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A Synthesis of Two Factor Estimation Methods

Gregory Connor, Robert A. Korajczyk, and Robert T. Uhlaner∗

Abstract

Two-pass cross-sectional regression (TPCSR) is frequently used in estimating factor risk
premia. Recent papers argue that the common practice of grouping assets into portfolios to
reduce the errors-in-variables (EIV) problem leads to loss of efficiency and masks potential
deviations from asset pricing models. One solution that allows the use of individual assets
while overcoming the EIV problem is iterated TPCSR (ITPCSR). ITPCSR converges to
a fixed point regardless of the initial factors chosen. ITPCSR is intimately linked to the
asymptotic principal components (APC) method of estimating factors since the ITPCSR
estimates are the APC estimates, up to a rotation.

I. Introduction

Cross-sectional regression has long been an important tool in evaluating
asset pricing models, beginning with the classic work of Lintner (1965), Black,
Jensen, and Scholes (1972), and Fama and MacBeth (1973). In the standard cross-
sectional regression framework, one begins with a postulated factor model for
asset returns. In the first step, time-series regressions of asset returns on risk
factors are used to estimate the factor loadings, or betas, of the assets. In the
second step, cross-sectional regressions of asset returns on asset betas are used
to estimate the factor-mimicking returns and the zero-beta return (Fama (1976)).
Time-series means of these portfolio returns are often used to estimate uncondi-
tional factor risk premia. We call this procedure two-pass cross-sectional regres-
sion (TPCSR). TPCSR has been applied by many researchers to the estimation
of factor returns and testing of asset pricing models (some examples, in addi-
tion to those above, are Fama and French (1992), Lettau and Ludvigson (2001),
and Jagannathan and Wang (2007)). Econometric analyses of the properties of the
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TPCSR estimator include Shanken (1982), (1983), (1992), Jagannathan and Wang
(1998), Kan and Zhang (1999), Skoulakis (2008), Kleibergen (2009), Jagannathan,
Skoulakis, and Wang (2010), and Lewellen, Nagel, and Shanken (2010).

Since the factor loadings from the first-stage regression are estimated with
error, the second-stage risk premium estimates suffer from an errors-in-variables
(EIV) bias. A common approach to reducing EIV bias is to use portfolios rather
than individual assets in the second-stage regression. Diversification inherent in
portfolios reduces the error in the estimated factor loadings and, therefore, reduces
the bias in the second-stage regression. An ancillary cost to forming portfolios is
reduction in the cross-sectional dispersion in factor loadings, which reduces the
precision of the risk premium estimates. Ang, Liu, and Schwarz (2010) show
that using estimated factor loadings from portfolios reduces the precision of the
estimated risk premia.

The EIV problem motivates the use of portfolios for estimating factor load-
ings. Alternatives that can take advantage of the efficiency gains of using in-
dividual stocks without the associated EIV bias include maximum likelihood
estimation (MLE) (as in Ang et al. (2010)) or iterated TPCSR (ITPCSR) (as in
Kruskal (1978), Brown and Weinstein (1983), and Shanken (1983)).1

We analyze ITPCSR in which each iteration uses the last iteration’s factor
beta estimates as the new inputs for the cross-sectional regression. We show that
ITPCSR has a fixed point. That is, iterating the TPCSR until convergence leads to
the same factor estimates, independent of the choice of the initial factors. Thus,
starting with the Fama and French (1993) 3-factor model, or a model using three
macroeconomic series, or three nonsensical factors (like sunspot numbers) leads
to the same final estimates (up to a k-dimensional rotation, where k is the number
of factors).

In statistical factor models, such as asymptotic principal components (APC),
factor estimates are not dependent on prespecification of the nature of the eco-
nomic factors but are statistically derived factor returns that explain the observed
common movements across assets (see Connor and Korajczyk (1986), (1988)).
Given that ITPCSR requires the researcher to take a stance on the nature of
the economic factors and APC uses only the returns data to define the factors,
the approaches seem to be quite distinct. We show they are not distinct. The
ITPCSR factor estimates are identical to the APC factor estimates (again, up to a
k-dimensional rotation).

This paper provides a new look at factor estimation techniques by synthe-
sizing two existing approaches: iterated two-pass cross-sectional regression and
asymptotic principal components. This synthesis has interest in its own right,
since it unifies two previously disparate methodologies. It also leads to the deriva-
tion of several new results about these estimators and some suggestions for esti-
mation and testing strategies. In the simple constrained case (the only case we
treat in detail), the two estimators are identical, and therefore the more difficult

1A separate, but related, issue is choosing the set of test assets used to evaluate a set of prospective
factors. Lewellen et al. (2010) suggest expanding test assets beyond the often-used size and book-to-
market sorted portfolios, since the cross section of mean returns of these portfolios is strongly related
to many alternative factor models.
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and time-consuming one (ITPCSR) is redundant. Nonetheless, our equivalence
result has a range of implications in the use and potential extensions of TPCSR
and statistically based factor estimation methods.

In Section II, we consider the balanced-panel case, in which all assets in
the sample have observed returns each period. In Section III, we extend the tech-
niques to the case of an unbalanced panel. Section IV presents our empirical and
simulation findings, and Section V concludes.

