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Abstract

We study a class of growing systems of random walks on regular trees, known as frog
models with geometric lifetime in the literature. With the help of results from renewal
theory, we derive new bounds for their critical parameters. Our approach also improves
the existing bounds for the critical parameter of a percolation model on trees known as
cone percolation.
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1. Introduction

In this work we explore a new approach for studying the localization of the critical parameter
of a growing system of random walks on regular trees, known as frog models with lifetime in
the literature. This approach is based on a link between undelayed renewal sequences and a
frog model on directed regular trees.

On general infinite connected graphs, the original frog model with geometric lifetime is
inspired by a process of information transmission on a moving population and may be informally
described as follows. Assume that at time 0 each vertex of the graph has one particle which
may be in one of two states: active or inactive. Each active particle performs, independently
of the others, a discrete-time random walk through the vertices of the graph during a random
number of steps, geometrically distributed with parameter 1−p for some p ∈ (0, 1). This time
is called the lifetime of the active particle, and once it is reached we assume that the particle is
removed from the system. Removed particles play no role in the spreading procedure. On the
other hand, if an active particle jumps to a vertex containing an inactive one, then the inactive
particle becomes active and starts an independent random walk on the graph. Usually, it is
assumed that the process starts with one active particle at a fixed vertex, and inactive particles
everywhere else. We refer the reader to [1] for a formal definition of the model.

One of the main questions of interest is the survival, or not, of a particular realization of
the process, that is, whether or not there is, at any time, at least one active particle on the
graph. Alves et al. [1] and Lebensztayn et al. [16] addressed this question with regard to
homogeneous trees and other infinite graphs such as hypercubic lattices. On infinite trees, a
simple coupling argument can be used to show that the probability of survival of the frog model
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on Td , the homogeneous tree of degree d + 1 (that is, any vertex that has d + 1 neighbors),
which we denote by θ(d, p), is a nondecreasing function of p and, therefore, we may define the
critical parameter as pc(d) := inf{p : θ(d, p) > 0}. Alves et al. [1] presented a necessary and
sufficient condition for the existence of a phase transition on Td , that is, for 0 < pc(d) < 1,
and also stated the bounds (d + 1)/(2d + 1) ≤ pc(d) ≤ (d + 1)/(2d − 2) for the critical
parameter. Their upper bound was later improved by Lebensztayn et al. [16], who proved
that pc(d) ≤ (d + 1)/(2d). Similar results were obtained by Lebensztayn et al. [14] for the
modified version of the model in which each active particle performs a self-avoiding discrete-
time random walk on the tree. In this paper we follow the approach in these papers. We refer
the reader to [1] and [9], and the references therein, for results related to the behavior of the
frog model when the lifetimes of the particles are not restricted. More precisely, Alves et al.
[1] obtained a shape theorem for the model on the d-dimensional hypercubic lattice, while
Hoffman et al. [9] studied recurrence/transience for the model on trees. The latter is a topic of
current research.

The paper is organized as follows. In Section 2 we define a frog model on directed trees
and obtain tight bounds for the critical parameter as a function of d. In Section 3 we compare
our model to three models (the original frog model, the self-avoiding frog model, and the cone
percolation with geometric radius), and improve several previously known bounds. Section 4 is
an interlude on renewal processes, containing results that we will use for our proofs. Section 5
contains the proofs, where our strategy will be to use the link, originally showed in [7], between
some long-range information propagation models on N and undelayed renewal sequences.

