temporal stretching allows us to solve it exactly under the rigid-lid approximation,
providing a benchmark for the theory as well as for the numerical methodology.

The article introduced a framework to study fluid entrainment in hydrostatic
layered models. In order to do this in a conservation law setting, we replace the
equation for volume conservation in each individual layer with conservation of energy.
This conservation form, in fact, allows for the full range of dynamics: from mass
conservation in each layer to maximum entrainment. The lock-exchange problem
is solved in both limits. Intermediate cases could be chosen to model a mixing
efficiency in flows that both mix and dissipate energy. In the particular setting of the
lock-exchange problem, we compare our results with other (non-entraining) models
in the literature.
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Appendix A. Conservation laws in 2× 2 systems
A general 2× 2 system of equations of the form

ut + aux + bvx = 0, (A 1)
vt + cux + dvx = 0 (A 2)

permits conservation laws for q satisfying [q(u, v)]t + [Q(u, v)]x = 0 if and only if q
satisfies the constraint in the form of a semilinear partial differential equation

(aqu + cqv)v − (bqu + dqv)u = 0. (A 3)

Applying this to the system (2.21)–(2.22) results in

(w2 − 1)qww − (d2 − 1)qdd = 0. (A 4)
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The conservations of volume and vorticity q= d and q= w are immediate, as is the
conservation of q=wd. One can easily check that the energy e as defined previously
also satisfies this equation. In fact, denoting q=wd, the system (2.21)–(2.22) can be
rewritten as

et + (qe)x = 0, (A 5)
qt + ( 1

2 q2 + e)x = 0. (A 6)

These equations are identical to those of standard shallow waters. Thus, this is
another route for the explicit determination of the map between the rigid-lid system
and the St. Venant shallow water system, first obtained in Chumakova et al. (2009)
through the system’s Riemann invariants. Incidentally, one may now ‘bootstrap’ to
more conserved quantities such as eq (‘momentum’) and eq2/2+ e2/2 (‘energy’).
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