II. Estimating Factor-Mimicking Portfolio Returns from a
Balanced Panel

We assume that the returns on all securities obey a multibeta asset pricing
model, as, for example, the capital asset pricing model (CAPM) or an equilib-
rium version of the arbitrage pricing theory (APT) (Connor (1984)). Let en be an
n-vector of 1s. Let B be an n×k matrix of factor loadings, or betas. Let rf ,t denote
the zero-beta return for period t, ft denote the k-vector of zero-mean factor shocks
at period t, and μt denote the k-vector of factor risk premia at period t. Let εt be
an n-vector of idiosyncratic returns, and let rt denote the n-vector of asset returns,
which we assume are independent and identically distributed (i.i.d.) across time.
The equilibrium asset pricing model implies

rt − enrf ,t = B(μt + ft) + εt,(1)

where E[ft] = 0 and E[εt] = 0. We strengthen the 0 expectation to hold conditional
on ft, E[εt | ft] = 0. We need no additional structure on returns for most of our
results.

A. Estimation Using ITPCSR

Now we will discuss the estimation of B and μt + ft using TPCSR. Let Rt

denote the n-vector of excess returns, rt − enrf ,t, and R denote an n × T matrix
of realized excess returns on the n securities for T time periods. We will assume
throughout this section that the panel of observed returns is balanced, that is,
there are no missing observations. In matrix notation we can write the security
returns as

R = BF + φ,(2)

where F is the k × T matrix of the realizations of the factors plus risk premia
and φ is the n × T matrix of idiosyncratic returns. Suppose that we begin with
initial estimates of F, which we will call F0. Many models prespecify a par-
ticular set of portfolio returns or macroeconomic innovations as the underlying
factors. For example, for the CAPM, F0 is the T-vector of realized excess returns
on the market portfolio proxy; for the Chen, Roll, and Ross (1986) implementa-
tion of the APT, F0 is the k × T matrix of macroeconomic innovations (in which
case F0 contains only the factor shocks, ft, and not the risk premia, μt); and for
the Fama and French (1993) model, F0 is the 3 × T matrix of excess returns on
the market and two zero-investment portfolios: high-minus-low book-to-market
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ratio (HML) and small-minus-big market capitalization (SMB). Let B̂0
i,• be the

coefficients from a time-series ordinary least squares (OLS) of Ri,• (where for a
matrix X, Xi,• denotes the ith row of X and X•, j denotes the jth column of X) on
F0, and let B̂0 be the n × k matrix of estimated coefficients from all n of these
time-series regressions, i= 1, . . . , n:

B̂0 = RF0′(F0F0′)−1.(3)

Given the estimated matrix of factor betas, B̂0, we can compute the excess returns
on factor-mimicking portfolios by second-pass, cross-sectional regressions of re-
turns on the matrix of estimated betas (Fama (1976), ch. 9). Let F̂1 denote the
k × T matrix of these TPCSR estimates of the factors plus risk premia from the
cross-sectional OLS regression of excess returns on B̂0:

F̂1 = (B̂0′B̂0)−1B̂0′R.(4)

Equations (3) and (4) are standard and appear in many variations throughout the
empirical asset pricing literature.2 Most analysts include an intercept in the first-
pass regressions, and some include an intercept in the second-pass regression.
If the factors are portfolio excess returns (as they are after the first iteration in our
setting), Shanken (1983) has noted that including an intercept produces a loss of
estimation efficiency if equation (1) is the true return model. Yuan and Savickas
(2009) argue that the restricted (no-intercept) estimates yield significantly im-
proved estimates, and Lewellen et al. (2010) argue that imposing the asset pricing
restrictions provides significant improvement in our ability to evaluate alternative
asset pricing models. We impose the asset pricing restrictions and do not include
an intercept.

Our iterative TPCSR procedure uses the “output” of equation (4), F̂j, as input
into equation (3) to estimate B̂ j. Equations (3) and (4) are reestimated in turn until
we reach a fixed point. The final estimates at convergence solve

F̂ = (B̂′ B̂)−1B̂′R(5)

and

B̂ = RF̂′(F̂F̂′)−1.(6)

Kruskal (1978), Brown and Weinstein (1983), and Shanken (1983) show that
iterating until convergence produces an n-consistent3 MLE for F. Lemma 1 in the
Appendix proves the existence of a solution to equations (5) and (6) but also

2We use a very simple formulation of the TPCSR algorithm. There are nearly as many variations
and enhancements to TPCSR as there are implementations. Some authors use rolling estimates of B,
while some use the full sample to estimate the factor loadings, as we do here. Various authors have
suggested generalized least squares (GLS) or weighted least squares in the first pass (time-series) or
second pass (cross-sectional) regressions. The correct weighting matrix is never known, but various
proxies have been suggested. Since we are using the full cross section of assets, full GLS is not
feasible, since it requires the inversion of an n× n matrix.

3By n-consistency, we mean that the estimate approaches the true value as the number of cross-
sectional observations grows large. See Shanken ((1983), pp. 47–50).
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shows that the solution is not unique. The nonuniqueness problem is easily reme-
died. There exists a unique solution to equations (5) and (6) that is optimal in the
sense of minimizing the estimated variance of idiosyncratic returns. We eliminate
the indeterminacy by adding this condition to equations (5) and (6):

F̂ = arg min trace
(
φ̂′φ̂
)
,(7)

where φ̂ = R − B̂F̂. We call the unique matrix that solves equations (5), (6), and
(7) the iterative TPCSR estimate.