2. Frog model on directed trees

2.1. Definition of the model

We consider the directed rooted tree
−→
T d = (V,

−→
E ), defined by making all the edges of the

d-regular tree Td = (V, E) point away from the root. We define the distance between u, v ∈ V,
denoted by d(u, v), as the number of edges in the unique path connecting them. We write u < v

if u �= v and u is one of the vertices of the path connecting the root to v. In this paper we
consider a frog model on

−→
T d , that is, the active particles try to activate other particles localized

away from the root, as shown in Figure 1.
In order to define the model, let (�, F , P) be a probability space where the following random

objects are independent and well defined for any v ∈ V: (Sv
n)n≥0 is a discrete-time symmetric

random walk on
−→
T d starting from v, and Tv is an N-valued random variable satisfying P(Tv ≥

n) = c(dq)n for some c ∈ (0, 1] and q ∈ (0, 1) such that c(dq)n < 1 for any n≥ 1. The
random walk (Sv

n)n≥0 represents the trajectory of the particle starting at v and Tv represents its
lifetime. We now define the truncated random walk starting at v, (Rv

n)n≥0, by

Rv
n :=

{
Sv

n, n < Tv,

Sv
Tv−1, n ≥ Tv.

Observe that, by symmetry, for any n ≥ 1 and any u ∈ ∂T n
v := {u ∈ V : u > v, dist(v, u) = n},

P(Rv
n = u) = cqn. (1)

Remark 1. A number of authors have considered models in which the process is started with
a random number of particles at each vertex of the tree. We can also do this, but in order to
simplify the presentation, we only present the results in the one-per-site case. We refer the
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(a) (b) (c)

Figure 1: Realization of the frog model on T2. Active particles are represented as shaded circles, and
inactive particles as solid circles. Open circles indicate vertices of the graph, which may be unoccupied
or occupied by one or more particles. Solid arrows indicate the directions that particles may move on
the graph. Dashed arrows indicate the paths taken by activate particles in this example. (a) At t = 0, an
inactive particle located at the root becomes active. (b) At t = 1, the active particle has activated one of
the three available inactive particles. (c) At t = 2, the two active particles have activated a third particle.

reader interested in an extension to the random initial configuration to [16, Section 5] where
the changes required in the proofs are explained.

2.2. Results concerning frogs on directed trees

Let θ(d, c, q) denote the probability of survival of this model. Furthermore, for this model
a coupling argument can be used to show that for d ≥ 2, θ(d, c, q) is monotone nondecreasing
in q and, thus, there exists a critical parameter

qc(d, c) := inf{q > 0 : θ(d, c, q) > 0}.
Our first main result is an equality that the critical parameter qc must satisfy.

Theorem 1. For any fixed d ≥ 2 and c ∈ (0, 1], the critical value qc = qc(c, d) is the
solution to ∑

k≥1

c(dq)k
k−1∏
i=1

(1 − cqi) = 1. (2)

In particular, qc ∈ (0, 1/d).

Remark 2. We point out that there are different ways to present condition (2). The q-Poch-
hammer symbol is defined as (a; x)k := ∏k−1

i=0 (1 − axi) with the convention that (a; x)0 = 1.
Then, Theorem 1 states that qc is the solution of

∑
k≥1c(dq)k(cq; q)k = 1. An alternate way

of stating (2) is by considering f
(q)
k

:= cqk
∏k−1

i=1 (1 − cqi), k ≥ 1, a probability distribution
indexed by q (recall that c and d are fixed). Thus, letting Nq be a random variable with
distribution f

(q)
k , k ≥ 1, qc is such that EdNqc = 1.

We obtain the following bounds relating qc, d, and c.

Corollary 1. We have

(c + 1)(1 − √
1 − 4qc(c2/(c + 1)2))

2q2
c c2 ≤ d ≤ (c + 1)(1 − √

1 − 4(c2/(c + 1)2)qc(qc + 1)

2c2q2
c (qc + 1)

.
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In order to identify the bounds for qc as a function of c and d, we have to revert the
above bounds in order to isolate qc. This is carried out using MATHEMATICA®. Although
the obtained bounds are explicit functions of c and d, the expressions are not very friendly,
nor really informative, so for the sake of simplicity we do not include them here; we refer
he interested reader to [6, Equation (5)], which is a previous version of this paper. We use
these expressions to obtain our tightest numerical bounds, which are presented in the columns
‘Corollary 1’ of Tables 1 and 2. For instance, in Table 1 we present numerical bounds for our
frog model in the c = 1 case.

In the next corollary we present more explicit expressions.