The estimator defined by the fixed point in equations (5) and (6) is an MLE
only under the assumption that the covariance matrix of idiosyncratic returns
V = σ2I. With cross-sectional heteroskedasticity, the estimator is quasi-MLE.
Theoretically, estimates of the factors with more precision could be obtained
by applying GLS in the estimation (e.g., Lewellen et al. (2010)) if V is known.
For large n > T, full GLS is not feasible, since it requires the inversion of V̂ ,
which is singular. Imposing some additional structure on V may allow the use of
a restricted version of GLS. In unreported results, we simulate returns following a
strict factor model with cross-sectional heteroskedasticity (i.e., V equal to a diag-
onal matrix) and estimate factors using OLS and weighted least squares (WLS).
The OLS and WLS estimates converge to the same factor estimates.

B. Estimation Using Asymptotic Principal Components

Connor and Korajczyk (1986) suggest APC as an alternative method of esti-
mating factor portfolio returns. Let Ω denote the T × T cross-product matrix of
excess returns:

Ω =
R′R

n
.(8)

Let F̂ denote the k × T matrix of the k eigenvectors of Ω corresponding to
the largest k eigenvalues of Ω. Connor and Korajczyk (1986) show that F̂ is an
n-consistent estimate of F, which they call the asymptotic principal components
estimator.

C. The Equivalence of ITPCSR and APC Estimators

Observe that if F is replaced by LF in the factor model of equation (2), where
L is any nonsingular k × k matrix, the return model is unaltered if B is replaced
by BL−1. This is referred to as the “rotational indeterminacy” of factor models.
Therefore, to show the equivalence of two estimators, we need only to show that
they are nonsingular linear transformations of each other. Iterative TPCSR pro-
vides estimates that are identical to APC up to a linear transformation regardless
of the initial factors chosen, F0.

Theorem 1. F̂ is the iterative TPCSR estimate if and only if LF̂ is the APC estimate
for some nonsingular matrix L. (The proof is in the Appendix.)

Note that Theorem 1 is an algebraic, rather than probabilistic, relationship
between estimators. The two estimates are exactly equal for any sample, and this
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equality does not require any assumptions about the true return distribution of the
assets. It relies on showing that a fixed point solution to equations (5) and (6)
must consist (up to a rotation) of exactly k eigenvectors of Ω and, if the solu-
tion also obeys equation (7), these eigenvectors must correspond to the k largest
eigenvalues (which we will call the “first k” eigenvectors, implicitly ordering from
largest eigenvalue to smallest).

We have not analyzed the statistical properties (e.g., unbiasedness,
n-consistency) of iterative TPCSR. Because of Theorem 1, this is not necessary.
All of the properties of APC carry over unchanged to iterative TPCSR. Addition-
ally, note that the MLE result for ITPCSR (Kruskal (1978), Brown and Weinstein
(1983), and Shanken (1983)) thereby applies to APC. See Connor and Korajczyk
(1986), (1988) for a discussion of the statistical properties of APC under a set of
assumptions on the return-generating process.

The convergence properties of iterating TPCSR to the fixed point are
interesting. It is easily shown (see the proof of Theorem 1) that any set of k eigen-
vectors, not just the first k, will give a fixed point of equations (5) and (6). This
means that if we started the iteration using any set of k eigenvectors as factors, the
repeated regressions would remain at that local minimum. However, from a typ-
ical arbitrary starting point that is not a set of eigenvectors, the repeated two-step
regression minimizations are drawn toward the joint minimum given by equation
(7). We have not proven that the iteration is convergent almost everywhere within
the vector space of initial factors, but we have found quick convergence in all our
test cases.

Theorem 1 shows the equivalence of APC and iterative TPCSR only up to
an arbitrary nonsingular transformation. In some applications, this arbitrary trans-
formation is important and cannot be ignored. Consider, for example, the TPCSR
application to macroeconomic factor models (Connor, Goldberg, and Korajczyk
(2010), ch. 6). One begins by specifying a set of economic variates whose inno-
vations serve as reasonable proxies for shifts in the consumption and investment
opportunity sets (e.g., industrial production, the term structure, corporate bond
premia, and long- and short-term inflation). These are used as the initial inputs
for the factors. Typically, one cycle of TPCSR is estimated (i.e., equations (3) and
(4)) to produce estimates of factor returns. Each factor estimate represents the
excess return to a portfolio with unit sensitivity to an inputted economic shock.
For example, the first factor captures the excess return from holding industrial
production risk, the second factor captures the excess return from holding term
structure risk, and so on. This relationship between estimated factors and eco-
nomic variates is not preserved across rotations. Suppose that instead of stopping
after a single iteration, one iterates the TPCSR to convergence. The final factor
estimates will be identical to APC except that they will differ by a rotation. In the
case where we wish to interpret the risk premia associated with particular eco-
nomic factors, the iterative TPCSR estimates might be preferred to those from
APC. However, the APC factor estimates can be rerotated to match the economic
factors (e.g., see Connor and Korajczyk (1991)).

One of the advantages of APC is that it can be applied to individual asset
returns, since it does not require portfolio grouping. In most applications, TPCSR
is known to require portfolio grouping in order to eliminate (or at least mitigate)
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the EIV problems from using estimated betas in the cross-sectional regressions
(see Fama and MacBeth (1973) for a discussion). However, in the restricted
form of ITPCSR that we use (no nonfactor characteristics, no estimation of the
zero-beta return, pricing restriction imposed), there is no EIV bias from using
estimated betas.4 With nonfactor characteristics included, or with estimation
of the zero-beta return or mispricing terms, portfolio grouping is required for
n-consistency.5

Our equivalence result does not invalidate the use of TPCSR in all circum-
stances. It does provide justification for cross-checking or supplementing empir-
ical analysis based on TPCSR with the comparative use of statistically estimated
factors. Valid risk premia estimated by TPCSR should correspond, at least approx-
imately, to a linear rotation of statistically estimated factor risk premia. Statistically
estimated factor risk premia, which can be rotated as needed, provide an obvi-
ous alternative to TPCSR-estimated risk premia. Whether it is preferable to use
TPCSR or statistically estimated risk premia may depend on the particular objec-
tive of the empirical analysis. This equivalence also has relevance when deciding
upon the number of factors to use in a TPCSR-estimated model. The number
of TPCSR-estimated factors should not exceed the number of statistical factors;
otherwise, at least one of the TPCSR-estimated factors is not truly providing an
independent influence on returns.

III. Estimating Factor-Mimicking Portfolio Returns from an
Unbalanced Panel

It is not unusual for empirical analyses of factor models to estimate factor-
mimicking portfolios from balanced panels of data (e.g., Roll and Ross (1980),
Connor and Korajczyk (1988), Lehmann and Modest (1988), and Jones (2001)).
However, requiring a balanced panel induces survivorship bias into the sample
used to construct factor-mimicking portfolios. Connor and Korajczyk (1987)
suggest a method of factor estimation with missing data. This procedure esti-
mates Ωu over the observed data (the u superscript denotes an unbalanced panel).
Define Ii,t = 1 if the {i, t} element of R is observed, and Ii,t = 0 otherwise, and
define the {t, τ} element of Ω as

Ωu
t,τ =

n∑
i=1

Ii,tIi,τRi,tRi,τ

n∑
i=1

Ii,tIi,τ

.(9)

Factor-mimicking portfolio returns are estimated from the eigenvectors of the
redefined Ωu. We will take a slightly different, quasi-MLE, approach here. Under
stronger assumptions than are necessary for consistency of the APC estimator

4Although Shanken (1983) does not consider this case explicitly, it is easy to derive from his
results. See Shanken ((1983), pp. 51–53) and consider the case in which the cross-sectional regressions
do not include an intercept.

5See Miller and Scholes ((1972), pp. 60–63).
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(i.e., φi,t ∼ i.i.d. N(0, σ2)) the MLE of {B,F} minimizes the nonlinear least
squares objective function (see Stock and Watson (1998)):

Λ = (nT)−1
n∑

i=1

T∑
t=1

Ii,t(Ri,t − Bi,•F•,t)2.(10)

The first-order conditions are

F•,t =

(
T∑

t=1

Ii,tB
′
i,•Bi,•

)−1( T∑
t=1

Ii,tB
′
i,•Ri,t

)
(11)

and

Bi,• =

(
T∑

t=1

Ii,tRi,tF
′
•,t

)(
T∑

t=1

Ii,tF•,tF′•,t

)−1

,(12)

which correspond to the time-series and cross-sectional regressions (5) and (6)
applied to the observed data in the unbalanced panel. We can obtain the MLEs of
F and B by iterating between the first-order conditions, equations (11) and (12)
(Stock and Watson (1998)), which is ITPCSR applied to the observed data. An
alternative approach to obtaining the MLEs is to minimize Λ using the EM algo-
rithm of Dempster, Laird, and Rubin (1977). Let Λ∗ denote the negative complete
data log-likelihood function

Λ∗(B,F) = (nT)−1
n∑

i=1

T∑
t=1

(R∗i,t − Bi,•F•,t)2,(13)

where R∗i,t is the latent value of Ri,t. The EM algorithm iteratively maximizes the
expected value of the complete data likelihood (minimizes the expected value of
Λ∗(B,F)), conditional on the estimates from the prior iteration. Under the as-
sumed error structure, this amounts to minimizing, at iteration j,

(nT)−1
n∑

i=1

T∑
t=1

(R∗, j−1
i,t − B j

i,•F
j
•,t)2,(14)

where R∗, j−1
i,t = Ri,t if Ii,t = 1 and R∗, j−1

i,t = B j−1
i,• Fj−1

•,t if Ii,t = 0 (see Stock and
Watson (1998), p. 11). Thus, the missing data are filled in with the fitted values
from the factor model obtained in the previous iteration. By an analysis identical
to the balanced panel case, the factor portfolio returns obtained from minimizing
expression (14) are equal to (up to a nonsingular rotation L) the APC estimate
obtained from R∗, j−1

i,t . Applying the EM algorithm amounts to an iterative appli-
cation of APC until convergence.

Analyzing the convergence properties of the unbalanced panel case is a more
difficult task than in the balanced case. We are not able to characterize all possible
fixed points of either the EM algorithm applied to APC or ITPCSR in this case.
We can show only that the EM estimates and ITPCSR estimates share one fixed
point.
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In simulations, we find that the ITPCSR and iterated APC estimates give
identical factor estimates when the simulated data are normally distributed. Using
actual return data, we find that the ITPCSR estimates usually converge to the
iterated APC estimates, but there is one out of four 10-year subsamples where they
do not converge to the same estimates. We discuss these results in the next section.