Corollary 2. We have, for any d ≥ 3,

1

d(c + 1) − (c/(c + 1))2 ≤ qc(d) ≤ F(c, d) − √
F 2(c, d) − 224c2(c + 1)2

16c2 ,

where F(c, d) := 7d(c + 1)3 − 8c2. The lower bound also holds for d = 2.

3. Applications

Now we discuss the application of our results to some models in the literature. While the
applications that we will present in Subsections 3.2 and 3.3 are direct consequences of the
above results, the case of the cone percolation, that we first investigate, is an application of the
method of proof.

3.1. Cone percolation with geometric radius

The first application we discuss is an improvement of both the upper and lower bounds for
the critical probability of a long-range percolation model on

−→
T d called the cone percolation

model; see [11]. There is a random variable Xv associated to each vertex v ∈ V := V(Td),
representing a radius of propagation of a piece of information. The Xv are independent copies of
X ∼ geo(1−p) for some p ∈ (0, 1), and it is assumed that the information propagates through
the graph as follows. At time 0, only the root has the information. At time 1, all the vertices at a
distance of at most X0 from the root of the tree are informed. At each step, each newly informed
vertex v will inform all noninformed vertices v′ > v such that d(v, v′) ≤ Xv . Junior et al. [11]
proved that there exists a critical value p

cp
c (where ‘cp’ denotes cone percolation) above which

infinitely many vertices are informed (that is, the model percolates) with positive probability.
Our interest is to compare this information propagation with the frog model on the directed

tree, making c = 1 and q = p in (1). A quick look to the first step in the proof of Theorem 1
shows that (8) and (9) are also valid using the dynamics of the cone percolation in place of our
frog model. The remainder of the proof relies only on the dynamics along one single branch,
which is the same in both models with our choice of parameters. Thus, making c = 1 and
q = p, the results of our frog model are valid for the geometric cone percolation, and this leads
to the next proposition.

Proposition 1. The critical parameter p
cp
c is the solution in q of (2) with c = 1. More explicitly,

we have 0.266 667 ≤ p
cp
c (2) ≤ 0.277 206 and, for d ≥ 3,

1

2d − 1/4
≤ p

cp
c (d) ≤ (7d − 1)

(
1 − √

1 − 14/(7d − 1)2
)

2
.
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Table 1: Numerical values obtained by reverting Corollary 1 (with MATHEMATICA when c = 1) and
from Proposition 1 as well as the existing bounds from the literature.

Lower bounds Upper bounds
d

Corollary 1 Proposition 1 [11, Example 5.2] Corollary 1 Proposition 1 [11, Example 5.2]

2 0.269 594 0.266 667 0.250 000 0.277 206 0.277 206 0.292 893
3 0.174 659 0.173 913 0.166 667 0.176 343 0.176 559 0.183 503
4 0.129 326 0.129 032 0.125 000 0.129 961 0.130 258 0.133 975
5 0.102 709 0.102 564 0.100 000 0.103 015 0.103 255 0.105 573
6 0.085 188 0.085 106 0.083 333 0.085 358 0.085 544 0.087 129
7 0.072 777 0.072 727 0.071 428 0.072 882 0.073 027 0.074 179
8 0.063 525 0.063 492 0.062 500 0.063 594 0.063 710 0.064 585
9 0.056 361 0.056 338 0.055 556 0.056 408 0.056 503 0.057 191

10 0.050 649 0.050 632 0.050 000 0.050 684 0.050 762 0.051 316
15 0.033 618 0.033 613 0.033 333 0.033 628 0.033 664 0.033 908
20 0.025 159 0.025 157 0.025 000 0.025 163 0.025 184 0.025 320
30 0.016 737 0.016 736 0.016 667 0.016 738 0.016 748 0.016 807
50 0.010 025 0.010 025 0.010 000 0.010 025 0.010 028 0.010 050

100 0.005 006 0.005 006 0.005 000 0.005 006 0.005 007 0.005 012

These bounds improve the bounds presented in [11]; namely,

1

2d
≤ p

cp
c (d) ≤ 1 −

√
1 − 1

d
. (3)

See Table 1 for a comparison between (3) and Proposition 1.

3.2. Improved upper bounds for the original frog model and its self-avoiding version

Now we present an improvement of the known upper bounds for the critical parameter of
the original frog model, as well as the self-avoiding frog model, on Td . We start with the frog
model with one-per-site configuration, independent and identically distributed (i.i.d.) geometric
lifetimes of parameter 1 − p for some p ∈ (0, 1), and denote by po

c (d) its critical parameter
for d ≥ 2 (where ‘o’ denotes original, to point out that it refers to the original model). A useful
result in order to obtain an upper bound for po

c (d) is [16, Lemma 2.1]. It states that, for any
two vertices u and v such that u < v and d(u, v) = n ≥ 1, vertex v will be visited by the active
particle starting at u with probability rn, where

r = r(p) := d + 1 − √
(d + 1)2 − 4dp2

2dp
.

Our frog model on
−→
T d with c = 1 and q = r(p) can be coupled to the original frog model in

such a way that our model is below (in the sense that if our model survives, the original frog
model survives also). To this end, we start with the one-per-site configuration for both models
(our on

−→
T d and the original on Td ) and we realize both processes in such a way that an active

particle hits a given vertex in
−→
T d only if the corresponding particle on Td also hits this vertex.

Thus, if our frog model on
−→
T d with q = r(p) and c = 1 survives, the original frog model

with p also survives. So we can use the upper bound of Corollary 2 (and revert Corollary 1 for
d = 2) to obtain our next result.
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Table 2: Numerical values of the upper bounds for the original frog model and its self-avoiding version
from Corollory 1 and Proposition 2, and existing values from the literature.

Upper bound—original frog model Upper bound —self-avoiding frog model
d

Corollary 1 Proposition 2 [16, Theorem 4.1] Corollary 1 Proposition 3 [14, Theorem 2.1]

2 0.720 836 0.720 836 0.750 000 0.648 045 0.648 045 0.697 224
3 0.645 182 0.645 837 0.666 667 0.599 063 0.600 229 0.627 719
4 0.608 681 0.609 897 0.625 000 0.574 870 0.576 225 0.594 875
5 0.586 944 0.588 174 0.600 000 0.560 271 0.561 544 0.575 571
6 0.572 482 0.573 624 0.583 333 0.550 468 0.551 621 0.562 829
7 0.562 156 0.563 197 0.571 429 0.543 421 0.544 461 0.553 778
8 0.554 410 0.555 358 0.562 500 0.538 107 0.539 048 0.547 013
9 0.548 384 0.549 249 0.555 556 0.533 955 0.534 812 0.541 764

10 0.543 561 0.544 355 0.550 000 0.530 620 0.531 406 0.537 571
15 0.529 076 0.529 632 0.533 333 0.520 543 0.521 093 0.525 021
20 0.521 822 0.522 248 0.525 000 0.515 458 0.515 881 0.518 759
30 0.514 559 0.514 848 0.516 667 0.510 341 0.510 628 0.512 503
50 0.508 741 0.508 917 0.510 000 0.506 222 0.506 397 0.507 501

100 0.504 373 0.504 461 0.505 000 0.503 118 0.503 206 0.503 750

Proposition 2. We have po
c (2) ≤ 0.720 836 and, for d ≥ 3,

po
c (d) ≤ (d + 1)[(7d − 1) − √

(7d − 1)2 − 14]
d(7d − 1)2 − 7d + 2 − d(7d − 1)

√
(7d − 1)2 − 14

.

This upper bound improves the bound presented in Lebensztayn [16], that is,

po
c (d) ≤ d + 1

2d
.

In the left panel of Table 2 we present a numerical comparison between the upper bounds.
We point out that the bound obtained in [16] was an improvement over that of [5], in which the
authors obtained po

c (d) ≤ (d + 1)/(2d − 2).
Now we consider the self-avoiding version of the frog model on Td introduced in [14]. The

only difference with respect to the preceding model is that each particle performs a self-avoiding
random walk on Td when it is activated. Again, a coupling argument allows us to compare
this model with the frog model on

−→
T d , but now taking c = d/(d + 1) and q = p/d in (1).