IV. Empirical Analysis

We first present results using actual return data from balanced panels. Next,
we show results for an unbalanced panel where the return data are from a simu-
lated factor model. Finally, we show results for unbalanced panels of actual return
data.

A. Balanced Panel of Asset Returns

Theorem 1 implies that, for a balanced panel of assets, iterating the two-
pass cross-sectional regression converges to the same estimated factor portfolio
returns regardless of the initial prespecified factors, and those portfolio returns
are the APC estimates. This is true even if the prespecified factors have no true
population relation with asset returns. To illustrate this point, we compare the
ITPCSR factor portfolio estimates to the APC factor portfolio estimates for two
different sets of initial factors. For the first initial factors, we chose factors that
should have no economic relevance. The first factor is a monthly sunspot number6

(i.e., the observation for Jan. 2000 is the average of the daily sunspot numbers in
that month). The second and third factors are 1-month and 2-month lags of the
first factor. For the second initial set, we use the 3 factors from Fama and French
(1993), updated on Ken French’s Web site.7 The first factor is the return, in excess
of the 1-month Treasury bill return, on the Center for Research in Security Prices
(CRSP) value-weighted portfolio. The second factor, HML, is the return on a
high book-to-market equity portfolio in excess of the return on a low book-to-
market equity portfolio. The third factor, SMB, is the return on a portfolio of
small-market-capitalization firms in excess of the return on a portfolio of large-
market-capitalization firms.

We show that the ITPCSR factor portfolio estimates converge to a rotation
of the APC factor portfolio estimates regardless of whether we start with the non-
sensical sunspot factors or the Fama and French (1993) factors.

The correlation between monthly sunspot numbers and the total monthly
return on Standard & Poor’s (S&P) index (from Morningstar (2010)) is −0.03
over the period from Jan. 1926 to Dec. 2008. Even though the population factor-
loading matrix, B, is probably 0, the sample factor-loading matrix, B̂0, will have
rank k with probability 1. This is all that we need to have the ITPCSR converge.

For the balanced panel results, the sample assets are those firms on the
monthly CRSP NYSE/AMEX/NASDAQ stock return files that have complete

6The data are available at http://solarscience.msfc.nasa.gov/SunspotCycle.shtml
7The data are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library

.html
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return histories over four different 10-year subperiods: Jan. 1969 to Dec. 1978,
Jan. 1979 to Dec. 1988, Jan. 1989 to Dec. 1998, and Jan. 1999 to Dec. 2008.
When we require a balanced panel, there are 1,290, 2,218, 2,961, and 3,225 firms
that meet the criteria in the four subperiods, respectively. Excess stock returns are
computed by subtracting the 1-month U.S. Treasury bill return (from Morningstar
(2010)).

Let F0 be the initial 3×120 matrix of factors (e.g., 120 time-series
observations on the 3 factors). We estimate the factor-loading matrix, B0, using
equation (3) and a new matrix of factors, F1, using equation (4). The process is
iterated with

B̂ j = R F̂ j−1′(F̂ j−1F̂ j−1′)−1(15)

and

F̂ j = (B̂ j′ B̂ j)−1B̂ j′R.(16)

After each iteration, we estimate the time-series regression of the k new factor
portfolio estimates on the previous k factor portfolio estimates:

F̂ j = a + bF̂ j−1 + u.(17)

With k factors (k = 3 in our empirical work), this is a system of k equations. We
calculate the R2 value for each equation and stop the iteration when the smallest
of the k R2 values is greater than 0.99999999. Note that the R2 measure is used
here as a measure of convergence rather than a statistical measure of fit. If the iter-
atively estimated factors have converged to a fixed point (subject to the rotational
indeterminacy), then all of the R2 values will converge to 1.

To illustrate Theorem 1, we also regress the k ITPCSR factor estimates on
the k APC factors and, separately, on the k initial factors:

F̂ j = a + bF̂ APC + u,(18)

F̂ j = a + bF̂ 0 + u.(19)

For each iteration, we measure the k R2 values from equation (18) and plot them
against the iteration number in Figure 1 for the initial sunspot factors and in
Figure 2 for the initial Fama–French (1993) factors (for equation (18)). Theorem 1
implies that the ITPCSR and APC factor estimates should be the same up to
a linear transformation. Thus, the theorem implies that the k R2 values from
equation (18) should converge to 1.0 as we iterate equations (15) and (16). Fig-
ures 1 and 2 show that the R2 values do converge to 1.0, as the theorem predicts.
That is, the ITPCSR estimates converge to a rotation of the APC estimates.

Since the initial sunspot factors in this exercise have no real economic con-
tent, the R2 values for equation (19) should essentially converge to 0. For the
initial Fama–French (1993) factors, the R2 values for equation (19) should de-
cline, but not to 0. These R2 values do behave in this manner and are available
from the authors.