In the coupled versions, we remove the activated particles of
−→
T d for which the corresponding

particle on Td jumps in the direction of the root. In any other case both particles follow the
same trajectory away from the root with the same geometric lifetimes. We see that survival
for our model implies survival for the self-avoiding frog model. So here, denoting by psa

c (d)

(where ‘sa’ denotes self avoiding) the critical parameter of the self-avoiding model, we can
also use the upper bound of Corollary 2 (and revert Corollary 1 for d = 2) to obtain the next
proposition.

Proposition 3. We have psa
c (2) ≤ 0.648 046 and, for d ≥ 3,

psa
c (d) ≤ (d + 1)2 F(d/(d + 1), d) − √

F 2(d/(d + 1), d) − 224c2(d/(d + 1) + 1)2

16d
,

where we recall that F(c, d) := 7d(c + 1)3 − 8c2.
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This upper bound improves the bound obtained in [14], that is,

psa
c (d) ≤ 1

2

(
2d + 1 −

√
4d2 − 3

)
. (4)

In Table 2 we present a numerical comparison between (4) and Proposition 3.

3.3. Frog model with removal at visited vertices

In the previous subsection we presented some improvements for the original frog model
and its self-avoiding version on Td . As a final application of our results, we discuss another
version of the frog model which has not been explored on infinite graphs. It is a frog model
with i.i.d. geometric lifetimes of parameter 1 − p, in which we remove any particle which did
not activate any other particles for L number of times, where L ≥ 1. This modification was
suggested by Popov [18] and to the best of the authors’ knowledge, the only rigorous results
on infinite graphs are proved in Z for some related models; see, for example, [15] and the
references therein. On the other hand, the model has been well studied on some finite graphs.
In such a case the issue of interest is the study of the final proportion of visited vertices at the
end of the process. In this direction, Alves et al. [2] obtained the first results for the model
defined on a complete graph with L = 1 and p = 1 by means of a mean-field approximation
analysis and computational simulations. Their work was later generalized by Kurtz et al. [12]
for L ≥ 1 and p = 1 in the form of limit theorems obtained for the proportion of visited
vertices at the absorption time in the process as the size of the graph goes to ∞. More recently,
Lebensztayn and Rodriguez [13] stated the connection between this model and the well-known
Maki–Thompson rumor model; see [17]. In view of the connection obtained in [13], one may
consider the model presented here as a rumor process on a moving population.

If we consider this model on Td , starting from a one-per-site configuration, then a realization
of the resulting process when L = 1 coincides with a realization of our general frog model
on

−→
T d , making c = 1 and q = p/(d + 1) in (1). Therefore, denoting by pr

c(d) the critical
parameter of this model (where ‘r’ denotes removal) with L = 1, we directly obtain the next
proposition.

Proposition 4. The critical parameter pr
c is the solution in p of (2) with c = 1 and q =

p/(d + 1). More explicitly, we have 0.8 ≤ pr
c(2) ≤ 0.831 619, and, for d ≥ 3,

d + 1

2d − 1/4
≤ pr

c(d) ≤ (d + 1)(7d − 1)
(
1 − √

1 − 14/(7d − 1)2
)

2
.

4. Interlude: renewal convergence rates

In our proofs we use a parallel between information propagation on N and undelayed renewal
sequences. For this reason we dedicate this section to the description of some aspects of
renewal theory. Let T = (Tn)n≥1 be an i.i.d. sequence of random variables, taking values in
{1, 2, . . .}∪{∞} with common distribution (fk)k∈{1,2,...}∪{∞}. The undelayed renewal sequence
is the {0, 1}-valued stochastic chain Y = (Yn)n≥0 defined through Y0 = 1 and, for any n ≥
1, Yn = 1(T1 + · · · + Ti = n for some i). The distribution (fk)k∈{1,2,...}∪{∞} is called the
interarrival distribution. The well-known renewal theorem states that

P(Yn = 1) → 1

ET

with the convention that 1/∞ = 0. The question of identifying the rate at which this
convergence holds (renewal convergence rate), based on the interarrival distribution is a very
classical one; see the introduction of [8] for a rapid survey.
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For our purposes, we first observe that the renewal property implies that

P(Yn = 1)P(Ym = 1) = P(Yn+m = 1 | Yn=1)P(Yn = 1)

= P(Yn = 1, Yn+m = 1)

≤ P(Yn+m = 1).