As predicted by Theorem 1, the R2 values in Figures 1 and 2 converge to 1.
Thus, the iterated two-pass cross section regression estimates converge to the
APC estimates regardless of whether we begin with the sunspot factors or the
Fama–French (1993) factors.
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FIGURE 1

R2 versus Iteration Number: Balanced Panel Estimation–CRSP Return Data
(initial factors for the ITPCSR procedure: sunspot factors)

In Figure 1, R2 is derived from regressing, for each iteration, ITPCSR factor portfolios on the 3 factors from the one-step
APC procedure (plus a constant). The sample consists of 1,290, 2,218, 2,961, and 3,225 firms with complete data available
on the CRSP monthly data file for the 10-year periods, Jan. to Dec. 1969–1978 (Graph A), 1979–1988 (Graph B), 1989–1998
(Graph C), and 1999–2008 (Graph D), respectively.

Graph A. 1969–1978 Graph B. 1979–1988

Graph C. 1989–1998 Graph D. 1999–2008

FIGURE 2

R2 versus Iteration Number: Balanced Panel Estimation–CRSP Return Data
(initial factors for the ITPCSR procedure: Fama–French factors)

In Figure 2, R2 is derived from regressing, for each iteration, ITPCSR factor portfolios on the 3 factors from the one-step
APC procedure (plus a constant). The sample consists of 1,290, 2,218, 2,961, and 3,225 firms with complete data available
on the CRSP monthly data file for the 10-year periods, Jan. to Dec. 1969–1978 (Graph A), 1979–1988 (Graph B), 1989–1998
(Graph C), and 1999–2008 (Graph D), respectively.

Graph A. 1969–1978 Graph B. 1979–1988

Graph C. 1989–1998 Graph D. 1999–2008
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B. Unbalanced Panel of Simulated Asset Returns

We construct simulated factor returns that have the same pattern of miss-
ing data as the actual CRSP return data over one 10-year period. The full sample
consists of 11,641 firms, but only 2,642 have complete returns over the 10-year
period. In an average month, there are 7,430 firms with return data. We simulate
return data for the 11,641 firms from a 3-factor model using a return-generating
process similar to that in Connor and Korajczyk ((1993), Sec. III.B). The main dif-
ference is that we have doubled the idiosyncratic standard deviation. This four-fold
increase in idiosyncratic variance should make it more difficult for the routines to
extract the true factors. Factor realizations and idiosyncratic return realization are
normally distributed in the simulation.

As in the analysis of the balanced panel above, we start the ITPCSR with
two sets of prespecified factors: the sunspot factors and the Fama–French (1993)
factors. The initial APC set of factor estimates is obtained by calculating the
eigenvectors of Ωu in equation (9) as in Connor and Korajczyk (1987). The APC
factor estimates are obtained by the iterative procedure of using the fitted factor
model from the APC iteration j− 1 to “fill in” the missing data for iteration j.

For both the ITPCSR estimates and the APC estimates, the convergence cri-
terion is that the minimal R2 value from the multivariate regression of estimated
factor returns on the factors from the previous iteration (equation (17)) is greater
than or equal to 0.9999999999. Figure 3 shows that, as predicted, the ITPCSR
estimates converge to the estimates from the iterated APC procedure, up to a
linear transformation, L. This convergence is independent of the initial choice of
either the sunspot or Fama–French (1993) factors.

FIGURE 3

R2 versus Iteration Number: Unbalanced Panel Estimation–Simulated Return Data

In Figure 3, R2 is derived from regressing, for each iteration, ITPCSR factor portfolios on the 3 factors from the one-step
APC procedure (plus a constant). The initial factors for the ITPCSR procedure are the sunspot (Graph A) or Fama–French
(1993) (Graph B) factors. The sample consists of simulated time series from a 3-factor model for 11,641 firms. The pattern
of missing data for the simulation is the same as the pattern of missing data in the CRSP sample over a 10-year sample.

Graph A. Sunspots as Initial Factors Graph B. Fama–French as Initial Factors

C. Unbalanced Panel of Actual Asset Returns

Actual return data deviate from the normally distributed world assumed in
the simulations above. In the case of an unbalanced panel of asset returns, there
is some evidence that the ITPCSR estimates, on occasion, are either slow to con-
verge or may converge to a local maximum of the objective function, Λ.
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For the unbalanced panel results, the sample assets are those firms on the
monthly CRSP NYSE/AMEX/NASDAQ stock return files that have at least 24
months of return histories over the respective 10-year subperiods: Jan. 1969–Dec.
1978, Jan. 1979–Dec. 1988, Jan. 1989–Dec. 1998, and Jan. 1999–Dec. 2008.
There are 5,680, 8,884, 11,710, and 10,221 firms that meet the criteria in the
4 subperiods, respectively. Excess stock returns are computed by subtracting the
1-month U.S. Treasury bill return.

We estimate factor-mimicking portfolios for the full sample of CRSP firms
for the ITPCSR and iterated APC approaches. Figures 4 and 5 show how the
ITPCSR estimates converge to the iterated APC algorithm estimates. For three of
the four 10-year subperiods, the ITPCSR estimates converge to the iterated APC
estimates. However, for the 1989–1998 subperiod, the ITPCSR estimates do not
converge to the iterated APC estimates.

FIGURE 4

R2 versus Iteration Number: Unbalanced Panel Estimation–CRSP Return Data
(initial factors for the ITPCSR procedure: sunspot factors)

In Figure 4, R2 is derived from regressing, for each iteration, ITPCSR factor portfolios on the 3 factors from the one-step
APC procedure (plus a constant). The sample consists of 5,680, 8,884, 11,710, and 10,221 firms available on the CRSP
monthly data file for the 10-year periods, Jan. to Dec. 1969–1978 (Graph A), 1979–1988 (Graph B), 1989–1998 (Graph C),
and 1999–2008 (Graph D), respectively.