This means that, in particular, log P(Yn = 1) is super-additive; thus, by Fekete’s lemma, it
follows that limn(1/n) log P(Yn = 1) exists. We introduce the renewal convergence rate of the
process, γ , defined through

log γ := − lim
n

1

n
log P(Yn = 1).

Naturally, the value of log γ depends on the interarrival distribution. Here we focus (having in
mind a future application to the frog model described in Section 2) on the interarrival distribution
having the property that the hazard rate

hk := fk∑
i≥k fi

= cqk, k ≥ 1,

for some c > 0 and q ∈ (0, 1). Conversely, we have the following expression for fk:

fk = cqk
k−1∏
i=1

(1 − cqi), k ≥ 1, (5)

with the convention
∏0

i=1(1 − cqi) = 1. This is a defective probability distribution since

P(T ≥ n) =
∑
k≥n

fk =
n−1∏
i=1

(1 − cqi) →
∏
i≥1

(1 − cqi) > 0. (6)

So we have f∞ := P(T = ∞) = ∏
i≥1(1 − cqi) > 0.

In the proofs of our results we make use of the next two lemmas.

Lemma 1. For a renewal process with interarrival distribution given by (5), we have

∑
k≥1

γ kcqk
k−1∏
i=1

(1 − cqi) = 1.

Proof. From [3, Theorem 3.5], if for some defective distribution (fk)k∈{1,2,...}∪{∞} there
exists some α > 1 such that

F(α) :=
∑
n≥1

αnfn = 1, (7)

then the limit limn αn
P(Yn = 1) = (

∑
nnαnfn)

−1.
In our case (recall that fn, n ≥ 1 satisfies (5)), we can prove that (7) actually holds for some α.

This fact was proved, for example, in [4, Proof of Proposition 2(iii)]. For completeness, we
include the argument here. Observe first that F(1) = P(T < ∞) < 1. Moreover, by (5)
and (6), we have fn/(cq

n) → ∏
i≥1(1 − cqi) > 0 meaning that, in particular, the radius

of convergence of F , limn f
−1/n
n = limn(cq

n)−1/n = q−1, which is larger than 1. Thus,
F(1) < 1 and we can find δ ∈ (1, q−1) such that 1 < F(δ) < +∞. By continuity of F , there
exists α such that F(α) = 1.
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So (7) holds for some 1 < α < q−1, meaning, moreover, that (
∑

nnαnfn)
−1 ∈ (0, ∞).

Using [3, Theorem 3.5], we have

0 = − lim
n

log αn
P(Yn = 1)

n

= − lim
n

log P(Yn = 1)

n
− lim

n

log αn

n

= − lim
n

log P(Yn = 1)

n
− log α;

therefore, − limn log P(Yn = 1)/n = log α > 0, and α is indeed the renewal convergence
rate γ of the process. �

In the next lemma, we consider that c is fixed, and thus γ can be seen as a function of q.

Lemma 2. It holds that γ is a continuous function of q on q ∈ (0, 1/cd).

Proof. Fix q ∈ (0, 1/cd) and consider any sequence qε → q as ε → 0, where qε ∈
(0, 1/cd). Define naturally fk,ε := cqk

ε

∏k−1
i=1 (1 − cqi

ε), k ≥ 1, and observe that fk,ε → fk

for any k ≥ 1. For any ε, we can use the proof of Lemma 1 to show that there exists a unique
solution α > 1 of

Fε(α) :=
∑
n≥1

αnfn,ε = 1.