Graph A. 1969–1978 Graph B. 1979–1988

Graph C. 1989–1998 Graph D. 1999–2008

For the nonconverging subperiod, we calculate the least squares objective
function, Λ, from equation (10) for the two ITPCSR estimates (starting with the
sunspot “factors” and the Fama–French (1993) factors) and the iterative APC
estimate for the 1989–1998 subperiod. The iterated APC estimate has the smallest
value of Λ, equal to 23,139. The values are 23,230 for the ITPCSR estimate start-
ing with the sunspot factors and 23,179 for the ITPCSR estimate starting with the
Fama–French (1993) factors. All three values forΛ are very close (with the largest
difference being 0.39%). This seems to indicate that in this unbalanced panel case,
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FIGURE 5

R2 versus Iteration Number: Unbalanced Panel Estimation–CRSP Return Data
(initial factors for the ITPCSR procedure: Fama–French factors)

In Figure 5, R2 is derived from regressing, for each iteration, ITPCSR factor portfolios on the 3 factors from the one-step
APC procedure (plus a constant). The sample consists of 5,680, 8,884, 11,710, and 10,221 firms available on the CRSP
monthly data file for the 10-year periods, Jan. to Dec. 1969–1978 (Graph A), 1979–1988 (Graph B), 1989–1998 (Graph C),
and 1999–2008 (Graph D), respectively.

Graph A. 1969–1978 Graph B. 1979–1988

Graph C. 1989–1998 Graph D. 1999–2008

the two estimation algorithms are finding slightly different local maxima for the
1989–1998 period.

D. Comparison of Factor Risk Premia

Due to the rotational indeterminacy in the definition of the factors, individual
factor risk premia are not comparable across estimation methods or across subpe-
riods. The vector of factor returns can be tested against the null hypothesis that all
three risk premia equal 0; this null hypothesis is invariant to a linear rotation. A χ2

test for nonzero means of the vector of risk premia is invariant to factor rotations
and simple to aggregate across subperiods. Let μ̂ denote the 3-vector of sample
averages of the estimated factor returns and Ĉ the sample covariance matrix of
the factor returns over a T = 120 month subperiod. Under the null hypothesis that
the true vector of means equals 0, and weak conditions on the time-series process
for factor returns:

√
Tμ̂′Ĉ−1μ̂

A∼ χ2(3),

where
A∼ denotes the asymptotic distribution for large T. Note that the test is

invariant to rotations of the factors. Since the subperiod returns are indepen-
dent, the sum of the four χ2(3) subperiod statistics has a χ2(12) distribution.
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Table 1 presents the subperiod and aggregate results for four sets of factor return
estimates. We use the three sets of factor return estimates illustrated in Figures
4 and 5. We also show the results using “one-step” two-pass cross-sectional re-
gression, that is, the factor returns from the first completed step from the iterated
TPCSR estimates, starting with Fama–French (1993) portfolios as initial factors.

TABLE 1

Tests for Significance of Factor Risk Premia

Table 1 reports tests statistics and p-values for the hypothesis that the mean excess return of a 3-factor portfolio is 0 for
each subperiod (distributed χ2 with 3 degrees of freedom) and for the hypothesis that the mean excess return of a 3-factor
portfolio is 0 for all subperiods jointly (distributed χ2 with 12 degrees of freedom).

Factor Estimation Method Subperiod χ2(3) p-Value χ2(12) p-Value

Asymptotic principal components 1969–1978 1.54 0.67
1979–1988 2.73 0.43
1989–1998 4.11 0.25
1999–2008 1.63 0.65 10.01 0.62

Iterated two-pass cross-sectional 1969–1978 1.54 0.67
regression with Fama–French 1979–1988 2.75 0.43
portfolios as initial factors 1989–1998 4.30 0.23

1999–2008 1.73 0.63 10.31 0.59

Iterated two-pass cross-sectional 1969–1978 1.54 0.67
regression with sunspot time 1979–1988 2.76 0.43
series as initial factors 1989–1998 4.83 0.18

1999–2008 1.69 0.64 10.82 0.54

Single-Step two-pass cross- 1969–1978 0.72 0.87
sectional regression with 1979–1988 6.51 0.09
Fama–French portfolios as 1989–1998 13.67 0.00
initial factors 1999–2008 4.30 0.23 25.20 0.01

As predicted by the theory, the three sets of factor return estimates give very
similar test results in all three subperiods (the unbalanced panel data prevent the
results from being identical across estimation methods). The one-step TPCSR
results differ; these estimates have not converged to a linear rotation of the same
set of underlying factors.

V. Conclusion

Two-pass cross-sectional regression (TPCSR) and asymptotic principal com-
ponents (APC) are two possible methodologies for estimating factor portfolio
returns and risk premia in a beta pricing model of asset returns. In this paper, we
study an iterative version of TPCSR that overcomes the EIV problem and can be
applied to individual firms rather than sets of portfolios (Kruskal (1978), Brown
and Weinstein (1983), and Shanken (1983)). This leads to increased precision of
the estimator of factor-mimicking portfolio returns (Ang et al. (2010)).