We naturally denote this solution by γ (qε). Observe, moreover, that we can find δ ∈ (1, q−1)

such that F(δ) > 1 and Fε(δ) < ∞ for any sufficiently small ε. In these conditions, it
was proved in [19] that γ (qε) → γ (q), showing that γ is a continuous function of q on
(0, 1/cd). �

5. Proofs of the main results

Proof of Theorem 1. The proof comprises three main steps. First, we transform the problem
of survival of the frog model on the tree into that of controlling the propagation along one single
branch (see(8) and (9) below). Second, we use a result of [7] which implies that the probability
that the dynamics along one single branch reaches distance n is equal to the probability that a
specific renewal process renews at time n. This allows us to relate to the preceding section, and
specifically to prove that γc := γ (qc) = d . Finally, we conclude the proof using Lemma 1 of
the preceding section.

Step 1. We use a simple union bound for the lower bound on the critical parameter,
and a classical coupling with branching processes for the upper bound. We introduce An

and A∞ to respectively denote {a frog at distance n of the root is activated} and {infinitely
many frogs are activated}. Fix d ≥ 2 and c > 0, and consider our frog model parametrized
by q. Naturally, we have θ(q) = Pq(A∞) = limn Pq(An). For any v ∈ V, let Av :=
{the frog of vertex v is activated}.

To find a lower bound for qc, observe that Pq(An) = Pq(
⋃

v : d(0,v)=n Av) ≤ dnpq,n, where
pq,n denotes the common value (by symmetry) of the Pq(Av) for any v at distance n of the
root. Thus,

dnpq,n → 0 �⇒ q < qc. (8)

In other words, to find a nontrivial lower bound for qc, it is sufficient to find a value q > 0 such
that the left-hand side of (8) holds.
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0

0

0

Figure 2: First three steps of the firework process. The open, shaded, and solid circles are sites that
represent ignorants, spreaders from earlier stages, and current spreaders, respectively.

In order to find an upper bound for qc, we couple our frog model, rescaled by some length
n ≥ 1, with a branching process. The coupling is the same as the one used in [14, Section 3.1]
and [16, Section 3], so we only describe it informally here. The individuals of the branching
process are identified with vertices of the tree recursively as follows. Originally, there is one
individual which is the root. Its offspring is identified with the set of vertices at distance n from
the root which are visited by active frogs at some time of the process. That is, a vertex v is
identified with an individual of the offspring of the root provided d(0, v) = n and the event Av

occurs. Recursively, we start one active frog from each vertex v of the offspring of the (k−1)th
generation, and identify its offspring (of the kth generation) with the set of vertices visited by
active frogs and which are at distance n from v.

The resulting branching process is below our frog model in the sense that if it survives, our
model survives also. Note that the offspring distribution of the first generation (children of the
root) is different from the others, since on

−→
T d , there are (d +1)dn−1 vertices at distance n from

the root (whereas there are dn at distance n from any other vertex). This has no effect on the fact
that the branching process survives if there exists N ≥ 1 such that Ep(

∑
v : d(0,v)=N 1(Av)) =

dNpq,N > 1. This is also a sufficient condition for our frog model, so

there exists N : dNpq,N > 1 �⇒ q ≥ qc. (9)

Step 2. With (8) and (9) in hand, we obtain information about pq,n, n ≥ 1, the probability
that a given vertex at distance n from the root is activated. In other words, we investigate how
the process propagates along one single branch of the tree, since this is the only way to reach
this vertex. At this stage we make a comparison with another process in the literature, originally
introduced in [10] under the name of a ‘firework process’ to model information spreading on N.
We briefly describe this model. We start with one spreader at site 0 and ignorants at all the
other sites of N. The spreaders transmit the information within a random distance, which are
independent copies of an N-valued random variable D, on their right; see Figure 2.