We show an equivalence between the factors estimated by APC and those
from ITPCSR when the restrictions of the asset pricing model are imposed. For
balanced panels, we show that the ITPCSR factor estimates converge to the APC
factor estimates even if the choice of initial prespecified factors makes no
economic sense. Here we use sunspot numbers as initial factors as well as the
Fama–French (1993) factors, MKT, HML, and SMB. For unbalanced panels that
have normally distributed returns, the ITPCSR estimates converge to an itera-
tive version of the APC procedure. For unbalanced panels with actual, nonnormal
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data, the ITPCSR estimates converge to an iterative version of APC in three of
four 10-year subperiods. In one 10-year subperiod, the ITPCSR estimates are
highly, but not perfectly, correlated with the iterative APC estimates. We find ev-
idence that in the unbalanced case, the various estimates may find local maxima
of the objective function.

Appendix. Proof of Theorem 1

Lemma 1. Let H be any matrix of k eigenvectors of R′R and L be any nonsingular k × k
matrix. Then F̂ = LH is a solution to equations (5) and (6). Conversely, let F̂ denote any
solution to equations (5) and (6). Then F̂ = LH, where H is a matrix of k eigenvectors of
R′R and L is a nonsingular k × k matrix.

Proof of Lemma 1. Assume H is a set of k eigenvectors of R′R and L is a nonsingular
matrix. We must show that LH solves equations (5) and (6). Substituting equation (6) into
equation (5) gives

F̂ =
[
(LHH′L′)−1LHR′RH′L′(LHH′L′)−1

]−1
(LHH′L′)−1LHR′R.(A-1)

Using the rule that (ABC)−1 = C−1 B−1 A−1 to eliminate some Ls gives

F̂ = LHH′[HR′RH′]−1HR′R.(A-2)

Since H is a set of eigenvectors of R′R, we have HR′R=ΛH, where Λ is a diagonal matrix.
Substituting into equation (A-2) gives

F̂ = LHH′[ΛHH′]−1ΛH = LH,(A-3)

which proves the result.
Now, assume that F̂ is a solution to equations (5) and (6). We will show that F̂= LH,

where H is a set of eigenvectors and L is a nonsingular k× k matrix. Combining equations
(5) and (6) gives

F̂ =
[
(F̂F̂′)−1F̂R′RF̂′(F̂F̂′)−1

]−1
(F̂F̂′)−1F̂R′R.(A-4)

Note that if F̂ solves equation (A-4) then so does F∗ = LF̂ for any nonsingular
k × k matrix L. For simplicity, first consider the case (F̂F̂′) = I. Simplifying
equation (A-4) gives

F̂ = [F̂R′RF̂′]−1F̂R′R = MF̂R′R,(A-5)

where M = (F̂R′RF̂′)−1. Since M is a real symmetric matrix, we can decompose it as
M = P−1ΛP, where Λ is T × T diagonal matrix (Searle (1982), p. 200). Substituting into
equation (A-5) gives

F̂ = P−1ΛPF̂R′R.(A-6)

Multiplying both sides by Λ−1P gives

Λ−1PF̂ = PF̂R′R,(A-7)

which implies that H = PF̂ is a set of k eigenvectors of R′R. Hence, F̂ = LH,
where L= P−1.
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For the case (F̂F̂′) /= I, construct F∗ = (F̂F̂′)−1/2F̂ and note that (F∗F∗′) = I. Now,
applying the steps above to F∗ proves that F∗ is a linear transformation of a set of k
eigenvectors of R′R and therefore so is F̂ = (F̂F̂′)1/2F∗.

Proof of Theorem 1. Note that, since Ω = R′R/n, the eigenvectors of Ω are equal to the
eigenvectors of R′R, since the eigenvectors of a matrix are unaffected by nonzero scalar
multiplication. From Lemma 1, F̂ solves equations (5) and (6) if and only if it consists of
a linear transformation of k eigenvectors of R′R. The eigenvectors of Ω are identical to the
eigenvectors of R′R; hence, they solve equations (5) and (6). We must show that such an
F̂ obeys equation (7) if and only if it consists of the “first” k eigenvectors, defined as those
associated with the k largest eigenvalues.

From equation (2), we can write

R = B̂F̂ + φ̂,(A-8)

where B̂F̂ and φ̂ are orthogonal. Therefore,

trace(R′R) = trace(F̂′B̂′B̂F̂) + trace(φ̂′φ̂).(A-9)

From equation (6) we have

trace(F̂′B̂′B̂F̂) = trace(F̂′(F̂F̂′)−1F̂R′RF̂′(F̂F̂′)−1F̂)(A-10)

= trace(F̂′(F̂F̂′)−1ΛF̂),

where Λ is the diagonal matrix of eigenvalues associated with F̂. Since trace(XY)=
trace(YX) for any conformable matrices X and Y ,

trace(F̂′B̂′B̂F̂) = trace(F̂F̂′(F̂F̂′)−1Λ) = trace(Λ).(A-11)

Since trace(Λ) is the sum of the k eigenvalues, it is maximized when F̂ is associated
with the k largest eigenvalues. From equation (A-9), since trace(R′R) is fixed, minimizing
trace(φ′φ) is equivalent to maximizing trace(Λ). Since the eigenvectors of R′R are equal
to the eigenvectors of Ω, and their eigenvalues are proportional, the APC factor estimates
solve equations (5), (6), and (7). Therefore, the APC estimates are the same as the ITPCSR
estimates (up to a linear transformation).
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