Gallo et al. [7, Lemma 1] stated that the probability the firework process on N reaches site n

is equal to the probability that an undelayed renewal sequence (see Section 4 above) Y with
hazard rate

hk := fk∑
i≥k

fi = P(D ≥ k)

renews at time n.
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Returning to the dynamics of the frogs along one single branch, we identify the branch with N

and our active/inactive particles with spreaders/ignorants. The i.i.d. radius of transmission
corresponds to the reach of the random walks of the activated frogs along the corresponding
branch in

−→
T d . From this parallel we have pq,n = P(Yn = 1) if we take P(D ≥ k) = cqk .

As explained in Section 2, there exists γ > 0 such that log γ = − limn(1/n) log P(Yn = 1).
Suppose that d/γ > 1 (respectively, d/γ < 1). There exists ε = ε(d, γ ) > 0 such that
(d/γ )e−ε > 1 (respectively, (d/γ )eε < 1). On the other hand, by the definition of the limit,
we know that for any ε > 0, there exist N such that for any n ≥ N , we have e−n(log γ+ε) ≤
P(Yn = 1) ≤ e−n(log γ−ε); thus, in particular,(

d

γ
e−ε

)n

≤ dn
P(Yn = 1) ≤

(
d

γ
eε

)n

.

We therefore have the following sequence of implications:

d

γ
> 1 �⇒ there exists ε : d

γ
e−ε > 1 �⇒ there exists N : dN

P(YN = 1) > 1.

Conversely,

d

γ
< 1 �⇒ there exists ε : d

γ
eε < 1

�⇒ dn
P(Yn = 1) ≤

(
d

γ
eε

)n

→ 0 for all n ≥ N.

Thus, using (8) and (9), and recalling that γ = γ (q) is a function of q, we have proved that

γ (q) > d �⇒ q < qc and γ (q) < d �⇒ q ≥ qc.

Owing to Lemma 2, we necessarily have γ (qc) = d. Indeed, from the previous relations,
observe that d ≤ limq↗qc γ (q) = γ (qc) = limq↘qc γ (q) ≤ d.

Step 3. To conclude the proof, we use Lemma 1, that is,

∑
k≥1

γ k(q)cqk
k−1∏
i=1

(1 − cqi) = 1.

Thus, we have ∑
k≥1

dkcqk
c

k−1∏
i=1

(1 − cqi
c) = 1. �

Proof of Corollary 1. We have to find bounds for
∑

k≥1d
kcqk

c
∏k−1

i=1 (1 − cqi
c) = 1. For

n ≥ 2, we can show that

1 − cq − cq2 ≤
n−1∏
i=1

(1 − cqi) ≤ (1 − cq),

where the right-hand side is trivial, and the left-hand side follows easily by recursion. Now we
have

cdqc + (1 − cqc − cq2
c )c

∑
n≥2

(dqc)
n ≤ 1 ≤ cdqc + (1 − cqc)c

∑
n≥2

(dqc)
n. (10)
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The first inequality of (10) yields

d ≤ (c + 1)
(
1 − √

1 − 4(c2/(c + 1)2)q(q + 1)
)

2c2q2(q + 1)
,

while the second inequality of (10) yields

d ≥ (c + 1)
(
1 − √

1 − 4q(c2/(c + 1)2)
)

2q2c2 . �

Proof of Corollary 2. Using the fact that
√

1 − x ≤ 1 − 1
2x − 1

8x2 for x ∈ [0, 1], we obtain

d ≥ 1 + q(c2/(c + 1)2)

(c + 1)q
.

Reverting this inequality yields the lower bound of the corollary. On the other hand, using the
fact that

√
1 − x ≥ 1 − 1

2x − 1
7x2 for x ∈ [0, 0.24], we obtain

d ≤ 1 + (8c2/7(c + 1)2)q(q + 1)

(c + 1)q
(11)

when 4c2(c + 1)−2q(q + 1) ≤ 0.24. Recalling that c ≤ 1, it is enough to prove that this
inequality holds with c = 1. From Table 1, we see that the inequality qc(qc + 1) ≤ 0.06 holds
for d ≥ 3. Reverting (11) yields the upper bound of the corollary. �
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